
IMPLICATIONS OF SOME MASS-CAPACITY INEQUALITIES

PENGZI MIAO

Abstract. Applying a family of mass-capacity related inequalities proved in [16],
we obtain sufficient conditions that imply the nonnegativity as well as positive lower
bounds of the mass, on a class of manifolds with nonnegative scalar curvature, with
or without a singularity.

1. Introduction

A smooth Riemannian 3-manifold (M, g) is called asymptotically flat (AF) if M ,
outside a compact set, is diffeomorphic to R3 minus a ball; the associated metric
coefficients satisfy

gij = δij +O(|x|−τ ), ∂gij = O(|x|−τ−1), ∂∂gij = O(|x|−τ−2),

for some τ > 1
2
; and the scalar curvature of g is integrable. Under these AF conditions,

the limit, near ∞,

m = lim
r→∞

1

16π

∫
|x|=r

∑
j,k

(gjk,j − gjj,k)
xk

|x|

exists and is called the ADM mass [2] of (M, g). It is a result of Bartnik [3], and
of Chruściel [9], that m is a geometric invariant, independent on the choice of the
coordinates {xi}.
A fundamental result on the mass and the scalar curvature is the Riemannian

positive mass theorem (PMT):

Theorem 1.1 ([20, 22]). Let (M, g) be a complete, asymptotically flat 3-manifold
with nonnegative scalar curvature without boundary. Then

m ≥ 0,

and equality holds if and only if (M, g) is isometric to the Euclidean space R3.

On an asymptotically flat 3-manifold (M, g) with boundary Σ = ∂M , the capacity
(or L2-capacity) of Σ is defined by

c
Σ
= inf

f

{
1

4π

∫
M

|∇f |2
}
,

where the infimum is taken over all locally Lipschitz functions f that vanishes on Σ
and tend to 1 at infinity. Equivalently, if ϕ denotes the function with

∆ϕ = 0, ϕ|Σ = 1, and ϕ → 0 at ∞,
1
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then, c
Σ
=

1

4π

∫
M

|∇ϕ|2 = 1

4π

∫
Σ

|∇ϕ|, and

ϕ = c
Σ
|x|−1 + o(|x|−1), as x → ∞.

Regarding the mass and the capacity, if Σ is a minimal surface, Bray showed

Theorem 1.2 ([4]). Let (M, g) be a complete, asymptotically flat 3-manifold with
nonnegative scalar curvature, with minimal surface boundary Σ = ∂M . Then

m ≥ c
Σ
,

and equality holds iff (M, g) is isometric to a spatial Schwarzschild manifold outside
the horizon.

In [16, Theorem 7.4], an inequality relating the mass-to-capacity ratio to the Will-
more functional of the boundary was obtained:

Theorem 1.3 ([16]). Let (M, g) be a complete, orientable, asymptotically flat 3-
manifold with one end, with boundary Σ. Suppose Σ is connected and H2(M,Σ) = 0.
If g has nonnegative scalar curvature, then

(1.1)
m

c
Σ

≥ 1−
(

1

16π

∫
Σ

H2

) 1
2

.

Here m is the mass of (M, g), c
Σ
is the capacity of Σ in (M, g), and H is the mean

curvature of Σ. Moreover, equality in (1.1) holds if and only if (M, g) is isomet-
ric to a spatial Schwarzschild manifold outside a rotationally symmetric sphere with
nonnegative mean curvature.

As shown in [16], (1.1) implies the 3-dimensional PMT. For instance, assuming M
is topologically R3, applying (1.1) to the exterior of a geodesic sphere Sr with radius
r centered at any point p ∈ M , one has

(1.2)
m

c
Sr

≥ 1−
(

1

16π

∫
Sr

H2

) 1
2

.

Letting r → 0, one obtains m ≥ 0. Earlier proofs of 3-d PMT via harmonic functions
were given by Bray-Kazaras-Khuri-Stern [6] and Agostiniani-Mazzieri-Oronzio [1].

Theorem 1.3 follows from two other results (Corollary 7.1 and Theorem 7.3) in [16]:

Theorem 1.4 ([16]). Let (M, g) be a complete, orientable, asymptotically flat 3-
manifold with one end, with connected boundary Σ, satisfying H2(M,Σ) = 0. If g has
nonnegative scalar curvature, then

(1.3)

(
1

π

∫
Σ

|∇u|2
) 1

2

≤
(

1

16π

∫
Σ

H2

) 1
2

+ 1,

and

(1.4)
m

2c
Σ

≥ 1−
(

1

4π

∫
Σ

|∇u|2
) 1

2

.
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Here u is the harmonic function with u = 0 at Σ and u → 1 near ∞. Moreover,

• equality in (1.3) holds if and only if (M, g) is isometric to a spatial Schwarzschild
manifold outside a rotationally symmetric sphere with nonnegative mean cur-
vature;

• equality in (1.4) holds if and only if (M, g) is isometric to a spatial Schwarzschild
manifold outside a rotationally symmetric sphere.

A corollary of (1.3) (see [16, Theorem 7.2]) is an upper bound on the capacity-to-
area-radius ratio, first derived by Bray and the author [7].

Theorem 1.5 ([7]). Let (M, g) be a complete, orientable, asymptotically flat 3-
manifold with one end, with boundary Σ. Suppose Σ is connected and H2(M,Σ) = 0.
If g has nonnegative scalar curvature, then

(1.5)
2c

Σ

r
Σ

≤
(

1

16π

∫
Σ

H2

) 1
2

+ 1.

Here c
Σ
is the capacity of Σ in (M, g) and r

Σ
=

(
|Σ|
4π

) 1
2
is the area-radius of Σ.

Moreover, equality holds if and only if (M, g) is isometric to a spatial Schwarzschild
manifold outside a rotationally symmetric sphere with nonnegative mean curvature.

In this paper, we give some other applications of (1.1), (1.3) and (1.4).

First, for later purposes, we remark on the topological assumption “H2(M,Σ) = 0”
in Theorems 1.3 – 1.5 above: the assumption is imposed only to ensure each regular
level set of the harmonic function u, vanishing at the boundary and tending to 1 near
∞, to be connected in the interior of M (see the paragraph preceding the proof of
Theorem 3.1 in [16]); indeed, (1.1), (1.3) and (1.4) (and all other results from [16])
hold if “H2(M,Σ) = 0” is replaced by assuming

(∗) each closed, connected, orientable surface in the interior of M either is the
boundary of a bounded domain, or together with Σ forms the boundary of a
bounded domain.

Now we motivate the main tasks in this paper. Let us first return to the setting of
(1.2), in which the surface Sr “closes up nicely” (to bound a geodesic ball). In this
setting, by a result of Mondino and Templeton-Browne [18], {Sr} can be perturbed
to yield another family of surfaces {Σr} so that, as r → 0,

(1.6)

∫
Σr

H2 = 16π− 8π

3
R(p)r2+

4π

3

[
1

9
R(p)2 − 4

15
|R̊ic(p)|2 − 1

5
∆R(p)

]
r4+O(r5).

Here R denotes the scalar curvature and R̊ic = Ric− 1
3
Rg is the traceless part of Ric,

the Ricci tensor. Applying (1.1) to the exterior of these Σr in (M, g), one obtains

(1.7)
m

c
Σr

≥ 1

12
R(p)r2 +

[
1

90
|R̊ic(p)|2 − 1

864
R(p)2 +

1

120
∆R(p)

]
r4 +O(r5).

If R ≥ 0, (1.7) shows the inequality m ≥ 0 as well as the rigidity of m = 0.
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In general, (1.1) suggests that, if it is applied to obtain m ≥ 0 on an (M, g), the
manifold boundary Σ does not need to admit a “nice fill-in”. Rewriting (1.1) as

m ≥ c
Σ

[
1−

(
1

16π

∫
Sr

H2

) 1
2

]
,

one may seek conditions on metrics g with a “singularity” so that m ≥ 0 while g is
allowed to be incomplete.

Similarly, on an (M, g) with two ends, one of which is asymptotically flat (AF),
assuming it admits a harmonic function u that tends to 1 at the AF end and tends
to 0 at the other end, one may aim to apply (1.4), i.e.

m ≥ 2c
Σ

[
1−

(
1

4π

∫
Σ

|∇u|2
) 1

2

]
,

to bound m via the energy of u on the entire (M, g).
Below we formulate a class of manifolds to carry out the above mentioned tasks.

Throughout the paper, let N be a noncompact, connected, orientable 3-manifold.
We assume N admits an increasing exhaustion sequence of bounded domains with
connected boundary. Precisely, this means there exists a sequence of closed, orientable
surfaces {Σk}∞k=1 in N such that

• Σk is connected;
• Σk = ∂Dk for a precompact domain Dk ⊂ N ; and
• D̄k ⊂ Dk+1 and N = ∪∞

k=1Dk. Here D̄k = Dk ∪ Σk is the closure of Dk in N .

Fix a point p ∈ N , let M = N \ {p}. On M , let g be a smooth metric that is
asymptotically flat near p. We refer p as the asymptotically flat (AF) ∞ of (M, g).
Unless otherwise specified, we do not impose assumptions on the behavior of g near
Σk as k → ∞. In particular, (M, g) does not need to be complete,
Given any closed, connected surface S ⊂ M , we say S encloses p if S = ∂D

S
for

some precompact domain D
S
⊂ N such that p ∈ D

S
. Let S denote the set of all such

surfaces S ⊂ M enclosing p. Clearly, Σk ∈ S for large k. Define

(1.8) c(M, g) = inf
S∈S

c
S
.

Here c
S
is the capacity of S in the asymptotically flat (E

S
, g), where

E
S
= (D

S
\ {p}) ∪ S.

As a functional on S, the capacity c
S
has a monotone property, that is if S1, S2 ∈ S

and D
S1

⊂ D
S2
, then c

S1
≥ c

S2
. Such a property readily implies {c

Σk
} is monotone

non-increasing and

(1.9) c(M, g) = lim
k→∞

c
Σk
.

Standard arguments show c(M, g) > 0 if and only if there exists a harmonic function
w on (M, g) such that 0 < w < 1 on M and w(x) → 1 at ∞ (i.e. as x → p). (See
Proposition 3.1 in Section 3.)
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H

H0

1

Figure 1. On the left is an examples of (M, g) with c(M, g) = 0;
the arrow denotes the AF end; {Σk} may approach a “singularity” as
k → ∞. On the right is an example of (M, g) with c(M, g) > 0; besides
the AF end, (M, g) has another end with suitable growth.

For manifolds (M, g) with c(M, g) = 0, we seek conditions that imply the AF
end of (M, g) has mass m ≥ 0, see Theorem 2.1 and Remark 2.2. For (M, g) with
c(M, g) > 0, we explore for sufficient conditions that bound m from below via c(M, g),
see Theorem 3.1 and Corollary 3.1.

2. Singular metrics with m ≥ 0

Let N , M and g be given in the definition of c(M, g) in (1.8). Given S ∈ S, let

W (S) =

∫
S

H2.

We want to apply (1.1) to (E
S
, g). For this purpose, we assume the background

manifold N satisfies H2(N) = 0. Under this assumption, any closed, connected
surface S ′ in M = N \ {p} is the boundary of a bounded domain D ⊂ N . If p ̸∈ D,
then D ⊂ M ; if p ∈ D, then S ′ is homologous to S ∈ S. Therefore, condition (∗)
holds on E

S
.

The following is a direct corollary of (1.1).

Proposition 2.1. Suppose H2(N) = 0 and (M, g) has nonnegative scalar curvature.
Then

(2.1) c
Sk
W (Sk)

1
2 → 0 along a sequence {Sk} ⊂ S ⇒ m ≥ 0.

Proof. If W (Sk) ≤ 16π for some k, then (1.1) implies m ≥ 0.

Suppose W (Sk) > 16π for every k, then “c
Sk
W (Sk)

1
2 → 0” implies “c

Sk
→ 0”.

Rewriting (1.1) as

(2.2) m ≥ c
Sk

[
1−

(
1

16π
W (Sk)

) 1
2

]
and letting k → ∞, we have m ≥ 0. □
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Given S ∈ S, let m
H
(S) =

r
S

2

(
1− 1

16π
W (S)

)
denote the Hawking mass of S

([11]). Inequality (2.3) in the next Proposition is comparable to the result of Huisken
and Ilmanen [13] on the relation between m and m

H
(S).

Proposition 2.2. Suppose H2(N) = 0 and (M, g) has nonnegative scalar curvature.
If a surface S ∈ S satisfies W (S) ≥ 16π, then

(2.3) m ≥ c
S

[
1−

(
1

16π
W (S)

) 1
2

]
≥ m

H
(S).

Proof. If W (S) ≥ 16π, then (1.5) implies

c
S

[
1−

(
1

16π

∫
S

H2

) 1
2

]
≥ r

S

2

[
1− 1

16π

∫
S

H2

]
= m

H
(S).(2.4)

This combined with (1.1) proves (2.3). □

Remark 2.1. Similar to (2.1), a condition of “r
Sk
W (Sk) → 0” along {Sk} ⊂ S also

implies “m ≥ 0”. However, if infk W (Sk) ≥ 16π, then

“r
Sk
W (Sk) → 0” ⇒ “r

Sk
→ 0 and r

Sk
W (Sk)

1
2 → 0” ⇒ “c

Sk
→ 0”,

where the last step is by (1.5). Combined with (2.4), this implies the assumption of

“c
Sk
W (Sk)

1
2 → 0” in Proposition 2.1.

In what follows, let {Σk} ⊂ S be the sequence of surfaces given in the introduction.
The numerical value of c

Σk
depends on g near the AF end. However, a property of

“c
Σk

→ 0” does not. This was shown by Bray and Jauregui [5] in the context of

(M, g) having a zero area singularity. Their argument applies to “c
Σk
W (Σk)

1
2 → 0”.

To illustrate this, it is convenient to adopt a notion of relative capacity (see [14] for
instance). Given two surfaces S, S̃ ∈ S, suppose S ∩ S̃ = ∅ and D

S̃
⊂ D

S
. The

capacity of S relative to S̃ is

(2.5) c
(S,S̃)

=
1

4π

∫
D

S
\D

S̃

|∇v|2,

where v is the harmonic function on D
S
\D

S̃
with v = 0 at S and v = 1 at S̃.

Proposition 2.3. Let S̃ ∈ S be a fixed surface. Then, as k → ∞,

c
Σk
W (Σk)

1
2 → 0 ⇐⇒ c

(Σk,S̃)
W (Σk)

1
2 → 0.

Proof. For large k, let uk, vk be the harmonic function on Dk \ {p}, Dk \ D
S̃
, with

boundary values uk = 0 at Σk, uk → 1 at the AF ∞, vk = 0 at Σk, vk = 1 at S̃,
respectively. Let βk = minS̃ uk. By the maximum principle, vk ≥ uk ≥ βkvk on
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Dk \DS̃
, which implies ∂νvk ≥ ∂νuk ≥ βk∂νvk at Σk. Here ν denotes the unit normal

to Σk pointing to ∞. Since 4πc
Σk

=
∫
Σk

∂νuk and 4πc
(Σk,S̃)

=
∫
Σk

∂νvk, one has

β−1
k c

Σk
≥ c

(Σk,S̃)
≥ c

Σk
.

The claim follows by noting that βk has a uniform positive lower bound as k → ∞. □

As an application of Propositions 2.1 and 2.3, we have

Theorem 2.1. Let N be a noncompact, connected, orientable 3-manifold. Suppose
H2(N) = 0. Let M = N \ {p} where p is a point in N . Let g be a smooth metric with
nonnegative scalar curvature on M such that g is asymptotically flat near p. Assume
there is a precompact domain D ⊂ N such that p ∈ D and (N \D, g) is isometric to

((0, δ]× Σ, ḡ + h),

where

• δ > 0 is a constant, Σ is a closed, connected, orientable surface;

• ḡ = dr2 + a(r)2σ, in which σ is a given metric on Σ and a(r) is a positive
function on (0, δ]; and

• λ−1 ≤ |ḡ + h|ḡ ≤ λ for some constant λ > 0.

Then

(2.6) lim
r→0

(∫ δ

r

1

a(x)2
dx

)−1 [
|a′(r)|+ a(r)|∇̄h|ḡ

]
= 0 =⇒ m ≥ 0.

Remark 2.2. If a(r) = rb for a constant b > 0, then (2.6) translates to

lim
r→0

r3b−2
(
1 + r|∇̄h|ḡ

)
= 0 ⇒ m ≥ 0.

This in particular implies, if g has a conical or rb-horn type singularity modeled on
ḡ = dr2 + r2bσ near r = 0, then, under a mild asymptotic assumption of

λ−1 ≤ |ḡ + h|ḡ ≤ λ and r|∇̄h|ḡ = O(1),

one has “b > 2
3
⇒ m ≥ 0”. (Related results on PMT with isolated singularities can

be found in [21, 15, 10]).

Proof of Theorem 2.1. Let Σr = {r} ×Σ, r ∈ (0, δ]. For s ∈ (0, δ), let c̄
(Σs,Σδ)

, W̄ (Σs)
denote the capacity of Σs relative to Σδ, the Willmore functional of Σs, respectively,
with respect to ḡ.

The function u(r) =
(∫ δ

s
a(x)−2 dx

)−1 ∫ r

s
a(x)−2 dx is ḡ-harmonic on [s, δ]×Σ with

u = 0 at Σs and u = 1 at Σδ. This implies

(2.7) c̄
(Σs,Σδ)

=
|Σ|σ
4π

(∫ δ

s

a(x)−2 dx

)−1

,

where |Σ|σ is the area of (Σ, σ). The mean curvature H̄ of Σs with respect to ḡ is
H̄ = 2a−1a′. Hence,

W̄ (Σs) = 4a′(s)2|Σ|σ.
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We compare c̄
(Σs,Σδ)

and c
(Σs,Σδ)

. Let ∇̄, ∇ and dVḡ, dVg denote the gradient, the
volume form with respect to ḡ, g, respectively. Since c

(Σs,Σδ)
equals the infimum of

the g-Dirichlet energy of functions that vanish at Σs and equal 1 at Σδ, we have

c
(Σs,Σδ)

≤
∫
[s,δ]×Σ

|∇u|2g dVg

≤ C

∫
[s,δ]×Σ

|∇̄u|2ḡ dVḡ = C c̄
(Σs,Σδ)

.

(2.8)

Here C > 0 denotes a constant independent on s and we have used the assumption
λ−1 ≤ |g|ḡ ≤ λ.

We also compare W̄ (Σs) and W (Σs). Let ĪI denote the second fundamental form
of Σs with respect to ḡ. Direct calculation shows

(2.9) H − H̄ = |ĪI|ḡ O(|h|ḡ) +O(|∇̄h|ḡ).
(For instance, see formula (2.33) in [17] and the proof therein.) Therefore,

H2 = H̄2 +
[
|ĪI|ḡ O(|h|ḡ) +O(|∇̄h|ḡ)

]2
+ H̄

[
|ĪI|ḡ O(|h|ḡ) +O(|∇̄h|ḡ)

]
= H̄2 + |ĪI|2ḡ O(|h|ḡ) + H̄ O(|∇̄h|ḡ) +O(|∇̄h|2ḡ).

(2.10)

Let dσg, dσḡ denote the area form on Σs with respect to g, ḡ, respectively. Then∫
Σs

H2 dσg ≤ C

∫
Σs

H2 dσḡ

= C W̄ (Σs) +
[
|ĪI|2ḡ O(|h|ḡ) + H̄ O(|∇̄h|ḡ) +O(|∇̄h|2ḡ)

]
|Σs|ḡ.

(2.11)

Plugging in W̄ (Σs) = 4a′2|Σ|σ, |ĪI|2ḡ = 2a−2a′2, and H̄2 = 4a−2a′2, we have

W (Σs) ≤ C |Σ|σ
[
a′

2
+ a′

2 |h|ḡ + aa′|∇̄h|ḡ + a2|∇̄h|2ḡ
]

≤ C |Σ|σ
[
a′

2
(1 + |h|ḡ) + a2|∇̄h|2ḡ

]
.

(2.12)

As |h|ḡ is bounded by assumption, it follows from (2.7), (2.8) and (2.12) that

(2.13) c
(Σs,Σδ)

W (Σs)
1
2 ≤ C

(∫ δ

s

a(x)−2 dx

)−1 [
|a′|+ a|∇̄h|ḡ

]
.

(2.6) now follows from Propositions 2.1 and 2.3. □

Remark 2.3. The negative mass Schwarzschild manifolds are known to have an rb-
horn type singularity with b = 2

3
(see [5, 21] for instance). In [5], Bray and Jauregui

developed a theory of “zero area singularities” (ZAS) modeled on the singularity of
these manifolds. Among other things, they introduced a notion of the mass of ZAS.
In [19, Theorem 4.8], Robbins showed the ADM mass of an asymptotically flat 3-
manifold with a single ZAS is at least the ZAS mass. The conclusion on the rb-horn
type singularity in Remark 2.2 can also be reached via the results on ZAS in [5, 19].

We end this section by applying (1.1) to obtain information of W (·) in the negative
mass Schwarzschild manifolds.
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Proposition 2.4. Consider a spatial Schwarzschild manifold with negative mass, i.e.

(Mm, gm) =

(
(0,∞)× S2,

1

1 + 2m
r

dr2 + r2σo

)
,

where (S2, σo) denotes the standard unit sphere and the mass m = −m is negative.
Let Σ ⊂ Mm be any connected, closed surface that is homologous to a slice {r} × S2.
Let rmax(Σ) = max

x∈Σ
r(x). Then

(2.14) W (Σ) ≥ 16π

(
1 +

2m

rmax(Σ)

)
.

In particular, W (Σ) → ∞ as rmax(Σ) → 0.

Proof. (1.1) implies

(2.15)

(
1

16π
W (Σ)

) 1
2

≥ 1 +
m

c
Σ

.

Let Σ∗ = {rmax(Σ)} × S2. As Σ∗ encloses Σ,

(2.16) c
Σ∗

≥ c
Σ
.

Since m = −m < 0, the above implies

(2.17)

(
1

16π
W (Σ)

) 1
2

≥ 1 +
m

c
Σ∗

.

Direct calculation gives

(2.18) c
Σ∗

=
m(

1 + 2m
rmax(Σ)

) 1
2 − 1

.

(2.14) follows from (2.17) and (2.18). □

Proposition 2.4 gives another perspective of the singularity of (Mm, gm) via the
Willmore functional W (·).

3. Bounding m via c(M, g)

Let (M, g) be given in the definition of c(M, g) in (1.8). In this section, we relate m
and 2c(M, g) assuming c(M, g) > 0. We begin with a characterization of c(M, g) > 0
which follows from standard arguments on harmonic functions.

Proposition 3.1. Let c(M, g) be defined in (1.8). Then c(M, g) > 0 if and only
if there exists a harmonic function w on (M, g) such that 0 < w < 1 on M and
w(x) → 1 at ∞ (i.e. as x → p).

Proof. For each k, let uk be the harmonic function on (E
Σk
, g) with uk → 1 as x → ∞

and uk = 0 at Σk. Given any surface S ∈ S, by the maximum principle, {uk} forms
an increasing sequence in the exterior of S relative to ∞ (i.e. in D

S
\ {p}). Interior

elliptic estimates imply {uk} converges to a harmonic function u∞ on M uniformly
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on compact sets in any Ci-norm. The limit u∞ satisfies 0 < u∞ ≤ 1 and u∞ → 1 as
x → ∞. By the strong maximum principle, either u∞ ≡ 1 or 0 < u∞ < 1.
Suppose (M, g) admits a harmonic w with 0 < w < 1 and w → 1 at ∞. Then w is

an upper barrier for {uk}, which implies u∞ ≤ w, and hence 0 < u∞ < 1. In this case,
c(M, g) must be positive. Otherwise, if c(M, g) = 0, then limk→∞

∫
E

Σk

|∇uk|2 = 0,

which would imply
∫
K
|∇u∞|2 = 0 on any compact set K in M , and hence u∞ ≡ 1,

a contradiction.
Next suppose c(M, g) > 0. We want to show 0 < u∞ < 1. If not, u∞ ≡ 1 on M .

Pick any surface S ∈ S, then limk→∞ uk = 1 at S. Let βk = minS uk for large k. Let
ũk be the harmonic function on E

S
with ũk → 1 at ∞ and ũk = βk at S. By the

maximum principle, uk ≥ ũk. Therefore, c̃k ≥ ck, where c̃k, ck are the coefficients in
the expansions

ũk = 1− c̃k|x|−1 + o(|x|−1),

uk = 1− ck|x|−1 + o(|x|−1),

as x → ∞. Here we have ck = c
Sk

and

4πc̃k = lim
r→∞

∫
|x|=r

∂ũk

∂ν
=

∫
S

∂ũk

∂ν
,

where ν denotes the corresponding unit normal pointing to ∞. Elliptic boundary
estimates applied to wk = ũk − βk shows

lim
k→∞

max
S

|∇wk| = 0.

Consequently, c̃k → 0 as k → ∞. Combined with c̃k ≥ ck, this shows

c(M, g) = lim
k→∞

c
Sk

= 0,

which is a contradiction. Therefore, 0 < u∞ < 1. This completes the proof. □

Remark 3.1. One may further require w satisfies infM w = 0 in Proposition 3.1.
To see this, it suffices to examine the proof beginning with assuming c(M, g) > 0.
In this case, we have shown 0 < u∞ < 1 on M . Suppose infM u∞ > 0, consider
v = (1 − infM u∞)−1(u∞ − infM u∞). Then v < u∞ and v also acts as a barrier for
{uk}, which implies u∞ ≤ v, a contradiction. Hence, infM u∞ = 0.

Next, we focus on the case in which the function u tends to zero at “the other end”.

Proposition 3.2. Suppose there is a harmonic function u on (M, g) with 0 < u < 1,
u(x) → 1 at ∞ (i.e. as x → p), and limk→∞ maxΣk

u = 0. Then

(3.1) c(M, g) = C,

where C > 0 is the coefficient in the expansion of

u = 1− C|x|−1 + o(|x|−1)

in the AF end.
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Proof. Let uk be the harmonic function on (E
Σk
, g) with uk → 1 at ∞ and uk = 0 at

Σk. Then uk ≤ u, which implies C ≤ ck, where ck = c
Σk

is the coeffiicent in

uk = 1− ck|x|−1 + o(|x|−1)

as x → ∞. This shows
C ≤ lim

k→∞
c
Σk

= c(M, g).

To show the other direction, consider αk = maxΣk
u. On E

Σk
, by the maximum

principle, 1
1−αk

(u− αk) ≤ uk, which implies 1
1−αk

C ≥ ck. As αk → 0, this gives

C ≥ lim
k→∞

(1− αk)cΣk
= c(M, g).

Therefore, C = c(M, g). □

We are now in a position to derive applications of (1.4).

Theorem 3.1. Let N be a noncompact, connected, orientable 3-manifold admitting
an exhaustion sequence of precompact domains Dk with connected boundary ∂Dk,
k = 1, 2, . . .. Suppose H2(N) = 0. Let M = N \ {p} where p is a point in N .
Let g be a smooth metric with nonnegative scalar curvature on M such that g is
asymptotically flat near p. Assume there is a harmonic function u on (M, g) with
0 < u < 1, u(x) → 1 as x → p, and lim

k→∞
max
∂Dk

u = 0. Then

(i) The limit lim
t→0

∫
u−1(t)

|∇u|2 exists (finite or ∞), where t ∈ (0, 1) is a regular

value of u; and

(ii) m ≥ 2c(M, g)

[
1− lim

t→0

(
1

4π

∫
u−1(t)

|∇u|2
) 1

2

]
.

Proof. Given a regular value t ∈ (0, 1) of u, let Σt = u−1(t). Σt is a closed, orientable

surface in M = N \ {p}. Let Σ
(1)
t denote any connected component of Σt. Since

H2(N) = 0, Σ
(1)
t is the boundary of a bounded domain Ω1 in N . If p /∈ Ω1, then u is

identically a constant by the maximum principle. Hence, Σ
(1)
t encloses p. As a result,

if there are two connected components of Σt, then both of them enclose p, and thus
form the boundary of a bounded domain in M . By the maximum principle, u is a
constant, which is a contradiction. Therefore, Σt is connected. Since t is arbitrary,
this in particular shows (1.4) is applicable to (Et, g), where Et = {u ≥ t} ⊂ M is the
exterior of Σt with respect to ∞.

Applying (1.4) to (Et, g), we have

(3.2)
m

2c
Σt

≥ 1−
(

1

4π

∫
Σt

|∇ut|2
) 1

2

.

Here ut =
1

1−t
(u − t) is the harmonic function on (Et, g) that tends to 1 at ∞ and

equals 0 at Σt, cΣt
= 1

1−t
C, and C is the coefficient in the expansion of

u = 1− C|x|−1 + o(|x|−1).
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It follows from (3.2) that

(3.3)
m

2C
≥ 1

1− t
− 1

(1− t)2

(
1

4π

∫
Σt

|∇u|2
) 1

2

.

Consider the function

B(t) =
1

(1− t)

[
4π − 1

(1− t)2

∫
Σt

|∇u|2
]
.

In [16, Theorem 3.2 (ii)], we showed B(t) is monotone nondecreasing in t if g has
nonnegative scalar curvature. As a result,

lim
t→0

B(t) exists.

Consequently,

lim
t→0

∫
Σt

|∇u|2 exists.

This proves (i). (ii) follows from (3.3), (i) and Proposition 3.2. □

We have not assumed g to be complete on M so far. In particular, (M, g) in
Theorem 3.1 could just be the interior of an AF manifold with boundary Σ and the
function umay simply be the restriction, to the interior, of the harmonic function that
tends to 1 at ∞ and vanishes at Σ. In that extreme case, limt→0

∫
Σt
|∇u|2 =

∫
Σ
|∇u|2

and (ii) reduces to (1.4).

If g is complete on M , we have the following corollary.

Corollary 3.1. Let N , p, M , g and u be given as in Theorem 3.1. Suppose (M, g)
is complete and has Ricci curvature bounded from below. Then

(3.4) m ≥ 2C,

where C = c(M, g) is the coefficient in the expansion of

u = 1− C|x|−1 + o(|x|−1)

as x → p.

Corollary 3.1 relates to a result of Bray [4]. In [4, Theorem 8], Bray proved that, if
(M, g) is a complete asymptotically flat 3-manifold with nonnegative scalar curvature
which has multiple AF ends and mass m in a chosen end, then

m ≥ 2C,

where C is the coefficient in the expansion u = 1−C|x|−1+ o(|x|−1) at the chose end,
and u is the harmonic function that tends to 1 at the chosen end and approaches 0
at all other AF ends.

Bray’s theorem allows M to have more general topology and more than two ends.
Its proof made use of the 3-d PMT. Complete manifolds whose ends are all asymp-
totically flat necessarily have bounded Ricci curvature. In this sense, Corollary 3.1
provides a partial generalization of Bray’s result.
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Proof of Corollary 3.1. Let Σt be given in the proof of Theorem 3.1. Since (M, g)
is complete and has Ricci curvature bounded from below, by the gradient estimate
of Cheng and Yau [8], maxΣt u

−1|∇u| ≤ Λ where Λ is a constant independent on t.
Combined with

∫
Σt

|∇u| = 4πC, this shows

1

4π

∫
Σt

|∇u|2 ≤ CΛt,

which implies

(3.5) lim
t→0

∫
Σt

|∇u|2 = 0.

It follows from (3.5) and Theorem 3.1 (ii) that m ≥ 2C. □

Remark 3.2. Let R, Ric denote the scalar curvature, Ricci curvature of g. Since

R ≥ 0 and Ric bounded from above ⇒ Ric bounded from below,

Corollary 3.1 also holds if the assumption of “Ric bounded from below” is replaced
by “Ric bounded from above”.

Remark 3.3. As used in Bray’s work [4], the inequality m ≥ 2C has a geometric
interpretation that asserts the mass of the conformally deformed metric u4g, which
might not be complete, is nonnegative. Instead of m ≥ 2C, a weaker inequality m ≥ C

was obtained by Hirsch, Tam and the author in [12].

Acknowledgement. I thank Christos Mantoulidis who introduced me to the work [18].
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