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Abstract

We propose new algorithms with provable performance for online binary optimization subject to general constraints and in
dynamic settings. We consider the subset of problems in which the objective function is submodular. We propose the online
submodular greedy algorithm (OSGA) which solves to optimality an approximation of the previous round loss function to avoid
the NP-hardness of the original problem. We extend OSGA to a generic approximation function. We show that OSGA has a
dynamic regret bound similar to the tightest bounds in online convex optimization with respect to the time horizon and the
cumulative round optimum variation. For instances where no approximation exists or a computationally simpler implementation
is desired, we design the online submodular projected gradient descent (OSPGD) by leveraging the Lovász extension. We obtain
a regret bound that is akin to the conventional online gradient descent (OGD). Finally, we numerically test our algorithms in
two power system applications: fast-timescale demand response and real-time distribution network reconfiguration.

Key words: large scale optimization problems and methods; time-varying systems; real time simulation and dispatching;
online optimization; dynamic regret.

1 Introduction

Online dynamic decision-making aims to consecutively
provide decisions to minimize each round’s objective
function while relying only on the outcome of previous
rounds. The objective function is considered to be time-
varying and decisions are made at each discretized time
instance. Moreover, the objective function is assumed to
be unknown at the time decisions have to be made. The
online convex optimization (OCO) [13,36,42] framework
assumes a convex objective function and a convex and
compact decision set. Provable performance guarantees
can be established under some additional assumptions,
e.g., boundedness of the objective function and its gra-
dient [42], or the cumulative difference in round optima
computed in hindsight [29,42].

Online optimization is an appealing framework for real-
time decision-making problems because it uses compu-
tationally efficient and scalable updates and provides
performance guarantees. For example, it is used in the
context of moving target tracking [25, 34], resource al-
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location in data centers [6, 8], portfolio selection [12],
internet-of-things [7], dynamic pricing in power sys-
tems [20], or renewable intermittency mitigation [23,24].

Online binary optimization [13, 16, 24] considers a sub-
set of problems in which the feasible set is the intersec-
tion of an application-specific constraint set and the bi-
nary set {0, 1}n, where n ∈ N is the decision variable’s
dimension. It is motivated by real-time network flow,
routing, scheduling, and knapsack problems which ap-
pear in engineering fields like telecommunications, lo-
gistics and operations, and electric power systems. To
tackle efficiently constrained, non-linear online binary
optimization problems, we further assume that the ob-
jective function is submodular. Specifically, we consider
online dynamic submodular optimization for which the
objective is to provide the round optimal binary deci-
sions. We propose two types of algorithms: (i) greedy
approaches that solve approximations of the previous
round’s objective function and (ii) a projected gradient-
based approach using the continuous and convex Lovász
extension of submodular functions. For all algorithms,
we provide a performance analysis based on the dynamic
regret. The regret bounds are shown to be sublinear in
the number of rounds under different conditions on the
variation between round optima computed in hindsight.
Under these assumptions, the time-averaged dynamic re-
gret vanishes as the time horizon increases and is, there-
fore, Hannan-consistent [12].
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Related work We now review the relevant literature
on online non-linear binary optimization. Linearity sim-
plifies considerably the problem as argued by [16] and,
for this reason, is not considered. Examples of online
binary optimization approaches for linear problems in-
clude [17,21]. In [13], the authors first studied the online
submodular optimization problem. They only consid-
ered the static setting in which the decisions are bench-
marked with a single static decision computed in hind-
sight. This is referred to as a static regret analysis [42].
They further restricted their analysis to unconstrained
problems. Reference [16] then proposed approaches to in-
tegrate constraints within online submodular optimiza-
tion. They also limited their analysis to the static set-
ting. In both cases, greedy and projected gradient-based
approaches are proposed. In this work, we present a dy-
namic regret analysis for all our approaches which in
turns provides a performance guarantee with respect to
the round optimum. This latter aspect is important in
an engineering setting because one wants to achieve op-
timality at each round, e.g., to track a time-varying set-
point. In the dynamic setting, [24] used randomization
and online convex optimization to solve problems with
convex objective functions, i.e., convex with respect to
the convex hull of the decision set. However, [24] do not
admit other than binary constraints and the dynamic
regret analysis does not hold asymptotically.

In the power system literature, several approaches based
on time-varying optimization have been proposed to
deal with binary decision variables. References [4, 5]
applied the error diffusion algorithm to obtain binary
decisions from continuous decisions computed via the
relaxed problem. In [41], randomization is used to con-
vert continuous decisions to binary ones. This body of
literature does not compare the round minima with the
algorithm’s decisions like online optimization does using
the dynamic regret. Specifically, we make the following
contributions:

• We propose two algorithms for online dynamic sub-
modular optimization. Under the submodularity as-
sumption, we provide online constrained binary opti-
mization algorithms with provable performance guar-
antees in dynamic settings which hold for the first time
when subject to constraints and/or any time horizon.
We extend the static regret analysis of [13,16] and es-
tablish conditions under which our algorithms lead to
a sublinear dynamic regret bound in the number of
rounds and (tractable) round optimum variation.

• We formulate a greedy algorithm that solves a β-
approximation of the previous round’s objective func-
tion. When this approximation is not available, we
show that a generic approximation can be used with
limited impact on the performance bound.

• We provide a computationally efficient and scalable
algorithm for fast timescale online optimization prob-
lems which only performs a single project gradient de-
scent step on the Lovász extension of the objective

function.
• We numerically evaluate the performance of our ap-

proaches in power system examples. First, we use
the projected gradient-descent update to dispatch
demand response resources for frequency regulation.
Second, we apply the greedy update to real-time
network configuration where line switches can be con-
trolled (on/off) to minimize the active power losses
while spanning a radial network.

Next, we provide background on online optimization and
submodularity and introduce our notation. Greedy and
projected gradient descent-based approaches are ana-
lyzed in Sections 3 and 4, respectively. Numerical ex-
amples showcasing our approaches in power system ap-
plications are presented in Section 5. Conclusions and
future work are provided in Section 6.

2 Preliminaries

In this section, we introduce our notation and the on-
line optimization setting, and provide the relevant back-
ground on submodular functions.

2.1 Online optimization

In online optimization, a round-dependent objec-
tive function must be minimized at each round
t ∈ {1, 2, . . . , T}, where T ∈ N is the time horizon. In
this setting, the objective function is assumed to be ob-
served only after the decision maker has implemented
the round’s decision, which must be provided on a fast
timescale.

We consider a subset of online binary optimization prob-
lems with the base set V = {1, 2, 3, . . . , n}, n ∈ N, in
which the objective function is assumed to be submod-
ular. Let the power set 2V represent the set of all possi-
ble decisions. In each round t ∈ {1, 2, . . . , T}, a decision
S ∈ 2V must be made. The problem takes the form:

min
S∈S

ft(S), (1)

where ft : 2V 7→ R is a submodular set function, S ⊆
2V is the feasible set, i.e., the set that expresses the
problem’s constraints, and t ∈ {1, 2, . . . , T}.

As noted by [16], at time t, (1) is NP-hard if S ̸= 2V .
Because no offline optimization algorithm can solve (1)
given ft in polynomial time, we benchmark the deci-
sions provided by our online optimization algorithmwith
an offline α-approximation algorithm [16]. Let S⋆

t ∈
argminS⊆S ft(S). An α-approximation algorithm pro-
vides a solution S∗

t such that ft(S
∗
t ) ≤ αft(S

⋆
t ). For com-

mon submodular minimization problems like minimum
spanning tree [9] or edge cover [14], α values are related
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to their graph structure [16]. Building on [16], we define
the dynamic α-regret to characterize the performance of
our online optimization approaches.

Definition 1 The dynamic α-regret Rdα(T ) over a time
horizon T is:

Rdα(T ) =

T∑
t=1

(ft(St)− αft(S
⋆
t )) ,

where St is the decision provided by the online optimiza-
tion algorithm at round t.

We note that the special case S = 2V can be solved to
optimality in polynomial time. At this time, we let α = 1
and we retrieve the standard dynamic regret definition
fromOCO [42]. This fact is used to specialize our results.

The dynamic α-regret defers from the α-regret employed
in [16] because it uses as comparators (second term of
the sum) to the algorithm’s decision (first term), the
round optima instead of the best fixed decision in hind-
sight. The power system applications, later discussed in
Section 5, motivate the use of a framework that targets
round optimal decisions instead of an averaged, static
decision. Dynamic regret bounds are given in terms of
the cumulative round optimum variation VT or a deriva-
tive of it [11,42]. This term is used as a complexity mea-
sure in dynamic problem [29].

We conclude by adapting the definition of VT to online
set function optimization from which online submodu-
lar optimization is a subset of. Let χA ∈ {0, 1}n where
χA’s i

th component is one if and only if i ∈ A and zero
otherwise be the characteristic vector of the set A ∈ 2V .
Consider the online binary optimization problem coun-
terpart of (1):

min
y∈Y∩{0,1}n

fb
t (y),

where Y ⊆ Rn is the constraint set and fb : {0, 1}n 7→ R
is the objective function. Lety⋆

t ∈ argminy∈Y∩{0,1}n fb (y).
The cumulative variation term VT , as in standard online
(convex) optimization, is [24, 42]:

VT =

T∑
t=2

∥∥y⋆
t − y⋆

t−1

∥∥
2
=

T∑
t=2

∥∥∥χS⋆
t
− χS⋆

t−1

∥∥∥
2
,

where S⋆
t ∈ 2V is the subset of components of y⋆

t ∈
{0, 1}n with value one. Adapting VT to set-valued ob-
jective functions, we, therefore, obtain:

VT =

T∑
t=2

√
card

(
S⋆
t ⊖ S⋆

t−1

)
,

where ⊖ is the symmetric difference or disjunctive union
of two sets. When the context requires it, we will intro-

duce alternative VT definitions, e.g., when the optima
are defined from function approximations.

For future comparison, previous work in online optimiza-
tion in static settings [13, 16] establish O(

√
T ) regret

and α-regret bounds, respectively, where S⋆
t = S⋆ ∈

argminS∈S
∑T

t=1 ft(S) ∀t is used as the static compara-
tor. In the dynamic, unconstrained setting, [24] obtained
anO (T ϵ + VT ), where ϵ ∈ (0, 1) regret bound for a finite
time horizon T .

2.2 Submodularity

A function ft : 2V 7→ R is submodular if it exhibits
the diminishing marginal return property [16], i.e., if
ft(A ∪ {i}) − ft(A) ≥ ft(B ∪ {i}) − ft(B), for all A ⊆
B ⊆ V and i ∈ V . The Lovász extension f̂ : [0, 1]n 7→ R
of a function ft can be defined as:

f̂t(x) =

n∑
i=1

xi (ft({1, 2, . . . , i})− ft({1, 2, . . . , i− 1})) ,

where xi is the ith largest component of x ∈ [0, 1]n,
{0} ≡ ∅, and ft(∅) ≡ 0 [2]. Lastly, we will make use of two

important properties of the Lovász extension: (i) f̂t is

convex if and only if ft is submodular and (ii) f̂t (χA) =
ft(A) for submodular functions.

A subgradient of f̂t at a point x ∈ convS can be com-
puted using only evaluations of the original, submodular
function ft. Let π : [0, 1]

n ×V 7→ V be a function where
π(x, i) = j is such that the ith largest component of x

is xj . Let ∂f̂t(x) be the subgradient set of f̂ at x. Then,

we have the following definition for gt ∈ ∂f̂t(x):

gt =

n∑
i=1

(ft({1, 2, . . . , i})

−ft({1, 2, . . . , i− 1}))χ{π(x,i)}.

(2)

Finally, a rounding algorithm, roundingS : [0, 1]
n 7→ S,

can be employed to convert the Lovaśz extension’s con-
tinuous input x ∈ [0, 1]

n
to the corresponding set of the

original, set function ft. For example, in Section 5 we
will use rounding2V (x) : [0, 1]

n 7→ 2V , a standard round-
ing map for unconstrained problems defined as follows.
Let x ∈ [0, 1]

n
, then rounding2V (x) = S where S =

{ i ∈ V |xi ≥ p}with p ∼ Uniform[0, 1]. Note that we get

f̂t(x) = E [ft(S)] [13]. Alternatively, for some types of
feasible sets S [14,15], rounding algorithms can be char-
acterized by their approximation guarantee [16]. For ex-
ample, a rounding technique roundingS with approxima-

tion guarantee α is such that αf̂t(xt) ≥ ft(St) = f̂t(χSt
)

for St = roundingS(xt), where St ∈ S and xt ∈ convS.
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3 Greedy approaches

We now propose greedy approaches for online binary op-
timization. These approaches are based on the previous
round’s objective function and an approximation that
renders the submodular problem tractable. We first con-
sider the following function approximation.

Definition 2 (β-approximation function [16])

The function f̃t : 2
V 7→ R is a β-approximation of ft if

it satisfies the following conditions:

(1) ft(S) ≤ f̃t(S) ≤ βft(S) for β ≥ 1 and all S ⊆ V ;

(2) minS⊆S f̃t(S) can be solved to optimality in polyno-
mial time.

Examples of approximations compatible with Defini-
tion 2 are provided in [16, Section 2]. Note that we

require the milder condition where minS⊆S f̃t(S) needs
to be tractable contrarily to [16] which impose the

condition on minS⊆S
∑t

i=1 f̃i(S) at round t. Based on
Definition 2, (1) can be tackled in an online fashion
using the following update:

St ∈ argmin
S∈S

f̃t−1(S), (3)

where f̃ is a β-approximation function of f . We refer
to an algorithm implementing (3) as online submodular
greedy algorithm (OSGA). By Definition 2−(2), (3) can
be efficiently solved to optimality.

For the next results, we make the following assumptions.

Assumption 3 Let ft be a bounded function over the
set S, i.e., there exists M ∈ R>0 such that |ft(S)| ≤ M
for all t = 1, 2, . . . , T and S ∈ S.

Assumption 4 The set value function ft is such that
|ft(S1)− ft(S2)| ≤ L card (S1 ⊖ S2) , for all S1, S2 ⊆ V
and 0 < L < +∞.

In other words, we assume a Lipschitz continuity-like
property for set functions. Assumption 4 holds for any
submodular function if Assumption 3 does, e.g., the
generic approximation defined below [10] or the β-
approximation function for minimum spanning tree with
submodular loss function h(S), h̃(S) =

∑
i∈S h(i) [9].

For the regret analysis, we let S̃⋆
t ∈ argminS∈S f̃t(S)

where f̃t is a β-approximation of ft. We redefine
the cumulative variation of the optima as ṼT =∑T

t=2

∥∥∥χS̃⋆
t
− χS̃⋆

t−1

∥∥∥
2
. This definition is similar to the

one used in standard dynamic online convex optimiza-
tion [11,42] and has the advantage of being a function of

efficiently obtainable optima. We recall that our objec-
tive is to establish a dynamic α-regret bound for an on-
line optimization algorithm tackling (1), i.e., to achieve
performance similar to an offline α-approximation algo-
rithm used consecutively. Providing a dynamic α-regret
bound in term of ṼT is in submodular line with this
objective because it can be effectively characterized as
opposed to VT which requires solving a sequence of T
NP-hard problems. The regret analysis of update (3) is
provided in Theorem 5.

Theorem 5 Suppose f̃t is a β-approximation of ft such
that f̃t satisfies Assumptions 3 and 4. If α ≥ β, then the
α-regret of OSGA is bounded by:

Rdα(T ) ≤
αL

β

T∑
t=2

√
card

(
S̃⋆
t ⊖ S̃⋆

t−1

)
=

αL

β
ṼT .

If ṼT is sublinear, then so is the α-regret.

PROOF. We bound the α-regret using Definition 2 to
obtain

Rdα(T ) ≤
T∑

t=1

f̃t(St)−
α

β
f̃t(S

⋆
t ). (4)

We observe that f̃t(St) = f̃t(S̃
⋆
t−1) because of (3) and

S̃⋆
t ∈ argminS∈S f̃t(S). Thus, we can rewrite (4) as

Rdα(T ) ≤
T∑

t=1

f̃t(S̃
⋆
t−1)−

α

β
f̃t(S̃

⋆
t ), (5)

where we also used the definition of S̃⋆
t . By assumption,

α ≥ β and factoring out α/β of (5)’s sum yields an upper
bound. Then, by Assumption 4, we obtain

Rdα(T ) ≤
αL

β

T∑
t=1

√
card

(
S̃⋆
t ⊖ S̃⋆

t−1

)
,

and we have completed the proof. 2

We remark that contrarily to [16, Theorem 2], the ap-
proximation factor α does not need to be known to run
the algorithm. Given a β-approximation of ft, OSGA leads
to an O(ṼT ) regret bound that resembles the tightest
dynamic bound in standard OCO [29], i.e., O(1 + VT ),
with respect to (w.r.t.) T and the variation of tractable
optima. Note that: (i) this latter work requires strong
convexity and (ii) our results uses the α-approximation
algorithm’s solutions as comparators in the regret. The-
orem 5’s bound also improves on [24]’s expected bound
because it is only a function of the cumulative variation
of obtainable optima and holds asymptotically.
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Recall that unconstrained submodular minimization
problem can be solved to optimality efficiently. Hence,
for the special case where S = 2V , i.e., when (1) is an
unconstrained submodular problem, OSGA can be di-
rectly applied to the previous round loss function. This
application leads to the following regret bound.

Corollary 6 If S = 2V and α = β = 1, then OSGA’s
update reduces to

St ∈ argmin
S∈2V

ft−1(S), (6)

and leads to:

Rd(T) ≤ L

T∑
t=2

√
card

(
S⋆
t ⊖ S⋆

t−1

)
< O (VT ) .

PROOF. The proof follows from Theorem 5 where (i)
the regret is considered instead of the α-regret and (ii)

ft is used directly instead of f̃t, the β-approximation
because (6) can be solved efficiently. 2

For some problem instances, finding an approximation
that satisfies both Definition 2 and Assumption 4 is dif-
ficult. Alternatively, the generic approximation for sub-
modular functions provided in Definition 7 is consid-
ered [10,16].

Definition 7 (Generic approximation [10,16])

The function f̃g
t : 2V 7→ R is a generic approximation

of ft defined as: f̃g
t (S) =

√∑
i∈S ci, for some c ∈ Rn,

and satisfies
(
f̃g
t (S)

)2
≤ (ft(S))

2 ≤ γ2
(
f̃g
t (S)

)2
, for

all S ⊆ 2V and some γ > 0.

Interested readers are referred to [10] for details about
the constant c. We now consider the online submodu-
lar generic greedy algorithm (OSGGA), i.e., the generic
approximation-based OSGA. OSGGA uses the following up-
date:

St ∈ argmin
S∈S

(
f̃g
t−1(S)

)2
, (7)

The update rule (7) is equivalent to solving a mixed-
integer program (MIP) with a linear objective func-
tion [16] and can, therefore, be solved efficiently using
off-the-shelf solvers for feasible sets that are linear or
convex if relaxed.

For the next result, we utilize the variation term

Ṽ g
T =

∑T
t=2

√
card

(
Sg,⋆
t ⊖ Sg,⋆

t−1

)
, where Sg,⋆

t ∈
argminS∈S(f̃

g
t (S))

2 can be effectively computed via
MIP for linear or convex (if relaxed) problems. Similarly

to OSGA, Ṽ g
T is based only on the optima of tractable

problems. Let ν ≥ mint,S∈S ft(S) > 0, be lower bound
on all round minima. We remark that the squared
generic approximation function satisfies Assumption 4
with modulus L̃g because it is linear and bounded by
Assumption 3. The α-regret for the OSGGA is presented
below.

Corollary 8 Suppose f̃g
t is a generic approximation of

ft which can be solved via MIP. Then the α-regret of
OSGGA is bounded above by

Rdα(T ) ≤
4α2L̃gL

(1 + α)ν

T∑
t=2

√
card

(
Sg,⋆
t ⊖ Sg,⋆

t−1

)
=

4α2L̃gL

(1 + α)ν
Ṽ g
T ,

and is sublinear for Ṽ g
T < O(T ).

PROOF. We based our proof on [16, Theorem 2 and
Lemma 3]. The α-regret for update (7) is

Rdα(T ) =

T∑
t=1

ft(St)− αft(S
⋆
t )

=

T∑
t=1

(ft(St)− αft(S
⋆
t )) (ft(St) + αft(S

⋆
t ))

(ft(St) + αft(S⋆
t ))

=

T∑
t=1

(ft(St))
2 − α2 (ft(S

⋆
t ))

2

(ft(St) + αft(S⋆
t ))

≤
T∑

t=1

(ft(St))
2 − α2 (ft(S

⋆
t ))

2

(1 + α)ν
,

where ν ≥ mint,St
ft(St) > 0. By Definition 7, we have

Rdα(T ) ≤
1

(1 + α)ν

T∑
t=1

γ2
(
f̃g
t (St)

)2
− α2

(
f̃g
t (S

⋆
t )
)2

≤ 1

(1 + α)ν

T∑
t=1

γ2
(
f̃g
t (St)

)2
− α2

(
f̃g
t (S̃

g,⋆
t )
)2

,

where S̃g,⋆
t ∈ argminS∈S f̃g

t (S). Using the update
rule (7), we obtain

Rdα(T ) ≤
γ2

(1 + α)ν

T∑
t=1

(
f̃g
t (S̃

g,⋆
t−1)

)2
−
(
f̃g
t (S̃

g,⋆
t )
)2

.

(8)
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Thus, the α-regret can be re-expressed as

Rdα(T ) ≤
γ2

(1 + α)ν
Rd
((

f̃g
t (S)

)2
, T

)
,

where Rd
((

f̃g
t (S)

)2
, T

)
is the (1-)regret of update (7)

when used on the problem minS∈S

(
f̃g
t (S)

)2
.

Using Theorem 5 with α = β = 1 in (8) yields

Rdα(T ) ≤
γ2L̃gL

ν

T∑
t=1

√
card

(
S̃g,⋆
t−1 ⊖ S̃g,⋆

t

)
=

γ2L̃gL

ν
Ṽ g
T ,

which completes the proof. 2

Hence, OSGGA leads to an α-regret bound that has a form
similar to Theorem 5’s. Comparing OSGGA to OSGA, dif-
ferent variation terms and constant factors in the regret
bounds are used, which can lead to an increase in its
value. However, the former can always be used.

4 Projected gradient descent-based approach

In this section, we consider a convex optimization-based
update to solve (1) [13, 16]. Our approach leverages the
Lovász extension’s convexity for submodular functions.
We propose the online submodular projected gradient
descent (OSPGD) based on the update defined as:

xt+1 = projconv(S) xt − ηgt (9)

St+1 = roundingS(xt+1), (10)

where η > 0 is the descent stepsize, gt ∈ ∂f̂t(xt) is de-
fined in (2), projconv(S) is the projection onto the convex

hull of S, and roundingS(xt+1) : [0, 1]
n 7→ S is defined

and exemplified in Section 2.2. OSPGD has the advantage
over the greedy updates to be computationally very sim-
ple because it only performs a single projected gradient
descent step. It requires only algebraic operations and a
projection onto a convex set which can be readily com-
puted in most instances, e.g., box constraints, making it
amenable to large problems. The use of OSPGD is, how-
ever, limited because it requires a rounding algorithm
which might not be available for all constrained prob-
lems. For OSPGD, we extend the regret analysis of [16]
and obtain the following regret bound.

Theorem 9 Suppose that a rounding algorithm with ap-
proximation guarantee α is used. Then, OSPGD with η =
δ√
T
leads to an α-regret bounded from above by:

Rdα(T ) = α

(√
nδVT +

5n

2δ
+ 4Mδ

)√
T ,

and is sublinear if VT < O
(√

T
)
.

PROOF. By definition, we have

Rdα(T ) =

T∑
t=1

ft(St)− αft(S
⋆
t )

≤
T∑

t=1

αf̂t(xt)− αft(S
⋆
t ),

using the rounding algorithm approximation guarantee
bound. Using the property of the Lovaśz extension, we
obtain

Rdα(T ) ≤ α

T∑
t=1

f̂t(xt)− f̂t(χS⋆
t
). (11)

We then follow the standard proof techniques for the
online gradient descent (OGD) from [12,42]. We have

∥∥xt+1 − χS⋆
t

∥∥2
2
=
∥∥∥(projconv(S) xt − ηgt

)
− χS⋆

t

∥∥∥2
2

≤
∥∥xt − ηgt − χS⋆

t

∥∥2
2

=
∥∥xt − χS⋆

t

∥∥2
2
− 2ηtg

⊤
t

(
xt − χS⋆

t

)
+ η2 ∥gt∥22

⇔ g⊤
t

(
xt − χS⋆

t

)
≤ 1

2η

(∥∥xt − χS⋆
t

∥∥2
2

(12)

−
∥∥xt+1 − χS⋆

t

∥∥2
2

)
+

η2

2
∥gt∥22 .

The convexity of f̂t implies that for all x,y ∈ [0, 1]n:

f̂t(x) ≥ f̂t(y) + g⊤
t (x− y),

for gt ∈ ∂f̂t(y). Using x = χS⋆
t
and y = xt, we obtain

f̂t(xt)− f̂t(χS⋆
t
) ≤ g⊤

t (χS⋆
t
− xt). (13)

Substituting (12) and (13) in (11) leads to

Rdα(T ) ≤ α

T∑
t=1

1

2η

(∥∥xt − χS⋆
t

∥∥2
2
−
∥∥xt+1 − χS⋆

t

∥∥2
2

)
+ α

T∑
t=1

η2

2
∥gt∥22

= α

T∑
t=1

1

2η

(
∥xt∥22 − ∥xt+1∥22

)
+ α

T∑
t=1

η

2
∥gt∥22

+ α

T∑
t=2

1

η
x⊤
t

(
χS⋆

t
− χS⋆

t+1

)
− x⊤

1 χS⋆
1
+ x⊤

T+1χS⋆
T
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≤ α

2η
∥x1∥22 −

α

η
x⊤
1 χS⋆

1
+

α

η
x⊤
T+1χS⋆

T

+
α

η

∑
t=2

x⊤
t

(
χS⋆

t
− χS⋆

t−1

)
+ α

T∑
t=1

η

2
∥gt∥22 ,

where we have evaluated the telescoping sums to obtain
the last line [12]. Using [16, Lemma 1], we have ∥gt∥2 ≤
4M . The regret becomes

Rdα(T ) ≤
5nα

2η
+ 4αMηT +

α
√
n

η

T∑
t=2

∥∥∥χS⋆
t
− χS⋆

t−1

∥∥∥
2
,

where we also used the fact that ∥xt∥2 ≤ √
n.

We remark that for a submodular function and its

Lovaśz extension pair,
∥∥∥χS⋆

t
− χS⋆

t−1

∥∥∥
2
is equivalent to√

card(S⋆
t ⊖ S⋆

t−1). We now have

Rdα(T ) ≤
5nα

2η
+4αMηT+

α
√
n

η

T∑
t=2

√
card

(
S⋆
t ⊖ S⋆

t−1

)
.

Setting η = δ√
T
, δ ∈ R>0 completes the proof. 2

In sum, we obtain an α-regret bound that is of the
same order w.r.t. T and the variation of optima term
as the standard online gradient descent for OCO prob-

lems [42], i.e.,O
(√

T (1 + VT )
)
. Theorem 9’s bound dif-

fers from [24]’s as it holds asymptotically and admits
constrained decision-making. This difference can be ex-
plained in part by the fact that the rounding algorithm

in [24] yields the stronger property f̂t(xt) = E [ft(St)]
instead of xt = E [St] in our case because the Lovaśz ex-
tension is linear in x. Lastly, in comparison to Section 3’s
approaches, we have traded higher algorithmic simplic-
ity for a regret bound that now depends on both T and a
variation term, the latter of which needs to be less than
O(

√
T ) to ensure a sublinear bound. Except in the un-

constrained case discussed later, the bound can be hard
to characterize because it is a function of (1)’s optima.

Lastly, if a randomized rounding technique is used to
convert a continuous decision vector to a binary one,
expected and high-probability regret bounds, i.e., where
α = 1 as opposed to previous results, can be derived.

Corollary 10 Consider a random rounding tech-
nique roundingS : conv(S) 7→ S such that for

S = roundingS(x) we have E [ft(S))] = f̂t(x). The
expected and high-probability dynamic regret for OSPGD

with δ√
T
are bounded from above:

E
[
Rd(T )

]
≤

√
nTδVT +

(
5n

2δ
+ 4Mδ

)√
T ,

Rd(T ) ≤
√
nTδVT +

(
5n

2δ
+ 4Mδ + 2Mδ log

1

ϵ

)√
T ,

with probability of at least 1− ϵ.

PROOF. We adapt Theorem 9’s and [13, Theorem 1]’s
proofs to the dynamic setting. First, for the expected
bound, we have

E
[
Rd(T )

]
=

T∑
t=1

E [ft(St)]− E [ft(S
⋆
t )] (14)

=

T∑
t=1

f̂t(xt)− ft(S
⋆
t )

=

T∑
t=1

f̂t(xt)− f̂t(χS⋆
t
).

The bound then follows from Theorem 9. Second, for the
high probability bound, we use Hœffding inequality [13,
Theorem 13]. With a probability of a least 1−ϵ, we have

∑
t=1

ft(St) ≤
T∑

t=1

E[ft(St)] +M

√
2T log

1

ϵ
. (15)

Substituting (15) in the regret definition, we obtain

Rd(T ) ≤
T∑

t=1

(E[ft(St)]− ft(S
⋆
t )) +M

√
2T log

1

ϵ
. (16)

We observe that the first term of (16)’s right-hand side
and (14)’s are identical. Using Theorem 9 with η = δ√

T

in (16) yields the high probability regret bound. 2

For unconstrained problems, we have S = 2V and
convS = [0, 1]

n
. Then, Corollary 10 holds when the

randomized rounding procedure described in Section 2.2
is implemented in OSPGD. At this time, VT can be calcu-
lated efficiently, if desired.

5 Applications to electric power systems

We apply OSPGD and OSGA to power system problems.
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5.1 Demand response for frequency regulation

In demand response, a load aggregator is contracted by
the system operator [37]. The aggregator’s mandate is
to modulate the load power consumption to help out
the grid, e.g., to mitigate renewable intermittency or re-
duce peak demand. Specifically, we consider frequency
regulation services [23, 27, 39], i.e., load balancing on a
fast timescale, e.g., 4 seconds. Advantages of demand re-
sponse over other frequency regulation approaches, like
battery energy storage and fast-ramping fuel-burning
generation, include low deployment costs and sustain-
ability [39].

5.1.1 Setting

Consider N thermostatically controlled loads (TCLs),
e.g., residential loads equipped with electric water
heaters, heaters, or air conditioners, enrolled in the
demand response program. Consider a program of du-
ration T in which decision rounds are indexed by t. Let
pn,t ≥ 0 and p̃n,t ≥ 0 be the power consumption of TCL
n ∈ {1, 2, . . . , N} when the load is flexible and inflex-
ible, respectively. This formulation is similar to [24]’s.
Each load must stay in an acceptable temperature
range, e.g., ±0.5◦C of the desired user temperature, to
be flexible, i.e., to be controlled according to the aggre-
gator’s need. If the load temperature is too high or too
low, the backup controller forces the load to be active or
inactive accordingly, and its power consumption must
be accounted for.

At time t, the aggregator’s objective is to track a regu-
lation setpoint rt > 0 provided by the system operator
by adjusting the TCL power consumption. In this work,
we consider a setting in which the aggregator wants to
deploy the minimum number of flexible loads such that
the regulation signal is met. This problem can be for-
mulated as an online dynamic submodular optimization
problem using the objective function fDR

t : 2V 7→ R,

fDR
t (St) =

∑
A⊆2V

(∑
n∈A

un,t

)2

−
(∑

n∈V

un,t

)2
 ·

max{0, |St ∩A| − |St ∪A|+ 1}IA⊆Rt
,

(17)
where un,t = pn,t+ p̃n,t, I is the indicator function which
returns 1 if the subscript is true and 0 otherwise, and

Rt =

{
S ⊆ 2V

∣∣∣∣∣∑
n∈S

un,t ≥ rt

}
.

In (17), the term between brackets promotes partitions
A ⊆ 2V with lower aggregated power. Then, the maxi-
mum term identifies to which partition A the set S be-
longs to, because it is equal to one if and only if S = A.
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(b) Time-averaged experimental dynamic regret for OSPGD

Fig. 1. Demand response with 15 loads

Lastly, the indicator function ensures that the set of dis-
patched loads is at least equal to the regulation signal.

We apply OSPGD to this problem. In terms of standard
online optimization, this corresponds to a quadratic pro-
gram with time-dependent binary constraints, which, to
this day, has not been investigated. To the authors’ best
knowledge, no other approach has been shown to have
provable performance in this context.

We randomly generate loads’ parameters similarly
to [26]. We use the same constraints and logical rules
as [24] and omit the lockout constraint. The thermo-
dynamic model is based on [27]. We consider TCLs
equipped with air conditioners.

5.1.2 Numerical results

We deploy 15 TCLs to track a vanishing sinusoidal reg-
ulation signal subject to Perlin noise [32]. We compare
OSPGD to the closest work to ours, bOGD [24]. We note
that, in this setting, bOGD’s regret analysis does not hold.
Lastly, we provide the round optimum, which we denote
OSPGD⋆t .
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As shown in Figure 1a, OSPGD outperforms bOGD and
offers good setpoint tracking. The tracking root-mean-
square error (RMSE) over 3000 rounds in this case is
1.406 kW for OSPGD⋆t , 3.227 kW for OSPGD, and 6.928 kW
for bOGD. Figure 1b presents OSPGD’s time-averaged dy-
namic 1-regret. The vanishing time-averaged regret im-
plies a sublinear regret.

5.2 Real-Time Network Reconfiguration

Electric distribution networks generally possess a radial
topology [38]. Their topology is controlled via switches
located throughout the network. By opening and clos-
ing different switches, the topology can be modified, for
example, to minimize active power losses or line conges-
tion, and, thus, to increase the grid efficiency [19,28,35].
The set of switch statuses must always induce a radial
network topology while assuring that all loads are sup-
plied.

Distribution grids with high penetration of grid-
edge/behind-the-meter technologies [31], e.g., electric
vehicles, residential solar panels, or demand response,
can experience large, fast-ramping variations in power
demand at the different buses. These rapid changes in
loading are out of the distribution system operator’s
control and can lead to network perturbations, e.g.,
over/under-voltage, line congestion, etc. [22, 30]. To
mitigate incidents, the system operator can preemp-
tively configure the distribution network by altering its
topology. Remotely-activated switches allow fast net-
work reconfiguration (NR) and can be used to adapt
to the load demand in real-time, viz., to prevent line
congestion or to reduce active power losses.

5.2.1 Setting

We consider a distribution network consisting of a set of
static powerlines L, a set of loads N , and a set of lines
equipped with switches V =

{
1, 2, . . . , S

}
, S ∈ N. Let

L(St) = L∪St where St ∈ 2V be the set of all powerlines
active at time t, i.e., the static line set augmented by the
lines with closed switches St. The set L(St) is subject
to two constraints; it must be such that (i) the network
topology is radial and (ii) all loads are connected.

Let pi,t ≥ 0 and qi,t ≥ 0, be the active and reactive power
demand, respectively, at bus i ∈ N and time t. Let Nr

be the set of feeder nodes. Let Pij,t ∈ R and Qij,t ∈ R
be, respectively, the active and reactive power flowing
from node i to j if ij ∈ L(St). Let Pij,t = Qij,t = 0
if ij /∈ L(St). Line ij’s apparent power is denoted by
Aij,t = Pij,t+jQij,t. Let vi ∈ C be the voltage at node i,
Iij ∈ C be the current flowing in line ij, and yij ∈ C be
the admittance of line ij. Let notation x and x represent
upper and lower bounds on any given parameter x.

To minimize active power losses in distribution grids,
the NR problem can be cast using the objective function
fNR
t : 2V 7→ R presented in (18) where power losses on
line ij at time t are defined as |vi,t−vj,t|2y∗ij . In (18), the
spanning tree constraint ensures that the network topol-
ogy is radial and connects all loads to the source node.
The other constraint ensure that the power flow (PF),
which models the electric network’s physics, respects all
operational constraints while meeting power demand.

min
St⊆2V

fNR
t (S) =

∑
ij∈L(S)

|vi,t − vj,t|2y∗ij

subject to L(St) ⊆ SpanningTree(N ) (18){
{vi,t}i∈N

{Pij,t, Qij,t}ij∈L(St)

}
∈ PF({pi,t, qi,t}i∈N ,L(St)).

5.2.2 Weakly-meshed Approximation

Finding the optimal configuration of a radial network
is NP-hard. We re-express (18) as an online dynamic
submodular optimization problem, which can then be
solved in real-time.

When the radiality constraint is relaxed, the network, in
which the set of active powerlines is L ∪ V , referred to
as the weakly-meshed network (WMN), is a good solu-
tion, if not optimal, for loss minimization [1]. Using the
WMN as a starting point, our goal is to find the radial
network that best imitates its power flow. This can be
done by first computing the WMN power flow. Then, a
minimum spanning tree (MST) algorithm (e.g., Prim’s
algorithm [33]) with edge weights set as the negative
line currents −Iij obtained from the power flow, is used.
The MST is fast and guarantees radiality. By removing
the edges with lower currents, the MST returns a radial
network with a power flow pattern similar to the WMN
as demonstrated by [1]. We note that in all evaluations,
the resulting topology admitted a feasible power flow
with respect to the original AC power flow constraints.
If infeasible, the resulting topology could be projected
onto the set induced by these constraints. Finally, we
can approximate (18) by the following online dynamic
submodular problem:

min
St∈2V

fWM
t (St) =

∑
ij∈L

Iij,t +
∑

ij∈L(St)

−Iij,t

subject to L(St) ⊆ SpanningTree(N ),

(19)

where Iij,t is an online parameter extracted from power
flow computations, e.g. [40], of the WMN.

Because (19) is submodular, and can be solved to opti-
mality in polynomial time using a MST algorithm like
Prim’s [33] over the WMN, we apply our OSGA for on-
line reconfiguration. The process is summarized in Al-
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Algorithm 1 OSGA for Real-time NR

1: for t = 1, 2, ..., T do
2: Reconfigure the network according to St.
3: Observe new online parameters: pi,t, qi,t,∀i ∈ N .
4: Compute the power flow of the WMN with the

Newton-Raphson algorithm and extract Iij,t ∀ij ∈
L ∪ V .

5: if card(Nr) > 1 then
6: Set Iij,t = M, ∀ij where {i, j ∈ Nr and i ̸= j}
7: end if
8: Update St+1 via a greedy MST algorithm:

S̃t+1 = argmin fWM
t (S)

subject to L(S) ⊆ SpanningTree(N )

St+1 ∈ S̃t+1 \ { virtual lines }

9: end for
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Fig. 2. Time-averaged experimental dynamic regret for OSGA

gorithm 1. In Algorithm 1,M is a large constant. We re-
mark that in the case of multiple feeders, we temporarily
add virtual lines between the different sources (genera-
tors) in the MST algorithm to ensure radiality, see steps
5−6. These lines are then removed from St, see step 8.

5.2.3 Numerical Results

For this section, we consider the IEEE standardized
33-bus/1-feeder (33b/1f) [3] and the 135-bus/8-feeder
(135b/8f) [18] distribution networks with the added
modification, on both networks, that every line is
equipped with a switch to fully benefit from the flex-
ibility of online optimization. At each round, we add
randomly generated Perlin noise [32] on pi,t, qi,t,∀i ∈ N
to model uncertainty. Figure 2 illustrates OSGA’s sublin-
ear dynamic 1-regret. This is depicted by the vanishing
time-averaged regret.

We now compare OSGA to its offline counterparts solved
in hindsight both dynamically (OSGA⋆t ) and statically
(OSGA⋆) over the time horizon. We note that hindsight
solutions only serve analysis purposes and have no
practical application. We benchmark our approach, in
the simpler network (33b/1f), to the closest work in
OCO (bOGD) [24] to which we must add a projection on
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Fig. 3. Cumulative power losses (33b/1f)

the feasible power flow set to handle operational con-
straints of the grid. We also compare OSGA to a round-
optimal offline configuration, with a limited flexibility
of 9 switches, based on the second-order cone relaxation
power flow (SOCR-9SW) [38], which require much more
computational power. Lastly, we present the case where
a random feasible reconfiguration is implemented each
round.

Figure 4 presents snapshots of the 135/8f NR at different
rounds according to the apparent power demand at each
node. The demand is represented by a light-dark scale:
the darker the node the higher the demand is. Closed and
open switches are pictured in green and red, respectively.
Squares are generators. Radiality is always preserved.

In sum, OSGA performs systematically better than bOGD
and is considerably faster because it stands on a fast
MST heuristic. It also scales easily to bigger networks
and guarantees radiality without the need for a projec-
tion step. OSGA also outperforms OSGA⋆ while maintain-
ing a small performance gap with OSGA⋆t , the round opti-
mal solution computed in hindsight. For example, we ob-
served a total power loss increase of 0.038% for OSGA and
of 1.545% for OSGA⋆, after 400 rounds, when compared to
OSGA⋆t on 135b/8f in the simulation leading to Figure 4.

6 Conclusion

In this work, we investigate online binary optimization
in dynamic settings. We consider submodular objective
functions and general binary constraints. We first as-
sume an approximation of the objective function which
can be minimized in polynomial time exists. We propose
OSGA that solves the previous round approximation as
a proxy and in doing so, circumvents the NP-hardness
of the original problem. We adapt our approach to a
generic but weaker approximation that can be used to
recast general submodular problems in a simpler form.
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(a) Round 20 (b) Round 21

(c) Round 22 (d) Round 23

Fig. 4. Network reconfiguration (135b/8f)

Second, aiming at algorithmic simplicity, we formulate
OSPGD which leverages the Lovász extension and convex
optimization. For all our algorithms, we provide a dy-
namic regret analysis. We show that OSGA and OSPGD
possess, respectively, a dynamic regret bound that is
similar to the tightest bound w.r.t. the time horizon and
the (tractable) round optimum variation in the litera-
ture and to the OGD used in online convex optimization.

Finally, we present two applications of our approaches
in electric power systems. First, OSPGD is employed to
dispatch demand response resources, viz., thermostatic
loads, to mitigate fast-timescale power imbalances. Sec-
ond, OSGA is used to minimize active power losses in
distribution networks via real-time reconfiguration, i.e.,
closing and opening switches in the network to better
shape its topology.

Next, time-varying binary constraints, i.e., constraints
that similarly to the objective function are observed only
at the end of a round while needing to be satisfied in the
long-run, and bandit feedback will be investigated. This
will be done by combining, e.g., the idea behind OSPGD,
and a specialized approach like MOSP [8] and the point-
wise gradient estimator from [12], respectively.
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