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Abstract

Both evaluating the service quality of a public transport system and understanding how

passengers choose between modes or routes is imperative for public transport operators,

providers of competing mobility services and policy makers. However, the literature does

not offer consensus on how either of these tasks should be performed, which can lead to

inconsistent or counter-intuitive results. This paper provides a formal treatment on how

common manifestations of public transport (route sets, timetables and line plans) can be

evaluated consistently, and how passengers distribute over routes. Our main insight is that

evaluation and routing are two sides of the same coin: by solving an appropriate optimiza-

tion model one obtains both the quality of the route set, timetable or line plan (the optimal

objective value), and the distribution of the travelers over the routes (the optimal solution

itself). We further demonstrate that the framework developed in this paper enables planners

to (i) improve service by taking better decisions and (ii) assess to what degree of accuracy

traveler behavior should be modeled on their network, potentially avoiding investing in com-

plicated methods that may not be necessary.
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1 Introduction

In passenger mobility research, it is common to define some measure for the service quality

of a public transport system (e.g., average travel time) and to assume some choice model that

distributes travelers over routes and/or modes (e.g., the multinomial logit model). Despite their

ubiquity, there is currently no consensus on how the service quality of public transport should

be measured and what choice model is appropriate for what context. Instead, the literature

offers a variety of approaches, which makes it difficult to compare and validate obtained results.

Furthermore, it is generally accepted that public transport systems can improve service quality

by adding routes, making routes faster or increasing the frequency at which routes are operated

(at least, in the absence of congestion effects). However, this is not always reflected in existing

approaches, leading to counter-intuitive and inconsistent results.

To illustrate how seemingly sensible route choice models and service quality measures can

lead to unexpected outcomes and suboptimal decisions, suppose that travelers choose routes

according to the logit model and that average travel time is used as a measure of service quality.

For the system depicted in Figure 1a, where travelers can choose between route 1 with a duration

of 15 minutes and route 2 with duration of l2 minutes, Figure 1b shows the average travel time

as a function of l2. After some point, making route 2 slower actually improves the measure,

because it increases the likelihood that travelers switch to route 1, which is better in terms

of travel time. Public transport planners using such a measure are insufficiently incentivized

to speed up or add routes. In fact, they may even decide to slow down or remove routes, as

it could occur that their measure suggests that doing so improves service quality. Note that

this phenomenon is fundamentally different than Braess’ paradox, because in our setting travel

times are fixed, whereas in Braess’ paradox travel times depend on the number of travelers that

choose a route (Braess, 1968).
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(b) Travel Time as function of l2.
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(c) Perceived Travel Time as function of l2.

Figure 1: Illustration of two route set measures, where travelers are distributed over the routes
using the logit model with β = 0.22. The duration of route i is denoted by li.

In this paper, we present a formal treatment of route choice models and service quality

measures for three models of public transport: route sets, (periodic) timetables and line plans,

concepts illustrated in Figure 2. Throughout the paper, we consider a single origin destination

(OD) pair, but this can be generalized to multiple OD pairs by taking a weighted average.

We analyze the two predominant route choice models in the literature: shortest path routing,
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l1 = 25 min.

l2 = 38 min.

(a) Route Set.
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l1 = 25 min.

l2 = 38 min.

θ1=xx:05

θ2=xx:31

T = 60 min.

(b) Timetable.
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l1 = 25 min.

l2 = 38 min.

θ1=xx:??

θ2=xx:??

T = 60 min.

(c) Line Plan.

Figure 2: Illustration of the differences between a route set, timetable and line plan. li and θi
represent the route duration and departure time of route i, respectively. T is the cycle time.

where all travelers choose the shortest route, and logit routing, where travelers distribute over

the routes according to the logit model. We then define desirable properties of measures,

show which measures fail to meet these properties and develop measures that do. To ensure

that the derived measures are consistent and interpretable, our approach is hierarchical: the

line plan measures build upon the timetable measures, which again build upon the route set

measures. Ultimately, this results in a ready-to-use framework for routing and evaluation in

public transport, as well as multiple managerial insights.

1.1 Framework

This section provides a high-level overview of our approach and results. A route set is simply

a set of routes with given durations (see Figure 2a). A measure for route set quality can

be constructed by pairing a routing model, e.g. logit, with an evaluation function, e.g. travel

time. The desirable properties that we define are monotonicity and consistency. A measure

is monotonic if increasing route durations or removing a route cannot improve the measure.

Figure 1b illustrates that the combination of logit routing and travel time evaluation induces

a measure that fails to be monotonic. We say a measure is consistent if the routing model

minimizes the evaluation function. Again, travel time under logit routing fails to satisfy this

property, since a shortest path routing will always lead to a shorter travel time compared to

logit routing.

The observation that logit routing does not minimize travel time raises the question if there

exists an alternative evaluation function that is minimized by logit. We answer this question

affirmatively, by showing that logit routing optimizes the evaluation function we refer to as

perceived travel time. This results in a measure that is both consistent and monotonic. The

monotonicity can also be observed in Figure 1c, which depicts perceived travel time under logit

routing. Moreover, we provide a motivation for the terminology “perceived travel time” through

the random utility model (RUM) interpretation of logit. In addition to evaluating perceived

travel time under logit routing, combining regular travel time evaluation with shortest path

routing also induces a consistent and monotonic measure.

To also support practitioners in other stages of the public transport planning process, this

paper subsequently extends the analysis from route sets to periodic timetables. A periodic

timetable is a route set that is operated periodically with a given cycle time or period and with

given departure times (see Figure 2b). The time until a traveler reaches its destination now not

only depends on the route durations, but also on the waiting time that the traveler experiences.
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As service quality should be measured with respect to the actual (unobserved) demand rather

than the induced demand, we assume that travel demand is distributed uniformly over the

period, similar to for example Kaspi and Raviv (2013) and Polinder et al. (2021). Under this

assumption, we show how to efficiently compute the average travel time under shortest path

routing, and the average perceived travel time under logit routing, resulting in two consistent

and monotonic measures for the quality of a periodic timetable.

Finally, we consider line plans, which are route sets that will be performed periodically,

but with unknown departure times (see Figure 2c). Line plans are commonly used in strategic

planning, when the timetable is not yet known. There, one needs measures for service quality

and route choice models that are independent of the timetable that will be operated. To deal

with this additional source of uncertainty, we construct line plan measures by optimizing the

respective timetable measures over all possible timetables. Surprisingly, we are able to prove that

the solution to this optimization problem can be interpreted as a routing, such that we obtain

the route choice model for free: one simultaneously finds an estimate of service quality (the

optimal value) and a routing (the optimal solution itself). We additionally develop algorithms

that efficiently solve this optimization problem both for shortest path and for logit routing.

1.2 Practical Insights

The developed framework reveals a deep parallel between evaluation and routing: by solving

an appropriate optimization model one obtains both the quality of the route set, timetable or

line plan (the optimal objective value), and the distribution of the travelers over the routes (the

optimal solution itself). Hence, every evaluation function implies some route choice model, and

vice versa. The importance of this connection for public transport planners is evident for route

sets from the example in Figure 1, but this behavior extends all the way to line plans: situations

where the evaluation function and routing do not correspond lead to missed opportunities for

improving services and taking wrong decisions that can harm the experience of public transport

users.

Further numerical experiments disclose more important insights for practitioners. Route

choice and service quality can differ substantially between route sets, timetables, and line plans,

highlighting that it is crucial to select the right model at the right stage of planning. Further-

more, while logit is the model of choice for accurately capturing traveler behavior, the benefit

of logit over shortest path diminishes as we move from route sets to timetables to line plans.

This observation has major managerial implications, as it implies that it is not always necessary

for public transport planners to accurately model travel behavior. Especially for long-term or

strategic planning such as line planning, the shortest path model may be sufficiently accurate

to make good decisions.

1.3 Contributions and Structure of the Paper

Summarizing, the main contribution of this paper is twofold. Firstly, we develop and analyze

a framework for traveler route choice and service quality evaluation for route sets, timetables

and line plans. Compared to existing work, the framework introduces a new evaluation function

that is consistent with the logit model, and routing models and measures tailored to the specific
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nature of line plans. Secondly, based on the framework we derive and discuss several managerial

implications. Among other insights, we demonstrate that the framework developed in this paper

enables planners to (i) improve service by taking better decisions and to (ii) assess the difference

between shortest path and logit measures for their network, avoiding investments in complicated

methods when they are unnecessary.

The remainder of this paper is structured as follows. Section 2 describes related literature.

Sections 3.1, 3.2 and 3.3 consider the measures for route sets, timetables and line plans, re-

spectively. Section 4 presents numerical experiments and managerial implications. Section 5

concludes the paper and describes directions for future research.

2 Literature Review

Existing measures of the service quality of public transport can be divided into two categories.

On the one hand, there are travel time-based approaches that capture the quality of public

transport through a travel time equivalent. On the other hand, there are utility-based ap-

proaches that aim to quantify the total utility experienced by users of the public transport

system, which may depend on other factors in addition to travel time. Analogously (although

this connection is not always made explicit), when it comes to route choice models in public

transport we can distinguish between the shortest path model and the multinomial logit model

and variants thereof.

Travel time-based measures are most prominent in the Operations Research literature, as

their linear nature lends itself for use in optimization models. However, because routing trav-

elers endogenously heavily increases the complexity of the model, passenger travel time has

traditionally been modeled using fixed routes, both in line planning (also referred to as transit

network design) (Schöbel, 2012) and timetabling (Borndörfer et al., 2017). Since actual short-

est paths (and hence travel times) strongly depend on line planning or timetabling decisions,

the literature has been moving towards the routing of travelers on shortest paths during the

optimization, see e.g. Borndörfer et al. (2007) and Bertsimas et al. (2021) for line planning with

integrated routing and Schiewe and Schöbel (2020) and Polinder et al. (2021) for timetabling

with integrated routing.

Another relatively recent development in timetabling models is to expand the origin-destination

matrix with a time dimension that indicates when people want to travel and including waiting

or adaptation time at the start or end of trips in the total travel time (Kaspi and Raviv, 2013;

Polinder et al., 2021; Robenek et al., 2016). In periodic timetabling settings, it is typically

assumed that demand is distributed uniformly over the period, which then rewards timetables

that distribute routes more evenly over the period (a timetable repeating every hour with de-

partures at xx:05 and xx:35 results in a lower expected waiting time than one with departures

at xx:05 and xx:20). In line planning models, including waiting time is non-trivial, since it is

dependent on the timetable. We are unaware of papers that address this issue. The line plan-

ning measures and route choice models that we develop in Section 3.3 do account for waiting

time, and can efficiently be incorporated in line planning models.

A significant disadvantage of travel time-based approaches is the implicit assumption that
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all travelers care about is travel time, and therefore always take the shortest route. Even

when aspects such as the number of transfers, transfer time and waiting time are factored

into generalized measures of travel time, this assumption is known to prove false in practice

(Van der Hurk et al., 2015). While it is true that travelers favor shorter routes, they tend to

distribute more or less evenly between routes with similar (generalized) travel times. For this

reason, studies that do not depend on solvers that require linear formulations typically assess

service quality of public transport by analyzing the offered travel options through the lens of

discrete choice theory (Ben-Akiva and Lerman, 1985; McFadden, 1974). In this context, service

quality is also referred to as accessibility, user benefits or consumer surplus. The predominant

model in these approaches is the logit model, which naturally provides a quality measure for a set

of travel options known as the logsum (Williams, 1977). The logsum is a dimensionless quantity

that reflects the expected (dis)utility perceived by travelers. However, since it is not possible to

attribute any meaning to absolute utility, the absolute value of the logsum cannot be interpreted

directly. Therefore, one is required to define a baseline scenario and assess the logsum change

(Sweet, 1997). For cost-benefit analyses or analyzing the benefits of the introduction of new

transport modes, the logsum change can be converted into monetary or temporal units (Cats

et al., 2022; De Jong et al., 2007; Standen et al., 2019). In addition to the dependence on

a (potentially arbitrary) baseline scenario, another shortcoming of existing measures is that

timetables and line plans are treated similarly as route sets, neglecting that decreasing headway

variance or increasing line frequencies improves service quality and also impacts the routing

decisions of travelers. The measures and route choice models that we propose in this paper are

both easily interpretable, and tailored to the distinctive characteristics of route sets, timetables

and line plans.

Finally, there are recent contributions mixing travel time-based and utility-based evaluation,

where travelers are routed according to the logit model, but the objective is to minimize travel

time (Bertsimas et al., 2020; Hartleb and Schmidt, 2022). Since not all travelers take the

shortest route in the logit model, this implies a discrepancy between the objective of the model

and the preferences of travelers. In this paper, we formally show that this approach corresponds

to optimizing a measure that lacks consistency and monotonicity, and propose an alternative

objective function that is consistent and monotonic with logit routing.

3 Framework for Routing and Evaluation

This section introduces a novel and ready-to-use framework for routing and evaluation in public

transport. New routing models and evaluation measures are built up hierarchically from route

sets to periodic timetables and all the way up to line plans. Along the way, we define desirable

properties, show which measures fail to meet these properties, and develop measures that do.

We introduce optimization models to efficient evaluate the new measures, and show that these

optimization models can be interpreted as routing models themselves, proving that evaluation

and routing are two sides of the same coin.
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3.1 Route Sets

We start building the new framework from the most basic object: a set of routesR = {1, 2, . . . , n}
that travelers can choose from. Each route i ∈ R has a duration li ∈ R, which may include

more general quality aspects (all converted to time) such as the number of transfers, transfer

time, and waiting time. Travelers are assumed to make probabilistic decisions, and assign prob-

abilities to the routes according to a route choice model. When the probabilities are set, the

expected quality of the route set can be evaluated with an evaluation function. We refer to

the combination of a route choice model and an evaluation function as a measure of route set

quality.

Route Choice Models This paper considers the two predominant route choice models in

the literature: shortest path routing and logit routing. Let a route choice model, or a routing

for short, be a function that assigns probabilities to the routes. That is, a routing is a function

p that maps the routes R to p(R) ∈ P, where P is the set of probability vectors. The two

routing models are defined as follows:

• Shortest Path Routing:

pspi = 1 if i = argmin
j∈R

{lj} and pspi = 0 else, for all i ∈ R.

• Logit Routing:

plogiti =
e−βli∑

j∈R e−βlj
, for all i ∈ R, with parameter β > 0.

Shortest path routing assigns probability one to the shortest path and probability zero otherwise,

where ties are broken arbitrarily (e.g., by lowest index). Logit routing assigns probabilities

accordingly to the multinomial logit model (McFadden, 1974). The parameter β controls the

sensitivity of travelers to the route durations. For smaller β, travelers distribute more evenly,

while for larger β they are more likely to choose the shortest route. In fact, it can be seen

that shortest path routing is the limiting case of logit routing for β → ∞. Figure 3 provides

an example for R = {1, 2} and l1 = 15 minutes. For shortest path routing, travelers choose

route 2 if the duration is shorter than 15 minutes, and route 1 otherwise. For logit routing, the

probability to choose route 2 is a smooth function of l2, the steepness of which depends on β.

Evaluation Functions After the route probabilities p ∈ P have been determined, the quality

of the route set is evaluated with an evaluation function E(R, p) ∈ R that assigns lower scores

to better outcomes. We consider two different evaluation functions: the expected travel time

and a new perceived travel time.

• Travel Time:

Ett(R, p) =
∑
i∈R

lipi.
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Figure 3: Routing models for route set R = {1, 2} with l1 = 15 minutes and varying l2.

Shortest Path Routing Logit Routing

Evaluation Measure Monot. Consist. Measure Monot. Consist.

Travel Time lmin ✓ ✓
∑

i∈R plogiti li ✗ ✗

Perceived Travel Time lmin ✓ ✗ − 1
β log

(∑
i∈R e−βli

)
✓✓ ✓

Table 1: Overview of route set measures and properties (double checkmark for strict monotonic).

• Perceived Travel Time:

Eptt(R, p) =
∑
i∈R

lipi +
1

β

∑
i∈R

pi log(pi), with parameter β > 0.

Travel time evaluation is a straightforward calculation of the expected travel time. More in-

terestingly, perceived travel time evaluation combines travel time with a dispersion term that

is weighted by the parameter β > 0. This evaluation function was inspired by Anderson et al.

(1988), who introduce a similar function and show that it has favorable properties in the logit

context. The dispersion term captures a distributional property of the probability vector p ∈ P.
As such, perceived travel time favors probability vectors that are spread out over the routes,

which creates robustness against uncertainty.

Route Set Measures Finally, we obtain a measure of route set quality by combining a

routing (a model for traveler behavior) with an evaluation function (a scoring function for

given behavior). That is, for routing p(R) and evaluation function E(R, p), we define the

measureM(R) = E(R,p(R)). Table 1 summarizes the four measures that can be obtained by

substituting one of the two routings into one of the two evaluation functions. For shortest path

routing with travel time evaluation, the measure is simply the length lmin of the shortest route.

The same measure is obtained when perceived travel time is used, because the dispersion term

evaluates to zero when the full probability is assigned to a single route.1 The measure for logit

routing with travel time evaluation corresponds to calculating the expected length with logit

probabilities. Logit routing with perceived travel time simplifies to a logsum that is scaled by

a factor − 1
β .

While logit routing with travel time evaluation has been used in the literature (e.g., Bertsi-

1Using the convention that pi log(pi) = 0 for pi = 0.
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Figure 4: Example measures (y-axis) for R = {1, 2}, l1 = 15, β = 0.22, and varying l2 (x-axis).

mas et al. (2020); Hartleb and Schmidt (2022)), the example in Figure 4 reveals some unexpected

behavior: When the length of route 2 is increased from 20 minutes to 30 minutes, the measure

improves while the route set has become worse. This shortcoming of logit routing with travel

time evaluation is formalized in the next section. The other route set measures are assigned a

symbol, and will be used later as building blocks for the evaluation of timetables and line plans:

• Route Set Measure for Shortest Path Routing with Travel Time Evaluation:

MRS
sp (R) = lmin. (1)

• Route Set Measure for Logit Routing with Perceived Travel Time Evaluation:

MRS
logit(R) = −

1

β
log

(∑
i∈R

e−βli

)
. (2)

Monotonicity and Consistency This section introduces two desirable properties of route

set measures: monotonicity and consistency. First, we define a partial order on route sets to

capture the intuition that a route set is better when the routes are shorter and more options

are available. In particular, consider two route sets R and R′ and corresponding route length

vectors l and l′. Now sort l and l′ and append routes with infinite length to make the vectors

the same size. We say that R ⪯ R′ if l ≤ l′ elementwise, and R ≺ R′ if additionally l ̸= l′.

Informally, route set R is better when each route in R′ can be matched to a better route in R.
The first desirable property is monotonicity. We say that a route set measure is monotonic

if better route sets (according to the partial order defined above) receive better scores. The

second desirable property is consistency. A route set measure is consistent when the travelers

behave in such a way that they optimize the evaluation function. This suggests that the route

set is evaluated in a way that matches what is important to the travelers. When a measure is

inconsistent, the performance is measured according to a metric that the travelers do not agree

with, as revealed through their routing choices. These properties are formalized as follows:
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• Monotonicity: A route set measure is monotonic if, for all route sets R and R′,

R ⪯ R′ =⇒M(R) ≤M(R′),

and strict monotonic if additionally

R ≺ R′ =⇒M(R) <M(R′).

• Consistency: A route set measure that combines routing p(R) and evaluation function

E(R, p) is consistent if, for any route set R,

p(R) is an optimal solution to the minimization problem min
p∈P
E(R, p).

Table 1 summarizes the monotonicity and consistency properties of the four route set mea-

sures, with proofs provided in Appendix A. The table shows that shortest path routing with

travel time evaluation and logit routing with perceived travel time evaluation both exhibit

monotonicity and consistency. The counter-intuitive results for logit routing with travel time

evaluation are explained by a lack of monotonicity, and the measure lacks consistency as well.

Finally, we remark that monotonicity alone is not sufficient to obtain a good measure: for ex-

ample, M(R) = 0 is monotonic but practically useless. Consistency is also useful to motivate

the assumptions that may appear in other parts of the analysis. For example, Table 1 shows

that shortest path routing with travel time evaluation and shortest path routing with perceived

travel time evaluation have the same measure, but using travel time yields a more consistent

theory.

Random Utility Model Interpretation The logit model is often motivated by formulating

it as a random utility model (Train, 2009). This perspective is also useful in the current context,

and we introduce this model here as the random travel time model. In the random travel time

model, the perceived duration χi of a route is given by

χi = li −
1

β
εi, ∀i ∈ R,

with independent error terms εi that are distributed according to a Gumbel distribution. Each

traveler chooses the route that minimizes perceived duration for them. This choice is motivated

by the route lengths li, but also by a personal random component εi for each route. Again, for

β →∞ the randomness disappears and travelers will pick the shortest path.

Analogous to the random utility model, for the random travel time model, it can be shown

that

E
(
min
i∈R

χi

)
= − 1

β
log

(∑
i∈R

e−βli

)
+ C,

where C is an unknown constant that reflects the base utility of the travelers (Train, 2009).

Note that (up to a constant) this quantity is preciselyMRS
logit. This shows that the measure that

combines perceived travel time and logit routing can be interpreted as the expected perceived
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travel time of a random traveler.

The term log
(∑

i∈R e−βli
)
is referred to as the logsum in the literature, and has been used

extensively to assess the user benefits of public transport. However, as discussed in Section 2,

existing approaches compute the logsum change compared to a baseline scenario, which can

subsequently be converted to units of time. Our approach is to directly convert the logsum to

units of time, which eases its interpretation and omits the need for a baseline scenario.

3.2 Timetables

We now shift attention to evaluating timetables for systems that provide periodic service. Such

a system is defined by a route set R = {1, . . . , n}, a period T > 0, and a timetable θ ∈ [0, T )n

of departure times (see Figure 2). The routes are performed periodically, such that route i ∈ R
departs at times θi, θi + T , θi + 2T , etc. Rather than a static route set, travelers now face an

observed route set with added waiting times that depend on the arrival time. We will evaluate

the experience for a particular traveler by evaluating the observed route set with the measures

developed in the previous section. To evaluate the full timetable, we propose to calculate the

expected observed route set measure for a random arrival, reflecting the average experience of

travelers facing this timetable.

This section first introduces the observed route set measure, and studies how it changes as

a function of arrival time. We show how to calculate characteristic values that describe this

function, and how to use them to calculate timetable measures under uniform arrivals. These

measures are further specialized to shortest path routing and logit routing, respectively, to

obtain measures that are completely separable and convex in the characteristic values, paving

the way for extensions to line planning.

The following notation is used to work with cyclic timetables. The timetable θ ∈ [0, T )n

defines a natural cyclic ordering of the routes by departure time. For a route i ∈ R, let π(i) be
its predecessor and let σ(i) be its successor. Routes that depart at the same time are ordered

according to their index. For example, if subsequent routes i and σ(i) depart at the same time

θi = θσ(i), then it must be that i < σ(i). Time intervals [t, t′] are also considered to be cyclical.

That is, [t, t′] equals [t, t′] when t ≤ t′ and [t, T ) ∪ [0, t′] otherwise.

Observed Route Set Measures In the periodic setting, a traveler entering the system at

time t has to take waiting into account. The waiting time for route i ∈ R is given by θi+ zT − t

for the smallest value of z ∈ Z such that the waiting time is non-negative. For convenience, we

define the function [x]T to be the modulo-like operation that maps x onto [0, T ) by adding or

subtracting a multiple of T . Waiting time for route i ∈ R is then simply [θi − t]T . We define

the observed route set Rθ(t) to be the route set as experienced by a traveler arriving at time t.

That is, the observed route lengths are given by li + [θi − t]T for every route i ∈ R.
We are interested in studying the properties of the observed route set measure MRS(Rθ(t))

as a function of time, whereMRS represents either the route set measure for shortest path (1)

11
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Figure 5: Example timetable and observed shortest path route set measure for route set R =
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or for logit (2). That is, we consider the following two functions:

MRS
sp (Rθ(t)) = min

i∈R
{li + [θi − t]T } , (3)

MRS
logit(Rθ(t)) = −

1

β
log

(∑
i∈R

e−β(li+[θi−t]T )

)
. (4)

The reason to study these functions is to later derive simple expressions for the expected ob-

served route set measure Et

(
MRS(Rθ(t))

)
, which will be used as a measure for timetable

quality.

Figure 5 visualizes the observed route set measure for shortest path routing. Figure 5a

shows the timetable, where circled numbers indicate departures of a given length that are

located according to the schedule. For example, the number 10 indicates that a route of length

10 departs at time 50. Figure 5b plots the function MRS
sp (Rθ(t)). At t = θ1 = 5 the shortest

path is to use route 1, which departs immediately. The corresponding length is l1 = 20 and

the waiting time is zero, which results in an observed route set measure ofMRS
sp (Rθ(5)) = 20.

The choice for route 1 is optimal everywhere in the interval (50, 5]. At t = 55, for example, it

is optimal to wait for 10 minutes and then take route 1, which results in an observed route set

measure of MRS
sp (Rθ(55)) = 30. Route 2 (l2 = 30) is sub-optimal: It is always better to wait

an additional 10 minutes to take route 3 (l3 = 15). This is reflected in the plot by the lack of a

jump at θ2 = 10, as the route choice does not change.

The example also displays two useful properties that are true in general, as proven in Ap-

pendix B.1-2:

• Constant Routing between Departures: For shortest path routing and logit routing the

route choice does not change between departures. That is, for route i ∈ R and successor

σ(i) ∈ R it holds that p(Rθ(t)) is constant for t ∈ (θi, θσ(i)].

• Translation Invariance: Both MRS
sp and MRS

logit are translation invariant between depar-
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Figure 6: Two representations for the observed route set measureMRS(Rθ(t)).

tures. That is, for route i ∈ R and successor σ(i) ∈ R it holds that

MRS(Rθ(t)) = [θσ(i) − t]T +MRS(Rθ(θσ(i))), ∀t ∈ (θi, θσ(i)].

The first property states that travelers do not make routing decisions upon arrival, but postpone

their decisions until the first route departs, essentially treating the waiting time until the first

departure as sunk cost. As a direct consequence, the second property states that the observed

route set measure can be split into two components: the waiting time until the first departure

and the observed route set measure at the first departure. During the waiting part, the slope

of the observed route set measure is −1, as can also be seen in Figure 5b.

Characteristic Values Given that the observed route set measure has a fixed slope between

departures, we can representMRS(Rθ(t)) with a finite number of values. We define the following

characteristic values:

• δi: Waiting time between predecessor route π(i) and route i ∈ R.

• τi: Observed route set measure at time θi when i ∈ R is the next departure.

• ∆i: Change in observed route set measure due to missing route i ∈ R.

The characteristic values are visualized by Figure 6. There are two ways to fully describe

MRS(Rθ(t)) with the characteristic values, up to shifts of the complete schedule. The δ-

representation (Figure 6a) defines the function based on the gaps δi between departure times,

and the observed route set measures τi at these departures times. Using instead the vertical

differences, the ∆-representation (Figure 6b) describes the function with the observed route set

measures τi at each departure time, and the change ∆i in value that would result from missing

this route.

Algorithm 1 provides pseudocode to calculate the characteristic values. The calculation of δ

(Line 13) and τ (Lines 15 and 17) follows immediately from the definitions, except for a waiting

time correction in the case of simultaneous departures (Line 1). This technical detail is justified

in Appendix B.3. The value of the measure after missing route i ∈ R is conveniently expressed

13



Algorithm 1 Calculating the Characteristic Values

1: function w(i, j) ▷ Waiting time correction for simultaneous departures
2: if θi = θj and j < i then
3: return T ▷ Add full period T if j is processed before i
4: else
5: return [θj − θi]T ▷ Regular wait time

6:

7: procedure CharacteristicValues(R, T , θ)
8: if |R| = 1 then
9: δ1 ← T

10: τ1 ← l1
11: else
12: for i ∈ R do
13: δi ← w(π(i), i) ▷ From definition
14: if shortest path routing then
15: τi ← minj∈R{lj + w(i, j)} ▷ From route set measure (3)
16: else if logit routing then

17: τi ← − 1
β log

(∑
j∈R e−β(lj+w(i,j))

)
▷ From route set measure (4)

18: for i ∈ R do
19: ∆i ← δσ(i) + τσ(i) − τi ▷ From translation invariance

20: return δ, τ , ∆

as δσ(i)+ τσ(i) by virtue of translation invariance (visualized in Figure 6a for δ4+ τ4). It follows

that ∆i can be calculated as δσ(i) + τσ(i) − τi (Line 19).

Timetable Measures To measure the quality of timetables, we propose to use the expected

observed route set measure, Et

(
MRS(Rθ(t))

)
. This measure can be interpreted as the expected

(perceived) travel time experienced by a random traveler, or as a weighted average over all

travelers. As a weighted average of route set measures, the timetable measure inherits (strict)

monotonicity, and improves when the underlying routes are reduced in length or when new

routes are added. The measure also remains consistent, in the sense that the timetable is

evaluated in a way that now matches what is important to the average traveler.

• Timetable Measure for Shortest Path Routing or Logit Routing (general arrivals):

MTT (R, T,θ) = Et

(
MRS(Rθ(t))

)
. (5)

Note that the functionMRS(Rθ(t)) has been completely specified previously. As a result, the

timetable measure can easily be estimated through sampling or numerical integration.

Furthermore, the measure can be expressed in closed form if we assume that traveler demand

is distributed uniformly over the period. This is a common assumption in periodic timetabling

(e.g., see Kaspi and Raviv (2013); Polinder et al. (2021)) that reflects the idea that service

quality should be measured with respect to the actual (unobserved) demand rather than the

induced demand. Using the characteristic values calculated with Algorithm 1, it is proven in
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Appendix B.5 that the timetable measure can be calculated in two distinct ways that correspond

to the δ- and ∆-representation, respectively:

• Timetable Measure for Shortest Path Routing or Logit Routing (uniform arrivals):

MTT (R, T,θ) = 1

T

∑
i∈R

(
1

2
δ2i + τiδi

)
=

1

T

∑
i∈R

(
1

2
∆2

i + τi∆i

)
. (6)

Finally, we provide expressions for the timetable measures that are completely separable

and convex. These properties are extremely important when timetable measures are used as a

building block, and they enable the efficient calculation of line plan measures in the next section.

For shortest path routing, note the following: if for route i ∈ R we have thatMRS
sp (Rθ(θi)) < li,

then it means that route i is not even the best option when it is about to depart, and the route

can safely be removed without affecting the measure. After removing the suboptimal routes,

we haveMRS
sp (Rθ(θi)) = li for all routes, such that τi in (6) may be substituted for li. For logit

routing, τi may be replaced by an expression in ∆i that is proven in Appendix B.6. We then

obtain the following two expressions:

• Timetable Measure for Shortest Path Routing after preprocessing (uniform arrivals):

MTT
sp (R, T,θ) = 1

T

∑
i∈R

(
1

2
δ2i + liδi

)
. (7)

• Timetable Measure for Logit Routing (uniform arrivals):

MTT
logit(R, T,θ) =

1

T

∑
i∈R

(
1

2
∆2

i + li∆i +
∆i

β
log

(
1− e−β∆i

1− e−βT

))
. (8)

The convexity of (7) is trivial, and the convexity of (8) is proven in Appendix B.7. The fact that

(8) is convex demonstrates the importance of viewing the observed route set measure through

the ∆-representation. In fact, it can be shown that reformulating τi using the δ-representation

leads to an expression that is not convex.

Route Choice Models for Timetables The proposed measures naturally correspond to

route choice models for which travelers distribute according to the expected route choice of a

random traveler. Formally, the routing pTT (R, T,θ) for a timetable can be defined as follows:

• Route Choice Model for Shortest Path Routing or Logit Routing (general arrivals):

pTT (R, T,θ) = Et (p(Rθ(t))) . (9)

For shortest path routing, it holds that after removing the suboptimal routes, random

travelers always choose the first departing route after they enter the system. This gives a

simple expression in δ for the route choice under uniform arrivals:

15



• Route Choice Model for Shortest Path Routing after preprocessing (uniform arrivals):

pTT
sp (R, T,θ) = (δ1/T, ..., δn/T ) . (10)

It is not obvious how to derive a similar expressions for logit routing when travelers face an

arbitrary timetable. But surprisingly, the next section will show that when random travelers

face an optimal timetable, they use route i ∈ R with probability ∆i/T . This again stresses the

importance of the ∆-representation.

3.3 Line Plans

Finally, we consider measures and route choice models for line plans. A line plan is defined by

a set of routes R = {1, . . . , n} that are performed every period T > 0. The exact timetable

θ ∈ [0, T )n has not yet been decided, and will be optimized at a later stage (see Figure 2).

Therefore, we propose to evaluate the quality of a line plan by calculating the minimum value

of the timetable measure over all possible timetables, and to base the routing on the optimal

timetable. When multiple OD pairs are involved, timetabling is known to be hard in theory and

in practice (Liebchen, 2008; Lindner and Reisch, 2022), and there is a need for line plan measures

that can be evaluated efficiently. The approach taken here is to not solve the full timetabling

problem at once, but rather to optimize the timetable for each OD pair independently. This

section analyzes a single OD pair, but measures for multiple OD pairs can easily be combined,

e.g., by taking a weighted average. The resulting measure can be seen as the potential of a line

plan.

To derive new measures and route choice models for line plans (for a single OD pair), we

first discuss how to construct optimal timetables. This requires solving different optimization

problems, and it is shown how to do so efficiently. The optimal solutions are then used to define

the line plan measures and route choice models.

Constructing Optimal Timetables The easiest way to construct an optimal timetable

is to directly minimize the timetable measure for shortest path routing (7) or logit routing

(8). Figure 7 introduces two optimization models for this purpose. The decision variables

x ≥ 0 represent the values of δ in (7), and the decision variables y ≥ 0 represent ∆ in (8).

The objectives (11a) and (12a) are chosen to match the corresponding timetable measure.

Finally, normalization constraints (11b) and (12b) are added to exclude solutions that are not

meaningful. These constraints are justified by the fact that
∑

i∈R δi = T and
∑

i∈R∆i = T for

any feasible timetable (Appendix B.4).

Given an optimal solution to Problem (11) or Problem (12), Algorithm 2 provides methods to

extend this information about δ or ∆ into a complete timetable θ that is feasible, and for which

the measure matches the optimal objective value. This is achieved by calculating desired values

for the characteristic values, and then constructing the timetable accordingly. It is not trivial

that this is always possible, but Appendix C.9-13 proves that this is indeed the case. Finally,

Appendix C.14-15 proves that the output of Algorithm 2 is indeed an optimal timetable. This

is a consequence of the fact that the measure of the constructed timetable matches the optimal
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min
1

T

∑
i∈R

(
1

2
x2i + lixi

)
, (11a)

s.t.
∑
i∈R

xi = T, (11b)

xi ≥ 0 ∀i ∈ R. (11c)

(a) Shortest Path Routing.

min
1

T

∑
i∈R

(
1

2
y2i + liyi +

yi
β
log

(
1− e−βyi

1− e−βT

))
, (12a)

s.t.
∑
i∈R

yi = T, (12b)

yi ≥ 0 ∀i ∈ R. (12c)

(b) Logit Routing.

Figure 7: Models for timetable optimization.

Algorithm 2 Construct an Optimal Timetable

1: procedure TimeTableShortestPath(x) ▷ Input: optimal solution to Problem (11)
2: θ1 ← 0 ▷ Start timetable at arbitrary time 0
3: for i ∈ {2, . . . , n} do
4: δ̂i ← xi ▷ Desired value for δi (from definition x)
5: θi ← θπ(i) + δ̂i ▷ Progress timetable with desired gap between routes

6: return θ
7:

8: procedure TimeTableLogit(y) ▷ Input: optimal solution to Problem (12)
9: θ1 ← 0 ▷ Start timetable at arbitrary time 0

10: for i ∈ R do
11: ∆̂i ← yi ▷ Desired value for ∆i (from definition y)

12: τ̂i ← li +
1
β log

(
1−e−β∆̂i

1−e−βT

)
▷ Desired value for τi (from Appendix B.6)

13: for i ∈ {2, . . . , n} do
14: δ̂i ← τ̂π(i) + ∆̂π(i) − τ̂i ▷ Desired value for δi (from translation invariance)

15: θi ← θπ(i) + δ̂i ▷ Progress timetable with desired gap between routes

16: return θ

objective value.

An interesting property of optimal timetables is that for any permutation of the routes,

there exists an optimal timetable with departures in that order. This follows from the fact that

objectives (11a) and (12a) are separable, and relabeling the routes does not affect the optimal

solution. Furthermore, the specific ordering of the routes plays no role in Algorithm 2. Figure 8

demonstrates this property with two optimal timetables. The timetable at the top alternates

slower and faster routes, while the timetable at the bottom follows two slow routes by two fast

routes. We obtain the managerial insight that both cyclical orderings can be optimal if the

spacing between departures is optimized accordingly.

Solving Problems (11) and (12) Next, we focus on solving Problems (11) and (12). We have

already seen that the solutions can be used by Algorithm 2 to construct an optimal timetable,

and the optimal objective values will be used as line plan measures. A crucial observation is that

(11) and (12) are convex optimization problems that can be solved efficiently. The convexity

stems from the convex timetable measures (7) and (8), and the fact that all constraints are linear.
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Figure 8: Optimal timetables for different route orderings.

The ∆-representation has been crucial to achieve this result, as the optimization problem for

logit routing is not convex in the standard δ-representation.

There are a number of tools and techniques to solve Problems (11) and (12). Using a classical

cutting plane method (Kelley Jr., 1960), the convex objective can be enforced through linear

constraints. This method is compatible with most mixed-integer linear programming solvers

such as CPLEX and Gurobi, making it easy to integrate the new line plan measures with other

problems in the same framework. In fact, the quadratic objective of Problem (11) is supported

directly by both solvers. Another option is to use general non-linear optimization solvers such as

Ipopt that converge to a local optimum, which is guaranteed to be globally optimal for convex

problems.

When considered in isolation, the two problems can be seen as continuous non-linear resource

allocation problems (Patriksson, 2008). For shortest path routing, the resource is the period

T that is allocated to the gaps between departures. For logit routing, the same resource is

instead allocated to the jumps in the observed route set measure function. Patriksson (2008)

surveys non-linear resource allocation problems, and identifies Lagrange multiplier methods as

the most common solution technique. These methods introduce a multiplier µ ∈ R to penalize

the budget constraint (11b) or (12b) in the objective. For a given µ, each allocation i ∈ R is

calculated independently. The optimal value of µ can be found with a simple line search to find

the point where the independent allocations together satisfy the budget constraint.

For shortest path routing in particular, the Lagrange multiplier method reveals that every

optimal solution to Problem (11) satisfies xi(µ) = max{0, µ− li} for some Lagrange multiplier

µ ∈ R (Appendix C.16). This structure can also be observed in Figure 8. The optimal timetable
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only contains routes i ∈ R for which xi > 0, and thus δi = xi = µ − li. Furthermore, we have

that τi = li. It follows that when the function jumps, it always jumps to δi + τi = µ, regardless

of the route. The optimal multiplier µ is the value for which the function
∑

i∈R xi(µ) =∑
i∈Rmax{0, µ − li} equals T . This is a piecewise-linear function with O(n) breakpoints, and

bisection search can be used to find the intersection with T . The corresponding complexity

is O(n log n) in general, or O(n) when the lengths li are already sorted (Patriksson, 2008).

Alternatively, Brucker (1984) presents a more complicated algorithm that solves Problem (11)

in O(n) even when the routes are in arbitrary order.

Line Plan Measures We propose to evaluate the quality of a line plan by calculating the

measure of the optimal timetable. This is motivated by how public transport is planned in

practice, where timetables are optimized for a given line plan (Liebchen, 2008):

• Line Plan Measure for Shortest Path Routing or Logit Routing (general arrivals):

MLP (R, T ) = min
θ∈[0,T )n

MTT (R, T,θ). (13)

This measure inherits (strict) monotonicity from the timetable measures. After all, when routes

are reduced in length or when new routes are added, all timetable measures improve, including

the minimum.

The general measures are again specialized to uniform arrivals. In this case, the measures

can be calculated efficiently by solving Problem (11) or Problem (12), respectively, as discussed

in the previous section. We obtain:

• Line Plan Measure for Shortest Path Routing (uniform arrivals):

MLP
sp (R, T ) = min∑

xi=T
x≥0

1

T

∑
i∈R

(
1

2
x2i + lixi

)
. (14)

• Line Plan Measure for Logit Routing (uniform arrivals):

MLP
logit(R, T ) = min∑

yi=T
y≥0

1

T

∑
i∈R

(
1

2
y2i + liyi +

yi
β
log

(
1− e−βyi

1− e−βT

))
. (15)

There are major benefits to optimizing the timetable, rather than evaluating the line plan

with a particular timetable. Fixing the timetable to θ = 0 makes evaluation easy, but it ignores

all periodic aspects. Another approach could be to use an equidistant timetable that depends

on the number of routes. However, the resulting line plan measure may not be monotonic, even

when the underlying timetable measure is. For example, consider two short routes that are

equally spaced. Adding a very long third route changes the spacing between the short routes,

potentially making the measure worse despite the fact that a route has been added. Optimizing

the timetable as part of the measure avoids these problems, and it can be done in an efficient

manner.
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Route Choice Models for Line Plans We again observe a natural parallel between mea-

sures and route choice models for line plans. In the case of shortest path routing, it was observed

in Section 3.2, (10), that travelers choose route i ∈ R with probability δi/T . In the optimal

timetable, the values of δ are obtained from the x-variables in Problem (11). The substitution

pi = xi/T then results in the following route choice model:

• Route Choice Model for Shortest Path Routing (uniform arrivals):

pLP
sp = argmin

p∈P

∑
i∈R

(
1

2
Tp2i + lipi

)
. (16)

Note that constraint (11b) is captured by p ∈ P, which requires the probabilities to sum to one.

The route choice model expresses how travelers distribute over the routes when the timetable

is optimized but the arrival time is uncertain. These travelers do not only care about the ex-

pected travel time
∑

i∈R lipi, but also appreciate a small Simpson index
∑

i∈R p2i , which indi-

cates a high diversity in route choices (Simpson, 1949). This diversity term is given more weight

when the period T increases, as not diversifying the routes comes with larger consequences in

terms of waiting time. When the period decreases T → 0, the route choice model simply selects

the shortest path, matching the route choice model of the underlying route set.

Finally, and most surprisingly, travelers under logit routing use route i ∈ R with probability

pi = ∆i/T , but only when facing the optimal timetable (Appendix C.17-19). This simple

expression suggests that the ∆-representation is in some sense natural for logit routing. As the

line plan indeed uses the optimal timetable, a similar substitution of pi = yi/T can be made to

obtain:

• Route Choice Model for Logit Routing (uniform arrivals):

pLP
logit = argmin

p∈P

∑
i∈R

(
1

2
Tp2i + lipi +

pi
β
log

(
1− e−βTpi

1− e−βT

))
. (17)

Compared to shortest path routing, this route choice model includes an additional term that

puts extra emphasis on avoiding probabilities that are close to zero or one. This encourages

multiple good route options to be available, regardless of when the traveler arrives. For a

decreasing period T → 0, the new term tends to 1
βpi log(pi) in the limit. The route choice model

then minimizes perceived travel time, and matches the route choice model of the underlying

route set. Finally, we note the deep connection between the line plan measures and the route

choice models: they correspond to the objective value and the optimal solution to the same

optimization problem.

4 Practical Insights

After introducing the new framework and proving its theoretical properties, this section presents

numerical examples to also offer practical insights. We start from the baseline route set,

timetable, and line plan that are visualized in Figure 9. The baseline considers two routes
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with durations of 20 and 30 minutes. The timetable and line plan are periodic and repeat every

30 minutes. When the timetable is fixed, departures are set to be equidistant. Starting from

this baseline, the following figures show how the routings and measures change when varying the

route duration l2 (Figure 10), the period T (Figure 11), and the departure time θ2 (Figure 12).

The figures reveal that route choice and service quality can differ considerably between route

sets, timetables, and line plans, demonstrating that it is important to use the right model at the

right stage of planning. In Figure 10, for example, travelers under shortest path routing who

are faced with a static route set will all choose route 2 if the duration is less than 20 minutes.

In the timetable setting, this only happens when route 2 is so short that it is the best option

regardless of the arrival time (duration less than 5 minutes). In general, Figure 10 shows clear

differences between route sets (which ignore periodicity), and timetables and line plans (which

include periodicity), both in terms of route choice and service quality. The difference between

timetable measures and line plan measures is less obvious in Figure 10, but this strongly depends

on the quality of the timetable. For the baseline, the equidistant timetable is relatively close to

optimal, and therefore the timetable measure is relatively close to the line plan measure (recall

that the line plan measure is defined as the timetable measure of the optimal timetable). The

situation is different in Figure 12b, which changes the timetable by varying the departure time

of route 2. Each curve shows the timetable measure for different timetables, and the minimum

value is equal to the line plan measure (e.g., 312
3 at θ2 = 10 for shortest path). As the timetable

moves further away from optimal, the difference between the timetable measure and the line

plan measure becomes apparent, again emphasizing that it is important to use routings and

measures tailored to the form of public transport that one considers.

In line with the literature on travel demand analysis, the smooth curves provided by the logit

model suggest that it is a much more reasonable model for travel behavior than the shortest

path model. Route choice based on shortest path yields large jumps in routing probabilities

in Figures 10a, 10c, 11a and 12a, which translate to kinks in the corresponding service quality

measures. In practice, routings and service quality are expected to vary smoothly when the

system’s parameters change, which better matches the logit model. Another strength of the

logit model is that it provides better guidance for the local improvement of existing timetables.

Consider the timetables in Figure 12, for example. For θ2 > 20 minutes, the timetable is such

that route 2 is never the shortest path. This results in a flat region of the shortest path curve

in Figure 12b, which provides no guidance on how to improve the timetable. For logit the curve

is smooth, and the gradient suggests moving route 2 up in the schedule, towards the optimal

departure time.

While logit is the model of choice for accurately capturing traveler behavior, the benefit

of logit over shortest path seems to diminish as we move from route sets to timetables to line

plans. This can be seen in Figure 10, for example, where the curves for shortest path and logit

get closer to eachother as we move down the plots, both for routings and for measures. We

conjecture that this behavior is due to the following two effects. First, when there is a clear

shortest path, the shortest path model and the logit model give similar results. This can be

seen in Figure 10a for example, where all models assign a high probability to route 2 when it

is short and a low probability when it is long, but the models disagree when there is no clear
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Figure 9: Baseline route set, timetable, and line plan for sensitivity analysis.
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Figure 10: Sensitivity analysis for varying route duration l2 in Figure 9.
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Figure 9: Baseline route set, timetable, and line plan for sensitivity analysis. (repeated)
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Figure 11: Sensitivity analysis for varying period T in Figure 9. The fixed timetable maintains
equidistant departures θ1 = 0, θ2 = T/2.
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Figure 12: Sensitivity analysis for varying departure time θ2 in Figure 9.
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preference around l2 = 20. Second, when travelers arrive at random, it is likely that many of

them have a clearly preferred route based on their arrival time, especially if the departures are

spaced out well. As such, the average traveler is less affected by the difference between shortest

path and logit. Timetable routings and measures are defined based on the average traveler,

which explains why the curves get closer together. Line plans further strengthen this effect by

optimizing the timetable to intentionally give travelers a clearly preferred choice, resulting in

the smallest difference between shortest path and logit, as seen in Figures 10e and 10f.

The observations above suggest that it is not always necessary for public transport planners

to accurately model travel behavior. Especially for high-level planning such as line planning,

the shortest path model may be sufficiently accurate to make good decisions. This is of major

managerial importance, as the shortest path model is easier to integrate in existing systems,

and does not require an estimation of the β parameter. The framework in this paper allows

practitioners to get a sense of how much shortest path and logit measures differ on their network,

before investing in more complicated optimization methods that may not be necessary.

4.1 Consequences of Using Inconsistent Models

Even if there is no significant difference between the shortest path and logit models for line plan-

ning, combining the models in an inconsistent way can have significant negative consequences.

This behavior will be demonstrated with an example below. It was already shown in the in-

troduction that inconsistent models can lead to counter-intuitive results for route sets, but it

is surprising to see that this behavior extends all the way to line plans, which are much less

affected by the choice of model. The main purpose of this section is to serve as a warning that

being consistent may be much more important than being correct.

The example starts from an original timetable that is depicted in Figure 13a. The timetable

uses a period of one hour, and features two routes with a duration of 15 minutes that are spread

out evenly. Now suppose that the opportunity arises to add an additional route with a duration

of 35 minutes. There are a number of reasonable ways to do so:

• Option 1: Place the new route directly in-between the other departures (Figure 13b);

• Option 2: Use an equidistant timetable with three departures (Figure 13c);

• Option 3: Use the optimal timetable (Figure 13d).

The optimal timetable is calculated for the shortest path model with the methods developed in

this paper. As expected, the logit-optimal timetable is almost identical to the shortest path-

optimal timetable, to the extent that there is no benefit in treating these options separately.

Table 2 summarizes how three line planners evaluate the different options. The first planner

uses the shortest path measure, the second planner uses the logit measure with β = 0.1, and

the third planner uses an inconsistent measure that combines logit routing with travel time

evaluation (instead of the consistent perceived travel time evaluation).

When the shortest path measure is used, adding in a slow route does not necessarily improve

the service quality. Option 1 does not affect the measure, as travelers can simply ignore the new

route and wait for the faster routes they prefer. Option 2 worsens the measure, as it ruins the
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Figure 13: Original timetable and three options to include a new route.

Measure

Timetable Shortest Path Logit (β = 0.1) Inconsistent

Original (two routes) 30.00 29.51 31.42
Option 1: In-between 30.00 28.23 32.24
Option 2: Equidistant 31.67 28.59 33.40
Option 3: Optimal 29.44 28.20 31.87

Table 2: Three ways to evaluate the options in Figure 13.

spacing of the fast routes without providing any benefit. However, the measure indicates that

a strict benefit can be obtained when the routes are spaced out appropriately, as in Option 3.

In the logit case, all options are better than the original timetable. This is due to the very low

value of β, which assumes that travelers really care about having more options. But even if this

assumption were incorrect, the relative ranking between Options 1-3 is the same as for shortest

path. Planners are still encouraged to implement Option 1 over Option 2, which would not hurt

in the shortest path case, or add the new route and optimize the timetable, which would result

in a similar timetable and better service quality in both cases.

This is in stark contrast with the inconsistent measure: adding the new route always makes

the measure worse. The inconsistent planner cannot justify adding the new route, even when

the timetable is optimized. We conclude that a consistent model can lead to good decisions

even when the assumptions are wrong (shortest path versus logit), while an inconsistent model

can lead to universally bad decisions. It is remarkable that we already see this behavior in

small examples, and we expect that the negative consequences of inconsistency may be worse

in integrated models that allow bad decisions to propagate.
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5 Conclusions and Further Research

We presented a new framework for passenger routing and evaluating the service quality for route

sets, timetables and line plans. We showed that the developed route choice models and measures

are easy to interpret and can be computed efficiently, enabling practitioners to use the framework

to better plan their networks. Numerical experiments support our claim that the framework

enhances decision-making, and also reveal multiple managerial implications. Most notably, we

observe that as one moves from immediate route choice to timetabling to line planning, the

benefit of logit over shortest path diminishes, implying that the shortest path model, despite

being slightly less accurate, may suffice for tactical or strategic planning purposes.

This paper lays the groundwork for a plethora of further research. The developed measures

can be incorporated in virtually every public transport problem that concerns passengers such

as line planning, timetabling, providing travel advice or determining tariff schemes. For prob-

lems with fixed route durations (e.g. line planning), the measures naturally lend themselves to

decomposition schemes such as Benders decomposition due to their convex nature. Problems

where the route durations depend on decision variables (e.g. timetabling) are more challenging,

as this introduces non-convexity. This research also paves the way for new ways to evaluate

and optimize the next generation of passenger transport systems, such as on-demand transport

or shared mobility services. This requires non-trivial extensions to the framework, since these

transport modes are not operated periodically. The application of more advanced choice models

such as mixed logit or nested logit also seems highly relevant in this context, as these allow for

individual or correlated preferences for modes and other heterogeneous factors. Finally, one

could include aspects such as pricing, crowding or robustness. It would be interesting to study

whether the insights found in this paper generalize to such settings.
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A Proofs Section 3.1 (Route Sets)

This appendix provides the proofs for the properties in Table 1.

Shortest Path Routing Logit Routing

Evaluation Measure Monot. Consist. Measure Monot. Consist.

Travel Time lmin ✓ ✓
∑

i∈R plogiti li ✗ ✗

Perceived Travel Time lmin ✓ ✗ − 1
β log

(∑
i∈R e−βli

)
✓✓ ✓

Table 1: Overview of route set measures and properties (double checkmark for strict monotonic).

Monotonicity With shortest path routing, increasing route lengths and removing routes can

only increase lmin, but is not required to do so strictly. This implies (weak) monotonicity. For

logit routing with travel time evaluation, Figure 4 provides a counterexample for monotonicity.

For logit routing with perceived travel time evaluation, strictly increasing a route length or

removing a route strictly decreases the argument of the logarithm. As − 1
β log(.) is strictly

decreasing, this strictly increases the measure as required.

Consistency Shortest path routing minimizes travel time by definition, so this combination

is consistent. Logit routing assigns a positive probability to every route, and therefore does

not minimize the travel time, which makes this combination inconsistent. Next, we prove that

logit routing minimizes perceived travel time, i.e., plogit minimizes Eptt(R, .). A similar proof is

provided by Anderson et al. (1988). We use the Lagrange multiplier rule to minimize Eptt(R, p)
over p ∈ P. The Lagrangian is given by

L(R, p, λ) =
∑
i∈R

lipi +
1

β

∑
i∈R

pi log(pi) + λ

(
1−

∑
i∈R

pi

)
, on domain p ≥ 0, λ ∈ R.

Because the objective Eptt(R, .) is convex and the constraint is linear, it is sufficient for optimality

to find a probability vector p∗ ∈ P and a multiplier λ∗ ∈ R such that the stationarity condition

dL(R, p, λ)
dpi

= li +
1

β
(log pi + 1)− λ = 0, ∀i ∈ R

holds. It is straightforward to verify that this is the case for

p∗i =
e−βli∑

j∈R e−βlj
= plogiti and λ∗ =

1

β
− 1

β
log

∑
j∈R

e−βlj

 ,

which proves consistency for logit routing with perceived travel time evaluation. Finally, we

prove that shortest path routing with perceived travel time evaluation is inconsistent through

an example. Consider route set R = {1, 2} with route lengths l1 = 1, l2 = 2 and parameter

β = 1. The shortest path routing is given by psp1 = 1, psp2 = 0, resulting in an evaluation of

E(R, psp) = 1. However, the solution p1 =
1
2 , p2 =

1
2 provides a value of E(R, p) = 3

2−log(2) < 1,

which proves that this combination is inconsistent.
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B Proofs Section 3.2 (Timetables)

Proposition 1 (Constant Routing between Departures). For shortest path routing and logit

routing the route choice does not change between departures. That is, for route i ∈ R and

successor σ(i) ∈ R it holds that p(Rθ(t)) is constant for t ∈ (θi, θσ(i)].

Proof. Until the next departure, all waiting times decrease by the same amount as time pro-

gresses. Subtracting a constant from all route lengths does not affect which length is the

minimum, which proves the proposition for shortest path routing. For logit routing we have for

any route j ∈ R and constant C ∈ R that

plogitj =
e−βlj∑

k∈R e−βlk
=

e−β(lj+C)∑
k∈R e−β(lk+C)

,

which completes the proof.

Proposition 2 (Translation Invariance). Both MRS
sp and MRS

logit are translation invariant be-

tween departures. That is, for route i ∈ R and successor σ(i) ∈ R it holds that

MRS(Rθ(t)) = [θσ(i) − t]T +MRS(Rθ(θσ(i))), ∀t ∈ (θi, θσ(i)].

Proof. By Proposition 1, the routing p ∈ P is constant on the interval t ∈ (θi, θσ(i)]. The route

set measure on the interval is therefore given by the evaluation function for this fixed p. It

follows that

MRS
logit(Rθ(t)) = Eptt(Rθ(t), p)

=
∑
j∈R

(lj + [θj − t]T ) pj +
1

β

∑
j∈R

pj log(pj) (Definition Eptt and Rθ(t))

=
∑
j∈R

(
lj + [θj − θσ(i)]T + [θσ(i) − t]T

)
pj +

1

β

∑
j∈R

pj log(pj) (split the wait time)

= [θσ(i) − t]T +
∑
j∈R

(
lj + [θj − θσ(i)]T

)
pj +

1

β

∑
j∈R

pj log(pj) (
∑
j∈R

pj = 1)

= [θσ(i) − t]T +MRS
logit(Rθ(θσ(i))). (Definition Eptt and Rθ(t))

ForMRS
sp the evaluation function omits the term 1

β

∑
j∈R pj log(pj), but the proof is identical.

Proposition 3. Algorithm 1 correctly calculates the characteristic values.

Proof. The main steps of the algorithm are straightforward, as indicated in the main text. It

remains to go over the edge cases and justify the use of the waiting time correction w(i, j). The

first edge case is when |R| = 1. With a single route, the regular definition of δ1 would evaluate

to [θi − θπ(i)]T = 0. Hence, the algorithm sets the correct value δ1 = T and the corresponding

τ1 = l1 as a special case. The vertical jump evaluates to ∆1 = δ1 + τ1 − τ1 = T as expected.
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Next, consider the waiting time correction

w(i, j) =

T if θi = θj , j < i,

[θj − θi]T else.
(18)

This correction ensures that route with the same departure time θi = θj are processed sequen-

tially according to their ordering, essentially as if there were small gaps between the departures.

Recall that routes that depart at the same time are ordered according to their index (Sec-

tion 3.2). Consider processing route i ∈ R. If route j ∈ R departs at the same time but is

processed later j ≥ i, then the regular waiting time [θj−θi]T = 0 applies. If route j has already

been processed, then it will take time T before j is reached again, and hence a waiting time of

T is used. After all routes at this particular time have been processed, all waiting times have

been increased by T . The correction also ensures that the total gap between departures
∑

i∈R δi

adds up to T as expected. This is straightforward for the regular case, but for the edge case

where all routes R = {1, . . . , n} depart at the same time, the correction is necessary to ensure

that the horizontal gap from n back to 1 is recorded as T .

Corollary 4. The output of Algorithm 1 satisfies
∑

i∈R δi = T and
∑

i∈R∆i = T .

Proof. The first summation follows from the definition of δi, and the discussion of the edge

cases in the proof of Proposition 3. The second summation follows from the identity ∆i =

δσ(i)+τσ(i)−τi in Line 19 of Algorithm 1, and the fact that the τ -terms cancel in the summation.

It follows that
∑

i∈R∆i =
∑

i∈R δi = T .

Proposition 5. Under uniform arrivals, the timetable measure for shortest path routing or

logit routing can be calculated as

MTT (R, T,θ) = 1

T

∑
i∈R

(
1

2
δ2i + τiδi

)
=

1

T

∑
i∈R

(
1

2
∆2

i + τi∆i

)
, (6)

where the characteristic values δ, τ , ∆ are obtained from Algorithm 1.

Proof. By definition of the expectation value, the timetable measure is obtained as the area

under the observed route set measure function, divided by T . For the first expression, Figure 6a

provides a graphical proof: For a given route i ∈ R the shaded area is the sum of the area of

half a square (12δ
2
i ) and a rectangle (δiτi). If routes i, σ(i) depart at the same time it follows

that δσ(i) = 0, which does not affect the argument. Summing over the areas and dividing by

T gives the result. The second expression is obtained by substituting ∆i = δσ(i) + τσ(i) − τi

31



(Line 19, Algorithm 1) into the first expression:

1

T

∑
i∈R

(
1

2
δ2i + τiδi

)
=

1

T

∑
i∈R

(
1

2
δ2σ(i) + τσ(i)δσ(i)

)
=

1

T

∑
i∈R

(
1

2

(
∆i − τσ(i) + τi

)2
+ τσ(i)

(
∆i − τσ(i) + τi

))
=

1

T

∑
i∈R

(
1

2
∆2

i + τi∆i +
1

2

(
τ2i − τ2σ(i)

))
=

1

T

∑
i∈R

(
1

2
∆2

i + τi∆i

)
.

Proposition 6. For logit routing, the output of Algorithm 1 satisfies

τi = li +
1

β
log

(
1− e−β∆i

1− e−βT

)
∀i ∈ R.

Proof. By definition, the value ∆i is the jump in the observed route set measure due to missing

route i ∈ R. Before the jump, the value of the observed route set measure is τi. Missing route

i ∈ R increases the waiting time for this route from 0 to T . It follows from Line 17 that

∆i = −
1

β
log

∑
j∈R

e−β(lj+w(i,j)) + e−β(li+T ) − e−β(li+0)

− τi,

= − 1

β
log
(
e−βτi + e−βli

(
e−βT − 1

))
− τi.

Note that ∆i > 0 by strict monotonicity of the route set measure. Take exponents on both

sides and rearrange to obtain

e−β∆i =
e−βτi + e−βli

(
e−βT − 1

)
e−βτi

= 1 + e−βli
e−βT − 1

e−βτi
,

e−βτi = e−βli
1− e−βT

1− e−β∆i
.

Finally, take logarithms to recover τi:

τi = li −
1

β
log

(
1− e−βT

1− e−β∆i

)
= li +

1

β
log

(
1− e−β∆i

1− e−βT

)
.

Proposition 7. The timetable measure for logit routing under uniform arrivals,

MTT
logit(R, T,θ) =

1

T

∑
i∈R

(
1

2
∆2

i + li∆i +
∆i

β
log

(
1− e−β∆i

1− e−βT

))
, (8)

is strictly convex on the domain ∆ ≥ 0 for parameters β > 0 and T > 0.
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Proof. Due to symmetry, it is sufficient to prove convexity for a single ∆i. To simplify the proof,

we split the logarithm and remove the linear terms li∆i and −∆i
β log

(
1− e−βT

)
. Furthermore,

we use the linear transformation x = β∆i and scale the function by β2T > 0. None of these

transformations affect convexity. It remains to prove that

f(x) = β2T
1

T

(
1

2

x2

β2
+

x

β2
log
(
1− e−x

))
=

1

2
x2 + x log

(
1− e−x

)
is convex. Interestingly, the term x log (1− e−x) is not convex by itself.

We prove strictly convexity by showing that the derivative

f ′(x) = x− x

1− e−x
e−x + log

(
1− e−x

)
=

x

1− e−x
(1− e−x)− x

1− e−x
e−x + log

(
1− e−x

)
=

x

1− e−x
+ log

(
1− e−x

)
is strictly increasing. The first term is non-decreasing, as the derivative

d

dx

x

1− e−x
=

(1− e−x)− xe−x

(1− e−x)2
=

e−x

(1− e−x)2
(ex − 1− x) ≥ 0. (19)

This follows from the well-known inequality ex ≥ 1 + x. The second term of f ′(x) is strictly

increasing by inspection. It follows that f ′(x) is strictly increasing and therefore f(x) is convex.

Corollary 8. The derivative of the timetable measure for logit routing under uniform arrivals

tends to −∞ when ∆i → 0 for any i ∈ R.

Proof. The transformations applied in the proof above do not affect whether or not the limits

at ∆i → 0 are finite. For x → 0, the first term of f ′(x) is finite, and the second term tends to

−∞. It follows that the derivative tends to −∞ when ∆i → 0 for any i ∈ R.

C Proofs Section 3.3 (Line Plans)

Proposition 9. The output of the procedure TimeTableShortestPath (Algorithm 2) is a

feasible timetable for which the characteristic values match the desired values set during the

execution of the algorithm.

Proof. The input satisfies xi ≥ 0 for every route i ∈ R. The timetable is constructed according

to δ̂i ← xi and θi ← θπ(i) + δ̂i. This timetable is feasible, as the gaps are non-negative and sum

to
∑

i∈R δ̂i =
∑

i∈R xi = T as expected. It is clear from the definition that when δi is calculated

by Algorithm 1, indeed δi = δ̂i matches.

Lemma 10. Every optimal solution to Problem (12) satisfies y > 0.

Proof. The statement is trivial for a single route, as y1 = T by constraint (12b). Now assume

that there are at least two routes |R| ≥ 2 and that yi = 0. Due to (12b), there must be a
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route j ∈ R, j ̸= i, for which yj > 0. By Corollary (8), the derivative of the timetable measure

tends to −∞ as yi → 0. It follows that the solution can strictly be improved by adding a small

amount ε > 0 to yi while subtracting it from yj . This contradicts the assumption that y is

optimal, so it must be that yi > 0.

Lemma 11. The desired values set by TimeTableLogit (Algorithm 2) satisfy τ̂i+
∆̂i

1−e−β∆̂i
= µ

for every route i ∈ R, for some constant µ ∈ R.

Proof. The procedure sets ∆̂i ← yi and τ̂i ← li +
1
β log

(
1−e−β∆̂i

1−e−βT

)
= li +

1
β log

(
1−e−βyi

1−e−βT

)
, where

y is an optimal solution to Problem (12). Lemma 10 states that y > 0, which also implies y < T .

Then it must be that the partial derivatives of objective (12a) are all equal: if the derivatives

with respect to routes i, j ∈ R, i ̸= j, are not equal, then a better solution is obtained by

moving a small amount ε between the routes without affecting feasibility. Hence, the value of

T
d

dyi
(12a) = yi + yi

1− e−βT

1− e−βyi

e−βyi

1− e−βT
+

(
li +

1

β
log

(
1− e−β∆̂i

1− e−βT

))

= ∆̂i + ∆̂i
e−β∆̂i

1− e−β∆̂i

+ τ̂i = τ̂i +
∆̂i

1− e−β∆̂i

is the same for each route i ∈ R.

Lemma 12. The desired values set by TimeTableLogit (Algorithm 2) satisfy τ̂i + ∆̂i > τ̂j

for every pair of routes i, j ∈ R.

Proof. By Lemma 11, it is equivalent to prove

µ− ∆̂i

1− e−β∆̂i

+ ∆̂i > µ− ∆̂j

1− e−β∆̂j

⇐⇒ ∆̂i

eβ∆̂i − 1
<

∆̂j

1− e−β∆̂j

.

Let zi = β∆̂i and zj = β∆̂j . By Lemma 10, ∆̂ = y > 0. Hence, it is sufficient to prove the

following for zi > 0, zj > 0:
zi

ezi − 1
<

zj
1− e−zj

.

Now use the well-known inequality ez > 1 + z for z ̸= 0 as follows. On the left-hand side, the

numerator and denominator are both positive. The inequality shows that the denominator is

larger, and thus that the fraction is less than one. Similarly, the right-hand side has a larger

numerator, such that the fraction is larger than one. This completes the proof.

Proposition 13. The output of the procedure TimeTableLogit (Algorithm 2) is a feasible

timetable for which the characteristic values match the desired values set during the execution

of the algorithm.

Proof. The procedure sets ∆̂i ← yi, τ̂i ← li +
1
β log

(
1−e−β∆̂i

1−e−βT

)
= li +

1
β log

(
1−e−βyi

1−e−βT

)
, and

δ̂i ← τ̂π(i) + ∆̂π(i) − τ̂i, where y is an optimal solution to Problem (12). Then the timetable

is constructed according to θi ← θπ(i) + δ̂i. It follows directly from Lemma 12 that δ̂ > 0.

Furthermore, we have
∑

i∈R δ̂i =
∑

i∈R ∆̂i due to the telescoping sum. This sum equals T as

expected, due to constraint (12b). It follows that the timetable is feasible, and it is easy to see

that indeed δ = δ̂ matches when δ is calculated by Algorithm 1.
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Next we prove that τ = τ̂ matches when τ is calculated by Algorithm 1. Without loss of

generality, we prove the statement for i = 1, and we relabel the other routes such that i = 1,

σ(i) = 2, etc. Note that all routes depart at different times (δ̂ > 0), so no wait time correction

is necessary. We obtain the wait time function w(1, j) =
∑j

k=2 δk = τ̂1 +
∑j−1

k=1 yk − τ̂j , which

is due to the telescoping sum, δ̂ = δ (as proven previously), and ∆̂ = y (by definition).

Now calculate τ1 according to Algorithm 1, with the goal to prove that it matches τ̂1:

τ1 = −
1

β
log

∑
j∈R

e−β(lj+w(i,j))

 = − 1

β
log

∑
j∈R

e−β(lj+τ̂1+
∑j−1

k=1 yk−τ̂j)


= τ̂1 −

1

β
log

∑
j∈R

e−β(lj+
∑j−1

k=1 yk−τ̂j)

 ?
= τ̂1.

As the τ̂is cancel, it remains to prove that the argument of the logarithm is equal to one:∑
j∈R

e−β(lj+
∑j−1

k=1 yk−τ̂j) = 1

∑
j∈R

e−β
∑j−1

k=1 yk

(
1− e−βyj

1− e−βT

)
= 1 (by definition τ̂j)

∑
j∈R

(
e−β

∑j−1
k=1 yk − e−β

∑j
k=1 yk

)
= 1− e−βT

e−β0 − e−β
∑n

k=1 yk = 1− e−βT . (telescoping sum)

This holds because
∑n

k=1 yk = T by constraint (12b). We conclude that indeed τ = τ̂ .

It only remains to prove that ∆ = ∆̂ matches, given that δ = δ̂ and τ = τ̂ already match.

Algorithm 1 constructs ∆i according to ∆i ← δσ(i)+ τσ(i)− τi = δ̂σ(i)+ τ̂σ(i)− τ̂i. By definition,

Algorithm 2 constructs δ̂i ← τ̂π(i) + ∆̂π(i) − τ̂i. This substitution cancels out τ̂σ(i) and τ̂i such

that indeed ∆i = ∆̂i. This completes the proof.

Proposition 14. The output of the procedure TimeTableShortestPath (Algorithm 2) is an

optimal timetable, and its measure matches the optimal objective value of Problem (11).

Proof. Consider an optimal timetable with measure M∗ and preprocess it by removing all

suboptimal routes. As explained in the main text, the resulting timetable satisfies τi = li for

all routes i ∈ R while the measure stays the same. A corresponding solution to Problem (11) is

obtained by setting xi = 0 for all routes that have been removed in preprocessing, and xi = δ∗i
otherwise, where δ∗ are the δ-values of the optimal timetable. Feasibility follows directly from

Corollary 4, and it is easy that this solution has an objective value (11a) that matchesM∗. We

conclude that for the optimal objective value v∗, we have v∗ ≤M∗.

Now solve Problem (11) and use Algorithm 2 to construct a timetable based on this solution.

Proposition 9 states that this is always possible, and that δ = x. The resulting timetable is

evaluated with (6), which assigns value 1
T

(
1
2δ

2
i + τiδi

)
= 1

T

(
1
2x

2
i + τixi

)
to each route i ∈

R. This value cannot be worse than the value assigned by Problem (11), as the objective

function (11a) instead uses 1
T

(
1
2x

2
i + lixi

)
, with τi ≤ li by definition. We conclude thatM, the
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measure of the constructed timetable, satisfies M ≤ v∗. Combining this with M∗ ≤ M (by

definition) and v∗ ≤M∗ (proven above) implies thatM =M∗ = v∗. That is, the constructed

timetable is optimal, and its measure matches the optimal objective value.

Proposition 15. The output of the procedure TimeTableLogit (Algorithm 2) is an optimal

timetable, and its measure matches the optimal objective value of Problem (12).

Proof. Given an optimal solution to Problem (12), Proposition 13 states that a timetable can

be constructed for which all the characteristic values match. As ∆ = ∆̂ = y, the objective

function (12a) is identical to the timetable measure (8). Hence, the timetable is optimal, and

its measure matches the optimal objective value.

Proposition 16. Every optimal solution to Problem (11) satisfies xi = max{0, µ− li} for every
route i ∈ R, for some constant µ ∈ R.

Proof. Associate the multiplier µ/T with constraint (11b) to create the Lagrangian:

L(x, µ/T ) = 1

T

∑
i∈R

(
1

2
x2i + xili

)
+

µ

T

(
T −

∑
i∈R

xi

)
=

1

T

∑
i∈R

(
1

2
x2i + (li − µ)xi

)
+ µ.

It follows from the KKT conditions that every optimal solution satisfies x∗ = argminx≥0 L(x, µ/T )
for some µ ∈ R (Patriksson, 2008). The Lagrangian is separable, and the optimum is found

by independently minimizing n convex parabolas over R+. It is elementary to show that the

unique optimal solution is xi = max{0, µ− li}.

Lemma 17. The output of the procedure TimeTableLogit (Algorithm 2) satisfies

δi =
∆i

1− e−β∆i
−

∆π(i)

1− e−β∆π(i)
e−β∆π(i) .

Proof. By Proposition 13, the output of the procedure is a feasible timetable, and all the

characteristic values match the desired values. We obtain:

δi = τπ(i) +∆π(i) − τi (Line 19, Algorithm 1)

= µ−
∆π(i)

1− e−β∆π(i)
+∆π(i) − µ+

∆i

1− e−β∆i
(Lemma 11)

= −
∆π(i)

1− e−β∆π(i)
e−β∆π(i) +

∆i

1− e−β∆i
.

Lemma 18. The output of the procedure TimeTableLogit (Algorithm 2) satisfies

plogitn (Rθ(θi)) =
1− e−β∆n

1− e−βT
e−β

∑n−1
k=i ∆k .

Proof. By Proposition 13, the output of the procedure is a feasible timetable, and all the

characteristic values match the desired values. Algorithm 2 sets the routes to depart in order

of index, and route n ∈ R is the last to depart before the next period starts. It follows that
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the waiting time between route i ∈ R and route n is given by w(i, n) =
∑n

k=i+1 δk. Using

the identity δi = τπ(i) + ∆π(i) − τi (Line 19, Algorithm 1), the telescoping sum results in

w(i, n) = τi +
∑n−1

k=i ∆k − τn. We obtain:

plogitn (Rθ(θi)) =
e−β(ln+w(i,n))∑
k∈R e−β(lk+w(i,k))

(definition plogit)

=
e−β(ln+τi+

∑n−1
k=i ∆k−τn)

e−βτi
(definition w(i, n); definition τi (Line 17, Alg. 1))

= e−β(ln−τn)e−β
∑n−1

k=i ∆k

=
1− e−β∆n

1− e−βT
e−β

∑n−1
k=i ∆k . (definition τn by Proposition 6)

Proposition 19. Uniform random travelers who face the optimal timetable created by

TimeTableLogit (Algorithm 2) choose route i ∈ R with probability ∆i/T .

Proof. Without loss of generality, we relabel the routes such that i = n, π(i) = n− 1, etc., and

we prove the statement for route n. The probability that a uniform random traveler arrives

in the interval t ∈ (θπ(i), θi] is equal to δi/T by definition. Within this interval, the routing

is constant by Proposition 1. By the law of total probability, the probability that a random

traveler selects route n is then given by
∑

i∈R
δi
T p

logit
n (Rθ(θi)). For convenience, we premultiply

this quantity by a constant to obtain:(
1− e−βT

1− e−β∆n
T

)∑
i∈R

δi
T
plogitn (Rθ(θi))

=
∑
i∈R

(
∆i

1− e−β∆i
−

∆π(i)

1− e−β∆π(i)
e−β∆π(i)

)
e−β

∑n−1
k=i ∆k (Lemmas 17 and 18)

=
∑
i∈R

∆i

1− e−β∆i
e−β

∑n−1
k=i ∆k −

∑
i∈R

∆π(i)

1− e−β∆π(i)
e−β(

∑n−1
k=i ∆k+∆π(i))

=
∑
i∈R

∆i

1− e−β∆i
e−β

∑n−1
k=i ∆k −

∑
i∈R

∆i

1− e−β∆i
e
−β

(∑n−1
k=σ(i)

∆k+∆i

)
(shift summation index)

=
∑
i∈R

∆i

1− e−β∆i

(
e−β

∑n−1
k=i ∆k − e

−β
(∑n−1

k=σ(i)
∆k+∆i

))
=

∆n

1− e−β∆n

(
e−β0 − e−β(

∑n−1
k=1 ∆k+∆n)

)
(difference 0 unless i = n)

=
∆n

1− e−β∆n

(
1− e−βT

)
=

(
1− e−βT

1− e−β∆n
T

)
∆n

T
. (Corollary 4)

This proves that
∑

i∈R
δi
T p

logit
n (Rθ(θi)) = ∆n/T . As route n was chosen without loss of gener-

ality, this completes the proof for all routes.
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