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Abstract
Lowering the precision of neural networks from
the prevalent 32-bit precision has long been con-
sidered harmful to performance, despite the gain
in space and time. Many works propose various
techniques to implement half-precision neural net-
works, but none study pure 16-bit settings. This
paper investigates the unexpected performance
gain of pure 16-bit neural networks over the 32-
bit networks in classification tasks. We present
extensive experimental results that favorably com-
pare various 16-bit neural networks’ performance
to those of the 32-bit models. In addition, a theo-
retical analysis of the efficiency of 16-bit models
is provided, which is coupled with empirical evi-
dence to back it up. Finally, we discuss situations
in which low-precision training is indeed detri-
mental.

1. Introduction
Today’s ubiquitous need for neural network techniques —
from autonomous vehicle driving, healthcare, and finance to
general artificial intelligence and engineering — has become
a faith of fact for many. Significant computing power can be
necessary for training neural networks on real-world data,
which has stimulated the semiconductor industry to pursue
cutting-edge chips and GPU solutions for reduced-precision
floating-point arithmetic.

Reduced precision provides remarkable performance gain
in speed, memory usage, and energy consumption over
traditional CPU-based single and double-precision comput-
ing. Many GPUs are now powered with reduced-precision
floating-point. In particular, widely accessible NVIDIA
GPUs support the IEEE-standardized half-precision, namely,
the 16-bit floating-point format.
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However, reduced precision alone is also known to cause
accuracy loss. In the IEEE 16-bit format, positive numbers
except subnormal ones lie between 5.96E-8 and 6.5E04, and
thus a straightforward rounding or truncation of single or
double precision data into half precision can cause over-
flow, underflow, or subnormal numbers, all of which affects
numerical accuracy.

Consider the sigmoid function, sigmoid(x) = 1/(1+ e−x).
It overflows if x is small and underflows if x is large, where
both overflow and underflow occur in e−x, and the er-
ror will then be propagated to the function’s output. As
a quick experiment, one can set a vector x to be all the
16-bit floating-point numbers (there are 63487 in total)
excluding ±∞ and NaN, and y be all the upcast 32bit
float (y= np.float32(x)), and element-wise compare
sigmoid(x) and sigmoid(y). They have a relative error of
4.85E-02 and an absolute error of 7.09E-05 on average.

Errors of such scale can be consequential for general scien-
tific computing, e.g., causing the failure of the Patriot missile
system (Skeel, 1992). The question that would naturally
arise for an ML practitioner would be: Are floating-point
errors of such scale too significant for a reduced precision
model in machine learning to make the right prediction?

In the machine learning community, many believe that ”deep
learning models ... are ”very tolerant of reduced-precision
computations” (Dean, 2020). ML researchers have actively
investigated a wide range of techniques that lower the preci-
sion of the floating point numbers used in neural networks
but still maintain accuracy. For example, Micikevicius et al.
(2018) propose a mixed precision technique, where weight,
activation, and gradients are stored in 16 bits, but weight
updates are carried out on 32 bits. Kalamkar et al. (2019)
uses another mixed precision technique with 32-bit floating-
point and BFloat, Google Brain’s half-precision format, in
which a tensor modification method is used to zero out the
lower 16 bits of the 32-bit data flow.

All these algorithms use mixed precision, where two or
more precision are chosen from a small number of available
precisions, typically half (16-bit) and single (32-bit). To the
best of our knowledge, the pure 16-bit neural network is
rarely used as a standalone solution in the machine learn-
ing community. This work targets the 16-bit pure neural
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network and studies whether we can use it out of the box,
without parameter tuning or techniques commonly used in
mixed precision algorithms like loss scaling. Our finding is
positive. That is, pure 16-bit neural networks, without any
floating-point 32 components, despite being imprecise by
nature, can be precise enough to handle a major application
of machine learning – the classification problem.

Our work first formalizes the intuitive concept of error tol-
erance and proposes a lemma that theoretically guarantees
16-bit ”locally” achieves the same classification result as
32-bit under certain conditions. Combined with our prelimi-
nary observations, we conjecture that the 16-bit and 32-bit
have close results in handling classification problems. We
then validate our conjecture through extensive experiments
on Deep neural network (DNN) and Constitutional Neural
Network (CNN) problems. Our contributions follow:

• We aim to debunk the myth that plain 16-bit models
do not work well. We demonstrate that training neural
network models in pure 16 bits with no additional
measures to ”compensate” results in competitive, if not
superior, accuracy.

• We offer theoretical insights on why half precision
models work well, as well as empirical evidence that
supports our analysis.

• We perform extensive experiments comparing the
performance of various pure 16-bit neural networks
against that of 32-bit and mixed precision networks
and find that the 16-bit neural networks can perform
as well as their 32-bit counterparts. We also identify
factors that could negatively influence the success of
16-bit models.

2. Related Work
Several techniques have been proposed to reduce the pre-
cision of machine learning models while maintaining their
accuracy to some degree. The approach that best aligns with
our work is that of lowering the precision of the floating
point numbers used in those models, but other approaches
involve algorithm modification, fixed point formats, and
hardware acceleration.
Algorithm modification. These approaches aim to modify
certain components of the main algorithm to allow low-
precision work. The work by (De Sa et al., 2017) offers
a way to address the issues associated with low precision
in gradient descent by assigning different precisions to the
weights and the gradients. Such a scheme is assisted by
special hardware implementation to speed up this mixed-
precision process. A similar approach is taken by (Bjorck
et al., 2021) in reinforcement learning. This work proposes
various mechanisms to perform reinforcement learning on

low precision reliably. For example, adopting numerical
methods to improve the Adam optimization algorithm so
that underflow can be prevented. Many of such techniques
proposed are somewhat ad-hoc to the target problem but
might also be useful in a more general setting.
Fixed point formats. A fixed point format is another num-
ber format often used to represent real numbers, although
not standard. Several other works have adopted fixed point
formats to allow low precision due to the intuitive repre-
sentation and high extensibility to other configurations. To
verify the issues with low precision in deep learning, the au-
thors of (Gupta et al., 2015) investigate the behavior of deep
neural networks when the precision is lowered. In this work,
the empirical results show that reducing the precision of the
real numbers comprising the weights of the network shows
a graceful degradation of accuracy. (Chen et al., 2017)
performs neural network training in fixed point numbers
by quantizing a floating point number into a low-precision
fixed point number during training. The idea of quantizing
floating point is also used in (Lin et al., 2016), where the
authors approach the conversion as an optimization problem.
The objective of the optimization is to reduce the network’s
size by adopting different bit-width for each layer. On a
more system-based approach, (Kumar et al., 2020) proposes
compiler support for converting floating point numbers to
low-precision fixed point numbers. (Gopinath et al., 2019)
also takes compiler- and language-based support for achiev-
ing low-precision numbers.
Although not entirely the same as real number fixed point,
integer quantization can also be considered a special fixed
point format and has become a viable choice in low-
precision neural network design. In (Wu et al., 2018), float-
ing point weights are quantized to convert them into signed
integer representations. The authors discover that adopting
an integral quantization technique results in a regularization-
like behavior, leading to increased accuracy. Similar to this
approach, work by (Das et al., 2018) also proposes to use
integer operations to achieve high accuracy. Such integer
operations effectively convert the floating point numbers
into what is known as dynamic fixed point (DFP) format.
The work in (Jacob et al., 2017) also aims to quantize the
weights to integers. However, the weights remain integers
only during the forward pass and become floating point
numbers for back-propagation to account for minute up-
dates. Another work (Courbariaux et al., 2015) takes an
extreme quantization approach to binarize the weights to -1
and 1. The weights remain binary during the forward and
backward pass but become floating points during the weight
update phase. (Xiao et al., 2022) adopts a post-training
quantization approach to reduce the memory footprint of
large-scale language models.
(Köster et al., 2017) proposes an adaptive numerical format
that retains the advantages of floating and fixed point num-
bers. This is achieved by having a shared exponent that gets
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updated during training.
Mixed precision. On the other hand, mixed precision ap-
proaches maintain standard floating point numbers in two
different precision. The first practically successful reduced-
precision floating point mechanism was proposed by (Mi-
cikevicius et al., 2018). In this work, the authors devise a
scheme to perform mixed precision training by maintain-
ing a set of master full-precision floating point weights that
serves as the ‘original copy’ of the half-precision counter-
parts. While this technique does result in reduced running
time, the mixed-precision nature of it limits the performance
gain achieved. (Wang et al., 2019) propose a 4-bit float-
ing point architecture mixed with a small amount of 8-bit
precision. In addition to the format, the authors devise a
two-phase rounding procedure to counter the low accuracy
induced by the low-precision format.
Hardware support. Lastly, we would like to point out that
many of these works either implicitly or explicitly require
hardware support due to the individual floating/fixed point
formats. Most approaches typically use FPGAs and FPUs to
implement these formats, but other works such as (Sharma
et al., 2017) propose novel architectures tailored to address-
ing the bit formats of the floating point numbers. Some
previously mentioned works, such as (Wang et al., 2019),
also hint at the possibility of leveraging hardware assistance.

Unlike these previous works, our work focuses explicitly
on the IEEE floating point format, which is the de-facto
standard for general computing machinery. More precisely,
we investigate the pros and cons of using a pure 16-bit IEEE
floating point format in training neural networks without
external support.

3. Background
General Notation The real numbers and integers are
denoted by R and Z, respectively. Given a vector x =
(x0, ..., xn−1) ∈ Rn, its infinity norm or maximum norm:,
denoted by |x|∞ , is the maximum element in the vector,
namely |x|∞

def
= maxi |xi|.

3.1. Floating-Point Representation

We write F16 to denote the set of 16-bit floating-point num-
bers excluding ±∞ and NaN (Not-a-Number). Following
IEEE-754 standard (IEEE Computer Society, 2008), each
x ∈ F16 can be written as

x = (−1)s × g0.g1...g10 (2) × 2e (1)

where s ∈ {0, 1}, gi ∈ {0, 1} (0 ≤ i ≤ 10), and e ∈ Z.
We call s, g0.g1....g10 and e the sign, the significand,
and the exponent, respectively. They satisfy g0 ̸= 0 and
−14 ≤ e ≤ 15. The case where g0 = 0 and e = −14 is
called a subnormal number.

We write F32 for the set of 32-bit (single-precision) floating-
point numbers excluding ±∞ and NaN. The following prop-
erty holds:

F16 ⊂ F32 ⊂ R (2)

Namely, a 16-bit or 32-bit floating-point number is a real,
and a 16-bit can be exactly represented as a 32-bit (by
padding with zeros). Tab. 3.1 lists the range and the preci-
sion of 16-bit and 32-bit floating-point numbers.

Table 1. Some characteristics of the 16-bit and 32-bit floating-point
formats.

Type Size Range Machine-epsilon

Half 16 bits 6.55E±4 4.88E-04

Single 32 bits 3.4E±38 5.96E-08

3.2. Floating-point Errors

Rounding is necessary when representing real numbers that
cannot be written as Eq. 1. Rounding error of a real x at pre-
cision p refers to |x− ◦p(x)| where the rounding operation,
◦p : R → Fp, defines the nearest floating-point number
of x. Namely, ◦p(x)

def
= argminy∈Fp

|x − y|. 1 Round-
ing error is usually small, on the order of machine epsilon
(Tab. 3.1), but it can be propagated and become more sig-
nificant. For example, the floating-point code sin(0.1)
goes through three approximations. First, 0.1 is rounded
to the floating-point ◦p(0.1) for some precision p. Then,
the rounding error is propagated by the floating-point code
sin. Lastly, the calculation output is rounded again if an
exact representation is not possible.

Floating-point errors are usually measured in absolute error
or relative error. This paper focuses on classification prob-
lems where output numbers are probabilities between 0 and
1. Thus, we use the absolute error |x − y| for quantifying
the difference between two floating point numbers x and y.

4. Theory
Suppose M16 and M32 are 16-bit and 32-bit deep learning
models trained by the same neural network architecture and
hyper-parameters. By abuse of notation, we consider M16

and M32 as classifiers or functions that return the probability
vector from the last layer given an input x (e.g., an image).

Let x be an arbitrarily chosen input. Suppose M32(x) re-
turns (p0, · · · , pN−1), and M16(x) returns (p′0, · · · , p′N−1).
Clearly, the classification result of an input x made by a clas-

1For simplicity, this definition of the rounding operation ignores
the case where a tie needs to be broken.
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Table 2. The columns of ”Floating-point errors” and ”Error tolerance” refer to statistics of δ(M32,M16, x) and Γ(M32, x) respectively,
where x ranges over the images of the MNIST dataset.

Floating-point error Error tolerance

Epochs Min Max Mean Variance Min Max Mean Variance

10 0.00E+00 1.68E-01 2.76E-03 5.62E-05 9.29E-05 1.00E+00 7.66E-01 7.58E-02

20 7.84E-15 2.07E-01 2.88E-03 8.53E-05 3.65E-05 1.00E+00 8.24E-01 6.31E-02

50 0.00E+00 3.82E-01 3.69E-03 1.97E-04 2.74E-06 1.00E+00 8.79E-01 4.72E-02

100 0.00E+00 5.64E-01 4.12E-03 3.27E-04 3.24E-04 1.00E+00 9.16E-01 3.42E-02

200 0.00E+00 6.75E-01 4.23E-03 4.76E-04 1.93E-04 1.00E+00 9.47E-01 2.19E-02

500 0.00E+00 9.35E-01 3.76E-03 6.18E-04 1.44E-03 1.00E+00 9.79E-01 7.72E-03

1000 0.00E+00 9.95E-01 3.14E-03 5.77E-04 1.91E-03 1.00E+00 9.91E-01 2.98E-03

sifier M is given as

pred(M,x)
def
= argmaxi{pi|pi ∈ M(x)}. (3)

Due to the floating-point error, the classification results
of M32 and M16 on x can be different. To quantify this
difference, we define the floating point error as follows.

Definition 4.1. Given the 16-bit classifer M16, the 32-bit
M32, and an input x, the floating point error between the
classifiers is given as

δ(M32,M16, x)
def
= |M32(x)−M16(x)|∞ (4)

The degree to which this difference affects the outcome
is an important question we investigate in this work. In
fact, we can show a sufficient condition (denoted by C) that
guarantees the absence of difference between two classifiers.

(C.) If the difference between the largest of pi and the sec-
ond largest is greater than twice the floating point error,
then the two classifiers M16 and M32 have the same
classification result on x.

Illustration for condition (C): suppose M32(x) =
(0.8, 0.1, 0.05, 0.05) for a classification problem of four
labels. Let the largest error between this probability vector
and M16(x) be δ. Then in the worst case, 0.8 can drop to
0.8 − δ for the 16-bit, and the second largest probability
becomes 0.1 + δ. If 0.8 − δ > 0.1 + δ, then M16 and
M32 must have the same classification result on x, e.g.,
M16(x) = (0.7, 0.15, 0.1, 0.05).

Below, we formalize condition (C) following introduction
of the notion of error tolerance.

Definition 4.2. The error tolerance of a classifier M with
respect to an input x is defined as the gap between the largest
probability and the second-largest one:

Γ(M,x)
def
= p0 − p1, (5)

where p0 = |M(x))|∞, and p1 = |M(x)\p0|∞.

Here, M32(x)\p0 refers to a vector of elements in M32(x)
but with p0 removed. The error tolerance can be thought of
as quantifying the stability of the prediction. We have the
following lemma corresponding to condition C.
Lemma 4.3. Consider a classification problem charac-
terized by a pair (X,Y ) where X is the space of input
data, and Y = {0, ..N − 1} is the labels of classifica-
tion. Suppose a learning algorithm trains a 32-bit model
M32 : X → FN

32 and a 16-bit model M16 : X → FN
16 on a

dataset D ⊆ X × Y .

We have: If

Γ(M32, x) ≥ 2δ(M32,M16, x) (6)

then pred(M32, x) = pred(M16, x).

Proof. Let M32(x) be (p0, ....pN−1). Without loss of gen-
erality we assume p0 is the largest one in {pi} (0 ≤ i ≤
N − 1). We denote δ(M32,M16, x) by δ hereafter. Follow-
ing Eq. 6, we have

∀i ∈ {1, ..., N − 1}, p0 − pi ≥ 2δ. (7)

Let M16(x) be (p′0, ....p
′
N−1). Then for each i ∈

{1, ..., N − 1}, we have

p′0 ≥ p0 − δ By Eq. 4 and Def. of p0, p′0
≥ pi + δ By Eq. 5 and Eq. 7
≥ p′i By Eq. 4

Thus p′0 remains the largest in the elements of M16(x).
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Table 3. Comparing accuracy and loss results between 32-bit and 16-bit neural networks on the MNIST dataset.

Train accuracy Test accuracy Train loss Test loss

Epochs 32-bit 16-bit 32-bit 16-bit 32-bit 16-bit 32-bit 16-bit

10 90.3% 90.0% 90.8% 91.0% 3.49E-01 3.69E-01 3.23E-01 3.39E-01

20 92.2% 92.3% 92.8% 92.8% 2.71E-01 2.94E-01 2.57E-01 2.74E-01

50 94.9% 95.3% 94.9% 94.7% 1.81E-01 2.10E-01 1.80E-01 2.04E-01

100 96.7% 96.4% 96.3% 95.8% 1.16E-01 1.49E-01 1.28E-01 1.52E-01

200 98.4% 97.3% 97.4% 97.3% 6.05E-02 9.32E-02 8.97E-02 1.10E-01

500 99.8% 99.1% 97.7% 98.1% 1.38E-02 4.00E-02 7.87E-02 8.54E-02

1000 100.0% 99.8% 97.8% 98.1% 2.97E-03 2.04E-02 9.02E-02 8.29E-02

Below we illustrate Lemma 4.3 through a simple neural
network trained on MNIST. Our 32-bit implementation has
three Dense layers followed by a softmax layer at the end.
Our 16-bit implementation uses the same architecture, ex-
cept all floating-point operations are performed on 16-bit.
Table 4 shows our results of error tolerance Γ and floating-
point error δ. Observe that the mean floating-point error is
of the magnitude of 1E-3 with a variance of 1E-5 or 1E-4;
the error tolerance is 1E-1 with a variance of 1E-2. Thus,
one can argue that Eq. 6, namely, Γ > 2δ, holds for most
data in MNIST. The table also shows that floating-point
errors can be larger than the tolerance in some corner cases.
Thus, we expect our 16-bit and 32-bit implementations to
have close but different accuracy results.
Results at training and testing are presented. Table 4 shows
the accuracy and loss results in MNIST comparing 16-bit
and 32-bit implementations. We can see consistently that
the 16-bit results have accuracy close to those of the 32-bit
models, sometimes even better. This result motivates us
to study whether the 16-bit model is similar to the 32-bit
model for more complex neural networks.

In theory, if 80% of data in a dataset satisfy Eq. 6, Lemma
4.3 tells us that the 32-bit and 16-bit models will have at least
80% of classification results being the same. The main chal-
lenge here is that we cannot determine if Eq. 6 always holds
or the percentage of data that satisfies it. We believe that
for complex neural networks, most data meet Eq. 6. This
is because the loss function for the classification problem
is a cross-entropy in the form of −Σ log(pi), which should
guide pi toward 1 during training and in turn, causes a large
error tolerance Γ compared to relatively small δ. In fact,
Table 4 shows that the floating point errors (δ’s) are nearly
two orders of magnitude smaller than the Γ’s. Although
the gap might close over the epochs, the difference remains
sufficiently large to satisfy the condition of the lemma.
With this theoretical development and observations, we pro-

pose the following conjecture.

The accuracy of a 16-bit neural network for classi-
fication problems, in the absence of significant er-
rors involving floating-point overflow/underflow,
will be close to that of a 32-bit neural network.

We anticipate a situation where floating-point errors can
become significant due to overflow or underflow since 16-
bit floating-point is known to have a smaller range (Table
3.1). The conjecture may be surprising, so we devote our
next section to in-depth validation.

5. Experiments
We aim to compare the performance of 16-bit operations to
32-bit operations in deep neural network (DNN)2 and convo-
lutional neural network (CNN) models. we experiment over
three CNN models, including AlexNet (Krizhevsky et al.,
2012), VGG16 (Simonyan & Zisserman, 2015), and ResNet-
34 (He et al., 2016). We will see how the different precision
settings affect the computational time and accuracy of the
models. Unlike case studies in the previous section, we
use 100 epochs for all experiments and gradually increase
the batch size from 64 to 384 to see how it affects 16-bit
training. All random seeds used in this study’s experiments
are fixed to facilitate the comparison. The experiments were
conducted on NVIDIA’s RTX3080 Laptop GPU.

Table 4 gives the result most representative of our work. A
more detailed description and analysis of these results will
follow in the subsequent subsections.

2While DNNs subsume CNNs, we use the term DNN to refer
to fully-connected, non-convolutional neural networks.
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Figure 1. Top-1 accuracy (top row) and computational time (bottom row) on MNIST Classification using DNN

Figure 2. Top-1 Accuracy, Top-2 Accuracy, and Computational Time for Cifar-10 Classification
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Table 4. Summary of the time and accuracy performances of the
three CNNs.

Model Results FP32 FP16

AlexNet Time 381s 270s

Accuracy 68.9% 69.5%

VGG16 Time 1445s 812s

Accuracy 82.9% 84.3%

ResNet-34 Time 1914s 1058s

Accuracy 76.6% 76.1%

5.1. DNN Experiments

In the DNN experiments, we train a DNN with three hidden
layers to perform the MNIST classification task and com-
pare the performances between those of the 16-bit model
and the 32-bit model. Each of the three layers in the DNN
has 4096 neurons, whose outputs are fed to the next layer
after passing through ReLU activation. Other works, such
as (Micikevicius et al., 2018), use a 32-bit softmax layer
regardless of the overall precision settings to prevent poten-
tial numerical instability, but we leave stick with a 16-bit
softmax to see how a ”pure” 16-bit model fares against
32-bit ones. We also vary the types of optimizers among
RMSProp, Adam, and SGD to examine their effects on per-
formance. In addition, we confirm from this experiment that
not only SGD but also other optimizers, such as RMSProp
and Adam, can be used in 16-bit if ϵ is properly set.

In all experiments in this section, we use the learning rate
of 10−3 and fix ϵ in RMSProp and Adam to 10−3 as well.
We direct readers to the Appendix for experiments in other
settings. Finally, in addition to the 32-bit baseline, we also
compare the mixed-precision training algorithm proposed
by (Micikevicius et al., 2018) (as provided by TensorFlow).
Figure 1 shows that 16-bit deep neural networks are better
than 32-bit and mixed precision in terms of computational
time while maintaining similar test accuracy. In detail, (see
Figure 3 in the Appendix) 16-bit SGD’s computational time
is decreased by 40.9%, and the test accuracy was increased
0.6%, respectively, compared to 32-bit while 16-bit com-
putational time was decreased by 59.8% and accuracy was
increased 0.59% compared to mixed precision when the
batch size was the smallest at 64. Other batch sizes yielded
consistent trends, albeit with smaller magnitude (Keskar
et al., 2017).

Optimization-wise, 16-bit RMSProp reduced the runtime
by 40.4% and 59.6% compared to 32-bit and mixed, re-
spectively, and accuracy is increased by 0.3% and 0.4%.
16-bit Adam improved the runtime by 41.6% and 58.1%,
and 6.4% and 7.5% in terms of accuracy compared to 32-
bit and mixed precision, respectively. Of the total of 33

experimental groups calculated with three optimizers, 31
decreased running time by more than 40% compared to 32
bits while maintaining the accuracy to a similar level. Every
computational time and test accuracy in 16-bit deep neural
networks is better than those of 32-bit and mixed precision.

5.2. CNN Experiments

16-bit CNN experiments were conducted to determine
whether 16-bit is enough for training a more complex image
classification problem and how numerically different it is
from 32-bit. We used the CIFAR10 dataset and three convo-
lutional neural networks (CNN) models: AlexNet, VGG16,
and ResNet-34. All of these experiments were carried out
using Adam in a 16-bit environment. Since the batch nor-
malization (BN) layer is not implemented as an off-the-shelf
module in 16 bits, the experiment was conducted focusing
on CNN models that could be used without the batch nor-
malization layer. See the Appendix for treatment on 16-bit
BN implementations.

5.2.1. TRAINING TIME AND ACCUARCY

Figure 1 shows that 16-bit CNNs are better than 32-bit and
mixed precision in terms of computational time and test
accuracy. Figure 2 shows that 16-bit operations can also be
applied to CNN models for image classification. We found
that 16-bit CNNs maintain similar accuracy to 32-bit.

AlexNet At the smallest batch size of 64, 16-bit AlexNet’s
top-1 and top-2 accuracy results are increased by 0.9% and
0.6% compared to 32-bit, respectively, and training time
decreased by 29.1%. The running time of 16-bit AlexNet is
reduced by more than 29% compared to its 32-bit counter-
part.

VGG-16 In terms of top-1 and top-2 accuracy, 16-bit
VGG16 increased by 1.6% and 0.6% compared to 32-bit,
respectively, and learning time decreased by 43.7%. All
computational speeds of 16-bit VGG16 were decreased by
more than 40% compared to 32-bit.

ResNet-34 16-bit ResNet-34 decreased 0.6% and 0.4% in
terms of top-1 and top-2 accuracy, and computational time
decreased 44.7% compared to 32-bit. The running time of
16-bit ResNet-34 were reduced by more than 39%.
Overall, a 2.6% (AlexNet, Batch Size: 384) decrease in
16-bit top1-accuracy compared to 32-bit in 33 experimental
sets was the largest decrease, and the largest increase is 2.7%
(ResNet-34, Batch Size: 192). The smallest decrease in run-
ning time is by 29.1% (AlexNet, Batch Size: 64) compared
to 32 bits, and 45.6% (VGG16, Batch Size: 288) the largest
decrease. In other words, all 16-bit experimental groups
used in all experiments decreased their computational speed
by at least 29.1%.

This experiment shows that by using 16-bit operations in
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image classification with CNN models, the running time
(whether training or testing) can be greatly reduced while
maintaining similar or higher accuracy compared to 32-bit
operations. Our results demonstrate the efficiency of neural
networks in training CNN models in a low-precision setting.

5.2.2. MODEL SIZE

The preservation of the trained model weights is an impor-
tant aspect of contemporary deep learning.

Table 5. Sizes of saved CNN models in 16- and 32-bit.

Model FP16 FP32

AlexNet 41.99 MB 83.94 MB

VGG16 67.34 MB 134.61 MB

ResNet-34 171.99 MB 343.87 MB

It is useful for model training and storage if a model with
similar accuracy has less storage size. Table 5 shows the
stored model has about half the size of the 32-bit size, faith-
fully reflecting the half-precision size reduction. 16-bit
neural network allows for reducing the size of the model
by half while maintaining similar accuracy. This opens up
possibilities for 16-bit models to afford more complex and
accurate architectures to attain better results.

5.3. Limitation and Discussion

This subsection reports the limitations we find while using
the 16-bit neural network.

Light hyperparameter-tuning. During our experiments,
we do not need to tune hyperparameters of 16-bit neural
network training, e.g. learning rates, except the epsilon in
the settings of the optimizers. The SGD (Goodfellow et al.,
2016) optimizer does not have epsilon, so it can be used
directly. For the other optimizers we have tested in our
experiments, RMSProp (Hinton et al.) and Adam (Kingma
& Ba., 2015), we will need to change epsilon, whose default
value (in Tensorflow), 1E-7, can easily trigger significant
inaccuracy for 16-bit training.

As a detail, the parameter epsilon corresponds to ϵ in the
weight updates below:

RMSProp : wt =wt−1 − η
gt√
vt + ϵ

ADAM : wt =wt−1 − η
m̂t√
v̂t + ϵ

These optimizers introduced ϵ in to enhance numerical sta-
bility, but ϵ = 1E-7 in the denominator causes floating-point

overflow when vt in RMSProp or v̂t in Adam are close to 0.
As mentioned previously, we set ϵ = 1E-3 for 16-bit training.

Missing 16-bit Batch normalization. Tensorflow’s cur-
rent batch normalization layer does not directly support pure
16-bit operations. The batch normalization layer presumably
originates from mixed precision works, which would cast
16-bit input values to 32-bit for calculation and then down-
cast to 16 bits. This type conversion only results in runtime
overhead due to the intermediate 32-bit computation.

Since this work aims to report results on pure 16-bit neural
networks, we have to implement a 16-bit batch normaliza-
tion layer on our own. Our implementation of the 16bit
batch normalization can be found in Appendix.

Batch size. Our CNN experiments show that the accu-
racy of 16-bit neural networks decreases in larger batch
sizes. This can be due to the precision loss incurred when
averaging the cost over a larger number of samples in the
mini-batches. This is probably a minor limitation since neu-
ral networks in memory-constrained environments usually
do not use large batch sizes.

Despite these limitations, we have confirmed that 16-bit
neural networks learn as well as 32-bit with only minor
fine-tuning (ϵ in the optimizers). Thus, we believe ML
practitioners can readily benefit from 16NN when it comes
to solving op optimization problems since it is faster, less
memory-consuming, yet achieves similar accuracy as the
32-bit. Instead of spending the same amount of time and
space as 32-bit, we can form a network with an enhanced
cost-to-benefit ratio.

6. Conclusion
In this work, we have shown that for classification prob-
lems, the 16-bit floating-point neural network can have an
accuracy close to the 32-bit. We have proposed a conjecture
on their accuracy closeness and have validated it theoreti-
cally and empirically. Our experiments also suggest a small
amount of accuracy gain, possibly due to the regularizing
effect of lowering the precision. These findings show that
it is much safer and more efficient to use 16-bit precision
than what is commonly perceived: the runtime and memory
consumption is lowered significantly with little or no loss
in accuracy. In the future, we plan to expand our work to
verify similar characteristics in other types of architectures
and problems such as generative models and regression.
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A. Extra experiments
A.1. Top-1 and time results

Figure 3. MNIST classification top-1 accuracy and computational time

A.2. Using 16-bit Batch Normalization

As stated in the main text, the CNN results we provide in Section 5 are based on architectures without the batch normalization
(BN) layers. Figure 4 shows that 16-bit and 32-bit CNN models’ performances without BN layers. The main reason for
excluding those layers is that there are no off-the-shelf 16-bit implementations for BN layers.

As a remedy, we implemented those manually and present the results. We chose to move this result from the main text
to here because we were not able to fully verify that the implementation is truly a pure 16-bit one. That is, although we
take every possible precaution to adhere to 16-bit computation on the Python level, we do not know if any unprecedented
upcasting occurs in the library level (e.g., libcuda or cublas). Hence, the results in Figure 5 are gathered from 16-bit
neural networks ‘to the best of our knowledge’.

From the figures, we can see that incorporating 16-bit BN layers still results in a similar pattern as the one given in the main
text. With the exception of AlexNet, 16-bit networks give similar to superior performance compared to the 32-bit models.
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Figure 4. CIFAR-10 classification top-1 and top-2 accuracy and computational time without BN Layers
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Figure 5. Results from using 16-bit BN layers

Figure 6. ResNet-34 with BN Layers CIFAR-10 classification top-1 and top-2 accuracy and computational time


