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Abstract

Let h : R? — R? be an orientation preserving homeomorphism of the plane. For any
bounded orbit O(z) = {h"(2) : n € Z} there exists a fixed point p € R? of h linked to O(x)
in the sense of Gambaudo: one cannot find a Jordan curve C C R? around O(z), separating
it from p, that is isotopic to (C) in R*\ (O(z) U {p}).

1 Introduction

Given a set D by cl(D),int(D), and 9D we shall denote the closure, interior and boundary of D
respectively. S denotes the n-dimensional sphere, and R? denotes the plane. Given an orientation
preserving homeomorphism h : R? — R? the orbit of z is given by O(z) = {h"(x) : n € Z}. The
present paper is concerned with the existence of fixed points of orientation preserving homeomor-
phisms of R? linked to bounded orbits, in the sense introduced by J.-M. Gambaudo in [11]. Let
O; and O3 be two sets invariant for a homeomorphism h. Following [11] we say that these two
sets are unlinked if there exist two discs Dy, Dy C R? with the following properties:

e O; C int(D;) for i=1,2;
e DN Dy =0;
e h(0D;) is isotopic to D; in R%\ (Oy U Oy), for i = 1,2.

Note that if c1(O1) NOs # () then O; and O, are linked in a trivial way, as there is no Jordan curve
around O, separating the two sets. Gambaudo showed that for any C!'-embedding f of a disk, and
any periodic orbit O of f, there exists a fixed point p linked to O. In consequence, for the torus
flow ¢, suspending f, the sets {¢;(0)}>0 and {¢:(p)}>o are linked as knots in S3. A similar result
was obtained simultanously by B. Kolev in [14], who showed linking of a periodic orbit to a fixed
point for orientation preserving C'-diffeomorphisms of R%. The result of Gambaudo and Kolev was
generalized to orientation reversing homeomorphisms of S? by M. Bonino [1], who showed linking
of periodic orbits of period at least 3, to periodic orbits of least period 2. Bonino also pointed
out that Kolev’s proof, in the orientation preserving case, works in C° as well, as it is enough
to perturb a given homeomorphism slightly, by smoothing it out in a small neighborhood of the
periodic orbit and then apply the same proof. In the present paper we improve on the results of
Gambaudo and Kolev, by proving that any bounded orbit is linked to a fixed point.

Theorem 1.1. Let h : R? = R? be an orientation preserving homeomorphism. For any bounded
orbit O(x) there exists a fived point p € R? linked to O(z).

Outline of Proof.
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o Suppose no point in Fix(h) is linked to the compact K = c1O(x).

o Then there exists a lift h of h to the universal cover (1,U) of an open surface U (which is
the component of R?\ Fix(h) containing K ), and a (compact) sheet K over K, such that
iL(K) = K. This step is possible since h(U) = U, as a consequence of a result of Brown and
Kister [6].

e Since h is orientation preserving and fized point free, and K is compact, we obtain a contra-
diction with Brouwer Translation Theorem.

e To show that K is invariant under h, one projects K from the universal cover onto an infinite
cyclic covering space, to realize that K is h-invariant unless a fized point of h linked to K
already exists.

Our proof is inspired by M. Brown’s paper [5], the writing of 2], and motivated by [15] where
Brown’s approach was used to show existence of periodic points in neighborhoods of adding ma-
chines in the plane. Unlike the proofs of results in [1], [11] and [14], our proof does not employ
any elements of the Nielsen-Thurston theory, but purely topological arguments concerning covering
spaces of open surfaces. We believe that this proof reveals a deeper explanation of the phenomenon
described by the result of Gambaudo and Kolev. Our result is applicable not only to periodic or-
bits, but also to non-periodic bounded orbits, and can be used, for example, to guarantee fixed
points linked to an invariant Cantor set C' = cl(O(z)). This is particularly useful when h|C is
minimal?, or more generally aperiodic?, as then C' does not contain any fixed points. It is easy to
find examples of local dynamics of h for which A may be such that the result of Kolev and Gam-
baudo does not guarantee a linked fixed point, but the above theorem does. In particular this may
occur for a disk D C R? such that h|0D is conjugate to a circle homeomorphism with irrational
rotation number (minimal or Denjoy-type), or h|C is an odometer with C C D. However, the set
of minimal homeomorphisms of the Cantor set is very rich, and contains homeomorphisms with
any prescribed topological entropy, even topologically mixing [18], and so potential applications go
far beyond these two examples?. Moreover, our result also applies to orbits whose closures might
be connected sets, even separating plane continua. Finally, our theorem can also be used to detect
linking of one-dimensional invariant sets of suspension flows in S?, more general than just knots
considered in [11], such as 1-dimensional matchbox manifolds; i.e. the class of compact connected
metrizable spaces in which every point has a neighborhood homeomorphic to the product [0, 1] x C.
This class of spaces includes many familiar examples from the dynamics literature, such as Denjoy
exceptional minimal sets of flows [21], solenoids [23], and DA-attractors [13]; see e.g. [9] and [10]
to learn more.

2 Proof of Theorem 1.1

Suppose 01 = {h"(x) : n € Z} is an orbit and Oy = {p} is a fixed point of h, such that p ¢ cl(O;).
If Dy is a sufficiently small disk containing Oy then 9D, is always isotopic to h(9D3)?. Therefore
for linking of orbits to fixed points, Gambaudo’s definition reduces to the following condition.

e O; and p are linked if there does not exist a closed disk Dy with O; C int(D;), such that
p ¢ Dy and 9D is isotopic to h(9D1) in R? \ (O1 U {p}).

If such a Jordan curve dD; does exist, and consequently O; and p are unlinked, then we shall call
0D; an unlinking of O and p.

Recall that if U is an open surface and (U,T) is its universal covering space then given a
homeomorphism h : U — U there exists a lift homeomorphism h:U — U such that the following

2h|C is said to be minimal if the orbit of every point is dense in C

3h|C is aperiodic if h|C has no periodic orbits

4Note that any Cantor set homeomorphism extends to a homeomorphism of R? [19, Chapter 13, Theorem 7, p.
93|.

5Note that this shows that this form of linking is not well suited for homeomorphisms of S2, since there any two
Jordan curves separating O1 and z’ are isotopic in 2 \ (01 U {z’}). This contrasts with the case discussed in [1],
when O3 is of least period 2, in which case this form of linking is meaningful.



diagram commutes.

u—"su
Additionally if h(z) = y then h is uniquely determined by the choice of two points & € 7~ 1(z),
§ € 77 (y) and setting h(Z) = . If D C U is a disk (or its subset), then 7~ (D) consists of pairwise
disjoint homeomorphic copies of D in U, called sheets. We shall need the following celebrated result
of Brouwer. Brouwer’s theorem with its subsequent generalizations is much stronger, but we shall
only need the weaker version stated below. The reader is referred to [22] for a historical account
of the proof of Brouwer’s result.

Theorem 2.1 (Brouwer Translation Theorem). [7] Let h : R?> — R? be an orientation preserving
planar homeomorphism. If there exists an x € R? such that O(x) is bounded, then there erists a
fized point p € R? of h.

Now we are ready to prove Theorem 1.1.

Proof. (of Theorem 1.1) Let O(z) be a bounded orbit and p € Fix(h). If p € cl(O(z)) N Fix(h)
then O(x) and p are linked, and so from now on we shall assume that cl(O(z)) N Fix(h) = 0.

Standing Assumption: cl(O(z)) NFix(h) = 0.

We start with the case when K = cl(O(z)) does not separate R?, as the case when K separates is
ecasier.

CASE I: cl(O(z)) does not separate R2.

By contradiction, suppose that no point in Fix(h) is linked to O(z). Let U be the component of
R?\ Fix(h) that contains x. Recall that h(U) = U by [6], and so K C U. Note that U cannot be
simply connected, as otherwise we obtain a contradiction with Brouwer Translation Theorem, since
U is then homeomorphic to R? and contains a bounded orbit, but no fixed point. Let x,, = h"™(x)
for each N. Let (U,7) be the universal cover of U. Note that U is homeomorphic to R? and, since
K is contained in a disk disjoint from Fix(h), K lifts to pairwise disjoint homeomorphic copies of
itself (sheets) in U, each of which maps homeomorphically onto K by 7. Let K be one such a
sheet. We have 7(K) = K. Let i =7"Yx) ﬁ~K and #; = 77 (x1) N K. The homeomorphism A
lifts to a unique homeomorphism h such that h(Z) = ;.

Claim 2.2. h"(%) € K for every n € N.

Proof. (of Claim 2.2) By contradiction, suppose that there exists an N such that W (z) ¢ K.
Without loss of generality we assume that N = 2. Let & = 7~ *(z2) N K and &y = h(#1). We have
Ty € h( ) 7& K

Let 0 : U — U be the deck transformation such that o(Z4) = Z. The deck transformation
group is isomorphic to the fundamental group 71 (U) of U, and one sees o as an element « of 71 (U).
There exists a point p € Fix(h), such that « is a nontrivial loop in the surface W = R? \ {p}. Let
(W k) be an infinite cyclic covering space of . Then (U, ) is also a universal covering space of
U, the component of W \ x~!(Fix(h) \ {p}) that contains x~'(K), and so there exists a covering
map ¢ : U — U such that 7 = k|g 0 ¢. Let T = ¢(Z),Z1 = ¢(Z1), T2 = ¢(&2) and T = ¢(&,). By
the choice of o we have that the element of the deck transformation group (with respect to U) &
satisfying o ¢ = ¢ oo is nontrivial, and 7(75) = T2, 50 T2 # 5. Let L be an unlinking of cl(O(x))
and {p}. Set K = ¢(K), and let L be a sheet over L that bounds a disk containing K, and h be
the lift of h to W given by h(Z) = Z;. We have ¢ o h = (h|U) o ¢, and h(Z;) = T».

Consider an isotopy {i; : S' = R?\ (cl(O(x)) U {p}) : 0 < t < 1} from io(S') = L to i1(S') =
h(L). By isotopy lifting property, this isotopy lifts to an isotopy i, : S* — W\ x~(cl(O(x)))
taking L to h(L), both of which are loops in W (since L and h(L) are inessential in R?\ {p}). This
leads to a contradiction, since L bounds a disk containing Z, but h( L) does not, so i; cannot take
L to h(L) in W\ k~1(cl(O(x))). This completes the proof of Claim 2.2. O



Figure 1: Proof of Theorem 1.1, CASE I: The component U of R*\ Fix(h) containing cl(O(z))
and the covering spaces U and U.

To conclude the proof of CASE T it is now enough to observe that h is an orientation preserving
homeomorphism of the plane U, with a compact invariant set K, but no fixed points, contradicting
Brouwer Translation Theorem.

CASE II: cl(O(x)) separates R?.

If no bounded component V of R?\ cl(O(z)) contains a fixed point then we add all such components
to cl(O(z)) and we are back to CASE 1.

Otherwise, there exists a bounded component V, of R? \ cl(O(z)) such that h(V,) = V, and V,
contains a fixed point p’ of h. But since OV, separates the plane into at least two components, one
of which contains p’, and none of which contains cl(O(z)), there does not exist a disk Dy such that
cl(O(x)) C int(D;) and p’ ¢ D;. Consequently there is no unlinking of cl(O(z)) and p’, and these
two orbits must be linked. This concludes the proof of CASE II.

The proof of Theorem 1.1 is complete. O

Remark 2.3. The proof of Theorem 1.1 remains valid if the full orbit O(x) is replaced with one
of the half orbits Ot (z) = {h"(x) : n € N} or O~ (z) = {h~"(z) : n € N}.

3 Final Remarks

In 1988 J. Franks defined what seems to be a deeper form of linking, for which one requires from
a periodic orbit to have a non-zero rotation number around a fixed point. Franks asked whether
every periodic orbit of an orientation preserving homeomorphism is linked in that sense to a fixed
point [3]. This difficult open problem was resolved in the affirmative by P. Le Calvez in 2006 [17]. Tt
seems that Le Calvez’s result cannot be extended to bounded orbits. A result that seems related to



both forms of linking is proven in [12], where a way of locating fixed points in proximity of recurrent
orbits is given, by the means of topological hulls of unions of arcs, connecting a finite number of
points of an e-periodic orbit; see also [16] and [20]. Sufficient conditions for the nonremovability
of collections of periodic points under isotopy relative to a general compact invariant set can be
found in [4].
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