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Abstract

Extending a result of Christiansen, we prove that every mutli-graph G = (V,E) admits

a proper edge colouring φ : E → {1, 2, . . . } which is local, that is, φ(e) 6 max{d(x) +

π(x), d(y)+π(y)} for every edge e with end-points x, y ∈ V , where d(z) (resp. π(z)) denotes

the degree of a vertex z (resp. the maximum edge multiplicity at z). This is derived from a

local version of the Fan Equation.

1 Introduction

Edge-colouring is an important and active area of graph theory; for an overview see, for example,

the book by Stiebitz, Scheide, Toft and Favrholdt [8]. One of the key results here is the

remarkable theorem of Vizing [9], proved independently by Gupta [6], that every multi-graph

G admits a proper edge colouring with at most ∆(G) + π(G) colours, where ∆(G) and π(G)

denote respectively the maximum degree and the maximum edge multiplicity of G, and an edge

colouring is called proper if no two different edges sharing a vertex get the same colour.

Some local versions of edge colouring problems (where a possible colour of an edge xy depends

on local information such as the degrees of x and y rather than the global maximum degree) were

introduced already in the influential paper of Erdős, Rubin and Taylor [5]. One of the strongest
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asymptotic results here is by Bonamy, Delcourt, Lang and Postle [1] giving the following local

list version of Vizing’s theorem: for every ε > 0 if the maximum degree ∆(G) of a graph G is

sufficiently large, the minimum degree δ(G) is at least ln25 ∆(G) and we have an assignment

of colour lists to edges e 7→ L(e) so that each edge {x, y} gets at least (1 + ε)max{d(x), d(y)}

colours then there is a proper edge colouring φ of G with φ(e) ∈ L(e) for each edge e, where

d(x) denotes the degree of a vertex x.

Resolving a conjecture posed in [1], Christiansen [3,4] proved that every simple graph G admits

a proper edge colouring into N := {1, 2, 3, . . . } which is local, meaning that the colour of any

edge {x, y} is at most max{d(x), d(y)} + 1. In the special case when the graph G is biparite,

the stronger conclusion that the colour of {x, y} is at most max{d(x), d(y)} (which may be

called the local König Theorem) follows from the more general results of Borodin, Kostochka

and Woodall [2].

The purpose of this note is to observe that the proof of Christiansen extends to multi-graphs.

The following definition seems to be the “right” one in this context: let us call an N-valued

edge colouring φ of a multi-graph local if for every edge e with endpoints x and y it holds that

φ(e) 6 max{d(x) + π(x), d(y) + π(y)}, (1)

where π(z) denotes the maximum edge multiplicity at a vertex z. Here is a local version of

Vizing’s theorem for multi-graphs.

Theorem 1 Every multi-graph admits a proper local edge colouring.

The standard example (a 3-vertex multi-graph where every pair has the same multiplicity)

shows that one cannot decrease the right-hand size of (1) in general. Note that, even without

the extra locality restriction, we do not know the minimum number of colours as a function of

∆ and π that suffices for proper edge colouring of every multi-graph with maximum degree ∆

and maximum edge multiplicity π; see Scheide and Stiebitz [7] for our current knowledge on

this question.

The original Vizing’s theorem as well as some other edge colouring results can be derived from

the so-called Fan Equation of Vizing [10] (which is discussed in detail in [8, Section 2]). Here

we present a local version of the Fan Equation (which, in this more general setting, becomes an

inequality, see Theorem 4) and derive Theorem 1 from it. As another consequence of Theorem 4,

we have the following result.

Theorem 2 Let G = (V,E) be a simple graph and k ∈ N. If the maximum degree of G is at

most k and the set of vertices of degree exactly k spans no cycle in G, then there is a proper

local colouring E → {1, . . . , k}.

2 Notation and preliminaries

By N := {1, 2, . . . } we denote the set of positive integers. For integers k > ℓ > 0, we denote

[ℓ, k] := {ℓ, . . . , k} and [k] := {1, . . . , k}.
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LetG = (V,E, ı) be amulti-graph, that is, V and E are the sets of vertices and edges respectively,

and ı is a (not necessarily injective) function from E to
(
V
2

)
, the set of unordered pairs of vertices.

The (edge) multiplicity π(x, y) := |ı−1({x, y})| of a pair {x, y} ∈
(
V
2

)
is the number of edges

whose end-points are x and y. For x, y ∈ V and e ∈ E, we write x ∈ e (resp. e = xy) to mean

that x ∈ ı(e) (resp. ı(e) = {x, y}).

The degree of x ∈ V is d(x) :=
∑

y∈V \{x} π(x, y) which is the number of edges incident to x.

Also, let π(x) := maxy∈V \{x} π(x, y) denote the maximum multiplicity at x.

As only edges will be coloured, we will usually say just “colouring” instead of “edge colouring”.

A partial colouring of G is a function φ : dom(φ) → N where the domain dom(φ) of φ is a

subset of E. We may also write this as φ : E ⇀ N. If dom(φ) = E (that is, every edge is

coloured) then we call φ a colouring (and write φ : E → N). A (partial) colouring φ is proper

if no two distinct edges sharing at least one vertex get the same colour. It is called local if

φ(e) 6 max
{
d(x) + π(x) : x ∈ e

}
, for every e ∈ dom(φ), (2)

that is, for every coloured edge e there is x ∈ e with φ(e) 6 d(x) + π(x).

Given a partial colouring φ, a φ-chain is a sequence of distinct edges C = (e1, . . . , ep) such

that {e1, . . . , ep} ∩ dom(φ) = {e2, . . . , ep} (i.e. e1 is the only uncoloured edge) and, for every

i ∈ [p − 1], the edges ei and ei+1 share exactly one vertex. The C-shift (or shift along C) of

φ is the partial colouring φ′ with dom(φ′) = (dom(φ) \ {ep}) ∪ {e1} which coincides with φ,

except φ′(ei) := φ(ei+1) for i ∈ [p − 1] (while ep is uncoloured under φ′). Informally speaking,

we shift colours one step down along C. A φ-chain (e, e′) with e = xy and e′ = xz (thus, e

is uncoloured, e′ is coloured and y 6= z) is called φ-safe if φ(e′) 6 d(y) + π(y) and no edge

incident to y has colour φ(e′). A φ-chain C = (e1, . . . , em) with m > 3 is φ-safe if, for every

i ∈ [m − 1], the φi-chain (ei, ei+1) is φi-safe, where φi denotes the (e1, . . . , ei)-shift of φ. In

other words, C is φ-safe if each individual 1-edge step of the C-shift is safe with respect to the

current colouring. Note that the sequence C = (e1) made of a single edge e1 uncoloured under

φ is a φ-chain (and its shift keeps the partial colouring φ unchanged); also, let us agree that

every such single-edge chain is φ-safe. When the colouring φ is understood, we may say just

“chain” instead of “φ-chain”, etc.

For a vertex x ∈ V and distinct colours α, β ∈ N with β not present at x, let Px(α, β, φ) denote

the sequence of edges on the maximal (α, β)-bichromatic path that starts at the vertex x. Thus

the values of φ on Px(α, β, φ) alternate between α and β, starting with α; if the colour α is

not present at x, then Px(α, β, φ) is the empty sequence. Note that we exclude the case that

Px(α, β, φ) is a double edge by requiring that β is missing at x in this definition.

In some proofs, we will be given an integer k and the set of possible colours will be restricted

to [k]. Then we will use the following definitions that implicitly depend on k. Given φ : E ⇀ [k],

we let for a vertex x ∈ V

φ(x) := [k] \ {φ(e) : e ∋ x},

to be the set of colours missing at x, and

φ̃(x) := φ(x) ∩ [d(x) + π(x)],
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to be the set of colours which are safe at x. Thus a colour is safe at x if it is missing at x and

is at most d(x) + π(x). Also, the potential (function) of φ : E ⇀ [k] is

Φ(φ) :=
∑

x∈V

∣∣∣φ̃(x)
∣∣∣ .

Lemma 3 Let G = (V,E, ı) be a multigraph, k ∈ N be a positive integer, φ : E ⇀ [k] be a

proper local partial colouring, and φ′ be the shift of φ along a φ-safe chain (e, e′), with e = xy

and e′ = xz. Then φ′ is a proper local partial colouring and Φ(φ′) 6 Φ(φ). Moreover, we have

equality if and only if φ(e′) 6 d(z) + π(z).

Proof. The edge e = xy gets coloured during the shift. The new colouring φ′ is proper because

the set of colours at x does not change while the new colour on e = xy was missing at y. Also,

the locality condition for e holds from the y-side, that is, φ′(e) = φ(e′) 6 d(y) + π(y).

Consider the difference Φ(φ′) − Φ(φ). Since the contributions of a vertex that sees the same

sets of colours on incident edges in φ and φ′ cancel each other, we have to look at y and z

only. The contribution of y to Φ(φ′)−Φ(φ) is exactly −1, because the shift reduces the number

of safe colours at y by 1 (namely, φ(e′) is now gone from this list). The contribution of z to

Φ(φ′)− Φ(φ) is at most 1, and it is equal to 1 if and only if the colour moved out from z is in

[d(z) + π(z)], that is, if and only if φ(e′) 6 d(z) + π(z). This finishes the proof of the lemma.

3 Multi-fans

Let k ∈ N and a multigraph G = (V,E, ı) be given. Let φ : E ⇀ [k] be any proper local partial

colouring. Let e ∈ E be an uncoloured edge and let x ∈ e.

A multi-fan at x with respect to e and φ (and k) is a sequence F = (e1, y1, . . . , ep, yp) with p > 1

consisting of edges e1, . . . , ep and vertices y1, . . . , yp satisfying the following conditions.

(F1) The edges e1, . . . , ep are distinct, e1 = e, and ei = xyi for i ∈ [p].

(F2) For every i ∈ [2, p] there is j ∈ [i− 1] such that φ(ei) ∈ φ̃(yj); in particular, ei is coloured

by φ.

Also, we denote V (F ) := {y1, . . . , yp}. Note that V (F ) does not include x.

Usually, the Fan Equation is stated for an edge critical multi-graph (when a desired colouring

of the whole edge set exists when we remove any edge). Having in mind possible algorithmic

and descriptive set theory applications, we state a version where the multi-graph G we want

to colour need not be edge critical and the presented result can be used to “improve” the

current partial colouring using chains of special kind. With this in mind, we make the following

definitions.

A chain C = (e1, . . . , ep) is improving if it is φ-safe and the C-shift φ′ of φ has strictly smaller

potential, or there is a way to extend φ′ to ep keeping φ′ proper and local (in particular, strictly
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decreasing the potential). Note that the new proper local colouring φ′ satisfies Φ(φ′) < Φ(φ)

in either case. We say that a chain C is Vizing if it starts with some edges f1, . . . , fq, q > 1,

all containing the same vertex z and then continues with a (possibly empty) initial segment

of a bichromatic path starting at y, where y 6= z is the other endpoint of fq. (Some further

restrictions can be put on possible chains arising from the proof of Theorem 4 but we would like

to keep this definition simple and short.) Also, for z ∈ V let dφ(z) := |{e ∈ dom(φ) : e ∋ z}|

denote the number of edges at z that are assigned a colour by φ.

Theorem 4 (Local Fan Inequality) Let k > 2, let G = (V,E, ı) be a multi-graph with

∆(G) 6 k, and let φ : E ⇀ [k] be a partial proper local colouring that admits no improv-

ing Vizing chain. Suppose that e ∈ E is uncoloured. Let x ∈ e and let F = (e1, y1, . . . , ep, yp)

be a multi-fan at x with respect to e and φ. Then all of the following properties hold.

(a) For every i ∈ [p] there are m > 0 and a sequence i0 > i1 > · · · > im such that i0 = i,

im = 1 and (eim , eim−1
, . . . , ei0) is a φ-safe chain.

(b) For every i ∈ [p], we have

φ(x) ∩ φ(yi) ∩ [ max{d(x) + π(x), d(yi) + π(yi)} ] = ∅. (3)

(c) For all choices of i ∈ [p], α ∈ φ̃(x), and β ∈ φ̃(yi), the (α, β)-bichromatic path Pyi(α, β, φ)

from yi ends in x.

(d) For every i, j ∈ [p], if yi 6= yj then

φ̃(yi) ∩ φ̃(yj) = ∅. (4)

(e) If the multi-fan F is maximal then |{y1, . . . , yp}| > 2 and

∑

z∈V (F )

(
πF (x, z)−min

{
k, d(z) + π(z)

}
+ dφ(z)

)
> 1. (5)

(Here πF denotes the edge multiplicity in the multi-graph F , while π = πG is taken with

respect to the whole multi-graph G.)

Proof. To prove Part (a) for any given i ∈ [p], we construct a required sequence as follows.

Initially, let i0 := i and m := 0. If the current im is equal to 1 then stop. Otherwise let

im+1 ∈ [im − 1] be any index satisfying (F2) for im (that is, φ(eim) ∈ φ̃(eim+1
)), increase m by

1, and repeat. Let i0 > i1 > · · · > im be the final sequence (with i0 = i, im = 1, and m > 0).

Clearly, (eim , . . . , ei0) is a chain.

Although this is intuitively obvious, let us formally check that the chain (eim , . . . , ei0) is φ-safe.

This vacuously holds if m = 0, so assume that m > 1. Let φ1 := φ and, inductively for j ∈ [m],

let φj+1 be the (eim−j+1
, eim−j

)-shift of φj; equivalently, φj+1 is obtained from φ by shifting along

(eim , . . . , eim−j
). We show by induction on j ∈ [m] that the φj-chain (eim−j+1

, eim−j
) is φj-safe

and the partial colouring φj+1 is proper and local. So take any j ∈ [m]. We know that φj is
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proper and local (by induction if j > 2 and by φ1 = φ if j = 1). Note that φj(eim−j
) = φ(eim−j

)

(since, by (F1), the edge eim−j
is distinct from any edge whose colour changes when we construct

φj from φ1 = φ). By the choice of im−j+1 (that is, by (F2)), φ(eim−j
) is in φ̃(yim−j+1

). Since

all colours at x are pairwise distinct, the colour φ(eim−j
) cannot appear at yim−j+1

when we

pass from φ1 = φ to φj. Thus φj(eim−j
) = φ(eim−j

) is also in φ̃j(yim−j+1
) and the φj-chain

(eim−j+1
, eim−j

) is φj-safe. It follows that the partial colouring φj+1 is proper and local by

Lemma 3, as required.

Suppose that Part (b) is false. Let i ∈ [p] be the smallest index violating it. Let α be a colour

present in the left-hand side of (3). Let (i0, . . . , im) be the sequence returned by Part (a) for

this index i. Let φ′ be the shift of φ along (eim , eim−1
, . . . , ei0). By Lemma 3, the new colouring

φ′ is proper and local (and satisfies Φ(φ′) 6 Φ(φ)). Under φ′, the edge ei = xyi is uncoloured;

also, the colour α is missing at both x and yi. Indeed, α was missing at both x and yi before

the shift (i.e. under φ) while the shift, that affects only edges at x, does not move colour α at

all.

Obtain φ′′ from φ′ by colouring ei with the colour α. By above, the new colouring φ′′ is still

proper. By definition, α is at most max{d(x) + π(x), d(yi) + π(yi)}, so φ′′ is also local. Thus

(eim , . . . , ei0) is an improving Vizing chain for φ. This contradiction proves Part (b).

Let us turn to Part (c). Suppose that the claim is false for some vertex yi and colours α and β.

Choose the smallest possible such index i ∈ [p]. Recall that β is missing at yi, P := Pyi(α, β, φ)

is the (α, β)-bichromatic path starting at yi, and we assumed on the contrary that the final

endpoint of P is a vertex x′ 6= x. The vertex set V (P ) of P does not contain x, as otherwise x

would be an endpoint (since α is missing at x). It follows that none of the edges incident to x

(in particular, none of e1, . . . , ep) can belong to P . Let i0 = i > · · · > im = 1 be the sequence

returned by Part (a) for this i and let φ′ be the shift of φ along the chain (eim , . . . , ei0). By

Lemma 3, the partial colouring φ′ is proper and local, and satisfies Φ(φ′) 6 Φ(φ). Note that

the edge ei is not coloured by φ′.

Let the path P traverse edges (f1, . . . , fℓ) and vertices (u1, u2, . . . , uℓ+1) in this order. Thus

u1 = yi and fs = usus+1 for every s ∈ [ℓ]. By Part (b), the colour α is present at yi under

φ and also under φ′ (since the other endpoint of the colour-α edge at y cannot be x). Thus

ℓ > 1. Let f0 := ei denote the edge coming before the path P in our shifting procedure. Let

P ′ := (f0, . . . , fℓ). It is a path (since V (P ) 6∋ x) and a φ′-chain (since f0 6∈ dom(φ′)). Also, let

u0 := x (so that f0 = u0u1) and let C be the concatenation of (eim , . . . , ei0) and P . Clearly, C

is a Vizing chain.

Observe that if we were interested in only proper edge-colourings (that is, not requiring that

the extra locality property in (2) holds), then we could have taken the P ′-shift of φ′ and assign

one of α or β to the (now uncoloured) edge fℓ, thus finding a colouring with strictly larger

domain than φ. Instead, we proceed as follows.

Starting with φ′, we iteratively apply the (fs, fs+1)-shifts for s = 0, 1, . . . , ℓ− 1 as long as each

of them is safe. Lemma 3 implies that the potential Φ cannot increase at any step. Thus Φ

stays constant by our assumptions on φ.

Suppose first that we cannot perform the above shift for some s 6 ℓ−1, that is, before doing the
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whole chain P ′. Denote the obtained colouring φ′′. Thus φ′′ is the (f0, . . . , fs)-shift of φ
′, where

s is the maximum index (assumed to be at most ℓ− 1) such that (f0, . . . , fs) is a φ′-safe chain.

Note that s > 1 since the first shift (along (ei, f1)) moves the colour α to ei = xyi and cannot

violate the locality condition at x by α 6 d(x) + π(x). Since the (fs, fs+1)-shift is not safe in

the current colouring φ′′ but results in a proper colouring (since we shift along a bichromatic

path), we have that

γ := φ′′(fs+1) > d(us) + π(us). (6)

Suppose first that s > 2. Consider the (fs−2, fs−1)-shift (that is, the penultimate one before

we obtained φ′′). This shift moves the colour from fs−1 = us−1us to fs−2 = us−2us−1, with

the moved colour being γ. Thus by (6) and the last claim of Lemma 3, the (fs−2, fs−1)-shift

strictly decreased the value of the potential, while the chain C truncated at fs−1 is safe and

thus improving, a contradiction. So, suppose that s = 1. Here when we shift the colouring φ′

along the path P ′, we perform the first safe shift (f0, f1) but we cannot proceed with the second

shift, namely along (f1, f2). However, then we have that us = yi and γ = β in (6), contradicting

the assumption of Part (c) that β lies in φ̃(yi) ⊆ [d(yi) + π(yi)].

Thus, we can assume that the whole chain P ′ is φ′-safe (and thus C is φ-safe). We shift φ′ all

way along it to obtain φ′′; equivalently, φ′′ is the C-shift of φ. The edge fℓ is uncoloured by

φ′′. Let γ be the element of {α, β} different from φ′′(fℓ−1) = φ′(fℓ). Recall that fℓ is the last

edge of the maximal α/β-bichromatic path P with respect to φ that starts with yi. Clearly, the

colour γ is missing at the penultimate vertex uℓ under φ
′′.

Let us show that γ cannot occur at uℓ+1 under φ′′. Suppose otherwise. As γ is not present

at uℓ+1 under φ (by the maximality of P ) but is present at uℓ+1 under φ′, it must be the case

that γ = β and uℓ+1 = yij for some j ∈ [m] (and the colour β appeared at yij because it was

shifted to it from yij−1
during the (eim , . . . , ei0)-shift of φ). We conclude that ij is strictly less

than i = i0 and the reversal of the path P is the maximal α/β-bichromatic path starting at

yij under φ. This means that Pyij
(α, β, φ) ends at yi 6= x and the index ij contradicts the

minimality of i. This contradiction proves that γ is not present at uℓ+1 under φ′′, as claimed.

We conclude that, under φ′′, the colour γ is missing at both uℓ and uℓ+1. Next, one can show

similarly to above that γ 6 d(uℓ) + π(uℓ): otherwise, for ℓ > 2, the shift for s = ℓ − 2 would

strictly decrease Φ while, for ℓ = 1, this would contradict the choice of β by γ = β and uℓ = yi.

Thus if we colour fℓ by γ then we obtain a proper local colouring. Hence, C is an improving

Vizing chain. This contradiction proves Part (c).

Let us turn to Part (d). Suppose on the contrary there are i, j ∈ [p] such that yi 6= yj and

there is a colour β ∈ φ̃(yi) ∩ φ̃(yj). Let α be any element in φ̃(x). The last set is non-empty

since at most d(x) − 1 < k edges at x are coloured. Part (c) applies to i (resp. j) and gives

that the α/β-alternating chain starting at yi (resp. yj) ends at x. This means that, in the

multi-graph formed by the edges coloured α or β, the three distinct vertices yi, yj and x lie

in the same connectivity component and each has degree 1. This is contradiction, since the

{α, β}-bichromatic multi-graph has maximum degree at most 2.

For Part (e), suppose that the multi-fan F is maximal. Since at most d(y1)−1 edges are coloured

at y1, there is β ∈ φ̃(y1). The colour β must be present at x for otherwise, by colouring e1
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with colour β, we obtain a larger proper local colouring and thus (e1) is an improving chain,

a contradiction. Let e′ = xy′ be the edge of colour β. By maximality, the fan F contains

the edge e′. Thus V (F ) contains y′ 6= y and has size at least 2, as desired. It remains to

prove (5). For this, define Γ := {φ(e2), . . . , φ(ep)} and Γ ′ :=
⋃

z∈V (F ) φ̃(z). (Recall that

V (F ) = {y1, . . . , yp}.)

Claim 1 The sets Γ and Γ ′ are the same.

Proof of Claim. Let us show that Γ ⊆ Γ ′. Take any index i ∈ [2, p]. By (F2), there is j ∈ [i−1]

such that φ(ei) ∈ φ̃(yj). Thus φ(ei) ∈ Γ ′, as desired.

Conversely, pick any i ∈ [p] and β ∈ φ̃(yi). By Part (b), we have that β 6∈ φ(x). Thus there is

e′ = xz with φ(e′) = β. By the maximality of F , there is j ∈ [2, p] with e′ = ej . Thus β = φ(ej)

belongs to Γ . We conclude that Γ ⊇ Γ ′, finishing the proof of the claim.

By Claim 1 and Part (d), we have that

p− 1 = |Γ | = |Γ ′| =
∑

z∈V (F )

∣∣∣φ̃(z)
∣∣∣ >

∑

z∈V (F )

(min{k, d(z) + π(z)} − dφ(z)) .

Also, we have that p =
∑

z∈V (F ) πF (x, z). Putting these two identities together, we obtain (5).

This finishes the proof of the lemma.

Note that, in Theorem 4, if e is the only edge of G not coloured by φ then dφ(yi) = d(yi) except

dφ(y1) = d(y1)− 1 and the Local Fan Inequality simplifies to

∑

z∈V (F )

(
πF (x, z)−min

{
k − d(z), π(z)

})
> 2.

Now we are ready to derive the promised local version of Vizing’s theorem.

Proof of Theorem 1. Let k := max{d(x)+π(x) : x ∈ V (G)}. Starting with the empty colouring,

iteratively apply improving Vizing chains until none exists. (We stop since the potential strictly

decreases each time.) Suppose that some edge e is not coloured by the final colouring φ. Let

x ∈ e and let F = (e1, y1, . . . , ep, yp) be a maximal multi-fan at x with respect to e and φ. Then

the Local Fan Inequality (5) holds by Theorem 4. Since k > d(z) + π(z) for every z ∈ V (G),

the inequality states that

∑

z∈V (F )

(πF (x, z)− π(z) + dφ(z)− d(z)) > 1.

This is impossible as each summand in the left-hand side is clearly non-positive.

It easy to convert the proof of Theorem 1 into an algorithm that finds a local colouring of input

multi-graph G = (V,E, ı) without isolated vertices with running time polynomial in |E|. The

algorithm starts with the empty partial colouring φ∅ and iteratively finds an improving Vizing

chain and changes the current partial colouring accordingly. Each step decreases the potential.
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Thus we make at most Φ(φ∅) = O(|E|) improvements. Given an uncoloured edge, an improving

Vizing chain as in the proof of Theorem 4 can be easily found in polynomial in |E| time.

Note that if G is a simple graph, then the Local Fan Inequality (5) states that

∑

z∈V (F )

(dφ(z)−min{k − 1, d(z)}) > 1. (7)

Proof of Theorem 2. Let C be the set of pairs (φ, e) such that φ is a proper local partial

colouring E(G) ⇀ [k] with the smallest possible potential, while e ∈ E an edge is not coloured

by φ. Suppose that the theorem is false. Thus C is non-empty.

Claim 2 For every (φ, e) ∈ C and x ∈ e there are at least two different choice of f ∈ E such

that f = xy for some y ∈ V with d(y) = k and (φ′, f) ∈ C for some φ′.

Proof of Claim. Let F = (e1, y1, . . . , ep, yp) be a maximal multi-fan at x with respect to e1 = e

and φ. By Theorem 4, the Local Fan Inequality (7) holds. Since dφ(y1) 6 d(y1) − 1, the

contribution of y1 to the left-hand size of (7) is at most 0 if d(y1) = k and at most −1 if

d(y1) 6 k − 1. We conclude by k > d(z) for every z ∈ V (G) that there are at least two indices

i ∈ [p] such that d(yi) = k.

Let us show that, for each such i, the edge f := ei satisfies the claim. Indeed, let i0 = i > i1 >

· · · > im = 1 be the sequence of indices returned by Part (a) of Theorem 4. Let φ′ be the shift

of φ along the φ-safe sequence (eim , eim−1
, . . . , ei0). By Lemma 3, (φ′, f) ∈ C, as required.

Start with any (φ1, e1) ∈ C with e1 = x1x2. By applying Claim 2 (twice) and changing the pair

(φ1, e1) we can assume first that d(x1) = k and then that also d(x2) = k (and thus k = ∆(G)).

Starting with φ1 and e1 = x1x2, we inductively construct an infinite sequence φ1, φ2, . . . and

an infinite path visiting edges e1, e2, . . . and vertices x1, x2, x3, . . . in the stated order such that

(φi, ei) ∈ C and d(xi) = k for every i > 1 as follows. Let i > 1 and suppose that we already have

φ1, . . . , φi and e1, . . . , ei as above. Claim 2 when applied to (φi, ei) with x = xi+1 gives at least

two different potential choices of the next edge ei+1 = xi+1xi+2 and the next partial colouring

φi+1 (that is, such that (φi+1, ei+1) ∈ C and d(xi+2) = k). For at least one of these choices we

have xi+2 6∈ {x1, . . . , xi} as otherwise this would create a cycle on vertices of degree k. Thus

we can always extend the path by a new edge. However, this contradicts the finiteness of our

graph G, thus proving Theorem 2.
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