IMPLICATIONS OF SOME MASS-CAPACITY INEQUALITIES

PENGZI MIAO

ABSTRACT. Applying a family of mass-capacity related inequalities proved in [16], we obtain sufficient conditions that imply the nonnegativity as well as positive lower bounds of the mass, on a class of manifolds with nonnegative scalar curvature, with or without a singularity.

1. INTRODUCTION

A smooth Riemannian 3-manifold (M, g) is called asymptotically flat (AF) if M, outside a compact set, is diffeomorphic to \mathbb{R}^3 minus a ball; the associated metric coefficients satisfy

$$g_{ij} = \delta_{ij} + O(|x|^{-\tau}), \ \partial g_{ij} = O(|x|^{-\tau-1}), \ \partial \partial g_{ij} = O(|x|^{-\tau-2}),$$

for some $\tau > \frac{1}{2}$; and the scalar curvature of g is integrable. Under these AF conditions, the limit, near ∞ ,

$$\mathfrak{m} = \lim_{r \to \infty} \frac{1}{16\pi} \int_{|x|=r} \sum_{j,k} (g_{jk,j} - g_{jj,k}) \frac{x^k}{|x|}$$

exists and is called the ADM mass [2] of (M, g). It is a result of Bartnik [3], and of Chruściel [9], that \mathfrak{m} is a geometric invariant, independent on the choice of the coordinates $\{x_i\}$.

A fundamental result on the mass and the scalar curvature is the Riemannian positive mass theorem (PMT):

Theorem 1.1 ([20, 22]). Let (M, g) be a complete, asymptotically flat 3-manifold with nonnegative scalar curvature without boundary. Then

 $\mathfrak{m} \geq 0$,

and equality holds if and only if (M, q) is isometric to the Euclidean space \mathbb{R}^3 .

On an asymptotically flat 3-manifold (M, g) with boundary $\Sigma = \partial M$, the capacity (or L^2 -capacity) of Σ is defined by

$$\mathbf{c}_{\Sigma} = \inf_{f} \left\{ \frac{1}{4\pi} \int_{M} |\nabla f|^2 \right\},\,$$

where the infimum is taken over all locally Lipschitz functions f that vanishes on Σ and tend to 1 at infinity. Equivalently, if ϕ denotes the function with

$$\Delta \phi = 0, \ \phi|_{\Sigma} = 1, \text{ and } \phi \to 0 \text{ at } \infty,$$

then,
$$\mathbf{c}_{\Sigma} = \frac{1}{4\pi} \int_{M} |\nabla \phi|^2 = \frac{1}{4\pi} \int_{\Sigma} |\nabla \phi|$$
, and
 $\phi = \mathbf{c}_{\Sigma} |x|^{-1} + o(|x|^{-1})$, as $x \to \infty$.

Regarding the mass and the capacity, if Σ is a minimal surface, Bray showed

Theorem 1.2 ([4]). Let (M, g) be a complete, asymptotically flat 3-manifold with nonnegative scalar curvature, with minimal surface boundary $\Sigma = \partial M$. Then

 $\mathfrak{m} \geq \mathfrak{c}_{\Sigma},$

and equality holds iff (M, g) is isometric to a spatial Schwarzschild manifold outside the horizon.

In [16, Theorem 7.4], an inequality relating the mass-to-capacity ratio to the Willmore functional of the boundary was obtained:

Theorem 1.3 ([16]). Let (M, g) be a complete, orientable, asymptotically flat 3manifold with one end, with boundary Σ . Suppose Σ is connected and $H_2(M, \Sigma) = 0$. If g has nonnegative scalar curvature, then

(1.1)
$$\frac{\mathfrak{m}}{\mathfrak{c}_{\Sigma}} \ge 1 - \left(\frac{1}{16\pi} \int_{\Sigma} H^2\right)^{\frac{1}{2}}.$$

Here \mathfrak{m} is the mass of (M, g), \mathfrak{c}_{Σ} is the capacity of Σ in (M, g), and H is the mean curvature of Σ . Moreover, equality in (1.1) holds if and only if (M, g) is isometric to a spatial Schwarzschild manifold outside a rotationally symmetric sphere with nonnegative mean curvature.

As shown in [16], (1.1) implies the 3-dimensional PMT. For instance, assuming M is topologically \mathbb{R}^3 , applying (1.1) to the exterior of a geodesic sphere S_r with radius r centered at any point $p \in M$, one has

(1.2)
$$\frac{\mathfrak{m}}{\mathfrak{c}_{S_r}} \ge 1 - \left(\frac{1}{16\pi} \int_{S_r} H^2\right)^{\frac{1}{2}}.$$

Letting $r \to 0$, one obtains $\mathfrak{m} \ge 0$. Earlier proofs of 3-d PMT via harmonic functions were given by Bray-Kazaras-Khuri-Stern [6] and Agostiniani-Mazzieri-Oronzio [1].

Theorem 1.3 follows from two other results (Corollary 7.1 and Theorem 7.3) in [16]:

Theorem 1.4 ([16]). Let (M, g) be a complete, orientable, asymptotically flat 3manifold with one end, with connected boundary Σ , satisfying $H_2(M, \Sigma) = 0$. If g has nonnegative scalar curvature, then

(1.3)
$$\left(\frac{1}{\pi}\int_{\Sigma}|\nabla u|^{2}\right)^{\frac{1}{2}} \leq \left(\frac{1}{16\pi}\int_{\Sigma}H^{2}\right)^{\frac{1}{2}} + 1,$$

and

(1.4)
$$\frac{\mathfrak{m}}{2\mathfrak{c}_{\Sigma}} \ge 1 - \left(\frac{1}{4\pi} \int_{\Sigma} |\nabla u|^2\right)^{\frac{1}{2}}.$$

 $\mathbf{2}$

Here u is the harmonic function with u = 0 at Σ and $u \to 1$ near ∞ . Moreover,

- equality in (1.3) holds if and only if (M, g) is isometric to a spatial Schwarzschild manifold outside a rotationally symmetric sphere with nonnegative mean curvature;
- equality in (1.4) holds if and only if (M, g) is isometric to a spatial Schwarzschild manifold outside a rotationally symmetric sphere.

A corollary of (1.3) (see [16, Theorem 7.2]) is an upper bound on the capacity-toarea-radius ratio, first derived by Bray and the author [7].

Theorem 1.5 ([7]). Let (M, g) be a complete, orientable, asymptotically flat 3manifold with one end, with boundary Σ . Suppose Σ is connected and $H_2(M, \Sigma) = 0$. If g has nonnegative scalar curvature, then

(1.5)
$$\frac{2\mathfrak{c}_{\Sigma}}{r_{\Sigma}} \le \left(\frac{1}{16\pi} \int_{\Sigma} H^2\right)^{\frac{1}{2}} + 1.$$

Here \mathbf{c}_{Σ} is the capacity of Σ in (M,g) and $r_{\Sigma} = \left(\frac{|\Sigma|}{4\pi}\right)^{\frac{1}{2}}$ is the area-radius of Σ . Moreover, equality holds if and only if (M,g) is isometric to a spatial Schwarzschild manifold outside a rotationally symmetric sphere with nonnegative mean curvature.

In this paper, we give some other applications of (1.1), (1.3) and (1.4).

First, for later purposes, we remark on the topological assumption " $H_2(M, \Sigma) = 0$ " in Theorems 1.3 – 1.5 above: the assumption is imposed only to ensure each regular level set of the harmonic function u, vanishing at the boundary and tending to 1 near ∞ , to be connected in the interior of M (see the paragraph preceding the proof of Theorem 3.1 in [16]); indeed, (1.1), (1.3) and (1.4) (and all other results from [16]) hold if " $H_2(M, \Sigma) = 0$ " is replaced by assuming

(*) each closed, connected, orientable surface in the interior of M either is the boundary of a bounded domain, or together with Σ forms the boundary of a bounded domain.

Now we motivate the main tasks in this paper. Let us first return to the setting of (1.2), in which the surface S_r "closes up nicely" (to bound a geodesic ball). In this setting, by a result of Mondino and Templeton-Browne [18], $\{S_r\}$ can be perturbed to yield another family of surfaces $\{\Sigma_r\}$ so that, as $r \to 0$,

(1.6)
$$\int_{\Sigma_r} H^2 = 16\pi - \frac{8\pi}{3}R(p)r^2 + \frac{4\pi}{3} \left[\frac{1}{9}R(p)^2 - \frac{4}{15}|\mathring{\operatorname{Ric}}(p)|^2 - \frac{1}{5}\Delta R(p)\right]r^4 + O(r^5).$$

Here R denotes the scalar curvature and $\operatorname{Ric} = \operatorname{Ric} - \frac{1}{3}Rg$ is the traceless part of Ric, the Ricci tensor. Applying (1.1) to the exterior of these Σ_r in (M, g), one obtains

(1.7)
$$\frac{\mathfrak{m}}{\mathfrak{c}_{\Sigma_r}} \ge \frac{1}{12}R(p)r^2 + \left[\frac{1}{90}|\mathring{\operatorname{Ric}}(p)|^2 - \frac{1}{864}R(p)^2 + \frac{1}{120}\Delta R(p)\right]r^4 + O(r^5).$$

If $R \ge 0$, (1.7) shows the inequality $\mathfrak{m} \ge 0$ as well as the rigidity of $\mathfrak{m} = 0$.

In general, (1.1) suggests that, if it is applied to obtain $\mathfrak{m} \geq 0$ on an (M, g), the manifold boundary Σ does not need to admit a "nice fill-in". Rewriting (1.1) as

$$\mathfrak{m} \geq \mathfrak{c}_{_{\Sigma}} \left[1 - \left(\frac{1}{16\pi} \int_{S_r} H^2 \right)^{\frac{1}{2}} \right],$$

one may seek conditions on metrics g with a "singularity" so that $\mathfrak{m} \geq 0$ while g is allowed to be incomplete.

Similarly, on an (M, g) with two ends, one of which is asymptotically flat (AF), assuming it admits a harmonic function u that tends to 1 at the AF end and tends to 0 at the other end, one may aim to apply (1.4), i.e.

$$\mathfrak{m} \geq 2\mathfrak{c}_{\Sigma} \left[1 - \left(\frac{1}{4\pi} \int_{\Sigma} |\nabla u|^2 \right)^{\frac{1}{2}} \right],$$

to bound \mathfrak{m} via the energy of u on the entire (M, g).

Below we formulate a class of manifolds to carry out the above mentioned tasks. Throughout the paper, let N be a noncompact, connected, orientable 3-manifold. We assume N admits an increasing exhaustion sequence of bounded domains with connected boundary. Precisely, this means there exists a sequence of closed, orientable surfaces $\{\Sigma_k\}_{k=1}^{\infty}$ in N such that

- Σ_k is connected;
- $\Sigma_k = \partial D_k$ for a precompact domain $D_k \subset N$; and
- $\overline{D}_k \subset D_{k+1}$ and $N = \bigcup_{k=1}^{\infty} D_k$. Here $\overline{D}_k = D_k \cup \Sigma_k$ is the closure of D_k in N.

Fix a point $p \in N$, let $M = N \setminus \{p\}$. On M, let g be a smooth metric that is asymptotically flat near p. We refer p as the asymptotically flat (AF) ∞ of (M, g). Unless otherwise specified, we do not impose assumptions on the behavior of g near Σ_k as $k \to \infty$. In particular, (M, g) does not need to be complete,

Given any closed, connected surface $S \subset M$, we say S encloses p if $S = \partial D_s$ for some precompact domain $D_s \subset N$ such that $p \in D_s$. Let S denote the set of all such surfaces $S \subset M$ enclosing p. Clearly, $\Sigma_k \in S$ for large k. Define

(1.8)
$$\mathbf{c}(M,g) = \inf_{S \in S} \mathbf{c}_S.$$

Here \mathfrak{c}_{s} is the capacity of S in the asymptotically flat (E_{s}, g) , where

$$E_s = (D_s \setminus \{p\}) \cup S.$$

As a functional on \mathcal{S} , the capacity \mathfrak{c}_s has a monotone property, that is if $S_1, S_2 \in \mathcal{S}$ and $D_{s_1} \subset D_{s_2}$, then $\mathfrak{c}_{s_1} \geq \mathfrak{c}_{s_2}$. Such a property readily implies $\{\mathfrak{c}_{\Sigma_k}\}$ is monotone non-increasing and

(1.9)
$$\mathbf{c}(M,g) = \lim_{k \to \infty} \mathbf{c}_{\Sigma_k}.$$

Standard arguments show $\mathfrak{c}(M,g) > 0$ if and only if there exists a harmonic function w on (M,g) such that 0 < w < 1 on M and $w(x) \to 1$ at ∞ (i.e. as $x \to p$). (See Proposition 3.1 in Section 3.)

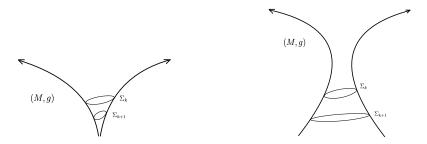


FIGURE 1. On the left is an examples of (M, g) with $\mathfrak{c}(M, g) = 0$; the arrow denotes the AF end; $\{\Sigma_k\}$ may approach a "singularity" as $k \to \infty$. On the right is an example of (M, g) with $\mathfrak{c}(M, g) > 0$; besides the AF end, (M, g) has another end with suitable growth.

For manifolds (M, g) with $\mathfrak{c}(M, g) = 0$, we seek conditions that imply the AF end of (M, g) has mass $\mathfrak{m} \geq 0$, see Theorem 2.1 and Remark 2.2. For (M, g) with $\mathfrak{c}(M, g) > 0$, we explore for sufficient conditions that bound \mathfrak{m} from below via $\mathfrak{c}(M, g)$, see Theorem 3.1 and Corollary 3.1.

2. Singular metrics with $\mathfrak{m} \geq 0$

Let N, M and g be given in the definition of $\mathfrak{c}(M,g)$ in (1.8). Given $S \in \mathfrak{S}$, let

$$W(S) = \int_S H^2.$$

We want to apply (1.1) to (E_s, g) . For this purpose, we assume the background manifold N satisfies $H_2(N) = 0$. Under this assumption, any closed, connected surface S' in $M = N \setminus \{p\}$ is the boundary of a bounded domain $D \subset N$. If $p \notin D$, then $D \subset M$; if $p \in D$, then S' is homologous to $S \in S$. Therefore, condition (*) holds on E_s .

The following is a direct corollary of (1.1).

Proposition 2.1. Suppose $H_2(N) = 0$ and (M, g) has nonnegative scalar curvature. Then

(2.1)
$$\mathfrak{c}_{S_k} W(S_k)^{\frac{1}{2}} \to 0 \text{ along a sequence } \{S_k\} \subset \mathfrak{S} \Rightarrow \mathfrak{m} \geq 0.$$

Proof. If $W(S_k) \leq 16\pi$ for some k, then (1.1) implies $\mathfrak{m} \geq 0$.

Suppose $W(S_k) > 16\pi$ for every k, then " $\mathfrak{c}_{S_k} W(S_k)^{\frac{1}{2}} \to 0$ " implies " $\mathfrak{c}_{S_k} \to 0$ ". Rewriting (1.1) as

(2.2)
$$\mathfrak{m} \ge \mathfrak{c}_{S_k} \left[1 - \left(\frac{1}{16\pi} W(S_k) \right)^{\frac{1}{2}} \right]$$

and letting $k \to \infty$, we have $\mathfrak{m} \ge 0$.

Given $S \in S$, let $\mathfrak{m}_{H}(S) = \frac{r_{s}}{2} \left(1 - \frac{1}{16\pi}W(S)\right)$ denote the Hawking mass of S ([11]). Inequality (2.3) in the next Proposition is comparable to the result of Huisken and Ilmanen [13] on the relation between \mathfrak{m} and $\mathfrak{m}_{H}(S)$.

Proposition 2.2. Suppose $H_2(N) = 0$ and (M, g) has nonnegative scalar curvature. If a surface $S \in S$ satisfies $W(S) \ge 16\pi$, then

(2.3)
$$\mathfrak{m} \ge \mathfrak{c}_{S} \left[1 - \left(\frac{1}{16\pi} W(S) \right)^{\frac{1}{2}} \right] \ge \mathfrak{m}_{H}(S).$$

Proof. If $W(S) \ge 16\pi$, then (1.5) implies

(2.4)
$$\mathfrak{c}_{S}\left[1 - \left(\frac{1}{16\pi}\int_{S}H^{2}\right)^{\frac{1}{2}}\right] \geq \frac{r_{S}}{2}\left[1 - \frac{1}{16\pi}\int_{S}H^{2}\right] = \mathfrak{m}_{H}(S).$$

This combined with (1.1) proves (2.3).

Remark 2.1. Similar to (2.1), a condition of " $r_{s_k}W(S_k) \to 0$ " along $\{S_k\} \subset S$ also implies " $\mathfrak{m} \geq 0$ ". However, if $\inf_k W(S_k) \geq 16\pi$, then

$$``r_{_{S_k}}W(S_k) \to 0" \ \Rightarrow \ ``r_{_{S_k}} \to 0 \ \text{and} \ r_{_{S_k}}W(S_k)^{\frac{1}{2}} \to 0" \ \Rightarrow \ ``\mathfrak{c}_{_{S_k}} \to 0",$$

where the last step is by (1.5). Combined with (2.4), this implies the assumption of ${}^{"}\mathfrak{c}_{S_k}W(S_k)^{\frac{1}{2}} \to 0$ " in Proposition 2.1.

In what follows, let $\{\Sigma_k\} \subset S$ be the sequence of surfaces given in the introduction. The numerical value of \mathfrak{c}_{Σ_k} depends on g near the AF end. However, a property of " $\mathfrak{c}_{\Sigma_k} \to 0$ " does not. This was shown by Bray and Jauregui [5] in the context of (M,g) having a zero area singularity. Their argument applies to " $\mathfrak{c}_{\Sigma_k} W(\Sigma_k)^{\frac{1}{2}} \to 0$ ". To illustrate this, it is convenient to adopt a notion of relative capacity (see [14] for instance). Given two surfaces $S, \tilde{S} \in S$, suppose $S \cap \tilde{S} = \emptyset$ and $D_{\tilde{S}} \subset D_S$. The capacity of S relative to \tilde{S} is

(2.5)
$$\mathbf{c}_{(S,\tilde{S})} = \frac{1}{4\pi} \int_{D_S \setminus D_{\tilde{S}}} |\nabla v|^2,$$

where v is the harmonic function on $D_s \setminus D_{\tilde{s}}$ with v = 0 at S and v = 1 at \tilde{S} .

Proposition 2.3. Let $\tilde{S} \in S$ be a fixed surface. Then, as $k \to \infty$,

$$\mathfrak{c}_{_{\Sigma_k}}W(\Sigma_k)^{\frac{1}{2}}\to 0 \iff \mathfrak{c}_{_{(\Sigma_k,\tilde{S})}}W(\Sigma_k)^{\frac{1}{2}}\to 0.$$

Proof. For large k, let u_k , v_k be the harmonic function on $D_k \setminus \{p\}$, $D_k \setminus D_{\tilde{S}}$, with boundary values $u_k = 0$ at Σ_k , $u_k \to 1$ at the AF ∞ , $v_k = 0$ at Σ_k , $v_k = 1$ at \tilde{S} , respectively. Let $\beta_k = \min_{\tilde{S}} u_k$. By the maximum principle, $v_k \ge u_k \ge \beta_k v_k$ on

$$\square$$

 $D_k \setminus D_{\tilde{s}}$, which implies $\partial_{\nu} v_k \geq \partial_{\nu} u_k \geq \beta_k \partial_{\nu} v_k$ at Σ_k . Here ν denotes the unit normal to Σ_k pointing to ∞ . Since $4\pi \mathfrak{e}_{\Sigma_k} = \int_{\Sigma_k} \partial_{\nu} u_k$ and $4\pi \mathfrak{e}_{(\Sigma_k, \tilde{s})} = \int_{\Sigma_k} \partial_{\nu} v_k$, one has

$$\beta_k^{-1}\mathfrak{c}_{_{\Sigma_k}} \geq \mathfrak{c}_{_{(\Sigma_k,\tilde{S})}} \geq \mathfrak{c}_{_{\Sigma_k}}.$$

The claim follows by noting that β_k has a uniform positive lower bound as $k \to \infty$. \Box

As an application of Propositions 2.1 and 2.3, we have

Theorem 2.1. Let N be a noncompact, connected, orientable 3-manifold. Suppose $H_2(N) = 0$. Let $M = N \setminus \{p\}$ where p is a point in N. Let g be a smooth metric with nonnegative scalar curvature on M such that g is asymptotically flat near p. Assume there is a precompact domain $D \subset N$ such that $p \in D$ and $(N \setminus D, g)$ is isometric to $((0, \delta] \times \Sigma, \overline{q} + h)$.

where

- $\delta > 0$ is a constant, Σ is a closed, connected, orientable surface;
- $\bar{g} = dr^2 + a(r)^2 \sigma$, in which σ is a given metric on Σ and a(r) is a positive function on $(0, \delta]$; and
- $\lambda^{-1} \leq |\bar{g} + h|_{\bar{q}} \leq \lambda$ for some constant $\lambda > 0$.

Then

(2.6)
$$\lim_{r \to 0} \left(\int_r^{\delta} \frac{1}{a(x)^2} \, dx \right)^{-1} \left[|a'(r)| + a(r) |\bar{\nabla}h|_{\bar{g}} \right] = 0 \implies \mathfrak{m} \ge 0.$$

Remark 2.2. If $a(r) = r^b$ for a constant b > 0, then (2.6) translates to

$$\lim_{r \to 0} r^{3b-2} \left(1 + r |\bar{\nabla}h|_{\bar{g}} \right) = 0 \implies \mathfrak{m} \ge 0.$$

This in particular implies, if g has a conical or r^b -horn type singularity modeled on $\bar{g} = dr^2 + r^{2b}\sigma$ near r = 0, then, under a mild asymptotic assumption of

 $\lambda^{-1} \leq |\bar{g}+h|_{\bar{g}} \leq \lambda \ \, \text{and} \ \, r|\bar{\nabla}h|_{\bar{g}} = O(1),$

one has " $b > \frac{2}{3} \Rightarrow \mathfrak{m} \ge 0$ ". (Related results on PMT with isolated singularities can be found in [21, 15, 10]).

Proof of Theorem 2.1. Let $\Sigma_r = \{r\} \times \Sigma$, $r \in (0, \delta]$. For $s \in (0, \delta)$, let $\bar{\mathfrak{c}}_{(\Sigma_s, \Sigma_\delta)}$, $\bar{W}(\Sigma_s)$ denote the capacity of Σ_s relative to Σ_δ , the Willmore functional of Σ_s , respectively, with respect to \bar{g} .

The function $u(r) = \left(\int_s^{\delta} a(x)^{-2} dx\right)^{-1} \int_s^r a(x)^{-2} dx$ is \bar{g} -harmonic on $[s, \delta] \times \Sigma$ with u = 0 at Σ_s and u = 1 at Σ_{δ} . This implies

(2.7)
$$\bar{\mathfrak{c}}_{(\Sigma_s,\Sigma_\delta)} = \frac{|\Sigma|_{\sigma}}{4\pi} \left(\int_s^{\delta} a(x)^{-2} \, dx \right)^{-1},$$

where $|\Sigma|_{\sigma}$ is the area of (Σ, σ) . The mean curvature \bar{H} of Σ_s with respect to \bar{g} is $\bar{H} = 2a^{-1}a'$. Hence,

$$\bar{W}(\Sigma_s) = 4a'(s)^2 |\Sigma|_{\sigma}.$$

We compare $\bar{\mathfrak{c}}_{(\Sigma_s,\Sigma_{\delta})}$ and $\mathfrak{c}_{(\Sigma_s,\Sigma_{\delta})}$. Let $\bar{\nabla}$, ∇ and $dV_{\bar{g}}$, dV_g denote the gradient, the volume form with respect to \bar{g} , g, respectively. Since $\mathfrak{c}_{(\Sigma_s,\Sigma_{\delta})}$ equals the infimum of the g-Dirichlet energy of functions that vanish at Σ_s and equal 1 at Σ_{δ} , we have

(2.8)
$$\begin{aligned} \mathfrak{c}_{(\Sigma_{s},\Sigma_{\delta})} &\leq \int_{[s,\delta]\times\Sigma} |\nabla u|_{g}^{2} dV_{g} \\ &\leq C \int_{[s,\delta]\times\Sigma} |\bar{\nabla} u|_{\bar{g}}^{2} dV_{\bar{g}} = C \,\bar{\mathfrak{c}}_{(\Sigma_{s},\Sigma_{\delta})}. \end{aligned}$$

Here C > 0 denotes a constant independent on s and we have used the assumption $\lambda^{-1} \leq |g|_{\bar{g}} \leq \lambda$.

We also compare $\overline{W}(\Sigma_s)$ and $W(\Sigma_s)$. Let $\overline{\mathbb{II}}$ denote the second fundamental form of Σ_s with respect to \overline{g} . Direct calculation shows

(2.9)
$$H - \bar{H} = |\bar{\mathbb{II}}|_{\bar{g}} O(|h|_{\bar{g}}) + O(|\bar{\nabla}h|_{\bar{g}}).$$

(For instance, see formula (2.33) in [17] and the proof therein.) Therefore,

(2.10)
$$H^{2} = \bar{H}^{2} + \left[|\bar{\mathbb{II}}|_{\bar{g}} O(|h|_{\bar{g}}) + O(|\bar{\nabla}h|_{\bar{g}}) \right]^{2} + \bar{H} \left[|\bar{\mathbb{II}}|_{\bar{g}} O(|h|_{\bar{g}}) + O(|\bar{\nabla}h|_{\bar{g}}) \right]$$
$$= \bar{H}^{2} + |\bar{\mathbb{II}}|_{\bar{g}}^{2} O(|h|_{\bar{g}}) + \bar{H} O(|\bar{\nabla}h|_{\bar{g}}) + O(|\bar{\nabla}h|_{\bar{g}}^{2}).$$

Let $d\sigma_g$, $d\sigma_{\bar{g}}$ denote the area form on Σ_s with respect to g, \bar{g} , respectively. Then

(2.11)
$$\int_{\Sigma_s} H^2 \, d\sigma_g \leq C \int_{\Sigma_s} H^2 \, d\sigma_{\bar{g}} \\ = C \, \bar{W}(\Sigma_s) + \left[|\bar{\mathbb{II}}|_{\bar{g}}^2 \, O(|h|_{\bar{g}}) + \bar{H} \, O(|\bar{\nabla}h|_{\bar{g}}) + O(|\bar{\nabla}h|_{\bar{g}}^2) \right] \, |\Sigma_s|_{\bar{g}}.$$

Plugging in $\bar{W}(\Sigma_s) = 4a'^2 |\Sigma|_{\sigma}$, $|\bar{\mathbb{II}}|_{\bar{g}}^2 = 2a^{-2}a'^2$, and $\bar{H}^2 = 4a^{-2}a'^2$, we have

(2.12)
$$W(\Sigma_s) \le C |\Sigma|_{\sigma} \left[a'^2 + a'^2 |h|_{\bar{g}} + aa' |\bar{\nabla}h|_{\bar{g}} + a^2 |\bar{\nabla}h|_{\bar{g}}^2 \right] \le C |\Sigma|_{\sigma} \left[a'^2 (1 + |h|_{\bar{g}}) + a^2 |\bar{\nabla}h|_{\bar{g}}^2 \right].$$

As $|h|_{\bar{g}}$ is bounded by assumption, it follows from (2.7), (2.8) and (2.12) that

(2.13)
$$\mathfrak{c}_{(\Sigma_s,\Sigma_\delta)} W(\Sigma_s)^{\frac{1}{2}} \le C \left(\int_s^\delta a(x)^{-2} \, dx \right)^{-1} \left[|a'| + a |\bar{\nabla}h|_{\bar{g}} \right].$$

(2.6) now follows from Propositions 2.1 and 2.3.

Remark 2.3. The negative mass Schwarzschild manifolds are known to have an r^{b} horn type singularity with $b = \frac{2}{3}$ (see [5, 21] for instance). In [5], Bray and Jauregui
developed a theory of "zero area singularities" (ZAS) modeled on the singularity of
these manifolds. Among other things, they introduced a notion of the mass of ZAS.
In [19, Theorem 4.8], Robbins showed the ADM mass of an asymptotically flat 3manifold with a single ZAS is at least the ZAS mass. The conclusion on the r^{b} -horn
type singularity in Remark 2.2 can also be reached via the results on ZAS in [5, 19].

We end this section by applying (1.1) to obtain information of $W(\cdot)$ in the negative mass Schwarzschild manifolds.

Proposition 2.4. Consider a spatial Schwarzschild manifold with negative mass, i.e.

$$(M_{\mathfrak{m}}, g_{\mathfrak{m}}) = \left((0, \infty) \times S^2, \frac{1}{1 + \frac{2m}{r}} dr^2 + r^2 \sigma_o \right)$$

where (S^2, σ_o) denotes the standard unit sphere and the mass $\mathfrak{m} = -m$ is negative. Let $\Sigma \subset M_{\mathfrak{m}}$ be any connected, closed surface that is homologous to a slice $\{r\} \times S^2$. Let $r_{max}(\Sigma) = \max_{x \in \Sigma} r(x)$. Then

(2.14)
$$W(\Sigma) \ge 16\pi \left(1 + \frac{2m}{r_{max}(\Sigma)}\right).$$

In particular, $W(\Sigma) \to \infty$ as $r_{max}(\Sigma) \to 0$.

Proof. (1.1) implies

(2.15)
$$\left(\frac{1}{16\pi}W(\Sigma)\right)^{\frac{1}{2}} \ge 1 + \frac{m}{\mathfrak{c}_{\Sigma}}.$$

Let $\Sigma_* = \{r_{max}(\Sigma)\} \times \mathbb{S}^2$. As Σ_* encloses Σ , (2.16) $\mathfrak{c}_{\Sigma_*} \ge \mathfrak{c}_{\Sigma}$.

Since $\mathfrak{m} = -m < 0$, the above implies

(2.17)
$$\left(\frac{1}{16\pi}W(\Sigma)\right)^{\frac{1}{2}} \ge 1 + \frac{m}{\mathfrak{c}_{\Sigma_*}}$$

Direct calculation gives

(2.18)
$$\mathbf{c}_{\Sigma_*} = \frac{m}{\left(1 + \frac{2m}{r_{max}(\Sigma)}\right)^{\frac{1}{2}} - 1}$$

(2.14) follows from (2.17) and (2.18).

Proposition 2.4 gives another perspective of the singularity of $(M_{\mathfrak{m}}, g_{\mathfrak{m}})$ via the Willmore functional $W(\cdot)$.

3. Bounding \mathfrak{m} via $\mathfrak{c}(M,g)$

Let (M, g) be given in the definition of $\mathfrak{c}(M, g)$ in (1.8). In this section, we relate \mathfrak{m} and $2\mathfrak{c}(M, g)$ assuming $\mathfrak{c}(M, g) > 0$. We begin with a characterization of $\mathfrak{c}(M, g) > 0$ which follows from standard arguments on harmonic functions.

Proposition 3.1. Let $\mathfrak{c}(M,g)$ be defined in (1.8). Then $\mathfrak{c}(M,g) > 0$ if and only if there exists a harmonic function w on (M,g) such that 0 < w < 1 on M and $w(x) \to 1$ at ∞ (i.e. as $x \to p$).

Proof. For each k, let u_k be the harmonic function on (E_{Σ_k}, g) with $u_k \to 1$ as $x \to \infty$ and $u_k = 0$ at Σ_k . Given any surface $S \in S$, by the maximum principle, $\{u_k\}$ forms an increasing sequence in the exterior of S relative to ∞ (i.e. in $D_S \setminus \{p\}$). Interior elliptic estimates imply $\{u_k\}$ converges to a harmonic function u_∞ on M uniformly

on compact sets in any C^i -norm. The limit u_{∞} satisfies $0 < u_{\infty} \leq 1$ and $u_{\infty} \to 1$ as $x \to \infty$. By the strong maximum principle, either $u_{\infty} \equiv 1$ or $0 < u_{\infty} < 1$.

Suppose (M, g) admits a harmonic w with 0 < w < 1 and $w \to 1$ at ∞ . Then w is an upper barrier for $\{u_k\}$, which implies $u_{\infty} \leq w$, and hence $0 < u_{\infty} < 1$. In this case, $\mathfrak{c}(M, g)$ must be positive. Otherwise, if $\mathfrak{c}(M, g) = 0$, then $\lim_{k\to\infty} \int_{E_{\Sigma_k}} |\nabla u_k|^2 = 0$, which would imply $\int_K |\nabla u_{\infty}|^2 = 0$ on any compact set K in M, and hence $u_{\infty} \equiv 1$, a contradiction.

Next suppose $\mathfrak{c}(M,g) > 0$. We want to show $0 < u_{\infty} < 1$. If not, $u_{\infty} \equiv 1$ on M. Pick any surface $S \in S$, then $\lim_{k\to\infty} u_k = 1$ at S. Let $\beta_k = \min_S u_k$ for large k. Let \tilde{u}_k be the harmonic function on E_S with $\tilde{u}_k \to 1$ at ∞ and $\tilde{u}_k = \beta_k$ at S. By the maximum principle, $u_k \geq \tilde{u}_k$. Therefore, $\tilde{c}_k \geq c_k$, where \tilde{c}_k , c_k are the coefficients in the expansions

$$\tilde{u}_k = 1 - \tilde{c}_k |x|^{-1} + o(|x|^{-1}),$$

 $u_k = 1 - c_k |x|^{-1} + o(|x|^{-1}),$

as $x \to \infty$. Here we have $c_k = \mathfrak{c}_{s_k}$ and

$$4\pi \tilde{c}_k = \lim_{r \to \infty} \int_{|x|=r} \frac{\partial \tilde{u}_k}{\partial \nu} = \int_S \frac{\partial \tilde{u}_k}{\partial \nu},$$

where ν denotes the corresponding unit normal pointing to ∞ . Elliptic boundary estimates applied to $w_k = \tilde{u}_k - \beta_k$ shows

$$\lim_{k \to \infty} \max_{S} |\nabla w_k| = 0.$$

Consequently, $\tilde{c}_k \to 0$ as $k \to \infty$. Combined with $\tilde{c}_k \ge \mathfrak{c}_k$, this shows

$$\mathfrak{c}(M,g) = \lim_{k \to \infty} \mathfrak{c}_{_{S_k}} = 0,$$

which is a contradiction. Therefore, $0 < u_{\infty} < 1$. This completes the proof.

Remark 3.1. One may further require w satisfies $\inf_M w = 0$ in Proposition 3.1. To see this, it suffices to examine the proof beginning with assuming $\mathfrak{c}(M,g) > 0$. In this case, we have shown $0 < u_{\infty} < 1$ on M. Suppose $\inf_M u_{\infty} > 0$, consider $v = (1 - \inf_M u_{\infty})^{-1}(u_{\infty} - \inf_M u_{\infty})$. Then $v < u_{\infty}$ and v also acts as a barrier for $\{u_k\}$, which implies $u_{\infty} \leq v$, a contradiction. Hence, $\inf_M u_{\infty} = 0$.

Next, we focus on the case in which the function u tends to zero at "the other end".

Proposition 3.2. Suppose there is a harmonic function u on (M, g) with 0 < u < 1, $u(x) \to 1$ at ∞ (i.e. as $x \to p$), and $\lim_{k\to\infty} \max_{\Sigma_k} u = 0$. Then

$$(3.1) c(M,g) = C,$$

where $\mathfrak{C} > 0$ is the coefficient in the expansion of

 $u = 1 - \mathcal{C}|x|^{-1} + o(|x|^{-1})$

in the AF end.

Proof. Let u_k be the harmonic function on (E_{Σ_k}, g) with $u_k \to 1$ at ∞ and $u_k = 0$ at Σ_k . Then $u_k \leq u$, which implies $\mathcal{C} \leq c_k$, where $c_k = \mathfrak{c}_{\Sigma_k}$ is the coefficient in

$$u_k = 1 - c_k |x|^{-1} + o(|x|^{-1})$$

as $x \to \infty$. This shows

$$\mathfrak{C} \leq \lim_{k \to \infty} \mathfrak{c}_{_{\Sigma_k}} = \mathfrak{c}(M, g).$$

To show the other direction, consider $\alpha_k = \max_{\Sigma_k} u$. On E_{Σ_k} , by the maximum principle, $\frac{1}{1-\alpha_k}(u-\alpha_k) \leq u_k$, which implies $\frac{1}{1-\alpha_k}C \geq c_k$. As $\alpha_k \to 0$, this gives

$$\mathfrak{C} \geq \lim_{k \to \infty} (1 - \alpha_k) \mathfrak{c}_{\Sigma_k} = \mathfrak{c}(M, g)$$

Therefore, $\mathfrak{C} = \mathfrak{c}(M, g)$.

We are now in a position to derive applications of (1.4).

Theorem 3.1. Let N be a noncompact, connected, orientable 3-manifold admitting an exhaustion sequence of precompact domains D_k with connected boundary ∂D_k , $k = 1, 2, \ldots$ Suppose $H_2(N) = 0$. Let $M = N \setminus \{p\}$ where p is a point in N. Let g be a smooth metric with nonnegative scalar curvature on M such that g is asymptotically flat near p. Assume there is a harmonic function u on (M, g) with $0 < u < 1, u(x) \to 1$ as $x \to p$, and $\lim_{k \to \infty} \max_{\partial D_k} u = 0$. Then

(i) The limit
$$\lim_{t \to 0} \int_{u^{-1}(t)} |\nabla u|^2$$
 exists (finite or ∞), where $t \in (0,1)$ is a regular value of u ; and
(ii) $\mathfrak{m} \ge 2\mathfrak{c}(M,g) \left[1 - \lim_{t \to 0} \left(\frac{1}{4\pi} \int_{u^{-1}(t)} |\nabla u|^2 \right)^{\frac{1}{2}} \right].$

Proof. Given a regular value $t \in (0,1)$ of u, let $\Sigma_t = u^{-1}(t)$. Σ_t is a closed, orientable surface in $M = N \setminus \{p\}$. Let $\Sigma_t^{(1)}$ denote any connected component of Σ_t . Since $H_2(N) = 0$, $\Sigma_t^{(1)}$ is the boundary of a bounded domain Ω_1 in N. If $p \notin \Omega_1$, then u is identically a constant by the maximum principle. Hence, $\Sigma_t^{(1)}$ encloses p. As a result, if there are two connected components of Σ_t , then both of them enclose p, and thus form the boundary of a bounded domain in M. By the maximum principle, u is a constant, which is a contradiction. Therefore, Σ_t is connected. Since t is arbitrary, this in particular shows (1.4) is applicable to (E_t, g) , where $E_t = \{u \ge t\} \subset M$ is the exterior of Σ_t with respect to ∞ .

Applying (1.4) to (E_t, g) , we have

(3.2)
$$\frac{\mathfrak{m}}{2\mathfrak{c}_{\Sigma_t}} \ge 1 - \left(\frac{1}{4\pi} \int_{\Sigma_t} |\nabla u_t|^2\right)^{\frac{1}{2}}$$

Here $u_t = \frac{1}{1-t}(u-t)$ is the harmonic function on (E_t, g) that tends to 1 at ∞ and equals 0 at Σ_t , $\mathbf{c}_{\Sigma_t} = \frac{1}{1-t} \mathcal{C}$, and \mathcal{C} is the coefficient in the expansion of

$$u = 1 - \mathcal{C}|x|^{-1} + o(|x|^{-1}).$$

It follows from (3.2) that

(3.3)
$$\frac{\mathfrak{m}}{2\mathfrak{C}} \ge \frac{1}{1-t} - \frac{1}{(1-t)^2} \left(\frac{1}{4\pi} \int_{\Sigma_t} |\nabla u|^2\right)^{\frac{1}{2}}$$

Consider the function

$$\mathcal{B}(t) = \frac{1}{(1-t)} \left[4\pi - \frac{1}{(1-t)^2} \int_{\Sigma_t} |\nabla u|^2 \right].$$

In [16, Theorem 3.2 (ii)], we showed $\mathcal{B}(t)$ is monotone nondecreasing in t if g has nonnegative scalar curvature. As a result,

$$\lim_{t \to 0} \mathcal{B}(t) \text{ exists}$$

Consequently,

$$\lim_{t \to 0} \int_{\Sigma_t} |\nabla u|^2 \text{ exists.}$$

This proves (i). (ii) follows from (3.3), (i) and Proposition 3.2.

We have not assumed g to be complete on M so far. In particular, (M, g) in Theorem 3.1 could just be the interior of an AF manifold with boundary Σ and the function u may simply be the restriction, to the interior, of the harmonic function that tends to 1 at ∞ and vanishes at Σ . In that extreme case, $\lim_{t\to 0} \int_{\Sigma_t} |\nabla u|^2 = \int_{\Sigma} |\nabla u|^2$ and (ii) reduces to (1.4).

If g is complete on M, we have the following corollary.

Corollary 3.1. Let N, p, M, g and u be given as in Theorem 3.1. Suppose (M, g) is complete and has Ricci curvature bounded from below. Then

 $(3.4) mtextbf{m} \ge 2\mathfrak{C},$

where $\mathfrak{C} = \mathfrak{c}(M, g)$ is the coefficient in the expansion of

$$u = 1 - \mathcal{C}|x|^{-1} + o(|x|^{-1})$$

as $x \to p$.

Corollary 3.1 relates to a result of Bray [4]. In [4, Theorem 8], Bray proved that, if (M, g) is a complete asymptotically flat 3-manifold with nonnegative scalar curvature which has multiple AF ends and mass \mathfrak{m} in a chosen end, then

 $\mathfrak{m} \geq 2\mathfrak{C},$

where C is the coefficient in the expansion $u = 1 - C|x|^{-1} + o(|x|^{-1})$ at the chose end, and u is the harmonic function that tends to 1 at the chosen end and approaches 0 at all other AF ends.

Bray's theorem allows M to have more general topology and more than two ends. Its proof made use of the 3-d PMT. Complete manifolds whose ends are all asymptotically flat necessarily have bounded Ricci curvature. In this sense, Corollary 3.1 provides a partial generalization of Bray's result.

Proof of Corollary 3.1. Let Σ_t be given in the proof of Theorem 3.1. Since (M, g) is complete and has Ricci curvature bounded from below, by the gradient estimate of Cheng and Yau [8], $\max_{\Sigma_t} u^{-1} |\nabla u| \leq \Lambda$ where Λ is a constant independent on t. Combined with $\int_{\Sigma_t} |\nabla u| = 4\pi \mathcal{C}$, this shows

$$\frac{1}{4\pi} \int_{\Sigma_t} |\nabla u|^2 \le \mathcal{C} \Lambda t,$$

which implies

(3.5)
$$\lim_{t \to 0} \int_{\Sigma_t} |\nabla u|^2 = 0.$$

It follows from (3.5) and Theorem 3.1 (ii) that $\mathfrak{m} \geq 2\mathfrak{C}$.

Remark 3.2. Let R, Ric denote the scalar curvature, Ricci curvature of g. Since

 $R \ge 0$ and Ric bounded from above \Rightarrow Ric bounded from below,

Corollary 3.1 also holds if the assumption of "Ric bounded from below" is replaced by "Ric bounded from above".

Remark 3.3. As used in Bray's work [4], the inequality $\mathfrak{m} \geq 2\mathfrak{C}$ has a geometric interpretation that asserts the mass of the conformally deformed metric u^4g , which might not be complete, is nonnegative. Instead of $\mathfrak{m} \geq 2\mathfrak{C}$, a weaker inequality $\mathfrak{m} \geq \mathfrak{C}$ was obtained by Hirsch, Tam and the author in [12].

Acknowledgement. I thank Christos Mantoulidis who introduced me to the work [18]. I also thank Professor Xianzhe Dai for several helpful communications.

References

- V. Agostiniani, L. Mazzieri and F. Oronzio, A Green's function proof of the positive mass theorem, Commun. Math. Phys. (2024), 405: 54. https://doi.org/10.1007/s00220-024-04941-8
- [2] R. Arnowitt; S. Deser, and C. W. Misner, Coordinate invariance and energy expressions in general relativity, Phys. Rev., 122 (1961), no. 3, 997–1006.
- [3] R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), no. 5, 661–693.
- [4] H. L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differential Geom. 59 (2001), no. 2, 177–267.
- [5] H. L. Bray and J. L. Jauregui, A geometric theory of zero area singularities in general relativity, Asian J. Math. 17 (2013), no. 3, 525–559.
- [6] H.L. Bray, D.P. Kazaras, M.A. Khuri and D.L. Stern, Harmonicfunctions and the mass of 3dimensional asymptotically flat Riemannian manifolds, J. Geom. Anal. 32 (2022), no. 6, Paper No.184, 29 pp.
- H. Bray and P. Miao, On the capacity of surfaces in manifolds with nonnegative scalar curvature, Invent. Math., 172 (2008), no.3, 459–475.
- [8] S.-Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354.
- [9] P. Chruściel, Boundary conditions at spatial infinity from a Hamiltonian point of view, Topological Properties and Global Structure of Space-Time, Plenum Press, New York, (1986), 49–59.

- [10] X. Dai, Y. Sun, and C. Wang, Positive mass theorem for asymptotically flat manifolds with isolated conical singularities, arXiv:2401.07186.
- [11] S.W. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys. 9 (1968), 598–604.
- [12] S. Hirsch, L. -F. Tam and P. Miao, Monotone quantities of p-harmonic functions and their applications, to appear in Pure Appl. Math. Q., arXiv:2211.06939.
- [13] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom. 59 (2001), no. 3, 353–437.
- [14] J. L. Jauregui, Scalar curvature and the relative capacity of geodesic balls, Proc. Amer. Math. Soc., 149, (2021), no. 11, 4907–4921.
- [15] C. Li and C. Mantoulidis, Positive scalar curvature with skeleton singularities, Math. Ann. 374, (2019), 99–131.
- [16] P. Miao, Mass, capacitary functions, and the mass-to-capacity ratio, Peking Math J (2023). https://doi.org/10.1007/s42543-023-00071-7
- [17] P. Miao and A. Piubello, Mass and Riemannian polyhedra, Adv. Math., 400 (2022), 108287. https://doi.org/10.1016/j.aim.2022.108287
- [18] A. Mondino and A. Templeton-Browne, Some rigidity results for the Hawking mass and a lower bound for the Bartnik capacity, J. London Math. Soc., 106 (2022): 1844-1896. https://doi.org/10.1112/jlms.12612
- [19] N. Robbins, Zero area singularities in general relativity and inverse mean curvature flow, 2010 Class. Quantum Grav. 27 025011.
- [20] R. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 (1979), no. 1, 45–76.
- [21] Y.-G. Shi and L.-F. Tam, Scalar curvature and singular metrics, Pacific J. Math., 293 (2018), no. 2, 427–470.
- [22] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80 (1981), no. 3, 381–402.

(Pengzi Miao) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FL 33146, USA

Email address: pengzim@math.miami.edu