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Abstract. In this work we review and derive some elementary
properties of the discrete renewal sequences based on a positive,
finite and integer-valued random variable. Our results consider
these sequences as dependent on the probability masses of the un-
derlying random variable. In particular we study the minima and
the maxima of these sequences and prove that they are attained
for indices of the sequences smaller or equal than the support of
the underlying random variable. Noting that the minimum itself
is a minimum of multi-variate polynomials we conjecture that one
universal polynomial envelopes the minimum from below and that
it is maximal in some sense and largest in another. We prove this
conjecture in a special case.

1. Introduction

Renewal theory is at the heart of classical probability theory. For this
reason new results keep on appearing thereby adding further knowledge
about these classical objects, see [2; 3] for more information. In this
note we consider discrete renewal sequences, whose basic theoretical
results can be found in [1]. We review and obtain some elementary
properties of the sequence of renewal masses. First, using the basic
renewal equation we establish that the minimum and the maximum
of the whole renewal sequence is attained within the support of the
underlying probability masses. Second, we show that under natural re-
strictions the members of the aforementioned sequence are sandwiched
between two monotone sequences which jointly converge to the limit
of the well-known Blackwell’s theorem. Third, given that each renewal
mass is a polynomial of the probability masses we consider the min-
imum of the renewal sequences as a minimum of a finite number of
polynomials on the respective simplex. We then introduce a universal
polynomial which envelops from below this minimum and we conjec-
ture that it is maximal within a natural subset of polynomials. We also
show that it is not largest amongst the members of this subset. We con-
firm the conjecture when the renewal sequence is based on probability
masses with at most three non-zero terms ( the random variable takes
values only in {1, 2, 3}). We show that within a subclass of polynomials
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the aforementioned universal polynomial is largest. These conjectures
are interesting from the standpoint of approximation theory as they in-
volve multivariate polynomial approximation from below of a minima
of a finite set of multivariate polynomials.

2. Notation and preliminary facts

In this note we work with a sequence of independent, positive, integer-
valued random variables (Xi)i≥1 defined on a common probability space.
Furthermore, we assume that they are mutually independent and iden-
tically distributed with finite support, that is P (X1 = l) = pl ≥ 0, 1 ≤
l ≤ k, and

∑k
l=1 pl = 1. Extend pn = 0 for n ≥ k + 1. We con-

sider the increasing random walk S := (Sn)n≥0 defined as S0 = 0 and

Sn =
∑n

k=1 Xk, n ≥ 1, and the related to it renewal masses

(2.1) un = P (n ∈ {S0, S1, · · ·}) =
∞∑
l=0

P (Sl = n) , n ≥ 0.

Obviously u0 = 1 and the well-known recurrent relation holds

(2.2) un =
n∑

l=1

plun−l =

min{n,k}∑
l=1

plun−l,

where we have used that pl = 0, l ≥ k + 1. Blackwell’s theorem states
that for aperiodic random walks, that is their support is N or equiva-
lently for all large n, Sn does not live on a sub-lattice of N,

(2.3) lim
n→∞

un =
1

E [X1]
=

1∑k
l=1 lpl

see [1, XIII Theorem 3]. For example, the random walk is clearly
aperiodic if p1 > 0. For the purpose of our investigation we introduce

(2.4) Mk = max
l≥1

{ul} and mk = min
l≥1

{ul} .

From Proposition 3.1 we see that mk = mk(p1, · · · , pk−1) and it is the
minimum of k − 1 multi-variate polynomials. Next, with each random
walk as defined above, we introduce for 1 ≤ n ≤ k, with the
convention

∏0
j=1 = 1,

(2.5) Qn (p1,p2, · · · ,pn−1) =
n−1∏
j=1

j∑
l=1

pl,

Note that if
∑j

l=1 pl = 1, 1 ≤ j < k, and
∑j−1

l=1 pl < 1 then nominally
Qk depends at most on p1, · · · , pj−1. We note that in this context we
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are interested in the behaviour of Qk on

Ak =

{
(p1, · · · , pk−1) : pl ≥ 0, 1 ≤ l ≤ k − 1;

k−1∑
l=1

pl ≤ 1

}
⊆ Rk−1.

(2.6)

We set Pk for the set of polynomials of k − 1 variables. We introduce
partial ordering in Pk in the following manner: we say that P1 ≺
P2, P1, P2 ∈ Pk, if and only if P1 ≤ P2 on Ak. This is inherited from
the partial ordering of functions of k − 1 variables on Ak defined as
f ≺ g ⇐⇒ f ≤ g on Ak. Furthermore, we consider

Ak := {P ∈ Pk : deg(P ) ≤ k − 1, P ≺ mk} ,(2.7)

where deg(P ) is the power of P , i.e. the highest combined power of
every monomial constituting P . We say that P ∈ Ak is maximal if and
only if

P̃ ∈ Ak and P̃ ≻ P ⇒ P̃ = P .(2.8)

Largest element is P ∈ Ak such that P ≻ Q for allQ ∈ Ak. Furthermore,
for any P ∈ Ak we set P̂ (p1, · · · , pk−1) = P (p1, p2 − p1, . . . , pk − pk−1)

and P̂j(p1, · · · , pj) = P̂ (p1, · · · , pj, 1, · · · , 1), j ≤ k − 1. We set

Âk =
{
P ∈ Ak : deg(P̂j) ≤ j ∀1 ≤ j ≤ k − 1

}
.(2.9)

Let us comment briefly on the classes Ak and Âk. According to Corol-
lary 3.4 the running minimum mk as defined in (2.4) is a minimum
of polynomials of p1, . . . , pk−1. Then Ak is a natural choice for class
polynomials that envelop from below mk uniformly in k. Theorem
3.6, however, reveals that Ak does not possess a maximal element, and
therefore an unique element that envelops mk from below. The struc-
ture of ul suggests our choice of Âk and for k = 3 it possesses a largest
element thereby confirming our Conjecture 3.7.

Here and hereafter we shall consider solely random walks S and their
renewal masses as defined above. Extensive account of renewal theory
can be found in [1; 2].

3. Main results and Conjectures

The first result shows that Mk ( respectively mk) are attained within
the first k ( respectively k − 1) of the renewal masses.

Proposition 3.1. Let (un)n≥0 be the renewal masses of the random
walk S defined above. Then

(3.1) 1 ≥ Mk = max
1≤l≤k

ul and mk = max
1≤l≤k−1

ul ≥ 0.

Mk = 1 ⇐⇒ pj = 1, for some k ≥ j ≥ 1, and mk = 0 ⇐⇒ p1 = 0.
Moreover, if pj ̸= 1, for all k ≥ j ≥ 1, then for n > k, un < Mk, and,
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if the walk is aperiodic un > mk, for n > k− 1. Next, if p1 ∈ (0, 1) the
sequence {un}n≥1 is not ultimately monotone and

un < max
1≤l≤k

{un−l} =: bn for n > k;

un > min
1≤l≤k

{un−l} =: cn for n > k − 1.
(3.2)

Finally, the sequences {bn}n≥k and {cn}n≥k−1 are respectively monotone
non-increasing and monotone non-decreasing.

Remark 3.2. The final claim establishes that, provided p1 ∈ (0, 1), un

is sandwiched between two monotone sequences.

Next we formulate a simple result that is used below.

Proposition 3.3. Let (un)n≥0 be the renewal masses of the random
walk S defined above. Then, for l ≥ 1,

(3.3) ul = Pl

(
p1, · · · , pmin{k−1,l}

)
,

where Pl, l ≥ 1 satisfy deg(Pl) = min {k − 1, l}. For each Pl each
variable pj, j ≤ l, has a highest possible power of precisely l|j or the
integer division of l by j. Finally, for any t > 0, and any l ≥ 1
(3.4)

Pl

(
t
1
l p1, t

2
l p2, · · · , t

min{k−1,l}
l pmin{k−1,l}

)
= tPl

(
p1, · · · , pmin{k−1,l}

)
.

We have the immediate corollary.

Corollary 3.4. Let (un)n≥0 be the renewal masses of the random walk
S defined above. Then

Mk = Mk (p1, p2, · · · , pk−1) = max
1≤l≤k

{
Pl

(
p1, · · · , pmin{k−1,l}

)}
mk = mk (p1, p2, · · · , pk−1) = min

1≤l≤k−1
{Pl (p1, · · · , pl)} .

(3.5)

Next, we state a result which estimates mk from below with Qk.

Proposition 3.5. Let (un)n≥0 be the renewal masses of the random
walk S defined above. Then

(3.6) mk ≥ Qk.

Furthermore, for any 1 ≤ n ≤ k − 1,

(3.7) un ≥ Qn+1.

We proceed to prove our main result concerning the number of max-
imal elements in Ak.

Theorem 3.6. Let (un)n≥0 be the renewal masses of the random walk
S defined above. For k ≥ 3 there is no largest element in Ak.

Given that Ak, k ≥ 3, has no largest element we formulate the fol-
lowing conjecture.
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Conjecture 3.7. For any k ≥ 3, Qk is a maximal element in Ak and
it is largest in Âk.

In the direction of Conjecture 3.7 we prove a weaker version of it.

Proposition 3.8. Conjecture 3.7 is valid for k = 3.

4. Proofs

Proof of Proposition 3.1. Let n > k and assume that M := Mk = un.
We consider three separate cases. First, we assume that 1 > p1 > 0.
Applying (2.2) we get that

M =
k∑

l=1

plun−l

which is only possible provided un−l = M for all 1 ≤ l ≤ k. Using
this recursively we get that ul must be equal to M , for all l ≥ 1. Since
the random walk is aperiodic and from (2.3) M = lim

n→∞
un = 1

E[X1]
< 1.

However, then from (2.2)

M = uk = pk +
k−1∑
l=1

pluk−l = pk +M
k−1∑
l=1

pl > M

and we arrive at a contradiction. Second, we assume pj = 1 for some
1 ≤ j ≤ k and then clearly M = 1 and n = jm for some m ≥ 1.
Third, if p1 = 0 and no pj = 1 then we set A = {1 ≤ l ≤ k : pl > 0}
and from M := Mk = un for some n > k we again deduce from (2.2)
that ul = M for all l ∈ A. This easily yields a contradiction from (2.2)
when applied for uj with j ∈ A and j not the maximal element of A.
Clearly, mk = 0 ⇐⇒ p1 = 0 and then the second relation of (3.1)
holds true. Assume that m := mk > 0. Hence, p1 > 0 and the random
walk is aperiodic. Let m := mk = un > 0, for some n > k. If p1 = 1
then M = m = 1 and the second relation of (3.1) holds true. If p1 < 1
then from (2.2) we have that

m = uk = pk +
k−1∑
l=1

pluk−l > min
1≤l≤k−1

ul.

This yields a contradiction and validates (3.1). Since 0 < p1 < 1 and

thus M < 1 then un =
∑k

l=1 plun−l, n ≥ k, easily gives that {un}n≥1

can be neither monotone increasing nor monotone decreasing. Finally,
it is elementary to repeat the first argument of this proof to check that
it is impossible that un = max1≤l≤k {un−l} = c for some for n > k as
otherwise we would again obtain that un = c = p1, for all n ≥ 1 and we
would arrive at contradiction as above. The same can be done for the
minimum and (3.2) is established. Let us next prove the monotonicity
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of {bn}n≥k with {cn}n≥k−1 being the same. Assume that bn+1 > bn.
Then from (2.2) and the definition of bn we get a contradiction from

bn < bn+1 = un =
k∑

l=1

plun−l ≤ bn.

□

Proof of Proposition 3.3. The relation (3.3) is immediate from (2.2).
The final claim is elementary from probabilistic standpoint: given l ≥
and 1 ≤ j ≤ l we cannot have a piece of path that reaches l with more
than l|j occurrences of value j among the random variables construing
it; this means that the power of pj does not exceed l|j; however, as
p1 > 0 then clearly we can reach l by l|j steps of size j and then adding
steps of value 1. To show (3.4) we observe that every summand in Pl

consists of probabilities of possible path to l with the weighted sum
of their powers by their index equalling l. Therefore, to total power
contributed by the powers of t is simply 1. □

Proof of Proposition 3.5. Clearly, 1 > Qn is non-increasing in n and
it suffices to prove (3.7). We do so by induction with obvious basis
u1 = p1 ≥ p1. Assume that (3.7) holds for n < k − 1. We have from
(2.2), the monotonicity of vn and the induction hypothesis that

un+1 =
n+1∑
j=1

pjun+1−j ≥ Qn

n+1∑
j=1

pj = Qn+1.

Thus the claim is furnished. □

Proof of Theorem 3.6. Assume that P ∈ Ak, k ≥ 3 is largest element.
We split the domain Ak, see (2.6), as subregions whereby each Pl de-

fined in (3.3) is the smallest, that is Ak ⊇
⋃k−1

l=1 Ak(l), Ak(l) = Ak ∩
{Pl < Pj,∀j ̸= l} . Since Pl are polynomials then Ak(l) is open set for

each 1 ≤ l ≤ k−1 and the Lebesgue measure of Ak \
⋃k−1

l=1 Ak(l) is zero.

Choose p0 ∈ Ak(l) and consider P̃l(p) = Pl(p)−a⟨p−p0, p−p0⟩, p, p0 ∈
Ak with ⟨·, ·⟩ standing for the scalar product in Rk−1 and a > 0 a scalar.
Since Ak is a compact then there exists a0 > 0 such that mk ≥ P̃l on
Ak and therefore P̃l ∈ Ak. Also, P̃l(p0) = Pl(p0) = mk(p0) and since P
is the largest then P (p0) = P̃l(p0) = mk(p0). The latter can be made
valid for any p0 in any Ak(l), 1 ≤ l ≤ k − 1 and hence P = mk which
is impossible. □

Proof of Proposition 3.8. When k = 3 we have, see (3.1),

m3 = min
{
p1, p

2
1 + p2

}
= p1min

{
1,

p2
p1

+ p1

}
.
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If we assume that Q ≻ Q3, Q ∈ A3 on A3 then clearly we obtain from
the definition of Q3, see (2.5), that

p2 ≤ lim
p1→0

Q(p1, p2)

p1
≤ lim

p1→0
min

{
1,

p2
p1

+ p1

}
= 1.

Since p2 is arbitrary, choosing it to tend to 1 we get since degQ ≤ 2,
that Q(p1, p2) = p1(a+ bp1 + cp2). Hence on A3

p1 + p2 ≤ (a+ bp1 + cp2) ≤ min

{
1,

p2
p1

+ p1

}
.

Setting p2 = 0 we first get that a = 0 and then b = 1. Substituting we
get on A3 the inequalities

p2 ≤ cp2 ≤ min

{
1− p1,

p2
p1

}
≤ p2

p1
.

Letting p1 → 1 we conclude that c = 1 and hence Q = Q3. Next, let
P (p1, p2) = ap21 + bp1p2 + cp22 + dp1 + ep2 + f ∈ Â3. Since P (p1, 1− p1)
has by assumption degree 1, see (2.9), we conclude that 2b = a+ c. We
consider H := P −Q3 and note that on ∂A3, Q3 = m3. Therefore, on
∂A3 we have that H ≤ 0. Note that 4Det(H) = 4(a− 1)c− (b− 1)2 =
−(a − c − 1)2 and as it is well-known if Det(H) ≤ 0, then maxGH =
max∂G H ( and minGH = min∂G H) for each bounded region G in the
plane. Therefore, P ≤ Q3 on A3 and the claim that Q3 is largest in Â3
is established. □
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