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Departamento de Matemática - Universidade Estadual de Maringá
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Abstract

Results concerning the existence and spectral stability/instability of multiple periodic standing
wave solutions for a cubic nonlinear Schrödinger system will be shown in this manuscript. Our
approach considers periodic perturbations that have the same period of the standing wave solution.
To obtain the quantity and multiplicity of non-positive eigenvalues for the corresponding linearized
operator, we use the comparison theorem and tools of Floquet theory. The results are then obtained
by applying the spectral stability theory via Krein signature as established in [20] and [21].

1. Introduction

In this paper, we show the spectral stability of periodic standing waves for the cubic nonlinear
Schrödinger system (NLS-system)

(1.1)

"

iut ` uxx ` κ1|u|2u` γv2u “ 0
ivt ` vxx ` κ2|v|2v ` γu2v “ 0.

Here u, v : R ˆ p0,`8q Ñ C are complex-valued functions that are L-periodic in the spatial variable, κ1
and κ2 are positive constants and γ ě 0.

The NLS equation (v “ 0 in p1.1q) appears in many applications in physics and engineering as in
nonlinear optics, quantum mechanics and nonlinear waves (see [4] and [10]). The cubic nonlinearity has
been used as a toy model in field theory. (see [8]). The NLS system also appears in nonlinear optics and
Bose-Einstein condensates (see [1, 17, 19, 27]).

For the NLS equation with cubic nonlinearity and periodic boundary conditions, Angulo in [2] estab-
lished the orbital stability of periodic standing waves solutions of dnoidal type with respect to pertur-
bations of period L. The existence of cnoidal waves was also obtained in [2]. However, the author did
not obtain spectral or orbital stability results in the energy space H1

per for the cnoidal wave. Recently,

Natali et al. determined in [25] the orbital stability of cnoidal waves restricted to the subspace H1
per,m

of zero mean periodic functions contained in H1
per. Employing the approaches in [13] and [14], along a

non-degeneracy condition of a suitable 2 ˆ 2 Hessian matrix, Gallay and Hărăguş in [12] showed that
the cnoidal waves are orbitally stable with respect to semi-periodic perturbations. This work generalized
the previous work [11] where the authors used similar arguments to prove the orbital/spectral stability
of small amplitude waves with respect to localized or bounded perturbations. Gustafson, Le Coz and
Tsai in [15] have established spectral stability results for the cnoidal waves with respect to perturbations
with the same period L and orbital stability results in the space constituted by anti-periodic functions
with period L{2. The spectral stability follows by relating the coercivity of the linearized action with the
number of eigenvalues with negative Krein signature of a certain operator JL.
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Pastor in [26] considered a similar NLS-system given by

"

iut ` uxx ´ u`
`

1
9 |u|2 ` 2|v|2

˘

u` 1
3u

2v “ 0
iσvt ` vxx ´ αv `

`

9|v|2 ` 2|u|2
˘

v ` 1
9u

3 “ 0,

where α and σ are real constants. First, he proved orbital stability results for dnoidal standing wave
solutions using the approaches in [13] and [14] by considering periodic perturbations that have the same
period of the standing wave solution. Second, he used the theories in [11] and [12] to demonstrate spectral
stability results of periodic waves with respect to localized or bounded perturbations, that is, when the
study of the spectrum of a certain linearized operator JL is considered over the space L2pRq ˆ L2pRq or
CbpRq ˆ CbpRq, respectively. Here, CbpRq indicates the space of (complex) continuous functions defined
in the whole real line R that are bounded.

In the context of NLS-system (1.1), Kawahara and Ohta in [23] showed the orbital stability and
instability of standing solitary wave solutions for the system (1.1). In that approach, the authors studied
the orbital stability properties of semi-trivial standing wave solutions of the form

(1.2) pupx, tq, vpx, tqq “ peiωtφωpxq, 0q,

where φωpxq “
?
2ω sechp

?
ωxq is a positive and even solution of the equation

(1.3) ´φ2
ω ` ωφω ´ φ3

ω “ 0.

They proved that the semi-trivial standing wave solution (1.2) is orbitally stable if γ ă κ1 and orbitally
unstable if γ ą κ1. In addition, if γ “ κ1, the authors concluded the orbital stability when κ2 ă κ1 and
orbital instability when κ2 ą κ1. Unfortunately, in the case where γ “ κ1 “ κ2, they did not prove the
orbital stability (see [23, Remark 2]).

In the periodic setting, Hakkaev in [16] studied the spectral stability of the NLS-system by considering
semi-trivial standing waves as in (1.2) where φω is an L-periodic function with dnoidal profile which solves
equation (1.3) and it is given by

φωpxq “
2

?
2Kpkq

L
dn

ˆ

2Kpkq

L
x, k

˙

,

where k P p0, 1q is the modulus of the elliptic function and Kpkq is the complete elliptic integral of the
first kind. More precisely, the author showed that the semi-trivial periodic waves are orbitally stable for
γ ă κ1. In addition, he also obtained results of spectral stability and instability for the semi-trivial waves.
In fact, for κ1 ă γ ď 3κ1, he concluded that the semi-trivial periodic waves are spectrally unstable and
for γ “ κ1 the semi-trivial periodic wave solutions of (1.7) are spectrally stable.

Now, we give the main topics of our paper. Motivated by [16] and [23], we consider multiple periodic
standing wave solutions of (1.1) given by

(1.4) pupx, tq, vpx, tqq “ peiωtφωpxq, eiωtϑωpxqq :“ peiωtφωpxq, eiωtBφωpxqq

where φω : R Ñ R is an L-periodic function and ω P R is the frequency wave. In addition, we also assume
that B P R is a real constant which can be assumed non-negative because of the reflection symmetry
v ÞÑ ´v.

In our paper, we consider two kind of waves φ “ φω in the periodic setting. First, we complete the
study realized in [16] by considering φ with (positive) dnoidal profile. Second, equation (1.3) has periodic
solutions with cnoidal profile that was not mentioned in [16]. The cnoidal solution enjoys the zero-mean
property, and additional difficulties to apply the spectral stability theories in [20] and [21] can arise.

Let’s start by constructing our periodic solutions. First, by substituting the form (1.4) into (1.1) we
get

(1.5)

"

´ωφ` φ2 ` pκ1 ` γB2qφ3 “ 0
´ωφ` φ2 ` pκ2B

2 ` γqφ3 “ 0.
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In order to determine the existence of multiple solutions, we need to assume that κ1`γB2 “ κ2B
2`γ.

Thus, for κ2 ‰ γ, we see that B ą 0 can be expressed by

(1.6) B “

c

κ1 ´ γ

κ2 ´ γ
.

In this case and since B P R, we first consider the three basic cases:

γ P p0,mintκ1, κ2uq, γ P pmaxtκ1, κ2u,`8q and γ “ 0.

We can also consider the case γ “ κ1 or γ “ κ2 in (1.5). For both, we conclude that γ “ κ1 “ κ2 and B
is a free real parameter that does not depend on κ1, κ2, γ and ω.

In all cases mentioned above, the periodic wave φ is a solution of the ODE

(1.7) ´φ2 ` ωφ` pκ1 ` γB2qφ3 “ 0.

In the case of solutions with dnoidal profile, we can determine the explicit solution as

(1.8) φpxq “
2

?
2Kpkq

L

1

pκ1 ` γB2q1{2
dn

ˆ

2Kpkq

L
x, k

˙

.

The frequency of the wave ω P R can be expressed as

(1.9) ω “
4p2 ´ k2qKpkq2

L2
.

By (1.9), we can see from the dependence of ω in terms of the parameter k P p0, 1q, that ω P

´

2π2

L2 ,`8

¯

.

On the other hand, to obtain solutions with cnoidal type, we can proceed similarly as in [2] to obtain

(1.10) φpxq “

?
2ωk

?
2k2 ´ 1

1

pκ1 ` γB2q1{2
cn

ˆ

4Kpkq

L
x, k

˙

.

In this case, the modulus k belongs to the interval
´

1?
2
, 1

¯

and the frequency wave ω ą 0 is expressed by

(1.11) ω “
16Kpkq2p2k2 ´ 1q

L2
.

Solution φ in (1.10) is an even periodic function. In our spectral stability analysis, it is suitable to
work within the complex Sobolev product space H1

per ˆ H1
per constituted by odd periodic functions. To

accomplish this, we must shift the solution φ defined in p1.10q by ´L
4 , in order to obtain an odd periodic

solution that satisfies equation (1.7). In fact, by the formula [5, Formula 122.05], we deduce,

(1.12) ψpxq “ φ

ˆ

x´
L

4

˙

“

?
2ωk

?
1 ´ k2

?
2k2 ´ 1

1

pκ1 ` γB2q1{2

sn
´

4Kpkq

L x, k
¯

dn
´

4Kpkq

L x, k
¯ .

In p1.12q, the notation sn indicates the odd Jacobi elliptic function with snoidal profile.

Remark 1.1. For all the solutions mentioned above, we can construct, for each case, a smooth curve
of L´periodic waves ω P I ÞÝÑ φ P H2

per that solves (1.7) (see Theorems 2.1 and 2.2).

System (1.1) admits the conserved quantity E defined as

(1.13) Epu, vq “
1

2

ż L

0

´

|ux|2 ` |vx|2 ´
κ1
2

|u|4 ´
κ2
2

|v|4
¯

dx´
γ

2
Re

ż L

0

u2v2dx.

Moreover, (1.1) has another conserved quantity F given by

(1.14) F pu, vq “
1

2

ż L

0

`

|u|2 ` |v|2
˘

dx.

Then, following similar arguments as in [6] and using standard fixed point arguments, we can conclude
by the conservation laws in (1.13) and (1.14) that the NLS-system (1.1) is globally well-posed in the
complex energy space H1

per ˆH1
per (see, for instance, [7, 16, 28]).
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Now, we present how to obtain the spectral stability of multiple periodic waves with respect to per-
turbation with the same period. In order to improve the comprehension of the readers, we consider the
complex evolution U “ pu, vq associated with the system p1.1q of the form,

Upx, tq “ pupx, tq, vpx, tqq “ pReupx, tq,Re vpx, tq, Imupx, tq, Im vpx, tqq.

Consequently, we can consider the stationary solution Φ “ pφ,Bφ, 0, 0q and the perturbation

(1.15) Upx, tq “ eiβtpΦpxq `W px, tqq

whereW px, tq “ pRew1px, tq,Rew2px, tq, Imw1px, tq, Imw2px, tqq P R4. Substituting (1.15) into (1.1) and
neglecting all the nonlinear terms, we get the following linearized equation:

(1.16)
d

dt
W px, tq “ JLW px, tq,

where

(1.17) J “

¨

˚

˚

˝

0 0 1 0
0 0 0 1

´1 0 0 0
0 ´1 0 0

˛

‹

‹

‚

,

and L is the operator given by

(1.18) L “ p´B2
x ` ωqId ´ φ2S,

where Id P M4ˆ4pRq and S is given by

S “

¨

˚

˚

˝

p3κ1 ` γB2q 2γB 0 0
2γB p3κ2B

2 ` γq 0 0
0 0 pκ1 ´ γB2q 2γB
0 0 2γB pκ2B

2 ´ γq

˛

‹

‹

‚

.

To define the concept of spectral stability within our context, we need to consider W px, tq “ eλtwpxq

in the linear equation (1.16) to obtain the following spectral problem

JLw “ λw.

The definition of spectral stability in our context reads as follows.

Definition 1.2. The stationary wave Φ is said to spectrally stable by periodic perturbations that have
the same period as the standing wave solution if σpJLq Ă iR. Otherwise, if there exists at least one
eigenvalue λ associated with the operator JL that has a positive real part, Φ is said to be spectrally
unstable.

As far as we know, it is more convenient to work with the operator L in a diagonal form. To do so,
we need to obtain the existence of an orthogonal matrix R and a matrix M such that

(1.19) S :“ RMR´1,

where R is defined as

(1.20) R “

¨

˚

˚

˚

˝

´κ2 ` γ 1
2γ´κ1´κ2

0 0
a

pκ1 ´ γqpκ2 ´ γq ´ 1
2γ´κ1´κ2

1
B 0 0

0 0 ´ 1
2γ´κ1´κ2

κ1 ´ γ

0 0 ´ 1
2γ´κ1´κ2

1
B

a

pκ1 ´ γqpκ2 ´ γq

˛

‹

‹

‹

‚

.

Since B is a real number, we see that M is a matrix with real entries and this fact allows us to deduce
that the entries of the matrix R in p1.19q are also real numbers (by definition, an orthogonal matrix R is
composed of real number entries). The matrix M P M4ˆ4pRq is then given by

M “

¨

˚

˚

˝

β1 0 0 0
0 β3 0 0
0 0 β2 0
0 0 0 β4

˛

‹

‹

‚

,
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where constants βi P R are expressed in terms of γ, κ1 and κ2 as

(1.21)
β1 “

3pγ2 ´ κ1κ2q

γ ´ κ2
, β3 “

´γ2 ` 2γpκ1 ` κ2q ´ 3κ1κ2
γ ´ κ2

,

β2 “
pγ2 ´ κ1κ2q

γ ´ κ2
, β4 “

´3γ2 ` 2γpκ1 ` κ2q ´ κ1κ2
γ ´ κ2

.

Substituting (1.19) into (1.18) and since R is an orthogonal matrix with real entries, we have that L is a
diagonalizable operator with

(1.22) L “ R

¨

˚

˚

˝

L1 0 0 0
0 L3 0 0
0 0 L2 0
0 0 0 L4

˛

‹

‹

‚

R´1 “ RL̃R´1,

where Li : H
2
per Ñ L2

per are Hill operators given by

(1.23) Li “ ´B2
x ` ω ´ βiφ

2, i “ 1, 2, 3, 4.

It is important to mention that the decomposition in (1.22) is useful to obtain the non-positive spectrum
regarding the operator L by knowing the non-positive spectrum of Li, i “ 1, 2, 3, 4, in p1.23q. Such
decomposition is only possible since solutions in p1.4q are considered multiple of each other. The existence
of non-multiple periodic solutions can be obtained for certain specific parameters κ1, κ2, and γ in equation
(1.1). The challenge lies in achieving spectral stability for this type of waves. Indeed, as it is well-known
that in this case, the linearized operator L in equation (1.18) cannot be diagonalized, and neither can
the entries Vjl of the matrix V (see (1.24) below).

We now describe our results. Let npAq and zpAq be the number of negative eigenvalues and the
dimension of the kernel of a certain linear operator A. In our paper, a prior understanding of these non-
negative numbers is essential for obtaining the spectral stability result. First, we obtain for the case of
dnoidal waves that npL1q “ 1 and npL2q “ 0 (see [2] and [16]). In addition, we have that KerpL1q “ rφ1s

and KerpL2q “ rφs. An application of the well known comparison theorem in the periodic context (see
[9, Theorem 2.2.2]) gives the behaviour of the non-positive spectrum concerning the operators L3 and
L4 (see details in Section 4). Next, by considering φ P H1

per with cnoidal profile, we have npL1q “ 2
and npL2q “ 1 (see [2]). Depending on the choice of the parameters γ, κ1, and κ2 in equation p1.1q, we
cannot conclude a suitable spectral stability result as in the case of dnoidal solutions, since we have too
many negative eigenvalues for the operator L. The reason for this is that we cannot apply the comparison
theorem to determine the behavior of L3 and L4 as we did in the case of dnoidal solutions.

To partially overcome this difficulty, we can take advantage of the fact that ψ “ φ
`

¨ ´ L
4

˘

is an odd

function, and the translated potentials Qi “ ´βiψ
2 of the operators Li in equation p1.23q are even. Both

facts give us that Li is well defined in the space L2
per,odd constituted by odd periodic functions in L2

per for
all i “ 1, 2, 3, 4. With this information in hands, we can calculate the number of non-positive eigenvalues
of L3 and L4 within the subspace of odd periodic functions L2

per,odd without further problems. In this

setting, we prove that npL1,oddq “ 1, npL2,oddq “ 0, KerpL1,oddq “ t0u, and KerpL2,oddq “ rφs, where
Li,odd is the restriction operator Li defined in L2

per,odd with domain H2
per,odd, i “ 1, 2, 3, 4. These facts

allow us to use the comparison theorem to obtain the exact behaviour of the non-positive spectrum for
the operators L3,odd and L4,odd restricted to space L2

per,odd. A consequence of this fact is that the study
of the spectral stability of periodic waves in the space constituted by odd periodic functions is similar as
determined for positive (dnoidal) solutions.

We now obtain our results. To do so, we need to use the methods developed by Kapitula, Kevrekidis
and Sandstede in [20] and [21]. First, we denote by L2

per the space

L2
per “ L2

per ˆ L2
per ˆ L2

per ˆ L2
per.

If zpLq “ n, consider tΘlu
n
l“1 Ă KerpLq a linearly independent set and let V be the n ˆ n matrix whose

entries are given by

(1.24) Vjl “ pL´1JΘj , JΘlqL2
per
,
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where 1 ď j, l ď n. The formula

(1.25) kr ` kc ` k´ “ npLq ´ npV q,

is given in [21] and the left-hand side of p1.25q is exactly the hamiltonian Krein index, an important tool
to decide about the spectral stability and instability of waves. Regarding operator L in p1.18q, let kr be
the number of real-valued and positive eigenvalues (counting multiplicities). The number kc denotes the
number of complex-valued eigenvalues with a positive real part and k´ is the number of pairs of purely
imaginary eigenvalues with negative Krein signature of L. Since kc and k´ are always even numbers, we
obtain that if the right-hand side in (1.25) is an odd number, then kr ě 1 and we have automatically the
spectral instability. Moreover, if the difference npLq ´ npV q is zero, then kc “ k´ “ kr “ 0 which implies
the spectral stability.

Summarizing the comments above, our main results concerning the spectral stability of multiple peri-
odic waves of the form p1.4q are then established:

Theorem 1.3 (Spectral stability/instability for the multiple wave solution with dnoidal profile). Let
L ą 0 be fixed. Consider the periodic wave solution φ P H1

per of (1.7) with dnoidal profile given by

(1.8). For B given in (1.6) and for all ω P p 2π2

L2 ,`8q, the wave Φ “ pφ,Bφ, 0, 0q is spectrally unstable
if γ P p0,mintκ1, κ2uq and spectrally stable if γ P pmaxtκ1, κ2u,`8q Y t0u. In addition, for γ “ κ1 “ κ2

with B being a free real parameter, we obtain that Φ is spectrally stable for all ω P

´

2π2

L2 ,`8

¯

.

Theorem 1.4 (Spectral instability for the multiple wave solution with cnoidal profile). Let L ą 0 be
fixed and consider ω ą 0. Let φ P H1

per be the periodic solution of (1.7) with cnoidal profile given by
(1.10). For γ “ κ1 “ κ2 with B being a free real parameter, the wave Φ “ pφ,Bφ, 0, 0q is spectrally
unstable.

The translation ψ in p1.12q of the periodic cnoidal wave φ in p1.10q gives us an odd periodic solution
for the equation p1.7q. In this case, it is possible to restrict the spectral stability in the (complex) product
space H1

per,odd ˆH1
per,odd constituted by odd periodic functions pe, fq P H1

per ˆH1
per. The reason for that

is that the operator L in p1.18q, when restricted to L2
per,odd ˆ L2

per,odd, has a small number of negative

eigenvalues. Therefore, it is more convenient to determine whether the difference npLq´npV q can be zero
(indicating stability) or an odd number (indicating instability). Only a few spectral stability scenarios
can be determined when φ represents the cnoidal solution and the operator L is considered in either
the entire space L2

per ˆ L2
per or the space L2

per,even ˆ L2
per,even constituted by even periodic functions

pg, hq P L2
per ˆ L2

per (see Theorem 1.4).

Theorem 1.5 (Spectral stability/instability for the multiple wave solution with cnoidal profile and
restricted to the subspace of odd functions). Let L ą 0 be fixed and consider ω ą 0. Let ψ “ φp¨ ´L{4q P

H1
per,odd be the periodic solution of (1.7) with snoidal profile given by (1.12). For B given in (1.6),

the multiple wave Ψ “ pψ,Bψ, 0, 0q is spectrally unstable if γ P p0,mintκ1, κ2uq and spectrally stable if
γ P pmaxtκ1, κ2u,`8q Y t0u. In addition, for γ “ κ1 “ κ2 with B being a free real parameter, we have
that Ψ is spectrally stable.

To finish, we give an extension of the results obtained in [16] by showing the spectral stability concern-
ing the semi-trivial periodic wave solution pupx, tq, vpx, tqq “ peiωtφpxq, 0q, where φ P H1

per has a cnoidal
profile. Here, we also analyze the spectral properties concerning the operator L to obtain the spectral
stability results in the same setting of parameters determined in [16]. As we have already established for
the case of multiple solutions p1.4q, some difficulties appear in the spectral analysis of L. To overcome
all these difficulties, we study the case where ψ “ φp¨ ´ L{4q is given by p1.12q.

Theorem 1.6 (Spectral instability for the semi-trivial wave solution with cnoidal profile). Let L ą 0
be fixed and consider ω ą 0. The semi-trivial wave solution Ψ “ pψ, 0, 0, 0q is spectrally unstable when
γ “ κ1.

Theorem 1.7 (Spectral stability/instability for the semi-trivial wave solution with cnoidal profile and
restricted to the subspace of odd functions). Let L ą 0 be fixed and consider ω ą 0. The semi-trivial
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wave solution Ψ “ pψ, 0, 0, 0q is spectrally stable in L2
per,odd provided that γ P p0, κ1s. In addition, if

γ P pκ1, 3κ1s, the solution Ψ “ pψ, 0, 0, 0q is spectrally unstable in L2
per,odd.

Our paper is organized as follows: In Section 2, we show the existence of a smooth curve of periodic
standing wave solutions of dnoidal and cnoidal type for the equation (1.7). The spectral analysis for the
operators L is determined in Section 3. The spectral stability/instability for the multiple wave solutions
with dnoidal and cnoidal profile are then established in Section 4. Finally, in Section 5, we prove the
spectral stability/instability result concerning the semi-trivial wave with cnoidal profile.

Notation: For s ě 0 and L ą 0, the Sobolev space Hs
per :“ Hs

perpr0, Lsq consists of all periodic
functions f such that

}f}2Hs
per

:“ L
8
ÿ

k“´8

p1 ` k2qs|f̂pkq|2 ă 8

where f̂ is the periodic Fourier transform of f . The space Hs
per is a Hilbert space with the inner product

denoted by p¨, ¨qHs . When s “ 0, the space Hs
per is isometrically isomorphic to the space L2pr0, Lsq and

will be denoted by L2
per :“ H0

per (see, e.g., [18]). The norm and inner product in L2
per will be denoted by

} ¨ }L2
per

and p¨, ¨qL2
per

.

For s ě 0, we denote
Hs

per,odd :“ tf P Hs
per ; f is an odd functionu.

endowed with the norm and inner product in Hs
per.

In addition, to facilitate the comprehension of the readers, for s ě 0 and pf, gq P Hs
perˆHs

per (complex),
we can write pf, gq “ pRe f,Re g, Im f, Im gq and

Hs
per :“ Hs

per ˆHs
per ˆHs

per ˆHs
per and Hs

per,odd :“ Hs
per,odd ˆHs

per,odd ˆHs
per,odd ˆHs

per,odd

equipped with their usual norms and scalar products.
The symbols snp¨, kq, dnp¨, kq and cnp¨, kq represent the Jacobi elliptic functions of snoidal, dnoidal,

and cnoidal type, respectively. For k P p0, 1q, Fpϕ, kq and Epϕ, kq denote the complete elliptic integrals
of the first and second kind, respectively, and we denote by Kpkq “ F

`

π
2 , k

˘

and Epkq “ E
`

π
2 , k

˘

(for
additional details, see [5]).

2. Existence of a Smooth Curve of Periodic Waves

Our purpose in this section is to present the existence of L-periodic solutions φ : R ÝÑ R for the
following ODE

(2.1) ´φ2 ` ωφ´ pκ1 ` γB2qφ3 “ 0,

where ω ą 0.
2.1. L-periodic wave solutions with dnoidal profile. Consider the ODE

´ϕ2 ` ωϕ´ ϕ3 “ 0.

By [2], we obtain periodic solutions with dnoidal profile as

(2.2) ϕpxq “
2
?
2Kpkq

L
dn

ˆ

2Kpkq

L
x, k

˙

,

where k P p0, 1q. The frequency ω depends smoothly on k P p0, 1q and L ą 0 is defined by

(2.3) ω “
4p2 ´ k2qKpkq2

L2
.

Then, considering the transformation

(2.4) φpxq “
1

pκ1 ` γB2q1{2
ϕpxq,

we obtain that φ is an L-periodic solution for the equation (2.1) with ω given by the relation (2.3) and
defined in a subset of p0,`8q. We have the following result:
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Theorem 2.1 (Smooth Curve of Dnoidal Waves). Let L ą 0 be fixed and consider ω P p 2π2

L2 ,`8q. If
φ “ φω is the solution of (2.1) with the dnoidal profile in (2.4), the family

ω P

ˆ

2π2

L2
,`8

˙

ÞÝÑ φ P H2
per,

of periodic solutions of (2.1) depends smoothly on ω.

2.2. L-periodic wave solutions with cnoidal profile. For ω ą 0, Angulo in [2] obtained that the
ODE

´ϕ2 ` ωϕ´ ϕ3 “ 0

also admits periodic solutions with cnoidal profile as

(2.5) ϕpxq “

?
2ωk

?
2k2 ´ 1

cn

ˆ

4Kpkq

L
x, k

˙

,

where k P

´

1?
2
, 1

¯

. The frequency ω P R depends smoothly on k P

´

1?
2
, 1

¯

and L ą 0. It is defined by

(2.6) ω “
16Kpkq2p2k2 ´ 1q

L2
.

Motivated by this, we consider the same scaling transformation as in (2.4)

(2.7) φpxq “
1

pκ1 ` γB2q1{2
ϕpxq.

We obtain that φ is an L-periodic solution of (2.1) for ω ą 0 given by (2.6) and the similar result as in
Theorem 2.1 reads as follows:

Theorem 2.2 (Smooth Curve of Cnoidal Waves). Let L ą 0 be fixed and consider ω ą 0. If φ “ φω

is the solution of (2.1) with cnoidal profile given by (2.7), then the family

ω P p0,`8q ÞÝÑ φ “ φω P H2
per,

of periodic solutions of (2.1) depends smoothly on ω P p0,`8q.

Remark 2.3. Recall that by p2.7q, we have

(2.8) ψpxq “ φ

ˆ

x´
L

4

˙

“

?
2ωk

?
1 ´ k2

?
2k2 ´ 1

1

pκ1 ` γB2q1{2

sn
´

4Kpkq

L x, k
¯

dn
´

4Kpkq

L x, k
¯ .

By Theorem 2.2, we obtain that

ω P p0,`8q ÞÝÑ ψ “ ψω P H2
per,odd,

depends smoothly on ω P p0,`8q.

3. Spectral analysis

In this section, we calculate the non-positive spectrum of the linear operator L by using the information
of the non-positive spectrum of the Hill operators Li, i “ 1, 2, 3, 4, given by (1.23). For the case of dnoidal
solutions, we borrow the results determined by Angulo [2] and Hakkaev [16]. On the other hand, for the
case of cnoidal solutions, we use some results given by Angulo in [2] and Natali et. al. in [25].
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3.1. Spectral analysis with dnoidal profile. Recall that operators Li “ ´B2
x ` ω ´ βiφ

2 can be
expressed in terms of the parameters βi in (1.21). We have

L1 “ ´B2
x ` ω ´ β1φ

2 “ ´B2
x ` ω ´ 3pκ1 `B2γqφ2 “ ´B2

x ` ω ´ 3ϕ2

and

L2 “ ´B2
x ` ω ´ β2φ

2 “ ´B2
x ` ω ´ pκ1 `B2γqφ2 “ ´B2

x ` ω ´ ϕ2,

where ϕ is the solution with dnoidal profile given by (2.2). So, we can use the spectral properties for the
operators L1 and L2 as obtained in [2] and [16] to obtain npL1q “ 1, npL2q “ 0, KerpL1q “ rφ1s and
KerpL2q “ rφs. Thus, we need to study the spectral analysis of the operator L in some different cases:

Case I: γ P p0,mintκ1, κ2uq. In this case, after some calculations with the parameters βi, i “ 1, 2, 3, 4,
we conclude that

(3.1) β4 ă β2 ă β3 ă β1.

for all γ P p0,mintκ1, κ2uq. Then, we have the following order of operators

(3.2) L1 ă L3 ă L2 ă L4,

where Li ă Lj means that pLiu, uqL2
per

ă pLju, uqL2
per

for all u P H2
per, u ‰ 0 and i, j P N, i ‰ j. From

the comparison theorem (in the periodic context (see [9, Theorem 2.2.2])) and the inequalities in (3.2),
we have npL3q “ 1, npL4q “ 0 and zpL3q “ zpL4q “ t0u.

Therefore, it follows by p1.22q that npLq “ 2 and zpLq “ 2 with

KerpLq “
“

pφ1, Bφ1, 0, 0q, p0, 0, φ,Bφq
‰

.

Case II: γ P pmaxtκ1, κ2u,`8q. By considering γ P pmaxtκ1, κ2u,`8q, one has

(3.3) β4 ă β3 ă β2 ă β1.

So, we obtain by (3.3)

(3.4) L1 ă L2 ă L3 ă L4.

Thus, using the comparison theorem and (3.4), it follows that npL3q “ npL4q “ 0 and zpL3q “ zpL4q “ 0.
Again, by p1.22q we get npLq “ 1 and zpLq “ 2 where

KerpLq “
“

pφ1, Bφ1, 0, 0q, p0, 0, φ,Bφq
‰

.

Case III: γ “ 0. First, we have to notice that for B ą 0, we obtain B “

b

κ1

κ2
. By the expression

of the matrix S given by (1.19), we do not need to use the similar transformation R. Operator L has a
diagonal form and given by

(3.5) L “

¨

˚

˚

˝

L1 0 0 0
0 L1 0 0
0 0 L2 0
0 0 0 L2

˛

‹

‹

‚

,

that is, L3 “ L1 and L4 “ L2.
The spectral analysis can be directly determined by the behaviour of the linearized operators Li,

i “ 1, 2, 3, 4. Since npL1q “ 1, npL2q “ 0 and zpL1q “ zpL2q “ 1, we have that npLq “ 2 and zpLq “ 4
where

KerpLq “
“

pφ1, 0, 0, 0q, p0, φ1, 0, 0q, p0, 0, φ, 0q, p0, 0, 0, φq
‰

.

Case IV: γ “ κ1 “ κ2. In this case, we have that B is a free real parameter. Moreover, we also use
the similar transformation S “ RMR´1, where S is given by (1.19). The matrixM and R are then given
respectively by

(3.6) M “

¨

˚

˚

˝

3pB2 ` 1qγ 0 0 0
0 pB2 ` 1qγ 0 0
0 0 pB2 ` 1qγ 0
0 0 0 ´pB2 ` 1qγ

˛

‹

‹

‚

,
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and

(3.7) R “

¨

˚

˚

˝

´ 1
B2`1 ´B 0 0

´ B
B2`1 1 0 0

0 0 1 B
B2`1

0 0 B ´ 1
B2`1

˛

‹

‹

‚

.

Thus, operator L becomes in this case

(3.8) L “ R

¨

˚

˚

˝

L1 0 0 0
0 L2 0 0
0 0 L2 0
0 0 0 L3

˛

‹

‹

‚

R´1,

where

(3.9) L1 “ ´B2
x ` ω ´ 3pB2 ` 1qγφ2, L2 “ ´B2

x ` ω ´ pB2 ` 1qγφ2 and L3 “ ´B2
x ` ω ` pB2 ` 1qγφ2.

As far as we can see, we have that pB2 ` 1qγ “ κ1 `B2γ. So, we obtain the same spectral properties
concerning the operators L1 and L2. In addition, being L3 a positive operator, we have that npLq “ 1
and zpLq “ 3, where

KerpLq “
“

pφ1, Bφ1, 0, 0q, p´Bφ,φ, 0, 0q, p0, 0, φ,Bφq
‰

.

3.2. Spectral analysis with cnoidal profile. Let φ be the solution with cnoidal profile given by
Theorem 2.2. For B ą 0 given by (1.6), the transformation R such that S “ RMR´1 is also given by
(1.20). As a consequence, the parameters βi, i “ 1, 2, 3, 4 are also given by (1.21) and operators L1 and
L2 can be expressed as

(3.10)
L1 “ ´B2

x ` ω ´ β1φ
2 “ ´B2

x ` ω ´ 3pκ1 `B2γqφ2 “ ´B2
x ` ω ´ 3ϕ2 and

L2 “ ´B2
x ` ω ´ β2φ

2 “ ´B2
x ` ω ´ pκ1 `B2γqφ2 “ ´B2

x ` ω ´ ϕ2,

where ϕ is the solution with cnoidal profile in (2.5). So, we can use the spectral properties for the
operators L1 and L2 as obtained in [2]. Indeed, we have npL1q “ 2, npL2q “ 1 and zpL1q “ zpL2q “ 1.

It is necessary to understand that when the number of negative eigenvalues is high (compared with the
case of dnoidal solutions), we obtain some difficulties to obtain the spectral properties for the operator
L in p1.18q. So, we can study some different cases:

Case I: γ P p0,mintκ1, κ2uq. By (3.1), we have that

L1 ă L3 ă L2 ă L4.

Then, using the comparison theorem one has npL3q “ 2 and zpL3q “ 0. In addition, we have that

β4 ă 0 for all γ P p 1
3 pκ1 ` κ2 ´

a

κ21 ´ κ1κ2 ` κ22q,mintκ1, κ2uq and this implies that npL4q “ zpL4q “ 0.
Therefore, we have in this case npLq “ 5 and zpLq “ 2 with

KerpLq “
“

pφ1, Bφ1, 0, 0q, p0, 0, φ,Bφq
‰

.

Case II: γ P pmaxtκ1, κ2u,`8q. By (3.3), we obtain

L1 ă L2 ă L3 ă L4.

Using the comparison theorem and the previous knowledge of the non-positive spectrum for L1 and L2,
we cannot determine the behaviour of the non-positive spectrum for L3. In fact, we can obtain the
following scenarios:

(3.11) npL3q “ 1 and zpL3q “ 0, npL3q “ 0 and zpL3q “ 1 or npL3q “ zpL3q “ 0.

Thus, the spectral analysis becomes inconclusive and we cannot obtain the required spectral stability for
the cnoidal waves in this case.

Case III: γ “ 0. As in the dnoidal case, we have B “

b

κ1

κ2
and consequently, the operator L is a

diagonal operator as in (3.5). Thus, from the comparison theorem we obtain

npLq “ 6 and KerpLq “
“

pφ1, 0, 0, 0q, p0, φ1, 0, 0q, p0, 0, φ, 0q, p0, 0, 0, φq
‰

.
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Case IV: γ “ κ1 “ κ2. Here B P R is a free parameter and we obtain, as in case of dnoidal solutions,
the similar transformation S “ RMR´1, whereM and R are given by (3.6) and (3.7), respectively. Thus,
the operator L can be also expressed by (3.8) where the operators Li, i “ 1, 2, 3, 4 are given by (3.9).

We have to notice that pB2 ` 1qγ “ κ1 ` B2γ, npL1q “ 2 and npL2q “ 1 and L3 being a positive
operator. Summarizing all mentioned results, we get

npLq “ 4 and KerpLq “
“

pφ1, Bφ1, 0, 0q, p´Bφ,φ, 0, 0q, p0, 0, φ,Bφq
‰

.

3.3. Spectral analysis in H2
per,odd. To address the excessive number of negative eigenvalues, we must

impose a suitable restriction on the operator L in p1.18q. First, by the spectral analysis for the cnoidal
solution in [2], we obtain that the first three eigenvalues and the corresponding eigenfunctions of L1 are

λ0 “ p1 ´ 6k2 ´ 2apkqq

ˆ

16Kpkq2

L2

˙

ϕ0pxq “ k2sn2
ˆ

4Kpkq

L
x, k

˙

´
1

3
p1 ` k2 ` apkqq,(3.12)

λ1 “ ´3k2
ˆ

16Kpkq2

L2

˙

ϕ1pxq “ cn

ˆ

4Kpkq

L
x, k

˙

dn

ˆ

4Kpkq

L
x, k

˙

,(3.13)

λ2 “ 0 ϕ2pxq “ Bxcn

ˆ

4Kpkq

L
x, k

˙

,(3.14)

where apkq :“
?
1 ´ k2 ` k4. In addition, the first two eigenvalues and the corresponding eigenfunctions

for the linearized operator L2 are

λ0 “
16Kpkq2pk2 ´ 1q

L2
ϕ0pxq “ dn

ˆ

4Kpkq

L
x, k

˙

,(3.15)

λ1 “ 0 ϕ1pxq “ cn

ˆ

4Kpkq

L
x, k

˙

.(3.16)

Considering ψ as in (2.8), we have that the operators

Li,odd :“ Li : H
2
per,odd Ñ L2

per,odd,

are well defined for all i “ 1, 2, 3, 4. Thus, by applying the transformation f “ gp¨ ´ L{4q in all eigen-
functions given in (3.12)-(3.16), we conclude

(3.17) npL1,oddq “ 1 and npL2,oddq “ 0.

In addition,
KerpL1,oddq “ t0u and KerpL2,oddq “ rψs.

Therefore, since we have almost the same scenario as determined for the case of dnoidal solutions, we
can use the comparison theorem without further problems. We can analyse again the cases in this new
perspective:

Case I: γ P p0,mintκ1, κ2uq. Since in this case, we have L1,odd ă L3,odd ă L2,odd ă L4,odd, we obtain
by the comparison theorem and (3.17) that npL3,oddq “ 1, npL4,oddq “ 0 and KerpL3,oddq “ KerpL4,oddq “

t0u. Therefore,
npLoddq “ 2 and KerpLoddq “ rp0, 0, ψ,Bψqs .

Case II: γ P pmaxtκ1, κ2u,`8q. Here, we have L1,odd ă L2,odd ă L3,odd ă L4,odd. By the comparison
theorem and (3.17), we obtain npL3,oddq “ npL4,oddq “ 0 and KerpL3,oddq “ KerpL4,oddq “ t0u. Thus,

npLoddq “ 1 and KerpLoddq “ rp0, 0, ψ,Bψqs .

Case III: γ “ 0. In this case, we have that B “

b

κ1

κ2
and

Lodd “

¨

˚

˚

˝

L1,odd 0 0 0
0 L1,odd 0 0
0 0 L2,odd 0
0 0 0 L2,odd

˛

‹

‹

‚

.

So, we get
npLoddq “ 2 and KerpLoddq “ rp0, 0, ψ, 0q, p0, 0, 0, ψqs .
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Case IV: γ “ κ1 “ κ2. In this case, B P R is a free parameter and we can use the similar transfor-
mation S “ RMR´1 where M and R given in (3.6) and (3.7), respectively (similar to the case of dnoidal
waves). Thus, since L3,odd is now positive, the operator L in (3.8) restricted to H2

per,odd satisfies

npLoddq “ 1 and KerpLoddq “ rp´Bψ,ψ, 0, 0q, p0, 0, ψ,Bψqs .

4. Spectral stability

In this section, we obtain spectral stability results for the periodic multiple solution Φ “ pφ,Bφ, 0, 0q

considering three different scenarios: when φ has a dnoidal profile, when φ has a cnoidal profile, and
when ψ “ φp¨ ´ L{4q has a snoidal profile and it is restricted to the space of odd functions H1

per,odd. To

do so, we need to obtain the entries of the matrix V in (1.24). In fact, we can obtain a simplified way to
obtain the matrix V using the transformation p1.22q and the fact that Θl P KerpLq. Thus, we have

Vjl “ pL´1JΘj , JΘlqL2
per

“ pL̃´1R´1JΘj , R
´1JΘlqL2

per
.

To determine our spectral stability result, we also consider the spectral analysis of the operator L in
p1.18q as determined in the last section. Before presenting all possible cases of the matrix V , we need
to introduce two important and well-known facts (a remark and a lemma). Both of them are useful to
improve the reader’s understanding.

Remark 4.1. Let A be a self-adjoint operator defined in a Hilbert space H with dense domain DpAq.
Suppose also that its spectrum σpAq is constituted only by an infinite discrete set of eigenvalues and
satisfying σpAq Ă r0,`8q. There exists δ ą 0 such that

pAv, vqH ě δ}v}2H

for all v P DpAq satisfying v P KerpAqK. In fact, since H is a Hilbert space, we have the decomposition
H “ KerpAq ‘ KerpAqK. From Theorem 6.17 in [22, page 178], we have

σpAq “ σ
´

A
ˇ

ˇ

KerpAq

¯

Y σ
´

A
ˇ

ˇ

KerpAqK

¯

.

On the other hand, we have that

σ
´

A
ˇ

ˇ

KerpAqK

¯

“ σpAqzt0u,

that is, the spectrum is bounded from below. The arguments in [22, page 279] imply that A is also bounded
from below. Therefore, there exists δ ą 0 satisfying

pAv, vq ě δ}v}2L2
per

for all v P H2
per X KerpAqK.

Lemma 4.2. Let L ą 0 be fixed. Consider the smooth periodic waves φ with dnoidal and cnoidal
profiles given by Theorem 2.1 and Theorem 2.2, respectively. Then, it follows that d

dω }φ}2L2
per

ą 0.

Proof. Let L ą 0 be fixed and consider φ as the dnoidal profile given by Theorem 2.1. Then, by [5,
Formula 314.02] we get

ż L

0

φpxq2dx “
8Kpkq2

L2pκ1 ` γB2q

ż L

0

dn2
ˆ

2Kpkq

L
x, k

˙

dx

“
8Kpkq

Lpκ1 ` γB2q

ż Kpkq

0

dn2pu, kqdu

“
8

Lpκ1 ` γB2q
EpkqKpkq.

Thus, we obtain

d

dω
}φ}2L2

per
“

d

dω

ˆ

8

Lpκ1 ` γB2q
EpkqKpkq

˙

“
8

Lpκ1 ` γB2q

d

dk
pEpkqKpkqq

ˆ

dω

dk

˙´1

ą 0
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for all k P p0, 1q.
On the other hand, let φ be the cnoidal profile given by Theorem 2.2. By [5, Formula 312.02], we have

ż L

0

φpxq2dx “
32k2Kpkq2

L2pκ1 ` γB2q

ż L

0

cn2
ˆ

4Kpkq

L
x, k

˙

dx

“
32k2Kpkq

Lpκ1 ` γB2q

ż Kpkq

0

cn2pu, kqdu

“
32

Lpκ1 ` γB2q

`

Kpkq
`

Epkq ´ p1 ´ k2qKpkq
˘˘

.

Thus, we obtain that

d

dω
}φ}2L2

per
“

32

Lpκ1 ` γB2q

d

dk

“

Kpkq
`

Epkq ´ p1 ´ k2qKpkq
˘‰

ˆ

dω

dk

˙´1

ą 0

for all k P p0, 1q. q.e.d.

Remark 4.3. The result obtained in Lemma 4.2 can be applied in the case of odd periodic waves ψ
determined in Remark 2.3.

4.1. Spectral stability for the multiple periodic wave solution with dnoidal profile. In what
follows, we consider the dnoidal wave solution φ determined by Theorem 2.1. Since we have separated
the spectral analysis into four cases, we need to consider the same four cases in order to establish the
spectral stability for the multiple solution Φ “ pφ,Bφ, 0, 0q.

Case I: γ P p0,mintκ1, κ2uq. Since zpLq “ 2 with Θ1 “ pφ1, Bφ1, 0, 0q and Θ2 “ p0, 0, φ,Bφq, we
obtain that the matrix V is 2 ˆ 2 and given by

(4.1)

V “

˜

pL̃´1R´1JΘ1, R
´1JΘ1qL2

per
pL̃´1R´1JΘ1, R

´1JΘ2qL2
per

pL̃´1R´1JΘ2, R
´1JΘ1qL2

per
pL̃´1R´1JΘ2, R

´1JΘ2qL2
per

¸

.

“

˜

p2γ ´ κ1 ´ κ2q2pL´1
2 φ1, φ1qL2

per
0

0 pγ ´ κ2q´2pL´1
1 φ,φqL2

per

¸

,

where we are using the similar transformation L “ RL̃R´1 to obtain a more convenient expression for
the entries of the matrix V .

Since φ1 P pKerpL2qqK “ RangepL2q, there exists ξ P DpL2q such that L2ξ “ φ1. Since L2 does not have
negative eigenvalues, we obtain that ξ satisfy the conditions of Remark 4.1, so that pL´1

2 φ1, φ1qL2
per

ą 0.

On the other hand, by Theorem 2.1, we can derive the equation (1.7) with respect to ω to obtain that
L1

`

d
dω

˘

“ ´φ. Thus, by Lemma 4.2 we get

pL´1
1 φ,φqL2

per
“ ´

ˆ

d

dω
φ, φ

˙

L2
per

“ ´
1

2

d

dω
}φ}2L2

per
ă 0.

Thus, we have npV q “ 1. Since npLq “ 2, we conclude that the multiple solution Φ “ pφ,Bφ, 0, 0q is
spectrally unstable.

Case II: γ P pmaxtκ1, κ2u,`8q. The kernel of L in this case has the same elements as in the last
case, so that the matrix V is the same as in (4.1). Since we have npLq “ npV q “ 1, we conclude that the
multiple solution Φ “ pφ,Bφ, 0, 0q is spectrally stable.

Case III: γ “ 0. Since zpLq “ 4 with Θ1 “ pφ1, 0, 0, 0q, Θ2 “ p0, φ1, 0, 0q, Θ3 “ p0, 0, φ, 0q, and
Θ4 “ p0, 0, 0, φq, we obtain that the matrix V is 4 ˆ 4 and given by

V “

¨

˚

˚

˚

˝

pL´1
2 φ1, φ1qL2

per
0 0 0

0 pL´1
2 φ1, φ1qL2

per
0 0

0 0 pL´1
1 φ,φqL2

per
0

0 0 0 pL´1
1 φ,φqL2

per

˛

‹

‹

‹

‚

.
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Doing the same calculations as we have already performed in the first case, we obtain npV q “ 2. Since
npLq “ 2, we have that the difference npLq ´ npV q is zero and the periodic multiple solution is spectrally
stable.

Case IV: γ “ κ1 “ κ2. Now, we have zpLq “ 3 with Θ1 “ pφ1, Bφ1, 0, 0q, Θ2 “ p´Bφ,φ, 0, 0q and
Θ3 “ p0, 0, φ,Bφq. We obtain that the matrix V is 3 ˆ 3 and given by

V “

¨

˚

˝

pL´1
2 φ1, φ1qL2

per
0 0

0 pB2 ` 1q2pL´1
3 φ,φqL2

per
0

0 0 pB2 ` 1q2pL´1
1 φ,φqL2

per

˛

‹

‚

.

We see in this case that L3 is positive, so that pL´1
3 φ,φqL2

per
ą 0. By similar arguments as determined in

the first case, we then obtain npV q “ 1. Since npLq “ 1, we get that the multiple solution Φ “ pφ,Bφ, 0, 0q

is spectrally stable.
Summarizing the above, we have proved Theorem 1.3.

Remark 4.4. The abstract theories in [13] and [14] can be used to establish the orbital stability of
periodic dnoidal waves in certain cases, where we have previously established the spectral stability as de-
termined in this subsection. To this end, we need to have the following set of conditions:

‚ npLq “ 1,
‚ zpLq “ 2,
‚ npV q “ 1 with pL´1

1 φ,φqL2
per

ă 0.

The three requirements mentioned above occur exactly in the second case above (Case II). In the first case
(Case I), the orbital instability in the space H1

per,even constituted by even periodic functions in H1
per can

be established using the instability results in [13] and [14].

4.2. Spectral stability for the multiple periodic wave solution with cnoidal profile. Here, we
consider the periodic multiple wave solution Φ “ pφ,Bφ, 0, 0q where φ has the cnoidal profile and we
determine the corresponding spectral stability. After that, we consider the translation solution ψ “

φp¨ ´ L{4q to study the spectral stability in H1
per,odd for the case where the operator L has too many

negative eigenvalues.
We have to notice that in the case of dnoidal profile, we have used Remark 4.1 to obtain that

pL´1
2 φ1, φ1qL2

per
ą 0. To do so, we need to use the fact that npL2q “ 0. However, when we are considering

the cnoidal profile, we obtain npL2q “ 1 and this property does not allow us to use directly Remark 4.1
to evaluate the positiveness of pL´1

2 φ1, φ1qL2
per

. This difficulty can be avoided by the following lemma:

Lemma 4.5. Let L ą 0 be fixed and consider φ the periodic wave with cnoidal profile given by Theorem
2.2. We have that

pL´1
2 φ1, φ1qL2

per
ą 0.

Proof. By (3.10), we can rewrite L2 “ ´B2
x ` ω ´ ϕ2 where ϕ is the cnoidal wave solution in (2.5).

Since φ in (2.7) is a multiple of ϕ, there exists χ P DpL2q such that L2χ “ ϕ1. To calculate the value of
pL´1

2 φ1, φ1qL2
per

, it suffices to evaluate the quantity pχ, ϕ1qL2
per

. To this end, we use a similar approach as

in [24, Section 3] (see also [3] and [25]).
We can start by noticing that λ “ 0 is a simple eigenvalue with associated eigenfunction ϕ. Thus,

there exists a smooth non-periodic function y satisfying the Hill equation

(4.2) ´y2 ` ωy ` ϕ2y “ 0,

and tφ, yu is the fundamental set of solutions for the equation (4.2). Since ϕ is even, we have that y is
odd and it satisfies the following

$

&

%

´y2 ` ωy ´ ϕ2y “ 0
yp0q “ 0
y1p0q “ 1

ϕp0q
.
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Next, we see that χ P DpL2q satisfies the equation L2χ “ ϕ1, so that

(4.3) ´χ2 ` ωχ´ ϕ2χ “ ϕ1.

Multiplying (4.3) by y, integrating over r0, Ls and using integration by parts, we obtain

χ1p0q “ ´

şL

0
ϕ1pxqypxqdx

ypLq
,

where we are using the fact that y is not periodic, so that ypLq ‰ 0. The fact that χ is an odd function
gives us the following IVP:

(4.4)

$

&

%

´χ2 ` ωχ´ ϕ2χ “ ϕ1

χp0q “ 0

χ1p0q “ ´ 1
ypLq

şL

0
ϕ1pxqypxqdx.

Problem (4.4) is suitable to perform some numeric calculations. In fact, we can deduce that

pχ, ϕ1qL2
per

“
ηpkq

L

where η is a positive constant depending only on k P p 1?
2
, 1q. We obtain pχ, ϕ1qL2

per
ą 0 for all k P p 1?

2
, 1q

(see Figure 4.1), so that

pL´1
2 φ1, φ1qL2

per
“

1

pκ1 ` γB2q
pL´1

2 ϕ1, ϕ1qL2
per

“ pχ, ϕ1qL2
per

ą 0.

Figure 4.1. Behaviour of the quantity ηpkq with k P p 1?
2
, 1q.

q.e.d.

Results above allow us to determine the spectral stability of the multiple periodic wave Φ “ pφ,Bφ, 0, 0q

with cnoidal profile. The analysis is quite similar as determined in the last subsection, and so we only
give the main steps.

Case I: γ P p0,mintκ1, κ2uq. Since zpLq “ 2, we have that V is a 2 ˆ 2 matrix and given by

V “

˜

p2γ ´ κ1 ´ κ2q2pL´1
2 φ1, φ1qL2

per
0

0 pγ ´ κ2q´2pL´1
1 φ,φqL2

per

¸

.

Using the results in Lemmas 4.2 and 4.5, we obtain respectively that pL´1
1 φ,φq “ ´ d

dω }φ}2L2
per

ă 0 and

pL´1
2 φ1, φ1qL2

per
ą 0, so that npV q “ 1. On the other hand, since we have npLq “ 5, we see that the
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difference npLq ´ npV q “ 4 is an even number. Therefore, we can not conclude that the multiple solution
Φ “ pφ,Bφ, 0, 0q is spectrally stable or not.

Case II: γ P pmaxtκ1, κ2u,`8q. In this specific case, it is possible to see that we can not decide the
exact quantity of negative eigenvalues (see (3.11)) in order to apply the results in [20] and [21]. Therefore,
we can not conclude a precise result of spectral stability for the multiple solution Φ “ pφ,Bφ, 0, 0q.

Case III: γ “ 0. Since zpLq “ 4, we can proceed as in the third case of the last subsection to obtain

V “

¨

˚

˚

˚

˝

pL´1
2 φ1, φ1qL2

per
0 0 0

0 pL´1
2 φ1, φ1qL2

per
0 0

0 0 pL´1
1 φ,φqL2

per
0

0 0 0 pL´1
1 φ,φqL2

per

˛

‹

‹

‹

‚

.

Since by Lemmas 4.2 and 4.5 we have npV q “ 2, the fact that npLq “ 6 gives us that the spectral stability
result is also inconclusive.

Case IV: γ “ κ1 “ κ2. Since in this case zpLq “ 3, we can proceed as in the fourth case of the last
subsection with cnoidal profile instead of dnoidal profile to obtain V as

V “

¨

˚

˝

pL´1
2 φ1, φ1qL2

per
0 0

0 pB2 ` 1q2pL´1
3 φ,φqL2

per
0

0 0 pB2 ` 1q2pL´1
1 φ,φqL2

per

˛

‹

‚

.

Using Remark 4.1 and Lemmas 4.2 and 4.5, we have npV q “ 1 and since npLq “ 4, we obtain that
the difference npLq ´ npV q is an odd number. Consequently, the multiple solution Φ “ pφ,Bφ, 0, 0q is
spectrally unstable.

Summarizing the results above, we can conclude the statement of Theorem 1.4.

4.2.1. Spectral stability of cnoidal waves in the subspace of odd functions. Here we are going
to answer some unclear points left behind concerning the spectral stability of periodic multiple solutions
Φ with cnoidal profile. The arguments will be the same, but we need to pay attention with the spectral
analysis established in the space L2

per,odd.

From now on, let us consider the periodic solution ψ P H1
per,odd given by (2.8).

Case I: γ P p0,mintκ1, κ2uq. Since in this case zpLoddq “ 1, we have that V is given in a simple way
as

(4.5) V “ pL´1
1 ψ,ψqL2

per
.

By Lemma 4.2 we have npV q “ 1 and since npLoddq “ 2, we obtain that the difference npLoddq´npV q “

1 is an odd number. Therefore, we conclude that the multiple solution Ψ “ pψ,Bψ, 0, 0q is spectrally
unstable.

Case II: γ P pmaxtκ1, κ2u,`8q. In this case, V is an one-dimensional matrix given by same expression
in (4.5). Since we also have npV q “ 1 and npLoddq “ 1, we deduce that the multiple solution Ψ “

pψ,Bψ, 0, 0q is spectrally stable.
Case III: γ “ 0. We have zpLoddq “ 2 and the matrix V is now given by

V “

˜

pL´1
1 ψ,ψqL2

per
0

0 pL´1
1 ψ,ψqL2

per

¸

.

By Lemma 4.2 and since pL´1
1 ψ,ψqL2

per
“ ´ 1

2
d
dω }ψ}2L2

per
“ ´ 1

2
d
dω ||φ||2L2

per
ă 0, we conclude npV q “ 2. On

the other hand, the fact npLoddq “ 2 gives us that the difference npLoddq ´ npV q “ 0 and the multiple
solution Ψ “ pψ,Bψ, 0, 0q is then spectrally stable.

Case IV: γ “ κ1 “ κ2. Again, we have zpLoddq “ 2 and V is given by

V “

˜

pB2 ` 1q2pL´1
3 ψ,ψqL2

per
0

0 pB2 ` 1q2pL´1
1 ψ,ψqL2

per

¸

.
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By Remark 4.1 and since L3 is positive, it follows that pL´1
3 ψ,ψqL2

per
ą 0. On the other hand, by Lemma

4.2 we obtain pL´1
1 ψ,ψqL2

per
“ ´ 1

2
d
dω ||ψ||2L2

per
ă 0 and so, npV q “ 1. Since npLoddq “ 1, we deduce that

the multiple solution Ψ “ pψ,Bψ, 0, 0q is also spectrally stable.
Summarizing the above, we conclude the result in Theorem 1.5.

Remark 4.6. As we have detailed in Remark 4.4, the abstract theories in [13] and [14] can be used
to establish the orbital stability of periodic cnoidal waves in H1

per,odd in the second case (Case II).

5. Spectral stability for the semi-trivial periodic solution with cnoidal profile

An important aspect concerning the solution pu, vq of the NLS system (1.1) is the existence of semi-
trivial solutions

(5.1) pupx, tq, vpx, tqq “ peiωtφpxq, 0q

of (1.1). As we have already mentioned in the introduction, Hakkaev in [16] studied the spectral stability
for the semi-trivial wave solution (5.1) where φ has a dnoidal profile. Our intention is to prove the
spectral stability when φ has a cnoidal profile.

We follow as in Section 2. First, we substitute (5.1) into (1.1) to obtain the ODE

(5.2) ´φ2 ` ωφ´ κ1φ
3 “ 0.

A similar result as determined in Theorem 2.2 is now presented.

Theorem 5.1. Let L ą 0 be fixed. The equation (5.2) has an L-periodic solution with cnoidal profile
of the form

φωpxq “

?
2ωk

p2k2 ´ 1q

1
?
κ1

cn

ˆ

4Kpkq

L
x, k

˙

,

where ω ą 0 is given by (1.11) depends smoothly on k P

´

1?
2
, 1

¯

and L ą 0. In addition, the family

ω P p0,`8q ÞÝÑ φ “ φω P H2
perpr0, Lsq

of L-periodic solutions of (5.2) depends smoothly on ω P p0,`8q.

The spectral problem to be studied in this case is JLu “ λu, where J is given by (1.17) and L is
defined as

(5.3) L “

¨

˚

˚

˝

L1 0 0 0
0 L3 0 0
0 0 L2 0
0 0 0 L4

˛

‹

‹

‚

.

Since L is a diagonal operator, we only need to analyze the spectral properties of the operators Li,
i “ 1, 2, 3, 4, where

L1 “ ´B2
x ` ω ´ 3κ1φ

2,

L2 “ ´B2
x ` ω ´ κ1φ

2,

L3 “ ´B2
x ` ω ´ γφ2,

L4 “ ´B2
x ` ω ` γφ2.

As determined in Subsection 3.2, we have that

(5.4) npL1q “ 2, npL2q “ 1 and npL4q “ 0.

In addition,

(5.5) KerpL1q “ rφ1s, KerpL2q “ rφs and KerpL4q “ t0u.

Thus, the spectral analysis of the operator L changes according to the spectral analysis of the operator
L3. Here, we consider the same cases for γ as determined in [16].
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Case I: γ P p0, κ1q. Here, we have that

L1 ă L2 ă L3 ă L4.

Using the comparison theorem, we can not obtain the exact values of npL3q and zpL3q since we obtain
three different different scenarios:

npL3q “ 1 and zpL3q “ 0, npL3q “ 0 and zpL3q “ 1 or npL3q “ zpL3q “ 0.

Thus, the spectral analysis becomes inconclusive.
Case II: γ “ k1. In this case, it follows that L2 “ L3 and we obtain

npLq “ 4 and KerpLq “
“

pφ1, 0, 0, 0q, p0, φ, 0, 0q, p0, 0, φ, 0q
‰

.

To determine the spectral stability result, we need to obtain npV q. Since zpLq “ 3, one has

V “

¨

˚

˝

pL´1
2 φ1, φ1qL2

per
0 0

0 pL´1
1 φ,φqL2

per
0

0 0 pL´1
4 φ,φqL2

per

˛

‹

‚

.

Since L4 is a positive operator, we obtain by Remark 4.1 that pL´1
4 φ,φqL2

per
ą 0. On the other hand,

using Lemma 4.5, we also obtain pL´1
2 φ,φqL2

per
ą 0 and by Lemma 4.2, we deduce pL´1

1 φ,φq ă 0.

Gathering all informations, we conclude that npV q “ 1 and the difference npLq ´ npV q “ 4 ´ 1 “ 3 is an
odd number. The periodic semi-trivial solution Φ “ pφ, 0, 0, 0q is then spectrally unstable concluding the
desired result in Theorem 1.6.

Case III: γ P pκ1, 3κ1q. In this case, we obtain the following inequality

L1 ă L3 ă L2 ă L4.

From (5.4), (5.5) and using the comparison theorem, we have that npL3q “ 2 and KerpL3q “ t0u. Thus,

npLq “ 5 and KerpLq “
“

pφ1, 0, 0, 0q, p0, 0, φ, 0q
‰

.

To determine the spectral stability, we need to consider the matrix V given by

V “

˜

pL´1
2 φ1, φ1qL2

per
0

0 pL´1
1 φ,φqL2

per

¸

.

Applying again Lemmas 4.2 and 4.5, we have that npV q “ 1. Since the difference npLq ´ npV q “ 4 is
even, we can not conclude the spectral stability.

Case IV: γ “ 3κ1. Here, we have L1 “ L3 and

npLq “ 5 and KerpLq “
“

pφ1, 0, 0, 0q, p0, φ1, 0, 0q, p0, 0, φ, 0q
‰

.

Since zpLq “ 3, the matrix V becomes in this case

V “

¨

˚

˝

pL´1
2 φ1, φ1qL2

per
0 0

0 pL´1
1 φ,φqL2

per
0

0 0 pL´1
4 φ1, φ1qL2

per

˛

‹

‚

.

Again, we can apply Remark 4.1, Lemma 4.2 and Lemma 4.5 to obtain npV q “ 1. Since the difference
npLq ´ npV q “ 4 is even, we can not decide about the spectral stability.

5.1. Spectral stability of cnoidal waves in the subspace of odd functions. We consider the
spectral stability for the semi-trivial wave solution Ψ “ pψ, 0, 0, 0q where ψ in defined by p2.3q. The reason
for that is to fill the gaps left by our analysis performed in the case of the cnoidal profile Φ “ pφ, 0, 0, 0q.

Since ψ P H1
per,odd, we can consider the linearized operator L, i “ 1, 2, 3, 4 restricted to the space

L2
per,odd as

Lodd : H2
per,odd Ă L2

per,odd Ñ L2
per,odd

where L is given in (5.3) and also defined in L2
per,odd. Thus, as determined in Subsection 3.3, we have

that

(5.6) npL1,oddq “ 1, npL2,oddq “ 0 and npL4,oddq “ 0.
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In addition, we get

(5.7) KerpL2,oddq “ rψs and KerpL1,oddq “ KerpL4,oddq “ t0u.

According to (5.6), we need to observe that the number of eigenvalues of the operator Lodd is smaller
when compared to the complete operator L. This fact is useful to use again the comparison theorem. We
shall describe better our intentions in the four cases ahead:

Case I: γ P p0, κ1q. In this case, we have the inequality L1,odd ă L2,odd ă L3,odd ă L4,odd. Using the
comparison theorem and the informations in (5.6) and (5.7), we have that npL3,oddq “ 0 and KerpL3,oddq “

t0u. Thus,

npLoddq “ 1 and KerpLoddq “ rp0, 0, ψ, 0qs .

To evaluate the spectral stability, we need to see that zpLoddq “ 1, so that the matrix V is given by

V “ pL´1
1 ψ,ψqL2

per
.

By Lemma 4.2, we have that npV q “ 1 and the difference npLoddq ´ npV q “ 0. Thus, we conclude that
the semi-trivial wave solution Ψ “ pψ, 0, 0, 0q is spectrally stable.

Case II: γ “ κ1. Here, we have L2,odd “ L3,odd. Using (5.6) and (5.7), we get

npLoddq “ 1 and KerpLoddq “ rp0, ψ, 0, 0q, p0, 0, ψ, 0qs .

Since zpLoddq “ 2, the matrix V is given by

V “

˜

pL´1
1 ψ,ψqL2

per
0

0 pL´1
4 ψ,ψqL2

per

¸

.

Since L4,odd is positive, we obtain by Remark 4.1 that pL´1
4 ψ,ψqL2

per
ą 0. In addition, by Lemma 4.2,

we see pL´1
1 ψ,ψqL2

per
ă 0, so that npV q “ 1. Thus, the semi-trivial periodic wave Ψ “ pψ, 0, 0, 0q is

spectrally stable.
Case III: γ P pκ1, 3κ1q. Here, we have the inequality L1,odd ă L3,odd ă L2,odd ă L4,odd. Then, by

the informations in (5.6), (5.7) and the comparison theorem, we obtain npL3,oddq “ 1, KerpL3,oddq “ t0u,
npLoddq “ 2 and KerpLoddq “ rp0, 0, ψ, 0qs. Again, since zpLoddq “ 1, the matrix V is given by V “

pL´1
1 ψ,ψqL2

per
. By Lemma 4.2, we have npV q “ 1, so that the semi-trivial solution Ψ “ pψ, 0, 0, 0q is

spectrally unstable.
Case IV: γ “ 3κ1. Here, we have L1,odd “ L3,odd and from (5.6) and (5.7), we have that npLoddq “ 2

and KerpLoddq “ rp0, 0, ψ, 0qs . As we have determined in the last case, we also have npV q “ 1 and the
semi-trivial solution Ψ “ pψ, 0, 0, 0q is spectrally unstable.

Summarizing the arguments above, we have proved Theorem 1.7.

Remark 5.2. As we have mentioned in Remarks 4.4 and 4.6, the abstract theory in [13] and [14] can
be used to establish the orbital stability of periodic cnoidal waves in H1

per,odd in the first case (Case I).

The orbital instability is deduced from the same work in the third and fourth cases (Cases III and IV).
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[11] Gallay, T., Hărăguş, M., Stability of small periodic waves for the nonlinear Schrödinger equation, J. Diff. Equat. 234

(2007), 544–581.
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