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We propose a new solution to the hierarchy (naturalness) problem, concerning quantum corrections of the
Higgs mass. Assuming the Higgs boson as a system with a self-similar internal structure, we calculate its two-
point function and find that the quadratic divergence is replaced by a logarithmic one in the mass corrections. It is
shown that the partonic-like distribution follows the Tsallis statistics and also high energy physics experimental
data for the Higgs transverse momentum distribution can be described by a self-similar statistical model.
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I. INTRODUCTION

After the discovery of the Higgs boson with a mass around
125GeV at the Large Hadron Collider (LHC), although the
last piece of the Standard Model (SM) has been found [1–3],
some features of the Higgs boson are still under debate and in-
vestigation. Moreover, there are important issues, such as the
mass of neutrinos, matter-antimatter asymmetry, dark matter
and the hierarchy problem, which are left unanswered in the
SM and should be addressed in a more fundamental theory.
On the other hand, no significant deviations from the SM pre-
dictions have been observed so far at high energy collisions
and the theory may be generalized to high energy scales. In
this sense, in the SM, the hierarchy problem of scales between
the weak and higher energy scales is more evident when con-
sidering quantum fluctuations to calculate the Higgs squared
mass corrections [4]

δm2
h =
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t
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Λ2

m2
h
), (1)

where Λ is the cutoff of the theory, i.e., the highest accessible
energy scale, v ≃ 246GeV is the electroweak (EW) symmetry
breaking scale and mh, mW,Z , and mt denote the mass of Higgs,
gauge boson and top quark particles. Thus, if Λ is very large,
for instance as large as the Planck mass, the corrections will
be extremely greater than the Higgs mass value.

Theories beyond the SM may have an additional contribu-
tion to the Higgs mass such that it is finely adjusted to can-
cel δm2

h. Supersymmetric models [5] and composite Higgs
scenarios [6] are such endeavors to avoid this problem. The
fine-tuning in cancellation can be measured as [6]

∆ ≥
δm2

h

m2
h

∼
(

Λ

450GeV

)2

. (2)

Therefore, in these new theories, for Λ ≫ TeV, the Higgs bo-
son mass cannot be found due to the cancellation.

In the SM, the Higgs boson is the only elementary scalar
field and all other scalars are bound states of the strongly cou-
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pled sector. If the Higgs is also elaborated to be a compos-
ite bound state, it can be originated from a new strongly in-
teracting dynamics, since Quantum Chromodynamics (QCD)
cannot be responsible for its construction. That is the notion
established in composite Higgs models [6–8], avoiding the hi-
erarchy problem.

In this paper, the Higgs boson is not considered as an ele-
mentary particle but a complex system with an internal struc-
ture which reveals a statistical self-similarity behavior in that
constituents are similar to the main system at a different level
of scale.

Self-similar objects and patterns, known as fractals, have
been widely studied in various areas of science including
mathematics, biology and physics, as widely found in nature
(not necessarily as exact fractals) [9]. In particle physics, es-
pecially in strong interactions, self-similar systems have been
used to model hadrons which are composed of hadrons [10–
12]. These models were able to describe many features of
the hadronic system consistent with experimental data. Addi-
tionally, in high energy collision experiments of strong inter-
actions, showing nearly scale invariant properties, the trans-
verse momentum data would be well described in this context
[13–16] if the Boltzmann-Gibbs statistics were replaced by
the Tsallis statistics [17, 18].

In the present work, based on the non-perturbative analysis
of the two-point correlation function [19, 20], incorporating
the Källen–Lehmann spectral representation, we first obtain
the two-point function of the Higgs with the self-similar in-
ternal structure, whose effects give rise to a modification to
the field strength renormalization factor. Then, connecting
the modified factor to pertubative calculations, we show that
the calculation of effective one-particle irreducible (1PI) di-
agrams leads to a logarithmic divergence in the Higgs mass
corrections.

Such a scenario can be resulted from a new QCD-like dy-
namics at high energies and hence not only is the prediction of
the Higgs mass naturally feasible without restricting the given
confining scale to be around the TeV, and without fine-tuning
due to the logarithmic divergence, but also the hierarchy prob-
lem is addressed in this setup.
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II. CORRELATION FUNCTION

We now investigate the two-point correlation function of
the Higgs, in accordance with the aforementioned consider-
ations, for the interacting theory, ⟨Ω|φ(x)φ(y)|Ω⟩. Using a
complete set of intermediate states at some scale level,

1 = ∑
ψ

∫ d3 p
(2π)3

1
2Ep

|ψ⟩⟨ψ|, (3)

the two-point function for x0 > y0 can be written as

⟨Ω|φ(x)φ(y)|Ω⟩= ∑
ψ

∫ d3 p
(2π)3

1
2Ep

⟨Ω|φ(x)|ψ⟩⟨ψ|φ(y)|Ω⟩,

(4)
where Ep =

√
p2 +m2 and |ψ⟩ is the self-similar partonic

state which can be an eigenstate of 4-momentum Pµ . Because
of translational invariance,

⟨Ω|φ(x)|ψ⟩= ⟨Ω|φ(0)|ψ⟩e−ip.x

⟨ψ|φ(y)|Ω⟩= ⟨ψ|φ(0)|Ω⟩eip.y, (5)

thus Eq. (4) is expressed as1

⟨Ω|φ(x)φ(y)|Ω⟩=
∫ d4 p

(2π)4
i e−ip.(x−y)

p2 −m2 + iε
|⟨Ω|φ(0)|ψ⟩|2.

(6)
For y0 > x0 the same procedure can be written to express the
time-ordered product of the function. Furthermore, we can
represent the scalar function as the Källen-Lehmann represen-
tation in terms of a spectral function

⟨Ω|T φ(x)φ(y)|Ω⟩=
∫

∞

0

dM2

(2π)
ρ(M2)DF(x− y;M2), (7)

where DF is the Feynman propagator. Rewriting the effective
state in terms of self-similar partonic constituent states

|ψ⟩= ∑
i
⟨ψi|ψ⟩|ψi⟩, (8)

we can explore the effect of internal structure. In this case the
spectral function of the system will be

ρ(M2) = ∑
i
(2π)δ (M2 −m2

h)|⟨Ω|φ(0)|ψi⟩|2|⟨ψi|ψ⟩|2. (9)

As a result, the two-point function becomes

⟨Ω|T φ(x)φ(y)|Ω⟩ ∼ ∑
i

∫
∞

0
dM2

δ (M2 −m2
h)Z |⟨ψi|ψ⟩|2DF .

(10)
Note that analogous to the fractal concept and the notion of
hadrons composed of hadrons, we consider the Higgs as a

1 A sum over ψ would contribute a branch cut in the spectrum. However,
since the Higgs is considered as a self-similar partonic-like state, this is not
the case here.

self-similar partonic-like state at some energy scale, |ψ⟩, so
that it has self-similar internal subsystems, |ψi⟩, similar but
with different energy levels with respect to the system. Thus,
Z = |⟨Ω|φ(0)|ψi⟩|2 is considered as the field strength renor-
malization of a representative self-similar Higgs state and the
effect of self-similar subsystems is included in the new prob-
ability term ∑i |⟨ψi|ψ⟩|2 as

∑
i
|⟨ψi|ψ⟩|2 =∑

i

(
∏

i

∫ d4 pi

(2π)4

)
|M|2 f (2π)4

δ
4 (

∑ pi − k
)
.

(11)
Here, M is the probability amplitude of finding the subsys-
tem ith as a fraction of the system, and since ψi is also a
self-similar partonic-like state with self-similar constituents,
we consider the parameter f as the partonic-like distribution
including the effect of substructures on the probability. Other
terms in Eq. (11) denote the phase space integral over ψi, and
k is the momentum of the intermediate state.2

As for calculating the probability amplitude |M|2, we ap-
proximate it as the fraction of the momentum of the state |ψ⟩
carried on by the constituent states |ψi⟩, i.e., |M|2 ∼ p2

i /k2 =
m2

i /k2 = x2, where we define x = pi/k as the scale invariant
parameter of the system (analogous to the parameter defined
in the parton model 0 < x < 1, see, e.g., [20]).3 Then, one
should find how this scale invariant parameter of the system is
distributed to partons through the distribution function.

To obtain the internal distribution, we start with a non-
interacting N-particle system whose energy distribution can
be given by the Maxwell distribution

f (K) =
µ− 3N

2

Γ(3N/2)
K

3N
2 −1e−

K
µ , (12)

where K is the energy of the system, µ is the average energy,
and Γ denotes the gamma function. However, we intend to
obtain the energy distribution for a system having self-similar
internal structures, which contribute to the energy of the sys-
tem, and each constituent itself has self-similar subsystems.
Due to this self-similar feature, we assume the attributed en-
ergy to a subsystem is a fraction of the energy of this system
at different orders of the scale invariant parameter. Therefore,
taking the contribution of all subsystems into account, we con-
sider the total energy of the system as U = Kg(x), where g(x)
can be generally expressed as g(x) = 1+ ax+ bx2 + · · · , so
that the energy of the system can be approximated as

U ∼ K (1+ x)α , (13)

where α denotes the fractal index and will be determined in
the following by the relevant statistics of the system. As ex-
pected, the energy distribution of internal subsystems follow

2 In the perturbative method with Feynman diagrams, k is the momentum
which is integrated over at the loop level.

3 Because of the self-similarity feature of internal structures, we consider
such a scale invariant parameter which remains constant at different scale
levels in the system.
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the main structure. Thus, for this system we can write

f (U) =
µ− 3N

2

Γ(3N/2)
U

3N
2 −1e−

U
µ

=
µ− 3N

2

Γ(3N/2)
K

3N
2 −1 (1+ x)

3N
2 α−α e−

K
µ
(1+x)α

, (14)

and hence the internal distribution would be

f (x) =
∫

dK
µ− 3N

2

Γ(3N/2)
K

3N
2 −1 (1+ x)

3N
2 α−α e−

K
µ
(1+x)α

= (1+ x)−α .

(15)

It is tempting substitute α = q/(q− 1) and x = (q− 1)ε/ε̃ ,
and it can be seen the distribution, [1+(q− 1)ε/ε̃]−q/(q−1),
follows the non-extensive Tsallis statistics, where q is the
entropic factor of the system and for the limit q → 1 the
Boltzmann-Gibbs is reproduced.

Putting the calculated terms into Eq. (11), we obtain

∑
i

(
∏

i

∫ d4 pi

(2π)4

)
x2 (1+ x)−α (2π)4

δ
4 (

∑ pi − k
)

∼ ∑
i

(
∏

i

∫ d4 pi

(2π)4

)
m2

i
k2

(
1−α

pi

k

)
(2π)4

δ
4 (

∑ pi − k
)

∼ ∑
i

m2
i /k2 = M2/k2.

(16)
The integral can approximately be calculated by using the ex-
panded form of (1+ x)−α as powers of x. The terms with
different powers of x result in higher powers of k2 in the de-
nominator, and then produce finite terms in the following loop
calculations; thereby we ignore these terms in this discussion.
Eventually, we obtain the Fourier transformation of the two-
point function as follows∫

d4x eip(x−y)⟨Ω|T φ(x)φ(y)|Ω⟩ ∼ iZ̃
p2 −m2

h + iε
, (17)

where the effect of the internal structure is included in Z̃ ≡ Z f̃
and f̃ = m2

h/k2.
In the perturbative method, analogous to the sum of 1PI

diagrams, denoted by M, for this system the Higgs two-point
function can be expressed as a geometric series of modified
diagrams, M̃, so that

iZ̃
p2 −m2

h + iε
∼ i

p2 −m2
0h −M̃

(18)

where M̃ can be attained from Eq. (18) by expanding the de-
nominator of the right hand side close to the pole

(
p2 −m2

h
)(

1− dM̃
d p2

∣∣∣∣
p2=m2

h

)
+O

(
(p2 −m2

h)
2) , (19)

and comparing it to the left hand side of the equation.
Thereby, from Z̃−1 ∼ 1 − δ Z̃, we can find δ Z̃ = f̃ δZ =

dM̃/d p2 = f̃ dM/d p2 and hence M̃ = f̃M. This result
can be also consistently applied to the Lehmann-Symanzik-
Zimmermann (LSZ) formula [21] in that the sum of 1PI inser-
tions in the propagator is equal to that of amputated scattering
diagrams, implying M(p → p) = Z̃M= ZM̃.

To clarify this effect, applying the cutoff regularization, we
calculate M̃ at the one-loop order, for the Feynman diagram
with the self coupling interaction; the same procedure holds
for other Higgs interactions.4 Thus, for the mentioned dia-
gram

−iM̃=
−iλ

2

∫ d4k
(2π)4

m2
h

k2
i

(k2 −m2
h)

=−
iλm2

h
32π2 log

Λ2

m2
h
.

(20)
As can be seen from Eq. (20), and generally for other Higgs
two-point function diagrams, we deal with the logarithmic di-
vergence which is canceled by δm2

h.

III. DISCUSSION

As already mentioned, the obtained distribution obeys the
non-extensive Tsallis statistics. The non-extensivity can be
realized from the non-additive entropy [17] and the factor q is
a measure of non-additivity.

In high energy experiments, such a distribution has been
used for describing the transverse momentum pT distribution
of hadronic systems whose experimental data in a good agree-
ment can be modeled by the following fitting function [22–26]

dN
Nd pT

= c̃pT
(n−1)(n−2)

nC (nC+m(n−2))

(
1+

√
p2

T +m2 −m

nC

)−n

,

(21)
where c̃ is the normalization, n, C are fitting parameters and
m stands for the hadron mass. The number of events for a
given cross section is N = σ

∫
Ldt and

∫
Ldt is the integrated

luminosity. The fitting parameters can also be identified in
terms of Tsallis parameters T0 and q as n ≡ q/(q − 1) and
nC ≡ T0/(q−1) [14].

In addition, in high energy collisions, the Higgs transverse
momentum pH

T is a key observable due to which one can study
its properties and the dynamics of the produced system as well
as distortions of its SM predictions. We try to describe the pT
distribution of the Higgs system by the mentioned statistical
model, the Tsallis function, with its parameters. We consider
the combined differential cross section of H → γγ (diphoton),
H → ZZ∗ and H → bb̄ (a bottom quark-antiquark pair) de-
cay channels for pH

T reported by the CMS collaboration at√
s = 13TeV [27]. (Similar measurements reported by the

ATLAS collaboration can be found in [28].) We fit the spectra
for dσ/d pH

T to the Tsallis fit function, fixing c̃ to the mea-
sured total cross section 61.1pb [27]. As shown in Fig. (1),

4 Although we do not study the UV completion of the scenario here, we still
assume that SM interactions hold and can be generated at low energies.
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the experimental data can be well fitted to the function for
q = 1.79± 0.13 and T0 = 3.7± 0.8GeV. The result can be
the evidence for the self-similarity feature of the Higgs and
also using fitting parameters, more detailed investigation may
constrain the mass spectrum of this type of particles in future
high energy physics explorations.

Another aspect of Higgs properties can be studied through
the running of its interaction coupling constants by means of
the beta function and the Callan-Symanzik equation. In the
present setup, taking into account the modified 1PI diagrams,
tiny corrections can be obtained and we leave detailed calcu-
lations associated with this feature of the model for a future
work.
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FIG. 1. The combined measurement of differential cross section for
H → γγ , H → ZZ∗ and H → bb̄ decay channels as a function of pH

T
is shown as black points with error bars [27]. Using the MINUIT
package [29], the spectra are fitted to the Tsallis function for q =
1.79±0.13 and T0 = 3.7±0.8GeV.
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