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Abstract

We investigate learning the equilibria in non-stationary multi-agent systems and address the challenges
that differentiate multi-agent learning from single-agent learning. Specifically, we focus on games with
bandit feedback, where testing an equilibrium can result in substantial regret even when the gap to be
tested is small, and the existence of multiple optimal solutions (equilibria) in stationary games poses extra
challenges. To overcome these obstacles, we propose a versatile black-box approach applicable to a broad
spectrum of problems, such as general-sum games, potential games, and Markov games, when equipped
with appropriate learning and testing oracles for stationary environments. Our algorithms can achieve
Õ
(
∆1/4T 3/4

)
regret when the degree of nonstationarity, as measured by total variation ∆, is known, and

Õ
(
∆1/5T 4/5

)
regret when ∆ is unknown, where T is the number of rounds. Meanwhile, our algorithm

inherits the favorable dependence on number of agents from the oracles. As a side contribution that may
be independent of interest, we show how to test for various types of equilibria by a black-box reduction to
single-agent learning, which includes Nash equilibria, correlated equilibria, and coarse correlated equilibria.

1 Introduction
Multi-agent reinforcement learning (MARL) studies the interactions of multiple agents in an unknown
environment with the aim of maximizing their long-term returns [Zhang et al., 2021]. This field has
applications in diverse areas such as computer games [Vinyals et al., 2019], robotics [de Witt et al., 2020],
and smart manufacturing [Kim et al., 2020]. Although various algorithms have been developed for MARL, it
is typically assumed that the underlying repeated game is stationary throughout the entire learning process.
However, this assumption often fails to represent real-world scenarios where the environment is evolving
throughout the learning process.

The task of learning within a non-stationary multi-agent system, while crucial, poses additional challenges
when attempts are made to generalize non-stationary single-agent reinforcement learning (RL), especially for
the bandit feedback case where minimal information is revealed to the agents [Anagnostides et al., 2023]. In
addition, the various multi-agent settings, such as zero-sum, potential, and general-sum games, along with
normal-form and extensive-form games, and fully observable or partially observable Markov games, further
complicate the design of specialized algorithms.

In this work, we take the first step towards understanding non-stationary MARL with bandit feedback.
First, we point out several challenges that differentiate non-stationary MARL from non-stationary single-agent
RL, and bandit feedback from full-information feedback. Subsequently, we propose black-box algorithms with
sub-linear dynamic regret in arbitrary non-stationary games, provided there is access to learning algorithms
in the corresponding (near-)stationary environment. This versatile approach allows us to leverage existing
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algorithms for various stationary games, while facilitating seamless adaptation to future algorithms that may
offer improved guarantees.

1.1 Main Contributions and Novelties
1. Identifying challenges in non-stationary games with bandit feedback (Section 3). First, we
point out that bandit feedback is incompatible with online-learning based algorithms as the gradient of
reward is hard to estimate. Then, we show that bandit feedback complicates the application of test-based
algorithms as testing an arbitrary small gap can incur O(1) regret each term. Non-uniqueness of equilibria
makes replay-based test difficult as well. Additionally, we point out that it is non-trivial to generalize an
algorithm for non-stationary Markov games to a parameter-free version since the objective for games is very
different from that of multi-armed bandits.
2. Generic black-box approach for non-stationary games. Our approach is a black-box reduction
that can transform any base algorithm designed for (near-)stationary games into an algorithm capable of
learning in a non-stationary environment. This approach inherits favorable properties of the base algorithm,
like breaking the curse of multi-agents, and directly adapts to future algorithmic advances.
3. Restart-based algorithm when non-stationarity budget is known (Section 4). When we know a
bound on the degree of non-stationarity, often measured by number of switches or total variation (which from
here on, we refer to as the “nonstationarity budget”), we design a simple restart-based algorithm achieving
sublinear dynamic equilibrium regret of Õ

(
L1/4T 3/4

)
or Õ

(
∆1/4T 3/4

)
, where L is the switching number and

∆ is the total variation non-stationarity budget. In words, this result implies that all the players follow a
near-equilibrium strategy in most episodes.
4. Multi-scale testing algorithm when non-stationarity budget is unknown (Section 5). We
also propose a multi-scale testing algorithm to optimize the regret when the non-stationarity budget is
unknown, which can adaptively avoid the strategy deviating from equilibrium for too many rounds. The
algorithm achieves the same Õ

(
L1/4T 3/4

)
regret for unknown switching number L, and a marginally higher

Õ
(
∆1/5T 4/5

)
regret for unknown total variation budget ∆. The testing algorithms are newly designed and

the scheduling is specially designed for the PAC assumptions, which is different from that in Wei and Luo
[2021] where regret assumptions are made.

While the ultimate goal is to design no-regret algorithms for each agent, i.e. achieving no-regret no matter
what policy other players adopt (like Panageas et al. [2023]), our setting is already applicable in various
real-world cases even without yet achieving this desired property, this is discussed with a concrete example
below. We leave the problem of finding no-regret algorithms for each individual for future work.
Example (traffic routing with navigation). In traffic routing using navigation applications (Guo et al.
[2023]), being able to track Nash Equilibrium is advantageous. Assume all drivers use the same navigation
application which runs our algorithm. It is reasonable to assume that drivers adhere to the application’s
suggestions. After following the route recommended by the application, the drivers all find that their routes
are not improvable because all drivers are committing to the equilibrium; this makes drivers satisfied with
the algorithm’s recommendation.

1.2 Related Work
(Stationary) Multi-agent reinforcement learning. Numerous works have been devoted to learning
equilibria in (stationary) multi-agent systems, including zero-sum Markov games [Bai et al., 2020, Liu et al.,
2021], general-sum Markov games [Jin et al., 2021, Mao et al., 2022, Song et al., 2021, Daskalakis et al., 2022,
Wang et al., 2023, Cui et al., 2023], Markov potential games [Leonardos et al., 2021, Song et al., 2021, Ding
et al., 2022, Cui et al., 2023], congestion games [Cui et al., 2022], extensive-form games [Kozuno et al., 2021,
Bai et al., 2022, Song et al., 2022], and partially observable Markov games [Liu et al., 2022]. These works aim
to learn equilibria with bandit feedback efficiently, measured by either regret or sample complexity. There
also exists a rich literature on asymptotic convergence of different learning dynamics in known games and
non-asymptotic convergence with full-information feedback, which are not listed here due to space limitations.
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Non-stationary (single-agent) reinforcement learning. The study of non-stationary reinforcement
learning originated from non-stationary bandits [Auer et al., 2002, Besbes et al., 2014, Chen et al., 2019,
Zhao et al., 2020, Wei and Luo, 2021, Cheung et al., 2022, Garivier and Moulines, 2011]. Auer et al. [2019]
and Chen et al. [2019] first achieve near-optimal dynamic regret without knowing the non-stationary budget
for bandits. The most relevant work is Wei and Luo [2021], which also proposes a black-box approach with
multi-scale testing and achieves optimal regret in various single-agent settings. We refer readers to Wei and
Luo [2021] for a more comprehensive literature review on non-stationary reinforcement learning.
Non-stationary multi-agent reinforcement learning. Most of the previous works have been focused
on the full-information feedback setting, which is considerably easier than the bandit feedback setting as
testing becomes unnecessary [Cardoso et al., 2019, Zhang et al., 2022, Anagnostides et al., 2023, Duvocelle
et al., 2022, Poveda et al., 2022]. For two-player zero-sum matrix games, Zhang et al. [2022] proposes a
meta-algorithm over a group of base algorithms to tackle with unknown parameters. Anagnostides et al.
[2023] studies the convergence of no-regret learning dynamics in non-stationary matrix games, including
zero-sum, general-sum and potential games, and shares a similar dynamic regret notion as ours. Notably,
Cardoso et al. [2019] also studies the bandit feedback case and aims to minimize NE-regret, while the regret
is comparing with the best NE in hindsight instead of a dynamic regret.

2 Preliminaries
We consider the multi-player general-sum Markov games framework, which covers a wide range of problems.
A multi-agent general-sum Markov game is described by the tupleM = (S,A = A1×· · ·×Am, H,P, {ri}mi=1),
where S is the state space with cardinality S, m is the number of the players, Ai is the action space for player
i with cardinality Ai, H is the length of the horizon, P = {Ph}Hh=1 is the collection of the transition kernels
such that Ph(· | s, a) is the next state distribution given the current state s and joint action a = (a1, · · · , am)
at step h, and ri = {rh,i}Hh=1 is the collection of random reward functions for player i with support [0, 1] and
mean {Rh,i}Hh=1.

At the beginning of each episode, the players start at a fixed initial state s1.1 At each step h ∈ [H],
each player observes the current state sh and chooses action ah,i simultaneously. Then player i ∈ [m] will
receive her own reward realization r̃h,i ∼ rh,i(sh, ah) where ah = (ah,1, · · · , ah,m) and the state will transition
according to sh+1 ∼ Ph(· | sh,ah). The game terminates when h = H + 1. We consider the bandit feedback
setting where only the reward of the chosen action is revealed to the player.

Here we discuss the generality of Markov games. When the horizon H = 1, multi-player general-sum
Markov games degenerate to multi-player general-sum matrix games, which include zero-sum games, potential
games, congestion games, etc [Nisan et al., 2007]. If we posit different assumptions on the Markov game
structure, we can obtain zero-sum Markov games [Bai et al., 2020], Markov potential games [Leonardos et al.,
2021], extensive-form games [Kozuno et al., 2021]. If the state sh is not directly observable, the Markov games
are modeled by partially observable Markov games [Liu et al., 2022]. A detailed preliminary for different
games is deferred to the appendix.
Policy. A Markov joint policy is defined by π = {πh}Hh=1 where πh : S → ∆(A) is the policy at step h. We
will use π−i to denote that all players except player i are following policy π. A special case of Markov joint
policy is Markov product policy, which satifies that there exist policies {πi}mi=1 such that for all h ∈ [H] and
(s, a) ∈ S ×A, we have πh(a | s) =

∏m
i=1 πh,i(ai | s), where πi = {πh,i}Hh=1 is the collection of Markov policies

πh,i : S → ∆(Ai) for player i. In words, a Markov product policy can be factorized into individual policies
such that they are uncorrelated.
Value function. Given a Markov game M ∈M and a policy π, the value function for player i is defined as
VMi (π) := Eπ

[∑H
h=1 rh,i(sh,ah) |M

]
, where the expectation is over the randomness in both the policy and

the environment.
1It is straightforward to generalize to stochastic initial state by adding a dummy state s0 that transition to the random initial

state.
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Best response and strategy modification. Given a policy π and model M , the best response value for
player i is VMi (†, π−i) := maxπ′

i∈Πi
VMi (π′

i, π−i), which is the maximum achievable expected return for player
i if all the other players are following π−i. Equivalently, best response is the optimal policy in the induced
Markov decision process (MDP), i.e., Markov games with only one player.

A strategy modification ψi = {ψh,i}Hh=1 is a collection of mappings ψh,i : S × Ai → Ai that maps the
joint state-action space to the action space.2 For policy π, ψi ⋄ π is the modified policy such that

(ψi ⋄ π)h(a | s) =
∑

a′:ψh,i(a′i|s)=ai,a′
−i=a−i

πh(a
′ | s).

In other words, ψi ⋄ π is a policy such that if π assigns each player j a random action aj at state s and step h,
then ψi ⋄ π assigns action ψh,i(ai | s) to player i while all the other players are following the action assigned
by policy. We will use Ψi to denote all the possible strategy modifications for player i. As Ψi contains all the
constant strategy modifications, we have

max
ψi∈Ψi

VMi (ψi ⋄ π) ≥ max
π′
i

VMi (π′
i, π−i) = VMi (†, π−i),

which means that the best strategy modification is always no worse than the best response.
Notions of equilibria.

Definition 1. For Markov game M , policy π is an ϵ-approximate Nash equilibrium (NE) if it is a product
policy and

NEGapM (π) = max
i∈[m]

(
VMi (†, π−i)− VMi (π)

)
≤ ϵ.

Learning Nash equilibrium (NE) is neither computationally nor statistically efficient for general-sum
normal-form games [Chen et al., 2009], while it is tractable for games with special structures, such as potential
games [Monderer and Shapley, 1996] and two-player zero-sum games [Adler, 2013].

Definition 2. For Markov game M , policy π is an ϵ-approximate coarse correlated equilibrium (CCE) if

CCEGapM (π) = max
i∈[m]

(
VMi (†, π−i)− VMi (π)

)
≤ ϵ.

The only difference between CCE and NE is that CCE is not required to be a product policy. This
relaxation allows tractable algorithms for learning CCE.

Definition 3. For Markov game M , policy π is an ϵ-approximate correlated equilibrium (CE) if

CEGapM (π) = max
i∈[m]

(
max
ψi∈Ψi

VMi (ψi ⋄ π)− VMi (π)

)
≤ ϵ.

Correlated equilibrium generalizes the best response used in CCE to best strategy modification. It is
known that each NE is a CE and each CE is a CCE. For conciseness, we use ϵ-EQ to denote ϵ-approximate
NE/CE/CCE.
Non-stationarity measure. Here we formalize the non-stationary Markov game. There are T total episodes
and at each episode t, the players follow some policy πt an unknown Markov game M t. The non-stationarity
degree of the environment is measured by the cumulative difference between two consecutive models, defined
as follows.

Definition 4. The non-stationarity degree of Markov games (M1,M2, · · · ,MT ) is measured by total variation
∆ or number of switches L, which are respectively defined as

∆ =

T−1∑
t=1

∥∥M t+1 −M t
∥∥
1
, L =

T−1∑
t=1

1[M t ̸=M t+1].

2We only consider deterministic strategy modification as the optimal strategy modification can always be deterministic [Jin
et al., 2021].

4



Here, the total variation distance between two Markov games is defined as

∥M −M ′∥1 :=

H∑
h=1

(∥∥∥PMh − PM
′

h

∥∥∥
1
+
∥∥∥RMh −RM ′

h

∥∥∥
1

)
.

We also define

∆[t1,t2] =

t2−1∑
t=t1

∥∥M t+1 −M t
∥∥
1
, L[t1,t2] =

t2−1∑
t=t1

1[M t ̸=M t+1].

Dynamic regret. We generalize the standard dynamic regret in non-stationary single-agent RL to non-
stationary MARL.

Definition 5. The dynamic equilibrium regret is defined as

Regret(T ) =

T∑
t=1

GapM
t

(πt),

where M t is the Markov game at episode t, πt is the policy at episode t and Gap(·) can be NEGap, CCEGap
or CEGap.

A small dynamic regret implies that for most episodes t ∈ [T ], the policy πt is an approximate equilibrium
for model M t. The same dynamic regret is used in Anagnostides et al. [2023] for matrix games. In the
literature, Cardoso et al. [2019] and Zhang et al. [2022] propose NE-regret and dynamic NE-regret for
two-player zero-sum games where the comparator is the best NE value in hindsight and the best dynamic NE
value. However, these regret notions can not be generalized to general-sum games as the NE/CE/CCE values
become non-unique. Zhang et al. [2022] also considers duality gap as a performance measure, which coincides
with our dynamic regret where Gap is NEGap.
Base algorithms. Our algorithm uses black-box oracles that can learn and test equilibria in (near-)stationary
environments. Details of the base algorithms are shown in Appendix.

Assumption 1. (PAC guarantee for learning equilibrium) We assume that we have access to an oracle
Learn_EQ such that with probability 1 − δ, in an environment with non-stationarity ∆ as defined in
Definition 4, it can output an

(
ϵ+ c∆1 ∆

)
-EQ of a game with at most C1(ϵ, δ) samples.

Assumption 2. (PAC guarantee for testing equilibrium) We assume that we have access to an oracle
Test_EQ such that given a policy π, with probability 1− δ, in an environment with non-stationarity ∆ as
defined in Definition 4, it outputs False when π is not a (2ϵ+ c∆2 ∆)-EQ for all t = 1, . . . , C2(ϵ, δ) and outputs
True when π is an

(
ϵ− c∆2 ∆

)
-EQ for all t = 1, . . . , C2(ϵ, δ).

There exist various algorithms (see Table 1) providing PAC guarantees for learning equilibrium in stationary
games, which satisfies Assumption 1 when non-stationarity degree ∆ = 0. We will show that most of these
algorithms enjoy an additive error w.r.t. non-stationarity degree ∆ in the appendix and discuss how to
construct oracles satisfying Assumption 2 in Section 5.1. For simplicity, We will omit δ in C1(ϵ, δ) and C2(ϵ, δ)
as they only have polylogarithmic dependence on δ for all the oracle realizations in this work. Furthermore,
since the dependence of C1(ϵ), C2(ϵ) on ϵ are all polynomial, we denote C1(ϵ) = c1ϵ

α, C2(ϵ) = c2ϵ
−2. Here

c1, c2 does not depend on ϵ and α is a constant depending on the oracle algorithm. In Table 1, α = −2 or
α = −3, where α is the exponent in C1(ϵ).

3 Challenges in Non-Stationary Games
In this section, we discuss the major difficulties generalizing single-agent non-stationary algorithms to non-
stationary Markov games. There are two major lines of work in the single-agent setting. The first line of
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Types of Games Learn_EQ Test_EQ Dynamic Regret
Zero-sum (NE) (A+B)ϵ−2 (A+B)ϵ−2 ((A+B)∆)1/4T 3/4

General-sum (CCE) Amaxϵ
−2 mAmaxϵ

−2 (Amax∆)1/4T 3/4

General-sum (CE) A2
maxϵ

−2 mA2
maxϵ

−2 (A2
max∆)1/4T 3/4

Potential (NE) m2Amaxϵ
−3 mAmaxϵ

−2 (m2Amax∆)1/5T 4/5

Congestion (NE) m2F 3ϵ−2 mF 2ϵ−2 (m3F 4∆)1/4T 3/4

Zero-sum Markov (NE) H5S(A+B)ϵ−2 H3S(A+B)ϵ−2 (H7S(A+B)∆)1/4T 3/4

General-sum Markov (CCE) H6S2Amaxϵ
−2 mH3SAmaxϵ

−2 (H7S3Amax∆)1/4T 3/4

General-sum Markov (CE) H6S2A2
maxϵ

−2 mH3SA2
maxϵ

−2 (H7S3A2
max∆)1/4T 3/4

Markov Potential (NE) m2H4SAmaxϵ
−3 mH3SAmaxϵ

−2 (m2H6SAmax∆)1/5T 4/5

Table 1: A,B are the size of action spaces for two-player zero-sum games. Xi and Ai are the number of
information sets and actions for player i. Amax = maxj∈[m]Aj . S is the size of the state space, H is the
horizon of the Markov games and T is the number of episodes. The second and third column is the sample
complexity for learning and testing an equilibrium in a stationary game. The last column shows the regret
bounds for Algorithm 1.

work uses online learning techniques to tackle non-stationarity. There exist works generalizing online learning
algorithms to the multi-agent setting. However all of them apply only to the full-information setting. In
the bandit feedback setting, it is hard to estimate the gradient of the objective function. The other line of
work uses explicit tests to determine notable changes of the environment and restart the whole algorithm
accordingly. This paper also adpots this paradigm.

The first type of test is to play a sub-optimal action a consecutively to determine whether it has become
optimal [Auer et al., 2019, Chen et al., 2019]. For simplicity, let us think of learning NE in the environment
with abrupt changes (switching number as the non-stationary measure). In order to assure a has not become
a new optimal action, one needs to spend 1/D2 steps to play a and secure its value up to D confidence
bound where D is the suboptimality. The regret incurred in this testing process is D · 1/D2 = 1/D. In the
multi-agent setting, if one wants to repeat the process by testing (a′i, a−i) to assure a is a NE, the timesteps
needed is still 1/D2 where D is the empirical reward difference of (a′i, a−i) and a. However, the gap of
(a′i, a−i) depends on its own unilateral deviations, which can be O(1) in general. Hence the regret incurred
can be 1/D2, sabotaging the test process (example in Figure 1).

1 0

0 𝜀

𝑎

𝑎

𝑏

𝑏

Figure 1: Consider a two-player cooperative
game. Both players have access to action
space {a, b} and the corresponding rewards
are shown in the picture. Assume we have
found NE (b, b). If we want to make sure
(a, b) has not become a best response for
player 1, we have to play (a, b) for 1/ε2

times. However the regret of (a, b) is 1, so
this process induces 1/ε2 regret.

The second type of test restarts the learning algorithm for
a small amount of time and checks for abnormality in the
replay [Wei and Luo, 2021]. In the multi-agent setting, since
equilibrium is not unique in all games, different runs of the
same algorithm can converge to different equilibria even in a
stationary environment. Hence test of this type fails to detect
abnormality in the base algorithm.

Another method worth mentioning was invented in Garivier
and Moulines [2011]. This method proposes to forget old history
through putting a discount weight on old feedback or imposing
a sliding window based on which we calculate the empirical
estimate of value of actions. There is no obvious obstacle
in generalizing it to the multi-agent setting but it is hard to
derive a parameter-free version. Cheung et al. [2020] uses
the Bandit-Over-RL technique to get a parameter-free version
for the single-agent setting based on the sliding-window idea.
However, the Bandit-Over-RL technique does not generalize to
the multi-agent setting as the learning objectives are totally
different. A more detailed version of the challanges mentioned
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is presented in the Appendix A.

4 Warm-Up: Known Non-Stationary Budget
We first present an algorithm for MARL against non-stationary environments with known non-stationarity
budget to serve as a starting point.

Algorithm 1 Restarted Explore-then-Commit for Non-stationary MARL
1: Input: number of episodes T ; non-stationarity budget ∆; confidence level δ; parameter T1
2: while episode T is not reached do
3: Run Learn_EQ with accuracy ϵ and confidence level δ, and receive the output π.
4: Execute π for T1 episodes.

Initially, the algorithm starts a Learn_EQ algorithm, intending to learn an ϵ-EQ policy π. After that,
it commits to π for T1 episodes. Subsequently, the algorithm repeats this learn-then-commit pattern until the
end. The restart mechanism guarantees that the non-stationarity in the environment can at most affect T1
episodes. By carefully tuning T1, we can achieve a sublinear regret. This algorithm admits a performance
guarantee as follows.

Proposition 1. With probability 1− Tδ, the regret of Algorithm 1 satisfies

Regret(T ) ≤ 4TC1(ϵ)

T1
+ Tϵ+ 2max

{
c∆1 , H

}
T1∆.

Remark 1. Let us look at the meaning of each term in this bound. The first term comes from all Learn_EQ.
The second and third terms come from committing to the learned policy.

Corollary 1. With probability 1− Tδ, the regret of Algorithm 1 satisfies

Regret(T ) ≤

{
13
(
∆c1max

{
c∆1 , H

})1/4
T 3/4, α = −2,

13
(
∆c1max

{
c∆1 , H

})1/5
T 4/5, α = −3,

by setting

T1 =

⌈√
TC1(ϵ)

max
{
c∆1 , H

}
∆

⌉
, ϵ =

{ (
∆c1max

{
c∆1 , H

}
/T
)1/4

, α = −2,(
∆c1max

{
c∆1 , H

}
/T
)1/5

, α = −3.

Example 1. As a concrete example, for learning CCE in general-sum Markov games, Algorithm 1 achieves
O
(
A

1/4
max∆1/4T 3/4

)
regret. We can see that this algorithm breaks the curse of multi-agents (dependence on

the number of players) which is a nice property inherited from the base algorithm. In addition, as long as the
base algorithm is decentralized, Algorithm 1 will also be decentralized.

5 Unknown Non-Stationarity Budget
In this section, we generalize Algorithm 1 to a parameter-free version, which achieves a similar regret bound
without the knowledge of the non-stationarity budget and the time horizon T . If the non-stationarity budget
is unknown, we cannot determine the appropriate rate to restart in advance as in Algorithm 1. Hence, we use
multi-scale testing to monitor the performance of the committed policy and restart adaptively.
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5.1 Black-box Algorithms for Testing Equilibria
In this section, we present the construction of the testing algorithms Test_EQ that satisfies Assumption 2
by a black-box reduction to single-agent algorithms, which is able to test whether a policy is an equilibrium
in a (near-)stationary game. We make the following assumption on the single-agent learning oracle.

Assumption 3. (PAC guarantee for single-agent RL) We assume that we have access to an oracle Learn_OP
such that with probability 1 − δ, in a single-agent environment with non-stationarity ∆, it can output an(
ϵ+ c∆3 ∆

)
-optimal policy with C3(ϵ, δ) samples.

The construction of Test_EQ is described in Protocol 1. We first illustrate how Protocol 1 test NE/CCE
in a stationary environment. Note that here we only consider Markov policies and the best response to a
Markov policy is the optimal policy in the induced single-agent MDP. First, we sample Õ

(
ϵ−2
)

trajectories
following π to get an estimate of Vi(π) for all i up to an error bound of ϵ/6 by standard concentration
inequalities. Then, for each player i, we run Learn_OP and by Assumption 3, π′

i is an ϵ/6-optimal policy
in the MDP induced by other players following π−i. In other words, π′

i is an ϵ/6-best response to π−i. After
that we run (π′

i, π−i) for Õ
(
ϵ−2
)

episodes and estimate the policy value V̂i(π′
i, π−i) for players i up to ϵ/6

error bound. Finally the algorithm decides the output according to the empirical estimate of the gap. If the
policy is not a 2ϵ-EQ, with high probability the empirical gap is larger than 3ϵ/2, which leads to a False
output. Meanwhile, if the policy is an ϵ-EQ , with high probability the empirical gap is smaller than 3ϵ/2,
which leads to a True output.

To test a CE, we need to learn the best strategy modification in the induced MDP. While there are many
algorithms in prior works that can serve as Learn_OP, no algorithm is designed for learning the best strategy
modification as far as we know. Interestingly, by constructing an MDP with an extended state space, we can
reduce learning the best strategy modification to learning the optimal policy in the new MDP. Specifically,
here we design an MDP M ′ such that learning the best strategy modification with random recommendation
policy π in MDP M = (S,A, P, r,H) is equivalent to learning the optimal policy in M ′, where the randomness
in π could be correlated with the transition. In M ′, the state space is S ′ = S × A, the action space is A,
the transition is P ′

h((sh+1, bh+1) | (sh, bh), ah) = Ph(sh+1 | sh, πh(sh) = bh, ah) · πh+1(bh+1 | sh+1) and the
reward is r′h(· | (sh, bh), ah) = rh(· | sh, πh(sh) = bh, ah). The following proposition shows that learning the
best strategy modification to recommendation policy π in MDP M is equivalent to learning the optimal
policy in MDP M ′.

Proposition 2. Suppose MDP M ′ is induced by MDP M and recommendation policy π. Then the optimal
policy in MDP M ′ corresponds to a best strategy modification to recommendation policy π in MDP M .

Note that the state space in M ′ is enlarged by a factor of A, which means the sample complexity for
testing CE is A times larger than CCE, which coincides with the fact that the minimax swap regret is

√
A

times larger than the minimax external regret [Ito, 2020].

Proposition 3. As long as Learn_OP satisfies Assumption 3, Protocol 1 satisfies Assumption 2.

5.2 Multi-scale Test Scheduling
In this section, we introduce how to schedule Test_EQ during the committing phase. The scheduling is
motivated by MALG in Wei and Luo [2021], with modifications to the multi-agent setting.

We consider a block with length 2n for some integer n. The block starts with a Learn_EQ with ϵ = 2−n/4

and is followed by the committing phase. During the committing phase, Test_EQ starts randomly for
different gaps with different probabilities at each step. That is, we intend to test larger changes more quickly
by testing for them more frequently (by setting the probability higher) so that the detection is adaptive to
the severity of changes. Denote the episode index in this block by τ . In the committing phase, if τ is an
integer multiple of 2c+q for some q ∈ {0, 1, · · · , Q}, with probability p(q) = 1/(ϵ(q)2n/2) we start a test for gap

8



Protocol 1 Test_EQ

1: Input: Joint Markov policy π, failure probability δ, tolerance ϵ.
2: Run π for Õ(ϵ−2) episodes and estimate the policy value V̂i(π) with confidence level ϵ/6 for all players
i ∈ [m].

3: for i = 1, 2, . . . ,m do
4: Let players [m]/{i} follow π−i and player i run Learn_OP with δ and ϵ/6. Receive best reponse

policy π′
i or best strategy modification ψi ⋄ π for (NE,CCE) or CE.

5: Run (π′
i, π−i) or ψi ⋄ π for Õ(ϵ−2) episodes and estimate the best response value V̂i(π′

i, π−i) or the
best strategy modification value V̂i(ψi ⋄ π) with confidence level ϵ/6 for players i.

6: if maxi∈[m]

(
V̂i(π

′
i, π−i)− V̂i(π)

)
≤ 3ϵ/2 or maxi∈[m]

(
V̂i(ψi ⋄ π)− V̂i(π)

)
≤ 3ϵ/2 then

7: return True
8: else
9: return False

ϵ(q) =
√
c2/2q so that the length of test is 2q, where the value of c2 comes from the testing oracle and Q, c

are defined as

Q = min
{⌊

log2

(
c22

n/2−1
)⌋
, n− c

}
+
, c =

⌈
1 + log2 max

{
5
√
c2, 2 log

1

δ

}⌉
.

The gaps we intend to test are approximately
{√

2ϵ, 2ϵ, 2
√
2ϵ, · · ·

}
. It is possible that Test_EQ for different

ϵ(q) are overlapped. In this case, we prioritize the running of Test_EQ for larger ϵ(q) and pause those for
smaller ϵ(q). After the shorter Test_EQ ends, we resume the longer ones until they are completed. In
addition, if a Test_EQ for ϵ(q) spans for more than 2c+q episodes, it is aborted. To better illustrate the
scheduling, we construct an example shown in Figure 2. It can be proved that with high probability no
Test_EQ is aborted (Lemma 5), i.e. the 2c multiplication in length reserves enough space for all Test_EQ.
Note that the original MALG (Wei and Luo [2021]) does not work here because the length of each scheduled
Test_EQ can be reduced greatly and there is no guarantee how a Test_EQ with reduced length would
work. The scheduling is formally stated in Protocol 2.

Lemma 1. With probability 1− 3QTδ, the regret inside this block

Regret = Õ
(
23n/4 + c2 min

{
22n/3

(
c∆2 ∆[1,En]

)1/3
, 25n/8

(
c∆2 ∆[1,En]

)1/2}
+ 2n/2c

3/2
2 + 2−αn/4c1

)
(1)

Remark 2. The common way to bound the regret with total variation is to divide the block into several
near-stationary intervals [C1(ϵ) + 1, 2n] = I1 ∪ I2 ∪ · · · ∪ IK . In each interval the near-stationarity ensure all
Test_EQ to work properly and hence the regret is bounded. This is because if the regret is to big for a long
time Test_EQ would detect it. After that we bound K and finally bound the regret of a block using Hölder’s
inequality. While prior works [Chen et al., 2019] partition the intervals according to ∆Ik

= O
(
|Ik|−1/2

)
,

we set ∆Ik
= O

(
max

{
|Ik|−1/2

, 2−n/4
})

. This greatly change the subsequent calculations and makes the
regret better in our case, please refer to the appendix for more details.

5.3 Main Algorithm
The main algorithm consists of blocks with doubling lengths. The first block is the shortest block that can
accomodate a whole Learn_EQ in it. The doubling structure is not only important to making the algorithm
parameter free of ∆, but also to that of T (see Appendix for more details). The performance guarantee of
this algorithm is stated in Theorem 1. For simplicity, let ∆̃J = c∆2 ∆J and ∆̌J = max

{
c∆1 , c

∆
2

}
∆J

9



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑞 = 0

𝑞 = 1

𝑞 = 2

commit

Figure 2: This is an example of the scheduling for committing phase with length 16, Q = 2, c = 1. The
horizontal lines represent the scheduled Test_EQ except for the black line on the top which represent the
time horizon. Different colors represent Test_EQ for different ϵ(q). The bold parts of a line represent
the active parts and the other parts are the paused parts. The colored vertical lines represent the possible
starting points of Test_EQ for each level. The cross at the last episode indicates the Test_EQ is aborted
because it spans 2c+q = 8 episodes but has only run 3 < 2q episodes. The bold part of the black line indicates
that at this episode we commit to the learned policy and there is no Test_EQ running.

Algorithm 2 Multi-scale Testing for Non-stationary MARL
1: Input: failure probability δ.
2: N ← min

{
n | 2n ≥ C1(2

n/2)
}

3: for n = N,N + 1, · · · do
4: Schedule a block sized 2n according to Section 5.2.
5: Run Learn_EQ with accuracy ϵ = 2−n/4 and receive π.
6: Run the committing phase according to the schedule. If any Test_EQ returns False, go to Line 2

immediately.

Theorem 1. With probability 1− 3QTδ, the regret of Algorithm 2 is

Regret(T ) =

 Õ
(
∆̌1/5T 4/5 + c2 min

{
∆̃1/3T 2/3, ∆̃1/2T 5/8

}
+
(
c1 + c

3/2
2

)
∆̌2/5T 3/5

)
α = −2

Õ
(
c1∆̌

1/5T 4/5 + c2 min
{
∆̃1/3T 2/3, ∆̃1/2T 5/8

}
+ c

3/2
2 ∆̌2/5T 3/5

)
α = −3

Remark 3. The main idea of the proof is as follows. The restarts divide the whole time horizon into consecutive
segments [1, T ] = J1 ∪ J2 ∪ · · · ∪ JJ . In each segment Jj between restarts, the regret can be bounded by
adding up Formula 1 for all blocks as

Regret (Jj) = Õ
(
|Jj |3/4 + c2 min

{
|Jj |2/3 ∆̃Jj

1/3, |Jj |5/8 ∆̃Jj

1/2
}
+ c

3/2
2 |Jj |1/2 + c1 |Jj |−α/4

)
.

It can be proved that the number of segments is bounded by J = O
(
T 1/5∆̌4/5

)
. Using Hölder’s inequality,

we get the conclusion.

Meanwhile, the following theorem can be obtained if we only consider L, the number of switches.

Theorem 2. With probability 1− 3QTδ, the regret of Algorithm 2 is

Regret(T ) =

 Õ
(
L1/4T 3/4 +

(
c1 + c

3/2
2

)
L1/2T 1/2

)
α = −2

Õ
(
c1L

1/4T 3/4 + c
3/2
2 L1/2T 1/2

)
α = −3
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Remark 4. Algorithm 2 breaks the curse of multi-agent as long as the base algorithms do. If the base
algorithm is decentralized, all players are informed to restart when a change is detected and no further
communication is needed. In this sense very few extra communications are needed in Algorithm 2.

6 Conclusions
In this work, we propose black-box reduction approaches for learning the equilibria in non-stationary multi-
agent reinforcement learning, both with and without knowledge of parameters. These algorithms offer
favorable performance guarantees in terms of the non-stationarity measure, while preserving the advantages
of breaking curse of multi-agent and decentralization found in the base algorithms. We conclude this paper
by posing two open questions. Firstly, we assume that all oracles with PAC guarantees may have regret as
large as O(1) in the proofs. However, it remains unknown how to design algorithms such that the oracles
themselves are also no-regret, which would further minimize the regret in learning. Secondly, the lower
bound of regret for learning in non-stationary multi-agent systems is currently unknown, despite extensive
investigations into lower bounds for single-agent systems [Besbes et al., 2014, Garivier and Moulines, 2011].
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A Challenges in Non-stationary Games
In this section, we discuss the challenges in non-stationary games in more detail.

A.1 Challenges in Test-based Algorithms
The idea of achieving optimal regret using consecutive testing in a parameter-free fashion was first proposed
in Auer et al. [2019]. Here we restate the idea as follows. Consider the multi-armed bandit setting. There are
K arms, T episodes and L abrupt changes. The regret can be decomposed as

• Most of the time, we run the standard UCB algorithm. If we always restart the UCB algorithm right
after each abrupt change, the accumulated regret is upper bounded by O

(√
K(T/L)L

)
= O

(√
KTL

)
.

• Intending to detect changes on one arm that make the optimal arm incur D regret, the algorithm starts
a test at each step with probability pD = D

√
l/KT where l is the number of changes detected thus

far. The test should last nD = O(1/D2) steps to make the confidence bound no larger than D. In

expectation, the test incurs pDTnD∆ = O

(
∆
D

√
lT
K

)
regret. Here ∆ is the real gap of the detected

arm. To cover all possible ∆, we may detect for gaps of size D = D0, 2D0, 4D0, · · · . D0 is the smallest
gap that is worth noticing3. This incurs O

(√
LT
K K

)
= O

(√
KTL

)
regret.

• The expected number of episodes before we start to detect for a change of size D is D/pD =
√
KT/l.

Summing over all changes, this part incurs O (KTL) regret

In all, the scheme suffer O
(√

KLT
)

regret, which is optimal. In the game setting, however, the second part

can become 1
D0

√
lT
KK and we will no longer have a no-regret algorithm.

A.2 Challenges in Bandit-over-RL Algorithms
The high-level idea of BORL is as follows [Cheung et al., 2020]. First partition the whole time horizon T into
intervals with length H. Each interval is one step for an adversarial bandit algorithm A. Inside each interval,
one instance of the base algorithm is run, with the tunable parameter selected by A. The arms for A are
the possible parameters of the base algorithm and the reward is the total reward from one interval. Let the
action at timestep t be at and r(at) be its expected reward, a∗t be the optimal action at timestep t and R(w)
be the expected return from one interval if we chooses parameter w. The regret can then be decomposed as

T∑
t=1

[r (a∗t )− r (at)] =

 T∑
t=1

r (a∗t )−
T/H∑
h=1

R(wh)

+

T/H∑
h=1

R(wh)−
T∑
t=1

r(at)


where wh is the best parameter in interval h. The first term is bounded by the base algorithm regret upper
bound and the second term is bounded by the adversarial bandit regret guarantee. If we apply the same to
minimize, for example, the Nash regret

T∑
t=1

max
i∈[m]

(
VMi (†, π−i)− VMi (π)

)
,

we easily find the max hinders the same decomposition. Even if we drop the max and focus on individual
regret, the decomposition is

T∑
t=1

[
VMi (†, π−i)− VMi (π)

]
=

 T∑
i=1

VMi (†, π−i)−
T/H∑
h=1

R(wh)

+

T/H∑
h=1

R(wh)−
T∑
t=1

VMi (π)


3We can take D0 =

√
K/T because even if each step we suffer an extra D0 regret, the total regret will still remain.
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where the first term loses meaning. The fundamental reason is that in MAB, at timestep t, any action is
competing with a fixed action a∗t , while in a game, a policy π is competing with argmaxπ′

i
VMi (π′

i, π−i), which
depends on π itself. This difficulty can also be seen from Figure 1.

B Omitted Proofs in Section 4
In this section, we analyze the performance of Algorithm 1. For convenience, we denote the intervals
corresponding to each Learn_EQ by I1, I2, · · · , IK and the committing phases as J1,J2, · · · ,JK . The
committed policy are π1, π2, · · · , πK respectively. Here K = ⌈T/(C1(ϵ) + T1)⌉ and JK can be empty.

Lemma 2. If x > 1, x/2 < ⌈x⌉ < x+ 1.

Remark 5. It is a basic algebraic lemma that will be used very often to get over the roundings.

Lemma 3. If π is an ϵ-EQ of episode t, then it is also an
(
ϵ+ 2H∆[t,t′]

)
-equilibrium for any episode t′ > t.

Proof. To facilitate this proof, we define some more notations. The value function of player i at timestep h0,
episode t, state s is defined to be

V π,Mh0,i
(s) = Eπ

[
H∑

h=h0

rh,i(sh,ah) |M, sh0
= s

]
. (2)

Here M is the model at episode t. We also denote the model at episode t′ by M ′. We have the recursion

V π,Mh0,i
(s) =

∑
a

π(a | s)

[∑
s′

PMh0
(s′|s,a)V π,Mh0+1,i(s

′) +RMh0,i(s,a)

]
.

Assume ∣∣∣V π,Mh0+1,i(s)− V
π,M ′

h0+1,i(s)
∣∣∣ ≤ H H∑

h=h0+1

(∥∥∥PMh − PM
′

h

∥∥∥
1
+
∥∥∥RMh −RM ′

h

∥∥∥
1

)
,

then we have∣∣∣V π,Mh0,i
(s)− V π,M

′

h0,i
(s)
∣∣∣

≤
∑
a

π(a | s)

[∑
s′

(
PMh0

(s′|s,a)− PM
′

h0
(s′|s,a)

)
V π,M

′

h0+1,i(s
′)

]

+
∑
a

π(a | s)

[∑
s′

PMh0
(s′|s,a)

(
V π,M

′

h0+1,i(s
′)− V π,Mh0+1,i(s

′)
)]

+
∑
a

π(a | s)
[
RMh0,i(s,a)−R

M ′

h0,i(s,a)
]

≤H
∣∣∣PMh0

(s′|s,a)− PM
′

h0
(s′|s,a)

∣∣∣+ ∣∣∣V π,Mh0+1,i(s)− V
π,M ′

h0+1,i(s)
∣∣∣+ ∣∣∣RMh0,i(s,a)−R

M ′

h0,i(s,a)
∣∣∣

≤H
H∑

h=h0

(∥∥∥PMh − PM
′

h

∥∥∥
1
+
∥∥∥RMh −RM ′

h

∥∥∥
1

)
.

Since the assumption holds trivially for h0 = H, by induction we get∣∣∣V π,M1 (s)− V π,M
′

1 (s)
∣∣∣ ≤ ∆[t,t′] .

Finally by definition of the equilibria, we get the conclusion.
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Lemma 4. With probability 1− Tδ, πk is
(
ϵ+ c∆1 ∆Ik

)
-approximate equilibrium in the last episode of Ik for

all k ∈ [K].

Proof. This is by the union bound and K ≤ T .

The following theorem is conditioned on this high-probability event.

Proposition 1. With probability 1− Tδ, the regret of Algorithm 1 satisfies

Regret(T ) ≤ 4TC1(ϵ)

T1
+ Tϵ+ 2max

{
c∆1 , H

}
T1∆.

Proof. According to Assumption 1, πk is an
(
ϵ+ c∆1 ∆Ik

)
-approximate equilibrium for the last episode of

Ik. Hence it is an
(
ϵ+ 2max

{
c∆1 , H

}
∆Ik∪Jk

)
-approximate equilibrium for any episode in Jk according to

Lemma 3. In the proof we omit the max with H and recover it in the conclusion.

Regret(T ) =

K∑
k=1

(
|Ik|+ |Jk|

(
ϵ+ 2c∆1 ∆Ik∪Jk

))
≤K⌈C1(ϵ)⌉+ Tϵ+ 2c∆1 T1∆

≤4TC1(ϵ)

T1
+ Tϵ+ 2c∆1 T1∆.

Corollary 1. With probability 1− Tδ, the regret of Algorithm 1 satisfies

Regret(T ) ≤

{
13
(
∆c1max

{
c∆1 , H

})1/4
T 3/4, α = −2,

13
(
∆c1max

{
c∆1 , H

})1/5
T 4/5, α = −3,

by setting

T1 =

⌈√
TC1(ϵ)

max
{
c∆1 , H

}
∆

⌉
, ϵ =

{ (
∆c1max

{
c∆1 , H

}
/T
)1/4

, α = −2,(
∆c1max

{
c∆1 , H

}
/T
)1/5

, α = −3.

Proof. As before, we omit the max with H in the proof.

Regret(T ) ≤8TC1(ϵ)

√
c∆1 ∆

TC1(ϵ)
+ Tϵ+ 4c∆1 ∆

√
TC1(ϵ)

c∆1 ∆

=12
√
c∆1 T∆C1(ϵ) + Tϵ

=12
√
c∆1 T∆c1ϵ

α/2 + Tϵ

Applying Lemma 2, we get the desired conclusion.

C Omitted Proofs in Section 5
In Section C.1 we present the proof for Proposition 2 and Proposition 3. In Section C.2 and C.3, we analyze
the performance of Algorithm 2. We first analyze the performance of single block in Section C.2 and then
present the subsequent proof in Section C.3. For convenience, the episodes in Section C.2 refer to τ and the
episodes in Section C.3 refer to t.
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Protocol 2 Scheduling Test_EQ in a block with length 2n

1: Input: Joint Markov policy π, failure probability δ, tolerance ϵ.
2: for τ = 0, 1, . . . , 2n − 1 do
3: for q = 0, 1, · · · , Q do
4: if τ is a multiple of 2c+q then
5: With probability p(q), schedule a Test_EQ for ϵ(q) starting from τ .

C.1 Proofs Regarding Construction of Test_EQ
Proposition 2. Suppose MDP M ′ is induced by MDP M and recommendation policy π. Then the optimal
policy in MDP M ′ corresponds to a best strategy modification to recommendation policy π in MDP M .

Proof. To facilitate the proof, we define some notations here. We define the value function of policy π in an
MDP M at timestep h0 and state s as

V π,Mh0
(s) = Eπ

[
H∑

h=h0

rh(sh, ah) |M, sh0
= s

]
.

The mean reward from rh(·|s, a) is denoted as Rh(s, a). Let π′ be a policy in M , then

V π
′,M ′

h ((s, b)) =
∑
a

π′ (a | (s, b))

 ∑
(s′,b′)

P ′
h ((s

′, b′)|(s, b), a)V π
′,M ′

h+1 ((s′, b′)) +R′
h((s, b), a)


Additionally, the Q-function of a state-action pair (s, b) under policy π at timestep h0 for agent i in Markov
game M is defined as

Qπ,Mh0,i
(s, b) = Eπ

[
H∑

h=h0

rh,i(sh,ah) |M, sh0
= s, ah0,i = b

]
.

Assume π′ is a deterministic policy and ψi is a strategy modification such that its choice is the same as the
choice of π′, then

Qψi⋄π,M
h0,i

(s, ψi(b)) =
∑
(s′,b′)

Ph(s′|s, πh(s) = b, ψi(b))πh+1(b
′ | s′)Qψi⋄π,M

h0+1,i (s′, ψi(b))

+Rh0(s, ψi(b) | πh(s) = b)

by definition of M ′ we can directly see that

V π
′,M ′

h ((s, b)) = Qψi⋄π,M
h,i (s, ψi(b)) (3)

Hence the optimal policy of M ′ corresponds to a best strategy modification to recommendation policy.

Proposition 3. As long as Learn_OP satisfies Assumption 3, Protocol 1 satisfies Assumption 2.

Proof. We first consider the NE and CCE case. The main logic has been stated in the main text. We restate
it here with environmental changes involved. Denote the intervals that run Line 2, 4, 5 by I,J ,K respectively.
Then with high probability, the estimation of V̂i(π) departs from the true value by at most ϵ/6 + ∆I and
that of V̂i(π′

i, π−i) is at most ϵ/3 + c∆3 ∆J +∆K. Combine all the error we get the conclusion. In terms of
sample complexity

C2(ϵ) = Õ
(
mC3(ϵ) + ϵ−2

)
= Õ (mC3(ϵ)) .
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The last equality use the information-theoretic lower bound C3(ϵ) = Ω(ϵ−2). Then we consider the CE case.
By Equation 3 we can prove the correctness of this algorithm using the same argument as before. In terms of
sample complexity, it is the same as before except that we need to change the size of state space from |S| to
|S| |A|. Finally, c∆2 = c∆3

By Wei and Luo [2021], we know that we have c∆2 = c∆3 = O(H).

C.2 Single Block Analysis
Divide [C1(ϵ) + 1, 2n] into I1 ∪ I2 ∪ · · · ∪ IK such that Ik = [sk, ek], s1 = C1(ϵ) + 1, eK = 2n, ek + 1 = sk+1

and

∆Ik
≤ 1

c∆2
max

{
1√
|Ik|

, 2−n/4−1

}
Intervals with such property are called near-stationary. Let En ∈ Il be the last episode (The block may be
ended due to a failed Test_EQ). Define e′k = min{En, ek}, I ′k = [si, e

′
k]. If k > l, I ′k = ∅. For convenience,

we denote τn = C1(ϵ) + 1 in the following proof.

Definition 6. For k ∈ [K], q ∈ {0, 1, · · · , Q}, let

τk(q) = min {τ ∈ I ′k| π is not a 2ϵ(q)-EQ at τ} , ξk(q) = [e′k − τk(q) + 1]+ .

First, we are going to show that with high probability no Test_EQ is aborted.

Lemma 5. With probability 1− 2QTδ, for any Test_EQ instance testing gap ϵ(q) maintained from s to e,
it returns fail if the policy is not (2ϵ(q) + c∆2 ∆[s,e])-NE/CCE for any τ ∈ [s, e]. In equivalence, e− s < 2c+q

and all Test_EQ function as desired.

Proof. By union bound, the probability all Test_EQ function as desired is 1 − QTδ. There are 2q−r

possible starting points for a test occupying 2r episodes. For each of them, Test_EQ exists with probability
1/(ϵ(r)2n/2). By Bernstein’s inequality, with probability 1− δ, the number of such tests is upper-bounded by

2q−r
1

ϵ(r)2n/2
+

√
2 · 2q−r 1

ϵ(r)2n/2
log

1

δ
+ log

1

δ

≤2 · 2q−r 1

ϵ(r)2n/2
+ 2 log

1

δ

=
2q−r/2+1

√
c22n/2

+ 2 log
1

δ
.

By union bound, this inequality holds for all Test_EQ with probability 1−QTδ. So the total length of all
shorter tests is upper bounded by

q−1∑
r=0

(
2q−r/2+1

√
c22n/2

+ 2 log
1

δ

)
2r

≤2q+1 2
q−1
2 − 1√
2− 1

1
√
c22n/2

+ 2 log
1

δ
(2q − 1)

≤5
√
c2

(
2

q−1
2 − 1

)
+ log

1

δ
2q+1

≤max

{
5
√
c2, 2 log

1

δ

}
2q

Here we use 2q < 2Q < c22
n/2. Using the union bound, we get the conclusion.
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In subsequent proofs, we condition on the high probability event described in this lemma.

Lemma 6. With probability 1−Qδ, for all r ∈ [Q].

l∑
k=1

[
ξk(r)− 2c+r

]
+
≤ 2c+r−1ϵ(r − 2)

√
2n log

1

δ
= 2c

√
2r+nc2

Proof. For each r ∈ [Q].

2−c−r+2
l∑

k=1

[
ξk(r)− 2c+r]

+

=2−c−r+2
l∑

k=1

[
e′k − τk(r) + 1− 2c+r]

+

≤
K∑

k=1

∑
τ∈Ik

1
[
τ ∈ [τk(r), e

′
k − 2c+r−1], τ mod 2c+r−2 ≡ 0

]
=

2n∑
τ=τn

1
[
τ ∈ [τk(r), e

′
k − 2c+r−1], τ mod 2c+r−2 ≡ 0

]
≤

2n∑
τ=τn

1
[
τ ∈ [τk(r), e

′
k − 2c+r−1], τ mod 2c+r−2 ≡ 0 and there is no test for ϵ(r)/2 starting at any t ∈ [τn, τ ]

]
+

2n∑
τ=τn

1
[
τ ∈ [1, En − 2c+r−1] and there is a test for ϵ(r)/2 starting at some t ∈ [τn, τ ]

]
≤

[
1 +

log(1/δ)

− log(1− 1/
(
ϵ(r − 2)

√
2n
)
)

]
+ 0 ≤ 2ϵ(r − 2)

√
2n log

1

δ

The first inequality holds because in an interval of length w, there are at least (w + 2− 2u)/u points whose
indices are multiples of u. The third inequality holds with probability 1− δ. The first sum is bounded using
the fact the test is started i.i.d. with constant probability 1/

(
ϵ(r − 2)

√
2n
)
. In the second sum, the condition

implies that the ending time of the test is before t+ 2c+r−2 − 1 ≤ ei − 2c+r−2 − 1 ≤ ei so the test is within
Ik and t+ 2c+r−2 − 1 ≤ τ + 2c+r−2 − 1 < En so the test ends before the block ends. However, the test is
for ϵ(r) and the variation during the test is bounded by ∆Ik

< 2−n/4 = ϵ < ϵ(r), so such Test_EQ must
return Fail.

In subsequent proofs, we further condition on the high probability event described in this lemma.

Lemma 7. The total number of near-stationary intervals

l ≤ 1 + 2min
{
2n/3

(
c∆2 ∆[1,En]

)2/3
, 2n/4c∆2 ∆[1,En]

}
(4)

Proof. We divide [τn, En] = I1 ∪ I2 ∪ · · · ∪ Il in such a way that [sk, ek] is near-stationary but [sk, ek + 1] is
not near-stationary. Then

∆[τn,En] ≥
l−1∑
k=1

∆[sk,ek+1]

≥ 1

c∆2

l−1∑
k=1

max

{
1√

ek − sk + 2
, 2−n/4−1

}

≥ 1

c∆2
max

{
l−1∑
k=1

1

2
√
ek − sk + 1

, (l − 1)2−n/4−1

}

19



Hence by Hölder’s inequality

l ≤1 + min


(
l−1∑
k=1

(ek − sk + 1)−1/2

)2/3( l−1∑
k=1

(ek − sk + 1)

)1/3

, 2n/4+1c∆2 ∆[τn,En]


≤1 + 2min

{(
c∆2 ∆[τn,En]

)2/3 |[τn, En]|1/3 , 2n/4c∆2 ∆[τn,En]

}
≤1 + 2min

{
2n/3

(
c∆2 ∆[1,En]

)2/3
, 2n/4c∆2 ∆[1,En]

}

Lemma 8. With probability 1− 3QTδ

Regret([1, En]) ≤ 23n/4+4 + 4Q
(
2n/2+c

√
c2l + 2c+n/2c2

)
+ c2 log

1

δ
2n/2+1 + c12

−αn/4

Proof. First we consider the regret generated by Test_EQ. We need to count the number of steps all the
tests go for. Similar to the calculation in Lemma 6. The number of tests with length 2q is upper bounded by

2n−r/2+1

c
√
c22n/2

+ 2 log
1

δ
.

So the total length of all Test_EQ is upper bounded by

Q∑
r=0

(
2n−r/2+1

2c
√
c22n/2

+ 2 log
1

δ

)
2r

≤2n+1 2
Q/2 − 1√
2− 1

1

c
√
c22n/2

+ 2 log
1

δ

(
2Q − 1

)
≤ 5

2c
23n/4 + c2 log

1

δ
2n/2+1

Then we consider the regret generated by committing.∑
τ∈I′

k

GapM
t (
πt
)

≤
∑
τ∈I′

k

(
1

[
GapM

t (
πt
)
≤ 2ϵ(Q)

]
2ϵ(Q)

+

Q−1∑
r=0

1

[
2ϵ(r + 1) ≤ GapM

t (
πt
)
≤ 2ϵ(r)

]
2ϵ(r) + 1

[
GapM

t (
πt
)
> ϵ(0)

]
1

)

≤2|I ′k|ϵ(Q) + 2

Q−1∑
r=0

ϵ(r)ξi(r + 1) + 2ϵ(0)ξi(0)

≤2|I ′k|ϵ(Q) + 4

Q∑
r=0

ϵ(r)ξi(r)

In the second inequaility we use ϵ(0) =
√
c2 > 1 and in the third inequality we use ϵ(r) ≤ 2ϵ(r+1). Summing

over all intervals we have

Regret([1, En]) ≤ 2n+1ϵ(Q) + 4

Q∑
r=0

l∑
k=1

ϵ(r)ξk(r).
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Furthermore

l∑
k=1

ϵ(r)ξk(r) =

l∑
k=1

ϵ(r)min{ξk(r), 2c+r}+
l∑

k=1

ϵ(r)
[
ξk(r)− 2c+r

]
+

≤2c
l∑

k=1

√
c2 min{ξk(r), 2c+r}+

l∑
k=1

ϵ(r)
[
ξk(r)− 2c+r

]
+

≤2c
l∑

k=1

√
c2 |I ′k|+ 2c+n/2c2

The last inequality uses Lemma 6. Hence

Regret([1, En]) ≤2n+1ϵ(Q) + 4Q

(
2c

l∑
k=1

√
c2 |I′

k|+ 2c+n/2c2

)
+

5

2c
23n/4 + c2 log

1

δ
2n/2+1 + C1(ϵ)

≤23n/4+4 + 4Q

2c

√√√√c2l

l∑
k=1

|I′
k|+ 2c+n/2c2

+ c2 log
1

δ
2n/2+1 + c12

−αn/4

≤23n/4+4 + 4Q
(
2n/2+c

√
c2l + 2c+n/2c2

)
+ c2 log

1

δ
2n/2+1 + c12

−αn/4

To keep the notation clean, from now on we make frequent use of the big-O notation and hide the
dependencies on logarithmic factors on relevant variables. We also assume ∆ is always large enough so that
we can drop the 1 in Inequality 4.

Lemma 1. With probability 1− 3QTδ, the regret inside this block

Regret = Õ
(
23n/4 + c2 min

{
22n/3

(
c∆2 ∆[1,En]

)1/3
, 25n/8

(
c∆2 ∆[1,En]

)1/2}
+ 2n/2c

3/2
2 + 2−αn/4c1

)
(1)

Proof. We may restate the bounds in Lemma 7 and 8 as

l = O
(
min

{
2n/3

(
c∆2 ∆

)2/3
[1,En]

, 2n/4
(
c∆2 ∆[1,En]

)})

Regret([1, En]) = Õ
(
23n/4 + 2n/2c2

√
l + 2n/2c

3/2
2 + 2−αn/4c1

)
Combine them together we get

Regret([1, En]) = Õ

(
23n/4 + c2 min

{
22n/3

(
c∆2 ∆[1,En]

)1/3
, 25n/8

(
c∆2 ∆[1,En]

)1/2}
+ 2n/2c

3/2
2 + 2−αn/4c1

)
(5)

C.3 Proof for Theorem 1
Due to the doubling structure inside each segment, from Formula 5 we get

Regret (Jj) = Õ
(
|Jj |3/4 + c2 min

{
|Jj |2/3

(
c∆2 ∆Jj

)1/3
, |Jj |5/8

(
c∆2 ∆Jj

)1/2}
+ c

3/2
2 |Jj |1/2 + c1 |Jj |−α/4

)
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Table 2: Parameters of the Base Algorithms. In this table we only show the magnitude of parameter, with
Õ(·) omitted except for the α column.

Types of Games c1 α c∆1
Zero-sum (NE) A+B −2 1
General-sum (CCE) Amax −2 1
General-sum (CE) A2

max −2 1
Potential (NE) m2Amax −3 1
Congestion (NE) m2F 3 −2 mF
Zero-sum Markov (NE) H5S(A+B) −2 H2

General-sum Markov (CCE) H6S2Amax −2 HS
General-sum Markov (CE) H6S2A2

max −2 HS
Markov Potential (NE) m2H4SAmax −3 H2

Lemma 9.

J = O
(
T 1/5

(
max

{
c∆1 , c

∆
2

}
∆
)4/5)

.

Proof. For any segment Jj ,

max
{
c∆1 , c

∆
2

}
∆Jj ≥ ϵ(Q)− ϵ ≥

(√
2− 1

)
|Jj |−1/4

since the ending of a segment is caused by a False returned by Test_EQ. Then by the same logic as in
Lemma 7 we get the conclusion

Hence by Hölder inequality

Regret(T ) =Õ
(
J1/4T 3/4 + c2 min

{
T 2/3∆̃1/3, T 5/8∆̃1/2

}
+ c

3/2
2 J1/2T 1/2 + c1J

1+α/4T−α/4
)

=

 Õ
(
∆̌1/5T 4/5 + c2 min

{
∆̃1/3T 2/3, ∆̃1/2T 5/8

}
+
(
c1 + c

3/2
2

)
∆̌2/5T 3/5

)
α = −2

Õ
(
c1∆̌

1/5T 4/5 + c2 min
{
∆̃1/3T 2/3, ∆̃1/2T 5/8

}
+ c

3/2
2 ∆̌2/5T 3/5

)
α = −3

D Base Algorithms Satisfying Assumption 1
In table 2 we summarize the results of this section.

D.1 Two-Player Zero-Sum Matrix Games (NE)
In this part we consider the following algorithm: each player independently runs an optimal adversarial
multi-armed bandit algorithm (e.g. EXP.3) and finally output the product of respective average policies of
the whole time horizon. We will prove that this algorithm satisfies Assumption 1 in terms of learning NE in
two-player zero-sum matrix games.

Proof. We adopt some new notations in this proof. Let Rt ∈ [0, 1]A×B be the reward matrix at episode t.
The policy of the max and min players are represented by xt ∈ [0, 1]A, yt ∈ [0, 1]B. Each entry represents
the probability they choose the corresponding action. The reward received by the max and min players are
respectively xt⊤Rtyt and −xt⊤Rtyt. With probability 1− δ the adversarial MAB algorithms satisfy

1

T

T∑
t=1

xt
⊤
Rtyt −min

y

1

T

T∑
t=1

xt
⊤
Rty ≤ cadv

√
AT
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max
x

1

T

T∑
t=1

x⊤Rtyt − 1

T

T∑
t=1

xt
⊤
Rtyt ≤ cadv

√
BT

where cadv = Õ(1). The output policy x =
∑T
t=1 x

t/T and y =
∑T
t=1 y

t/T satisfy

VM
T

max (†, y) + VM
T

min (x, †) = max
x

x⊤RT y +min
y
x⊤RT y ≤ cadv

√
BT +∆+ cadv

√
AT +∆

By the definition of zero-sum game

NEGAP(x, y) ≤V
MT

max (†, y)− VM
T

max (x, y) + VM
T

min (x, †)− VMT

min (x, y)

2

=
VM

T

max (†, y) + VM
T

min (x, †)
2

= Õ
(√

(A+B)T
)
+ 2∆.

Hence this algorithm satisfies Assumption 1 with C1(ϵ) = Õ
(
(A+B)ϵ−2

)
, c∆1 = 2.

D.2 Multi-Player General-Sum Matrix Games (CCE)
In this part we consider the following algorithm: each player independently runs an optimal adversarial
multi-armed bandit algorithm (e.g. EXP.3) and finally output the average joint policy of the whole time
horizon. We will prove that this algorithm satisfies Assumption 1 in terms of learning CCE in multi-player
general-sum matrix games.

Proof. We define the loss of player i at episode t by playing ai as

lti(ai) = 1− Ea−i∼πt
−i

[
ri(ai, a−i) |M t

]
then with probability 1− δ, the adversarial MAB algorithm satisfies

T∑
t=1

⟨πt(·), lti(·)⟩ − min
ai∈Ai

T∑
t=1

lti(ai) ≤ cadv
√
AiT , cadv = Õ(1)

For convenience, we denote the reward function at timestep t by rt. Let the output policy π =
∑T
t=1 π

t/T ,
we have

VM
T

i (π)

=Ea∼π
[
rTi (a)

]
=

1

T

T∑
t=1

Eai∼πt
i
Ea−i∼πt

−i

[
rTi (ai, a−i)

]
=1− 1

T

T∑
t=1

Eai∼πt
i

[
lti(ai)

]
+

1

T

T∑
t=1

Eai∼πt
i
Ea−i∼πt

−i

[
rTi (ai, a−i)− rti(ai, a−i)

]
≥1− 1

T
min
ai∈Ai

T∑
t=1

lti(ai)− cadv
√
Ai/T +

1

T

T∑
t=1

Eai∼πt
i
Ea−i∼πt

−i

[
rTi (ai, a−i)− rti(ai, a−i)

]
≥ 1

T
max
ai∈Ai

T∑
t=1

Ea−i∼πt
−i

[
rti(ai, a−i)

]
− cadv

√
Ai/T −∆

≥ 1

T
max
ai∈Ai

T∑
t=1

Ea−i∼πt
−i

[
rTi (ai, a−i)

]
−∆− cadv

√
Ai/T −∆

≥VM
T

i (†, π−i)− cadv
√
Ai/T − 2∆

By definition of CCE we know this algorithm satisfies Assumption 1 with C1(ϵ) = Õ
(
Amaxϵ

−2
)
, c∆1 = 2
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D.3 Multi-Player General-Sum Matrix Games (CE)
This part is very similar to the last part. Instead of using standard adversarial bandit algorithms, we use
no-swap-regret algorithm for adversarial bandits (for example, Ito [2020]) and the proof is almost the same.
We can achieve with probability 1− δ,

T∑
t=1

⟨πt(·), lti(·)⟩ −min
ψi

T∑
t=1

⟨(ψi ⋄ πt)(·), lti(·)⟩ ≤ cadvAi
√
T , cadv = Õ(1)

where ψi is a strategy modification. By substituting all min,max related terms correspondingly we get the
proof for CE and C1(ϵ) = Õ

(
A2

maxϵ
−2
)

D.4 Congestion Games (NE)
In this part we will show the Nash-UCB algorithm proposed in Cui et al. [2022] satisfies Assumption 1. We
carry out the proof by pointing out the modifications we need to make in their proof. In their proof, k stands
for the episode index instead of t and K is the total episodes instead of T .

Lemma 10. (Modified Lemma 3 in Cui et al. [2022]) With high probability,

∣∣r̃ki − ri∣∣ (a) ≤ max
i∈[m]

∥Ai(a)∥(V k)−1

√
β̃k, β̃k = O(mF +Km∆2)

Proof. We denote the average reward vector by θ and the reward vector of the last epsiode by θT , other
notations are similar, then ∣∣r̃ki − rTi ∣∣ (a)

≤∥Ai(a)∥(V k)−1

∥∥∥θ̂ − θT∥∥∥
V k

≤∥Ai(a)∥(V k)−1

(∥∥∥θ̂ − θ∥∥∥
V k

+
∥∥θ − θT∥∥

V k

)
≤∥Ai(a)∥(V k)−1

(∥∥θ∥∥
2
+

√
log detV k + ι̃+

√
Km∆

)

The rest of the proof is carried out with the new β̃k and finally the regret becomes

Nash-Regret(K) = Õ
(
mF 3/2

√
K +mFK∆

)
.

Finally this algorithm can be converted into a version with sample complexity guarantee and C1(ϵ) =
m2F 3ϵ−2, c∆1 = mF as stated in the original paper using the certified policy trick from Bai et al. [2020].

D.5 Multi-Player General-Sum Markov Games (CCE,CE)
In this part we will show how to adapt the proof in Cui et al. [2023] to the non-stationary game case. For
simplicity, we will follow the proof in Cui et al. [2023] in general and only point out critical changes. Note
that they use k as epoch index while we have been using k as episode index. For consistency, we will use κ as
the episode index in this section. As a reminder, we will use rκ, Pκ and Mκ to denote the reward function,
the transition kernel and the game at episode κ.

We use the superscript κ in Eκ[·] to denote that the underlying game is Mκ. We further use κkh(j; s) to
denote the episode index when state s is visited for the jth time at step h and epoch k in the no-regret
learning phase (Line 12 in Algorithm 3), and we use κkh(j; s) to denote the episode index when state s is
visited for the jth time at step h and epoch k in the no-regret learning phase (Line 12 in Algorithm 3). We
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will change the algorithm in Line 34 where we replace nkh(sh) with
∑k−1
l=1 T

k
h (sh). We will modify all the

lemmas in the proof below. We use Nk to denote
∑k
l=1 n

k.

First, we will replace E
a∼π

k,tk
h
(j;s)

h (·|s)
[·] with Eκ

k
h(j;s)

a∼π
k,tk

h
(j;s)

h (·|s)
[·] in all the lemmas, which takes the expecta-

tion with the underlying game when πk,t
k
h(j;s)

h (· | s) is used. It is easy to verify that Lemma 35, Lemma 36,
Lemma 37 hold after the modification.

Second, we will replace nkh(s) with
∑k−1
l=1 T

l
h(s) and nkdπ

k

h (s) with
∑nk

J=1 d
πk

h (s; k, J), where dπ
l

h (s; k, J) is
the visiting density for model at epoch k and Jth trajectory sampled in the policy cover update phase. In
addition, we also add the following argument in the lemma:

nkh(s) ∨ Trig ≥ 1

2

k−1∑
l=1

nl

Nk−1

Nk−1∑
j=1

dπ
l

h (s; k, j)

 ∨ TTrig,
where dπ

l

h (s; k, j) is the visiting density for model at epoch k and jth trajectory sampled in the no-regret
learning phase. It is easy to verify that Lemma 38 hold after the modification.

Third, we will consider a baseline model M0, which can be the game at any episode, and use V πh,i(s) to
denote the corresponding value function. Now we show that Lemma 39, Lemma 40 and Lemma 41 holds
with an addition tolerance ∆.

Lemma 11. (Modified Lemma 39 in Cui et al. [2023]) Under the good event G, for all k ∈ [K], h ∈ [H],
i ∈ [m], s ∈ S, we have

V
k

h,i(s) ≥ V
†,πk

−i

h,i (s)−
H∑

h′=h

∆h.

Proof. Note that we have∣∣∣∣∣Eκk
h(j;s)

a∼π
k,tk

h
(j;s)

h (·|s)

[
rh,i(s,a) + V

k

h+1,i(s
′)
]
− EM

0

a∼π
k,tk

h
(j;s)

h (·|s)

[
rh,i(s,a) + V

k

h+1,i(s
′)
]∣∣∣∣∣ ≤ ∆h.

The rest of the proof follows Cui et al. [2023].

Lemma 12. (Modified Lemma 40 in Cui et al. [2023]) Under the good event G, for all k ∈ [K], h ∈ [H],
i ∈ [m], s ∈ S, we have

V kh,i(s) ≤ V π
k

h,i (s) +

H∑
h′=h

∆h.

Proof. The proof follows the proof for Lemma 11.

Lemma 13. (Modified Lemma 41 in Cui et al. [2023]) Under the good event G, for all k ∈ [K], i ∈ [m], we
have

V
k

1,i(s1)− V
k
1,i(s1) ≤ Õ

(
EM

0

πk

[
H∑
h=1

√
H2AiTTrig

nkh(sh) ∨ TTrig

])
+ 2∆.

Proof. The proof follows the proof for Lemma 11.

Lemma 14. (Modified Lemma 42 in Cui et al. [2023]) Under the good event G, for all i ∈ [m], we have

K∑
k=1

nk max
i∈[m]

(
V
k

1,i(s1)− V
πk

1,i(s1)
)
≤ Õ

(
H2
√
SAmaxTTrigN

)
.
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Proof. By Lemma 13 and the proof in Cui et al. [2023], we only need to bound
∑K
k=1 n

kEM0

πk

√
1

nk
h(sh)∨TTrig

.
By the definition of ∆, we can easily prove that

∑
s∈S

∣∣∣∣∣∣ n
k

Nk

Nk∑
j=1

dπ
k

h (s; k + 1, j)−
nk∑
J=1

dπ
k

h (s; k, J)

∣∣∣∣∣∣ ≤ nk∆,
∑
s∈S

∣∣∣∣∣∣nkdπk

h (s)−

 k∑
l=1

nl

Nk

Nk∑
j=1

dπ
l

h (s; k + 1, j)−
k−1∑
l=1

nl

Nk−1

Nk−1∑
j=1

dπ
l

h (s; k, j)

∣∣∣∣∣∣ ≤ Nk∆.

and we have

∑
s∈S

 k∑
l=1

nl

Nk

Nk∑
j=1

dπ
l

h (s; k + 1, j)−
k−1∑
l=1

nl

Nk−1

Nk−1∑
j=1

dπ
l

h (s; k, j)

− 2

k−1∑
l=1

nl

Nk−1

Nk−1∑
j=1

dπ
l

h (s; k, j) ≤ 4Nk∆.

Then we have

K∑
k=1

nkEM
0

πk

√
1

nkh(sh) ∨ TTrig

=

K∑
k=1

nk
∑
s∈S

dπ
k

h (s)

√
1

nkh(s) ∨ TTrig

≤
∑
s∈S

K∑
k=1

nkdπ
k

h (s)

√
2

(
∑k−1
l=1

nl

Nk−1

∑Nk−1

j=1 dπ
l

h (s; k, j)) ∨ TTrig
(Lemma 38 in Cui et al. [2023])

≤NK∆+
∑
s∈S

K∑
k=1

 k∑
l=1

nl

Nk

Nk∑
j=1

dπ
l

h (s; k + 1, j)−
k−1∑
l=1

nl

Nk−1

Nk−1∑
j=1

dπ
l

h (s; k, j)


√

2

(
∑k−1
l=1

nl

Nk−1

∑Nk−1

j=1 dπ
l

h (s; k, j)) ∨ TTrig

≤2NK∆+
∑
s∈S

√√√√32

K∑
l=1

nl

NK

NK∑
j=1

dπ
l

h (s;K, j) (Lemma 38 and Lemma 53 in Cui et al. [2023])

≤2NK∆+
√
32SN.

Lemma 43 in Cui et al. [2023] holds directly with the modified update rule. As a result, following Theorem
4 in Cui et al. [2023], the same sample complexity result holds for learning an ϵ + Õ(HS∆)-CCE. Hence
C1(ϵ) = H6S2Amaxϵ

−2, c∆1 = HS.

D.6 Markov Potential Games (NE)
This setting is rather straightforward. Algorithm 3 in Song et al. [2021] serves as a base algorithm. By noticing
that any weighted average of the samples of rewards shifts by no more than O(∆) in the non-stationary
environment and by the very similar argument we made in Lemma 3 or proof of Theorem 1 in Mao et al.
[2021] we can see C1(ϵ) = m2H4SAmaxϵ

−3, c∆1 = O(H2).
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