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A generalized fractional Laplacian
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Abstract

In this article we show that the fractional Laplacian in R? can be factored into a product
of the divergence operator, a Riesz potential operator, and the gradient operator. Using this
factored form we introduce a generalization of the fractional Laplacian, involving a matrix K (x),
suitable when the fractional Laplacian is applied in a non homogeneous medium. For the case of
K (z) a constant, symmetric positive definite matrix we show that the fractional Poisson equation
is well posed, and determine the regularity of the solution in terms of the regularity of the right
hand side function.
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1 Introduction

In recent years there has been considerable interest in studying nonlocal differential operators. The
motivation for this work has been to develop tools that can be used to more accurately model
phenomena such as anomalous diffusion, which cannot be suitable modeled using local operators.
One such nonlocal operator which has received much attention is the Fractional Laplace operator
(a.k.a., the Fractional Laplacian). To infer the Fractional Laplacian refers to a single operator is
somewhat misleading as there are several operators that come under this general heading. For
example, for 0 < a < 2, on a bounded domain three such operators are [2]:

(i) The Spectral Fractional Laplacian

The Spectral Fractional Laplacian, (—A)¢g -, is defined in terms of the eigenvalues and eigenfunctions

of the Laplace operator with homogeneous Dirichlet boundary conditions on €. Let {14}, denote
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an orthonormal basis for L?(Q2) satisfying, for A\;, € R,

=AY = Ag1p in Q,
Y= 0 on Of).

Then (—A)g is defined for u € C§°(f2) as

Lwole

(“A)2u = 3 (u, i) A o,
k=1

and by extension for u € Ho% (Q).

(ii) The Integral Fractional Laplacian

wR

The Integral Fractional Laplacian, (—A)2 -, is defined for support(u) ¢ Q C R? as

a 1 : u(r) — u(y)
— = ——— 1 _— Q 1.1
(FA)F ulz) a(—a)] 0 /]Rd\B(x,e) |z — y|d+e Ay, we, (1)

where v4(a) := 2% 7%21(2)/T((d— «)/2), and B(z,€) denotes the ball centered at = with radius e.

(iii) The Regional Fractional Laplacian
The Regional Fractional Laplacian is defined in a similar manner to ([1.1) but where the integration
is restricted to Q (i.e., R%\ B(z, €) replaced by Q\B(z,€)).

Another approach to defining the Fractional Laplacian, introduced by Caffarelli and Silvestre [4], is
to consider the Fractional Laplacian as the limit of a local operator problem defined on a semi-infinite
cylinder © x (0, 00).

Two recent papers which give insight into the relationship between various Fractional Laplace op-
erators and their properties are [10, [13].

Related to the Integral Fractional Laplacian is the Riesz Potential operator, which is defined for
a € (0,d) by [6]

_a 1 u(x —y)
( ) T @ Jre
For suitably nice functions (see [0, Proposition 1]) the Integral Fractional Laplacian is the inverse
of the Riesz Potential operator.

In many physical applications “motion” occurs as a result of a local imbalance. For example,
Fourier’s Law and Fick’s Law of Diffusion state that the local flux is proportional to the gradient
of the underlying quantity. For usual diffusion the impact of the local imbalance is local. In the
case of anomalous diffusion the impact of the local imbalance is nonlocal. For the usual diffusion of
the quantity w, the local flux in R? is modeled as K (z)Vw(z), and the spatial diffusion operator as
V- K (z)Vw(z), where K (z) € R™? is a material parameter. (In the heat equation K (z) represents
the thermal conductivity of the medium.)

In order to include a material parameter into an anomalous diffusion model, consider (for q(x)
denoting flux)

usual diffusion anomalous diffusion

V-q(z) = -V - K(x)Vw(z) V-q(z) = -V (—A)06772 K(z)Vw(z) . (1.2)



For I the identity matrix in R**? and k € R, for f a sufficiently nice function, a Fourier transform
argument shows that

k(-A)S f = —V-(=A)T KIVS. (1.3)

The motivation for the work presented herein was to investigate a nonlocal fractional Laplace op-
erator involving a material parameter K (x). As a first step in this direction, we consider K (z) to
be a constant coefficient, symmetric, positive definite matrix, and the domain €2 to be the unit disk
in R2. More specifically, by the symmetry of the domain 2, without loss of generality, we consider
K(x) to be a diagonal matrix with positive entries. A corollary of our investigations (see Corollary
shows that holds for a family of functions having an edge singular behavior consistent
with that expected of the solution of the Integral Fractional Laplacian.

The problem investigated in this paper is: Given f(z), K(z) = [ k(:]l k(:] ], ki, ks € RT, determine
2
u(x) = (1 - 7”2)%r u(x) satisfying
V- (—A)T K(@)Vi(z) = f(z), z€Q, (1.4)
u(r) = 0, =eRA\Q. (1.5)

Note that ([1.4) is different from the Riesz space fractional operator defined by (see [17])

0%u 0%u

e T " O Q.
16]:c1|a 28|$2|a f(z1,22), (z1,22) €

a—2
This difference is apparent when noting that (—A) 2 - is not a one dimensional fractional integral
operator. For Q C R! a detailed analysis of (I.4)(1.5) is given in [I8].

Our analysis of (1.4)—(L.5) builds upon a result proven by Dyda et al. in [6]. For L%(Q) denoting

the weighted L? space with domain 2, an orthogonal basis for L% (£2) is {Vlﬂ(aj) PTE%’Z)(%Q — 1)},
2

for i,n =0,1,2,...,00, p € {—1,1}, where V; ,(z) denotes the solid harmonic polynomials in R?,

and Péa’b)(t) the Jacobi polynomials (see Section . From [6, Theorem 3],

2°T(n+1+5)T(n+1+5+1)
T(n+1)T(n+1+1)

(e
2l

(~A)2 (1 =) V() P22 — 1) =

(e}
P

Viu(x) Py (2r? —1).
(1.6)

A similar result to (1.6]) in the R! setting is now well known and has been used to investigate the
existence, uniqueness and regularity of fractional order differential equations, as well as to develop
spectral approximation methods for such problems [7, 9] [14] [15, [I§].

In our analysis herein we show:

1. A similar result to (1.6]) holds for the Riesz Potential operator, (—A)a%2 - (see Theorem .

span {Vlu(m) Pn%fl’l(%2 — 1)}

span {Vlu(m) Pf_l’l(%2 — 1)}
Theorem . Notable is that this mapping holds when then the gradient is expressed in

2. For u € L% (), then V(1 —r?)2u € (1—r2)27! (see
2



terms of the Cartesian coordinate system (i.e., in terms of i and j), and not when written in
the polar system (i.e., in terms of r and ¢).

3. (i) For u(x) = ( )% u(z), and u(z) expressed as a linear combination of the basis func-
tions {Wu( ) P2 } substituting into (1.4) and equating coefficients with the f(x)

(similarly expressed in terms of the basis), results in an infinite system of coupled equations
for the unknown coefficients (see (4.8])-(4.19)).

(i) When the equations are appropriately ordered and rescaled, and the unknown coeffi-
cients renumbered and rescaled the infinite system of equations decouple into tridiagonal
block matrices of sizes 1,1,2,2,...,n,n,... where the block matrices are uniformly invertible

(see (L31)-(33))

4. The Integral Fractional Laplacian can be factored into a product of the divergence operator, a
Riesz Potential operator and the gradient operator (see Corollary . (Note that this result
has been proven for the one-dimensional case (see, for example [3, [12]), while, to the best of
our knowledge, is not available in the literature for the two-dimensional operator.)

5. The dependence of the regularity of the solution of (1.4]),(1.5)) on the regularity of the RHS,
f ().

This paper is organized as follows. In the next section we introduce the Jacobi polynomials and the
solid harmonic polynomials. The combination of these polynomials form a basis for the weighted

L%(Q) space, which plays a key role in our analysis. The needed properties of V- and (—A) 2

. . a BN . . . . .
applied to functions (1—r%)z V, ,(z) PT(L2 )(21"2 — 1) are derived in Sectlon Using these results, in

Section |4] we establish the existence and uniqueness of solution, w, to (1.4, (1.5). The dependence
of the regularity of u on the regularity of the RHS, f(z), is given in Section Contained in the
Appendix are some ancillary results used in the analysis.

2 Preliminaries

In this section we present definitions and notation used in this article. We follow the definitions and
notation for the hypergeometric function used by Dyda, Kuznetsov and Kwagsnicki in [6].

2.1 Hypergeometric Function

For p, ¢ nonnegative integers with p < ¢+ 1, and a = (ay,...,ap) € CP, b = (by,...,b,) € CY,
with none of the b; nonpositive integers, the generalized hypergeometric function is defined by

p
. Ila"
qu(; ‘T> ZJ

n=0

,rn

- (2.1)
11 Ui

where ¢ = ¢(c+1)---(c+n — 1) denoting the rising factorial, with ¢ = 1.



a

Note that , F ( b

of b.

The regularized hypergeometric function, ,F,(-) is defined as
a 1 a
qu<b‘r> = qu(b ‘r)
I1 T'(5)

2.2 Jacobi Polynomials

The Jacobi polynomials are defined as

I'(a+1+n) -n, 1+a+b+n |1t
(a:b) (4} .— ’
B0 n! 2F1< a+1 2>
(=1)"T(b + 1+ n) -n, 1+a+b+n |1+1
= oy —
n! b+1 2

B n Dln4+1+4b) O i n\Tn+j+1+a+b)
= (1) n!T(n+ 14 a+b) (-2 J(j) T(j+1+0b)

=0
(a,b)
Note that Py (t) = 1.

In case a, b > —1 the Jacobi polynomials satisfy the following orthogonality property.

! 0 k#j
1— 1)1+ 1) P 1) P () gt = . o
[ a-oraror B Rt PPN, k=

1/2
(a+b+1) (i NT(4 1
where |HP](ab)|H = ( 2 Uta )T+ )

(2 +a+b+)TG+D)T(G+a+b+1)

We have the following differentiation properties

& r bt k414 5) (aribii
PEd () = (a+b+k+ +])P]§:j¢g,b+y)(t)7

dti” k 21T(a + b+ k + 1)
d 02 p(§:m) o a1 (S—1,m+1)
(=02 W) = e+ 50 - 0 R (t) (see I8 (E.1))),
d m p(%m) o1 (S+1,m—1)
= ((1 + )" P} (t)) = (k+m)(1 + "L P OF

2.3 Solid Harmonic Polynomials

(L+1t)7.

r) is invariant under the permutation of the components of a or the components

(2.2)

The solid harmonic polynomials in R? are the polynomials in d variables which satisfy Laplace’s

equation.



In R? the first few (linearly independent) solid harmonic polynomials are:

2 2
1, z1, ®2, 172, ] — 23, ...

In R3 the first few (linearly independent) solid harmonic polynomials are:

2 2 2 2
]-7 X1, T2, 3, r1x2, r1x3, T2x3, L1 — L9, 1 — L3y...

The solid harmonic polynomials of degree I > 0 form a finite dimensional vector space, having

dimension p l
+20 -2/ d+1-2
My = —— )
! d+l—2( l )

In R? the solid harmonic polynomials of degree [ can be conveniently written in polar coordinates,
(r,p) : 0<r<oo, 0< @< 2m), as {rlcos(ly) , r'sin(lp)}. Note that My, = 2.

2.4 Function Spaces

The (weighted) L?(£2) space plays a central role in the analysis. For weight function 3(-), 8(z) >
0,z €, associated with L%(Q) we have the inner product and norm

(Fa)s = [ B@) @@, Wl = (05

InRY d=23 Q= {z: || <1}, ie., the unit ball, a basis for L%(Q) is given as a product of
the solid harmonic polynomials and Jacobi polynomials.

For z = (r,) € Q C R?, let w? := (1 —7r2)7 .
2.4.1 InR’
Let Vii(z) = r'cos(lp), 1=0,1,2,... and V,_i(z) := r'sin(lp), 1=1,2,....

We also use the following notation

o W,_l(l') if n = 1 s
Vige (@) = { Vii(z) ifp=-1.

Additionally, for a linear operator F-, we use F(V; ,(x)) = (£)V,(z) to denote

(£)Vie(x) = { +Vig(x) ifp=1,

FViul@)) Vig(z) ifp=-1.

For example,



In R? an orthogonal basis for L%(Q) is [5l 1]
{uy U {Via@) PP 2% — 1)} ) u{uE v (Vi) PO - 1} 2a0)

For notation brevity we denote the basis in (2.10)) as

U0 UnZo Up=1,-1 {Vz,y(x) PP (22 — 1)}

where we implicit assume that the terms Vp _1(x) quﬂ’l)(Qrz —1),n=0,1,... are omitted from the
set.

2.4.2 Action of the Riesz potential operator

The following theorem, used in our analysis below, extends a result in [6] from the fractional Laplace
operator to the Riesz potential operator.

o
D} s

a_g O
Theorem 2.1 Ford = d+2l, s aninteger, $—s > —1, f(z) = (1—|z[)2 "V .(2) Péz B 1)(2|x\2 —
1),

A fl) = (1) woTn+1—s+9)T(n—1+2%2)
(-A)F flz) = (-1)'*2 L

o 945,31
Vip(a) P2 2E 2 Vg2 — 1),
(2.11)

The proof of Theorem begins by transforming f(z), via a hypergeometric function, to a product

of V ,(x) and a Meijer G-function. The operator (—A)aT2 - is then applied and the subsequent
results transformed using properties of the Meijer G-function and the hypergeometric function to
. As this is the only place in the paper where hypergeometric functions and Meijer G-functions
are used we present the proof of Theorem in the Appendix.

a—2

3 Mapping properties of V- and (—A) =

In this section we investigate the mapping properties of V- and (—A)%2 with the domain w? ®
L2 (). Functions g € L% () are conveniently represented using polar coordinates but, surprisingly,
2 2

the mapping properties of V- and (—A)QT_2 are far more revealing when written in a Cartesian

framework (i.e., in terms of % and g—g. To obtain this representation we firstly compute % and g—g,
9g

and then take an appropriate combination of these terms to obtain 77 and g—g.



Theorem 3.1 Let f(z) = (1— 7“2)%1/}#@)]3,(1%’”(27'2 —1). Then form >0 andl > 1,

D= @ e -
— (4 D= W@ PR T e - ), (3.1)
gi = @)+ 51— E Wi @) PE T2 -
— F) 1)1 -5 Wi () P2 2 - 1) (3.2)
For the special case l =0 and p =1, we have
% = 2+ DA -V @PE T @ ), (3.3)
gi — 2+ %)(1 5 ()P Y (202 1), (3.4)

The proof of Theorem is relatively long, using several of the recurrence formulas for Jacobi
polynomials. So as not to unnecessarily distract from the existence and uniqueness of solution

result for (1.4), (1.5, we give the proof of Theorem in the Appendix.

Theorem 3.2 Let f(z) = (1— 7“2)%1/}#@)]3,(1%’”(27'2 —1). Then forn >0 andl >1

a—2 (9 (6% 1,1
(—A)*F a% = Co(n+ S+ D V()P 2 )

+ Cy(n+1+1) Vi (@) P 3 Vet — 1y, (3.5)

(-A)°7 g;’; = )+ 5+ Vi @R (22 - 1)
+ (B +14+1) Vi (@)P 2 (22 1), (3.6)

LS I(n+1+5)T(n+5+1)
_ a2 2 2
where Cy = —2 Tt DO +2+1) (3.7)
For the special case l =0 and p =1, we have

(87 X =90, SR 2 ), (3.8)
(—A)*F g-; = 20+ DV @R e 1), (3.9)

Proof: The stated results follow from applying Theorem to the four relations in Theorem
|



Corollary 3.1 Let f(z) = Vl,#(:p)Py’l)@rQ —1). Then forn>1andl > 1,

0
a—i = N+ ) Vi u(@)POTID@2 — 1) + (b y + 14 1) Vipy (@) P (22 - 1),
(3.10)
and
0
85 = (F)(n+ 1) Viey (@) BOTHED@02 2 1) 1 () (n 4y + 14+ 1) Vigy e () PO V(202 1)
(3.11)
Forn=0andl >1,
0
L @B 1) and OL = @V @) PO 1),
T y
Forn>1andl=0,u=1
9 0
= oty ) Vaa@ P (@22 1) and a;f = 2yt 1) Vi (@) PO - 1),
Forn=0andl=0, u=1
af _ of _
ax—()and ay—().
Proof: Using and % = cos(go)% — sin(yp) % %,

0
8—£ = cos(yp) (l Viu(x) rt P,(Z%I)(QT2 1) + 2(n+y+1+1)V u(x) rPfl’f{l’lH)(Qrz — 1))

= sinfi) ( (yovinte) ) r PPV 1))

Then, using , and , ,

]
a% = Vit u(@) BOD22 = 1) + (ny + 1+ 1) Vimgu(e) r2 PO (202 1)

Ay 14 1) Vigy () PO (202 1)

n

= (n+ 1) V(@) PO ID@2 < 1) 4 (v 4+ 14+ 1) Vi (@) PV 202 - 1),

n—1

where, in the last step, we have used (A.5]).

g]yc = sin(p) (l Viu() r1 PT(L%l)(QrQ 1) + 2nty+l+1) W,u(x)TPy_J{l’lH)(%Q B 1))

+ aosti) ((potinte)) ot PPO@R - ).



Using (CT2), (CT3) and (1D, ([CT3)

0
ai — L F)WViet e (@) POV = 1) + (47 +1+1) (F)Vig e (@) P PO (202 1)

+ (A + 1+ 1) (£) Vi e () POTH D 902
= B+ Vi e (@) POHID@2 1) 4+ @)y 141) Vi e () BT (20 - 1)
where, again in the last step we have used ({A.5|).

The proofs of the other statements follow in a similar manner and are therefore omitted for brevity.
|

4 Existence and Uniqueness of Solution

In this section we investigate the existence and uniqueness of solution to the following problem.
Problem:

Given f and ki, ke € R, with K(z) = { IBI IS ], find ¥ = w? u such that
2
L(T)(x) = =V - (=A)"T K(z)Vii(z) = f(z), z€Q, (4.1)
subject to 7 = 0 on R%\Q. (4.2)
We assume u(x) can be expressed as
(5. Uo,n,1 (5,0)
u(z) = Z Ui Vi () Po? (2r2 —1) + Z 2” Vou(z) Pa?(2r% = 1) (4.3)
1>1,n>0,ue{1,—1} n>0
and
e 20
f@ = Y A Vi@ PEY @2 - 1)+ Y fonaVoa (@) P (2% - 1)
1>1,n>0,ue{1,—1} n>0

for coefficients w; p, 1, fin, € R. (Here we divide the coeflicients {ug,1}n>0 by 2 in order that the
matrices Az 4., and A3s ., in (4.32) and (4.33)) are symmetric. Note that this factor of 2 results
from the case of [ =0, p =1 in Theorems and [3.2])

Using Theorem 3.2[and Corollary L(w) can be expressed in terms of the basis {Vl,u(x) P,(L%’l) (2r? — 1)} "
6,1
Equating the coefficients of £(u) with those of f we obtain a linear system of equations for the un-

known coefficients wu; y, ;.

Using Theorem kl(—A)QTﬁ% = T1 + T5, where

Fn+1+5)F(n+1+5+1) —1,141)

e Vi pi? 2?1
1 1 l>z(; =1 o Fn+1)T(n+2+1) 1+1,u(z) Pn (2r )
w0 {33021
) Fn+1+5)F(n+5+1 a1
= -2 2II€1 Z Ul—1,n,u ( 2) ( 2 ) ‘/l,'u,(x) P7£2 )(272 . 1)’

Fn+1)T(n+1+1)

10



a_1.0-1
Vier () PV 22 < 1)

Fn+1+9$)T(n+ 45 +1)
T, — _9a=2p 2 2
2 L 2 Yt T P ) D+ 1+ 1)

) P(n+2)T(n+ 2 +1)
_ o2y Z - 2 2
1 Ul+1,n—1,p F(n)F(n+ 1+ l)

Using Corollary

0 _ F(0+1+9)P(0+9+l) (2-1,1)
=Ty = 272 _ 2 2 1V P2 (2t -1
81’ 1 1 l>zl , u 1,0,p F(O—{—l) F(O—l—l—l—l) l 17M($) 0 ( r )
n:O,{ l§2:Z;—1
_ F'n+1+5)T'(n+95+1) (2,1-1)
_ 9@ 2/{7 B 2 2 l _ Pnzv
! 2 MLt T R G S ) D (n+ 1+ 1) <(”+ ) Vi, u(2)

(S DV @) P - 1)

Recalling that Po(a’b) (t) = 1, we obtain

9 a-2 FA+5)ra+35+1) (5:0) o, 2
1>0,pu=
”_0’{ l>1,Z:—1
Tn4+1+8)T(n+1+%+1 s
Sty Yy, ORI S D ) P e )

Fn+1)T(n+1+1)

Fn+2+9)T(n+1+5+1)

_ (5D /6.2
— 2072 § _ P2 (2% = 1).
1 Ul—2,n+1,p F(?’L + 2) F(?’L +1+ l) ‘/l#"‘(l') ( r )

(4.4)

11

(27‘2 —

)



Fn+$)T(n+ %)

20+ 5) Vi) P23 (22 = 1)

— Ty = =272 E: Ul p—1,1
ox S P(n)T'(n+1)
F(n+ g) F(n+ <+ l) (2,1-1)
90-2, . 2 2 ( )V pl Y92
! 2. ML=l TP () T + 1+ 1) (Rt D Vier, (@) @ =1
n>1{l>1’“:
N I>1,p=-1
+ (5 DV (@) P @ - 1))
2T(n+14+2)T(n+2+2 o
= 222k Y u (nt1+5)TIFT2+5) ) P22 — 1)

Again, using Theorem ka(—A) 5

T3 = —ga—2 ko Z Uln,u

1>0,u=1
”20’{ I>1u=—1

F(n+1) (n+2

Viu(z) P2 (22 — 1)

Ul+2,n—1,p ( ) n+1+l)

F'n+1+§)T(n+14+5+1)

)
Fn+§)T(n+14+ 5 +1)
I(

Ut T P+ ) T(n+ 1+ 1)

2 A~
ng = T35 + T4, where

Fn+1+$)C(n+1+5+1)

T(n+ )T (n+2+1)

In+14+§)T(n+§ +1)

= —2°7%k i
2 Z R v Py

Vi () P2V (202 1)

(4.5)

2-1,141)

(+)Vip1, e (2) P (22— 1)

VWi (2) P2 1)

and
Fn+14+%)T(n+ 9% +1) (2-1,1-1)

Ty = —2°72% 2 2 4 () P2 2r? — 1

4 2 2 Yt P ) D+ 1+ 1) (FWVeer, e (@) Py (2r"—1)

n>0 { b22,p=1
N i>1,p=-1
B Fn+4$)T(n+5+1) (2-1,1)
- 92} . 2 2 . P2 w2 1

12



Using Corollary
TO+1+2)T0+2+1)

) . (£-1,1)
gy - Vi (@) P02 _ g
oy ® 2 lgl:ul U—1,0,u DO+ 1DT0+1+1) -1, u(x) By (2r )
n:O,{ 1>2,u=—1
) L(n+1+)T(n+§+1) -
— 9o 2k 1n 2 2 ( ! B Pnz, 22_1
2 l>zl: 1 Yt T P+ D) (n o+ 1+ 1) (n+0)Vier, u(x) (2r )
>1,p=
n>1{1227u:71
@ i+
B (n+§+l)vl+17u($) P,(Lfl )(2r2—1)>
B 1+ 3)I'A+35+10) (20
= 2072}, U0 2 2 Viu(z) Py (2r2 — 1)
gu:l o L(1)T(1+1) w\Z) By
n:O,{ 1> 10 =—1
Plnt+1+9)Pn+1+5+1) (2
— 2a—2k n 2 P} Pngu 5 271
2 l; —1 fomn F(n+1)T(n+1+1) Viu(x) (2r )
n>1,{ lgl:llj:fl
F(n+24+9)F(n+1+5+1) (21
4+ 202} Uj_9p 2 2 v PED (92 _ 1)
2 zgul Rt T(n+2)T(n+1+1) () (2r )
n>0’{ 1>30 =1
(4.6)
Next,
; L(n+5)0(n+3)

7T — _2a_2k ne1.— 2 g _ (%71) 2_
4 2 Z Ul p—1,—1 T(n) T(n + 1) (+)2(n + 2)V1, 1(z) P27 (2r" = 1)

o Fn+4$)T(n+5+1) (2,1-1)
—2 ’ ]{22 Z Ul+1,n—1,u F(TL)ZF(TL +1 _i l) ((_)(n + l) W—L#(m) PTLQ (2T2 - 1)
1>1,u=
”>1’{ z>1,Z=f1
(S DV (@) P - )
3 2I'(n+14+5)T(n+24+ 9% o
e D DT ot 12))1“(51 ) Vi@ A er -

_ F'n+$)T(n+14+ %5 +1)
2a 2]{5 e 2 2
+ 2 2 B N S S N C I )

Fn+1+5)T(n+1+9G+1)

>0,
_oe2p . P (9,2 1y,
2 > Ut Ty )T 1) el ®) @ =)

(4.7)

As mentioned at the beginning of this section, we obtain the determining equations for the unknown

. . . . . o
coefficients vy 5, , by equating the coefficients of the basis functions {Vl#(x) PT(L2 )(27"2 - 1)} l for
n,l,p

L(@) = -V K(z)(—A)“T" )V with those of f.
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To obtain the determining equations it is convenient to group the associated basis functions with the
index sets {(n,1)}n>0,1>0 for p =1, and {(n,{)},>0,1>1 for p = —1, separately. We then partition
the index sets into 6 pieces as follows (see Figures [4.1] and [4.2)):

For p=1: R1 = {(0,0)}; For py=-1: R1 = {(0,1)};
R2 = {(0,1)}; R2 = {(0,2)};
R3 = {(0,)}i>2; R3 = {(0,D)}i>3;
R4 = {(n,0)}n>1; R4 = {(n,1)}n>1;
R5 = {(n,1)}n>1; R5 = {(n,2)}n>1;
R6 = {(n,))}n>1,1>2; R6 = {(n, ) }n>1,1>3-
llo/1/2/ 3|4 5 6. /123 4|5 6 7
0 (RLR2)¢—— @ S 0 @ R2)¢ @ >
17N 177
2 || 1] 1] 2 || I1]1]
3 [RefRS)” 1 ARG 3 [RefRS)” 1 ARG
4] ] 4] ]
v v vy
Figure 4.1: Partition of the index set Figure 4.2: Partition of the index set
{(n,0)}n>0,>0 for p=11into R1, R2,..., R6. {(n,0)}n>0,>1 for p = —1into R1, R2, ..., R6.

Combining (4.4)-(4.7) and equating with the coefficients of f(z) = anu Jinu Vipu(x) PT(L%’Z) (2r2—1)

we obtain the following determining system of equations for the unknowns v, ;.

14



For p=1:

Rl(n=0,1=0): 272 (k; + ko) ot —;(%3 11:8; 2 uo,0,1 = fo,0,1 (4.8)
R2(n=0,1=1): 2°72 (2ky + (k1 + k2)) ta ;(%; £E§)+ 2 w01 = fr01 (4.9)

R3{(n=0,0)}>2:

2wﬂ<ﬂm+kgrﬂ¥gﬁxii%+w

Fre+9Ira+<+1
uro1 + (k1 —k2) @+ 9)l+5 )uz 211)

r)ra+1)
= fio1 (4.10)
R4 {(TL,Z = O)}nZl :
. Dn+ )T +1+9)
2 QQM_M) NOICESES

Ugm—11 + (k1 + k2)

Fn+14+§)T(n+1+%)
T(n+1)T(n+1) W"O
= fO,n,l (411)
R5 {(n,l = 1)}7121 H
ae Ln+5)T(n+2+%)
2 ZOM_@) N%r@+m )

I'n+1+4+% n+2+
ugn—1,1 + (2k1 + (k1 + k2)) ( 2) I )ulnl)

(n+1) I'(n+2)
= fin1 (4.12)
R6{(n, l)}n21,122 :
a Lin+§)P(n+1+§+1)
2 QOM_b) N%rm+1+5

+ (k‘l — k‘g)

Fn+1+%)
I'(n+1)

Ul—2,n+1,1> = fin1. (413)

(n+1+241)
(n+141)

Wt2n-1,1 + 2(k1 + ko)

Uln,1

r

r

F'n+2+9)T(n+1+5+1)
Fn+2)T(n+1+1)

15



For p=—1:

R1 (n =0,l= 1) . o9a—2 (2k2 + (kl + kg)) F(l _1‘:(3352 ) 2) uio0,—1 = fl,O,—l (4.14)
R2(n=0,0=2): 2°722(ky + ky) m?é;rg 2 o = fao (4.15)

RS{(n = 0, l)}lzgg .

202 <2(k:1 + ko) ra 7;(% ?8 :[ % +1)

up0,—1 + (k1 — ko)

= fi0-1 (4.16)

RA{(n,1 = 1)}p>1 :
" T(n+¢)Tn+2+9)
227 <(’“ k) T Ty

'n+1+$HT'(n+2+2
ugn—1,-1 + (2ka + (k1 + k2)) ( 2) 1 2)U1n1)

F(n+1)T(n+2)
= fin-1 (4.17)
R5{(n,l = 2)}7121 :

_ F'n+4$)T'(n+3+%)
go—2 B 2 2 L 9
((kl k2) T(n) T(n + 3) Ugp—1,-1 + 2(k1 + k2)

T(n+1+2)T(n+3+2)
T(n+1)T(n +3) u”‘l)
= fZ,n,—l (418)
R6{(n,1)}n>1,>3
o 'n+$)T(n+1+4+%5 +1)
2 ((kl — k) r(i)r(m 1 +52)

+ (k1 — ko)

Fn+1+5)Tn+1+54+1)
r(n+1 rn+1+l)

up— 2n+1—1) = fin—1 (4.19)

Wt2n—1,-1 + 2(k1 + k2) U, —1

F'n+24+5)T(n+14+9+1)
Fn+2)T(n+1+1)

4.1 Determining the coefficients v, ,

In this section we discuss the solution of {u;, ,} satisfying (4.8)-(4.19). We focus our attention on
the coefficients {u;, 1}, i.e. equations (4.8)-(4.13)). The coefficients {u;, _1} are determined in an
analogous manner.

Firstly we introduce a rescaling of the equations. Let,
Q. - Fn+1+%)
’ I'(n+1)

Then, after simplifying, equations (4.§] - ) become:
Rl(n=0,1=0): (ki+k)doo = foo (4.21)
R2(n=0,l=1): (2ki + (k1 +k2)) dip = fio (4.22)
R3{(n=0,0}2: 2(k1+ka)dio + (k1 —ka)diag = fro (4.23)
R4{(n,1=0)}nz1: (k1 —ko)don1 + (ki +k2)dom = fom (4.24)
(4.25)
(4.26)

Fn+1+1)
Fn+1+5+1)

Wi, and fi, = 2772 Fint- (4.20)

R5{(n,0 = D}ps1: (k1 —ka)dsn1 + (2k1 + (k1 +ko))din = fin
R6{(n,l)}p>1052: (k1 —ko)dipon—1 + 2(k1+ka)dip + (k1 —k2)di—opnt1 = fin-

16



The coupling stencil.
Consider the “stencil” given in Figure This stencil represents the coupling of the unknowns, d; ,,,
in equations (4.21)-(4.26)). (For the coupling stencil, when [, n < 0 the d;,, coefficient is ignored.)

dl+2 ,n—1

o

C);

d1—2, n+1

Figure 4.3: Stencil illustrating the coupling of the unknowns d; ,,.

Equations (4.21) and (4.22) represent two 1 x 1 linear system of equations for do o and dp ;.

From R3, ! =2 and n = 0 gives the equation

2ky + ko) doo + (k1 —ko)dos = fao- (4.27)

Following the coupling of the unknowns from (4.27) (cf. coefficient stencil), the equation corre-
sponding to I =0, n =1 (in R4) is

(k1 — k2)doo + (ki1 +k2)doq = fO,l- (4.28)

Returning to R3. For [ = 3 and n = 0 we have

2ky + ko) dzo + (k1 —k2)dig = fap- (4.29)

Again, following the coupling of the unknowns from (4.29) (cf. coefficient stencil), the equation
corresponding to l =1, n =1 (in Rb) is

(ki — ko) dso + (2k1 + (k1 + ko) dig = fuii. (4.30)

Equations — are two 2 x 2 linear systems of equations for do, do 1, and d3, di,1, re-
spectively. Continuing in this manner, i.e., in R3 corresponding to (I,n) = (2m, 0) (and (I,n) =
(2m+1, 0) ), m > 0, and following the coupling of the equations we terminate in R4 corresponding
to (I,n) = (0, m) (in R5 with (I,n) = (1, m) ) yielding an (m+1) x (m+ 1) decoupled linear system
of equations. Hence, when the equations are appropriately assembled, we obtain decoupled linear
system of equations of sizes: 1,1,2,2,3,3, ..., m, m, ....

To further illustrate this point, we rename/renumber the unknowns d; , — e; (and rhs: ﬁn — bj)
in the order described above, see Figure [£.4]

17



lfloj1/2/3/4 5|6 llo/1/2/3/4|5/ 6
0 | 0ooTo1 |y do3 dy 4 D5 Ooe 06 € & | 6|6 |€g ey
1 dl,O dl,l d172 d1,3 d1’4 d175 dl,6 1 e4 eﬁ % e.l.l el4
3 ds,o d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 3 |G
4 d4,o d4,1 d4,2 d4,3 d4,4 d4,5 d4,6 4
Figure 4.4: Renumbering of the unknowns d;, — e;.
Algebraically, the rename/renumbering d;,, — e; is given by
2n)? + 2 4 2
if [ is even: (l,n)—)j:(l+ n) +4(Z+ nt ),
L+2n)? +2(1+4n+2) + 1
i 1is odd: (Ln) — j = L H2)°F (4+ nt2)+1
As discussed above, the linear system of equations for e = {e;};>1, Ae = b, has the following
block diagonal structure.
[ k1 + ko 1
2k1 + (k1 + k2)
A3 a2
As5.2
A= ' (4.31)
A3.a.m
A3 5m
The matrices A3 4, and A3 ,, are m x m, symmetric, tridiagonal matrices given by
[ 2(k1 + k‘g) (kl — k:g) i
(kl — k‘Q) 2(]{:1 + k’Q) (kl — kz)
Agam = (4.32)

(k1 — k2) 2(k1+ ko) (k1 — ko)
(k1 — ko) (k1 + k2)
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and
i 2(]{31 + k‘g) (k‘l — k‘Q)
(kl — kg) 2(k1 + kz) (kl — kz)

Assm = h (4.33)

(ki — ko) 2(k1 +ka) (k1 — ko)
(k1 — k2) 2k + (k1 + ko)

The matrix As4m, represents the system of equations corresponding to unknowns es 4., = {e;},
j = m(m—1)+1,...,m? and As 5 m represents the system of equations corresponding to unknowns
e3sm =1{¢e},J = m2+1,.. m(m+1).

As As 4 and As 5, are real, symmetric matrices, and hence have real eigenvalues (singular values),
a simple application of Gerschgorin’s theorem establishes that there exists constants ¢, and ¢pq.
such that the minimum and maximum eigenvalues of the matrices satisfy 0 < cpin < Amin, Amaz <
Cmaz < 00. Hence A3 4., and As s, are uniformly invertible with

lesamllz < A5 mll2 Ib3amllz < ¢ b3amll2,

and, likewise, |le3 5 mll2 < c;in b3 5.m|2-

We summarize the above in the following theorem.
kr 0

0 ko
solution U(x) = w? u(x), with u(z) given by [.3), satisfying

Theorem 4.1 For ki, ks € RT, with K(z) = [ ], and f(x) € L% () there exists a unique
2

o

L(@)(z) == =V -(=A)"T K(x)Vi(z) = f(z), z€Q, (4.34)
subject tow = 0 on 09, (4.35)
where the equal sign in (4.34) refers to the equality of the coefficients of the basis functions
2
Vi) P20 (20 = Dby
|

In the next section we further investigate the relationship between the coefficients v, , and fi, .,
i.e., how the regularity of the solution % depends on the regularity of the rhs f.

We conclude this section with the following corollary that verifies equation (1.3)) for g(z) = w? g(z),
with g(z) € L4 ().
2

Corollary 4.1 For g(z) = w? g(x), with g(z) € L% (), we have for k € R
2

w[R

k(-A)2 gla) = —V- (AT kKIV§(z). (4.36)

Proof: Without loss of generality, we assume that k& = 1. We verify (4.36]) by showing that it holds
on a basis for L% (). Specifically, by showing that for I, n >0, u € {1, -1}
2

(~8)F 0 V(@) PV (202 = 1) = =V (-A)"F KIVWE Vi) PE V(2 - 1),
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From [0, Theorem 3],

(—A)% w3 V(@) P (22 — 1) = A Vi(e) PP (22 — 1),
Pn+1+5)C(n+1+%5+1)

here A, = 2°
where - Aln T(n+ D)T(n+1+1)

Fori>1,n>0, pe{l,—-1}

—V - (=A) T IVwE Vi (@) P22 — 1) = i Viu(2) P2V (22 - 1),

where ¢, ,, is the coefficient of u;, ,, (for k1 = k2 = 1) in equations (4.9)), (4.10), (4.12) - (4.19), i.e.,

Fn+14+9)T(n+14+9+1)

— 2a72 22
Clnap Tn+ 1)C(n+1+1)

= )\l,n .

Fori=0,n>0,u=1
a=2 a (8.0) 0 2 _ (5D 5. 2
V- (=A)z IVw2V ,(z) P> (2r" — 1) = 2con1 Vou(x)Pp? (2r° — 1),
where cg 1 is the coefficient of ug 1 (for k1 = k2 = 1) in equations (4.8)) and (4.11)), i.e.,

Fn+14+95)F'n+1+%)
F'n+1)I'(n+1)

2con1 = 22722 = o

5 Regularity analysis of the solution

In Section 4| we established that given f(z) € L% (Q) there exists a unique %(z) = w? u(z), with
2

u(x) given by (4.3)), satisfying (4.34]),(4.35)). In this section we analyze the influence of the regularity
of f(x) on the regularity of u(z).

51,82

Following [8] we introduce the weighted function space B (Q2) for any s1, s2 > 0 as
B} (Q) = {v[u € L3(Q) and \U|B;1,32(Q) < oo} :

where the semi-norm | - |B;1v52(ﬂ) is defined by

2 2 2 2 2
|/U’B;1,S2(Q) - Z (l 1 +n 82) vlﬂ%u hl,n .
Ln,p

The norm in this space is defined as [|v||gs1:52 ), where
8

||1)H123;1,52(Q) = Z (1 + 281 + n232) Ul2,n,,u, hZQ,n
Ln,u
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In determining the coefficients of u(z), u; ., in Section [4] the following (invertible) transformations
were made:

D(n+1+%)

¢ ¢ din < TFurn Waon

forp=1 and p=2. (5.1)

) r: —(a—2 I'(n+1+1)
bj «— fin — 2 (=2 (n+1+ +l finp

Similar to the discussion in Section we focus our attention on {u;, 1} and {f; 1}, with the
reliance of {u; 1} on {f;, 1} following in an analogous manner. To this end, let

ST i Via(a) P (202 < 1) + > el Yont yo (@) PO (22 — 1), (5.2)
[>1,n>0 n>0

= Y S V@ PR = 1) and d@) = Y i Via(e) PV @ - 1), (5.3)
1>0,n>0 1>0,n>0

where {d; ,} is determined by (4.20)-(4.26).

We first relate the regularity of d(z) to that of fi(x) and then relate the regularity of u;(z) to d(x)
(and subsequently to fi(z)).

From Section we have that the unknowns {e;};>; are determined by solving the sequence of
linear systems of equations

A374’m6374’m = b374’m N and A375’me3’5,m = b3’5’m s for m = 1, 2, ceny (5.4)

Where the mxm matrices Asz4,, and Azs,, are symmetric, positive definite with

el < ||A3 4 mll2 s HA3 5, mll2 < c;n%n. Hence it immediately follows that
0 0 oo 00 o <JNe o] 2
~ I(n+1+1)
2 2 2 2 2
OIS SUIRED 5D SRS 3D DD 35 DI Calu P les Sty Iy
j=1 j=1 I=1 n=0 I=1 n=1 I=1 n=0 2

However, to determine which le’s2 () space d(x) lies in we need to be able to bound

SN+ P+ n?2)d, b, (5.5)

=1 n=0
Returning to (5.4)), for W a diagonal matrix, with w; > 0, note that
W A3k W' Wes pm = Why g, k€ {4,5).

With A = W A3 i, 1, W1, note that A is symmetric, positive definite, and has the same eigenvalues
as Asgm. Thus, ¢t < [[A7Y2 < c;l%n, and [|[Wezkml3 < [[Wbskml3 This enables us to
introduce the weights needed in (/5.5)).

Lemma 5.1 For fi(z) and d(x) defined in and (5.3), if fi(z) € BE™(Q) then d(z) €
2
B TR ().

2
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Proof: From above, we have that

o0 o o0 [o¢] N
Do (P Py b, SN (1 P ) ff
=1 n=0 =1 n=0

& ey Tn+1410) 2
— 1 l2t1 2to ) (a=2) N h2
DD (L4 4 I‘(n—i—l—i—%—i—l)fl’ A1) Hin

o0 o )
(using Stirling’s formula) < Z Z(l 4 12 4 p?t2) ((n +1+ l)*iflm’l) hzn

SO D+ P+ ) L+ 14 n) " hi

Thus, if fi(z) € BE°*(Q2) then d(x) € BS1+2 oty Q).
2

The connection between the regularity of u;(z) and d(z) is given in the next lemma.

51,52
Lemmaa5.2 For ui(x) and d(x) defined in and (5.3), if d(z) € B% (Q) then ui(z) €
B 272 (q).

2

Proof: Using (5.1])

HU1|| t1 t2 N ZZ 1+ 1 + n2t2)uln1hln
=1 n=0

T(n+1) 2
1 2t1 2to 2
() (e ) i

~

NER
N

S

Il
—
S
I
)

o 2
(1 + 1P 4 p?2) ((n+ 1)*§dz,n) hin

NE
M8

(using Stirling’s formula) <

I
_
3
Il
<)

v
hE

(1+ *h 4 n2t2) (1+n) @ dl%n hl2,n

Il
—
S
Il
)

(1 + 1 4 p2t272)y @2 p?

s
M8

l

I
—
Il
o

n

Thus, if d(z) € B**(Q) then u;(z) € By ’Sﬁ%(Q).
2

wlR

We are now in the position to state the regularity result for the solution @(z) satisfying (4.34),
(14.35]).
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ki 0
0 ke

unique solution W(z) = w? u(z) satisfying [(£.34), [@.35), with u(z) € BZH_% ’S2+Q(Q).
2

Theorem 5.1 For ki, ks € RY, with K(x) = [ }, and f(x) € BY"*(Q) there exists a
2

Proof: The result follows from Lemmas andapplied to {fin1}, {wn1}, and {fin2}, {uin2}
|

Remark: For the special case of k1 = ko Theorem is consistent with Theorem 3.2 in [§].

6 Concluding remarks

In this article we have introduced a generalization of the fractional Laplacian, , and showed
that for K (x) a constant, symmetric positive definite matrix the associated fractional Poisson equa-
tion (in R?) is well posed. Additionally we have related the regularity of the solution u(z) to the
regularity of the RHS function f(z). We are currently working to extend these results to a general
positive definite matrix K (z), and to extend the results to Q C R3.

Acknowledgements

The third author was partially supported by the National Science Foundation under Grant No.
DMS-2012291.

A Recurrence formulas for Jacobi polynomials

In this section we give a number of recurrence formulas for Jacobi polynomials used in the analysis
(see [I, pg. 782]).

(n + % + g +1)(1—2) P @) = (n+ a + )P (@) — (n+ 1) P (@) (A1)
(n + % LBy D (1+2) PP @) = (n+ 8+ 1) P (@) + (n+ DPY (@) (A2)

2
@20+ a + B) P (@) = (n+ o+ ) POD(@) — (n+ B) P (@) (A3)
@20+ a+ B) PP (@) = (n+ a+ B PO (@) + (n+ o) P (@) (A4)

Lemma A.1 Forl>1 andn >1,

1
1P (@) + <—2H> (n+y+1+ )BTV = () POTHN@). (A5
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Proof: Using (A.2)

[+1
1POD@) + W;‘"") (141) péV_J{LHl)(t)

(n+y+1+1)

= 1P{D() + ;
2+ + D)

n—1

[(n-l—l) POty 4 nPT(ﬂH’l)(t)}

= n+ 7l+ Doy [t H DRI = k) BIT0)] (wing (B3))
AL T pfi D) + (n+) PO 0]

= @ in;rl)l "y {(n +y I+ D) POTIDE) + (ndy+1) P,Eﬁlvl)(t)}

~ (2n +(n7++l)l Ty @+ LD ETTHING) (using (B.9))

= (n+41) PO @y,

B Proof of Theorem 2.1l

In this section we give a proof of Theorem For brevity, we use the notation used in [6].

Below the function G}\" < ,E ‘ t) denotes the Meijer G-function, and ,F,(-) the regularized hyper-
geometric function.
The following five conditions are used in some of the statements involving the Meijer G-function.
Condition S: 1 — @ > —b,
Condition A: p + ¢ < 2m + 2n,
Condition B: p+q¢q = 2m + 2n, p = ¢,
Condition C: p+q = 2m + 2n, p < q,
Condition D: p 4+ ¢ = 2m + 2n, p > q.

The following result is used in the analysis. It summarizes Theorems 1 and 2 in [6].

Theorem B.1 [6, Theorem 1 and 2] Let V (z) be a solid harmonic polynomial of degree | > 0 and
0 = d+ 2. Assume that —d < a < 0 or a > 0 and parameters m, n, p, q, a, and b satisfy
Condition A, as well as

20 —a) > —a+1, —2b < d+1.

Define f(x) = V(x)Gp < E ‘]w\2> Then

[ o m+1n 1 - m7 a— gj -5
a1t = evmepsst (P 2T T ee) e
2



for all x # 0. The same statement holds under Conditions B, C, and D provided
2A > —a+1, 2\ < d+1;
if Condition B is satisfied, we additionally require that v > 0 and either |z| #1 orv > 1 4 «.

For the case a > 0, the results extends to x = 0 whenever both f and (—A)O‘/2 f are continuous at
0.
|

Proof of Theorem (2.1} Proceeding in a similar manner to the proof of Theorem 3 in [0], let

V(xz) = Vi u(z), and using (40a) in [6] and equation 8.4.49.22 in [16]

o) = HE A vy - e (T T 1)
_ F(”;:(;‘:_%)— s) V(2)G2S ( 1+ 5 8’s+n, 1 Iggn ‘ ’x‘g)
= Nn;;:%_@V@M%3<1+%:§f”’1_%_”Mﬂﬁ ( using the defn. of G2J(-))
_ F(”lf(;l‘%_ D () (—1)"G%%< - %” ! %_g‘”” \W) using [6) (51)].

(B.2)

Using Theorem

2
g_%a g e _p 9_s4pn, 1-9
—_ 2a_2V G22 2 2 ) ) ‘ 2
(ZL') 44 07 1_%’ 2 (SJrTa’ 1_§ |$|
_ +a dta _a
= evart (1 BT T 1T [P (using the def. of GE()
2 ) 2 2
2o 9 _da_p 9 g4
-2 12 ) ) 2 3
= 2972V () Gi3 ( o) g ma 13 [22)  using [6, (22)]
_ 0ta Sta
= 2972V (2)Gi2 ( 2 0 2 0 2 1 2 " 22 S(;iian ‘ |x]2> ( using the defn. of G33(-))
) 2 2
9 _ dta _ 92 _
— 272V(2) G} ( A ]|z|2) using [6, (21)]. (B.3)
) 2

Next, using [6, (23)], and [6, (40b)]

2-%4a _pn 2-s54n I'(n — 1 4+ &52) n—1+%2 —1+s-n
ai (2 S ol ) py ” [laf?
2

0, 1 F(n+2-—s) 5
T(n — 1 + %) —s T(n+2-y5) ($—2+s,5-1)
= S (- 5 Pudics @l = 1), (B.4)
F(n+2_3> F(n+1—8+§)
Combining (B.2)-(B.4) we obtain (2.11)).
|
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C Proof of Theorem [3.1]

Proof of Theorem [3.1} Recall that in R?, V- = 2.7 4+ 1.0.5
or r Op

Using ,
4 (1= r2)es2 Pl g2 - 1)) = o+ Yyra e tplETh g2y (o)
dr 2
Also,
) .
5, Vin(@) = 11 V(). (C.2)

Combining ((C.1]) and (C.2|) with the definition of V we obtain
Vi@) = (Vi@ @2 R e - 1)

= 2+ 5 Vi(@)r (1= r) 2 P 22 1)) §

t ((vw@) e e 1) 6. (©3)

Using i = cos(¢)r — sin(p)ep, from (C.3)) we obtain

of _

or

cos(ip) (l Vi(@)rt (1= )2 P20 (202 — 1) — 2(n+ %) Vi(x)r(1— )21 pls=h g2 1))
— sin(y) ((c‘i&‘/”“(m)> rL(1 = r2)e2 piE (g2 - 1)> . (C.4)

With a view to combining the (1 — 72)®/2 P,sg’l)(%z — 1) terms in (C.4),
let Hy = cos(p)l Viy(e)r™" = sin(p) (#:Viu()) 1
Suppose V; ,(z) = r!cos(lp). Then %Vw(aj) = —rllsin(lp). In this case,

Hy = 1771 (cos(lyp) cos(p) + sin(ly) sin(p)) = Ir'teos((l —1)p) = 1Viy u(z).  (C.5)

Alternatively, suppose V; () = r'sin(lp). Then %Vl,u(@ = 1l cos(lp), and
H, = Irt71 (sin(ip) cos(p) — cos(ly) sin(p)) = Iritsin((l—1)p) = IVieg uy(z).  (C.6)
The coefficient of — 2(n + §) (1 — r2)e/2-1 P,E%_l’lﬂ)(
Suppose Vj ,(r) = r'cos(lp). Then,
1
Hy = 71 cos(lp) cos(p) = 57““'1 (cos((I = 1)p) + cos((I+1)p))

2r?2 — 1) in (C.4) is Hy = cos(p) Vi u(x) .

1 1
=3 r2rt=L cos((I — 1)) + 3 L cos((1+ 1))
1 1
) r?Vier (@) + 5 Vigr u(z) . (C.7)
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Alternatively, suppose V; ,(z) = r'sin(lyp). Tlien,
Hy = v sin(lyp) cos(p) = 57‘”'1 (sin((I = 1)) + sin((I+ 1)p))

= %TQTI sin((l — 1)¢) + % B sin((1 4 1))

1 1
= 27'2 Vier u(z) + §Vl+1,u(w)~ (C.8)
Rewriting (C.4) using and - - we have
of _
oxr
Wir () (1= )2 P @2 1) = (4 ) Vi (@) (=222 P2 2 -
— (0 ) Vi (@) (1= r) 2 R gy, (C.9)
2y pl2:) o, 2 (§-1,0141) o o : o
Let Hy = L(1—=7r)P2" (22 =1) — (n+ $)r*P,? (2r© — 1). With the substitution
t=2r? -1,
! g o
Hy= 5 (1-0)P2" ) - (”;2)<1+t)P,§2 )
B l oy (21,0 (2-1,1) .
= Grrrarey (P ET0 - e PR ) (i @)
(n+%) (5-1,0 (5-1.0) ~
_ P2 nHpPz, .
(n+%) (2-1,1) (n+1) « (2-1,1)
= — P2 e - Tipplat
Gnraiiyn Y O @mrerirptg a0
(n+1) p3-1.0 (51,0
e ey L (G SRR AU GRS YR U)
= —m+1) PV (using (&) . (C.10)
Substituting (C.10]) into (C.9)) and rearranging we obtain (3.1)).

The expression for % is obtained in a similar manner. Using j = sin(p)r + cos(¢)@, from (C.3))

we obtain

of _
6y_

sinfp) (1Viu(@) 1 (1 =22 P2V @2 1) = 2(n+ S) Vi) r (1 =)o R0 22 )
+ cos(yp) <<§0Wu(x)> (1 = r?)e/? P,E%’l)(2r2 - 1)> . (C.11)
With a view to combining the (1 — r2)®/2 Pr(l%’l)(Qr2 — 1) terms in (C.11)),

let Hy = sin(@) Vi)t + cos(e) (V@) 7.
Suppose Vi ,(z) = r!cos(lp). In this case,
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Hy = 1r7! (cos(lyp) sin(p) — sin(lp) cos(p)) = —1r T sin((l—1)p) = —1Vi_q (). (C.12)

Alternatively, suppose V; () = r'sin(lp). Then
Hy = 177 (sin(ly) sin(p) + cos(lp) cos(p)) = lr'teos((l—1)p) = 1Vi_y pe(2). (C.13)

The coefficient of — 2(n + &) (1 — r2)®/271 P,E%A’Hl)

(2r?2 —1) in (C4) is Hy = sin(p) Vj u(x) r.
Suppose Vi ,(z) = r'cos(lp). Then,

1
Hy = r'*1 cos(ly) sin(p) = — 5 P (sin((1 — 1)) — sin((1+1)¢))
1 1
= -3 r2ri =t sin((1 — 1)) + 3 L sin((14 1))
1 1
) r2Viet e () + 5 Vigr e () (C.14)

Alternatively, suppose V, ,(z) = rlsin(lyp). Then,
1
Hy = ' 1sin(ly) sin(g) = =77 (cos((I —1)p) — cos((I +1)¢))

2
1 1
= S eos((L= 1)) = 5o cos(1+ 1))
1, 1
=57 Vie1 = (7) — §W+1,u*($)- (C.15)

Rewriting (C.11)) using (C.12)),(C.13)) and (C.14),(C.15)) we have

of _
oy
a a /27— Q1,141
LG IWint e (2) (1= )2 B0 (27 1) — (0 5) (Vi e )0 (L= )27 P00 202 1)
— D) (Vi e (@) (1= )2 PET D g2y (C.16)

2

Using ((C.10)) and rearranging we obtain (3.2)). The proofs of (3.3)) and (3.4 follow in a similar and

much simpler manner (as Vo1 = 1), and are thus omitted. ]
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