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On Semidefinite Relaxations for Matrix-Weighted
State-Estimation Problems in Robotics

Connor Holmes, Frederike Dümbgen, Timothy D. Barfoot

Abstract—In recent years, there has been remarkable progress
in the development of so-called certifiable perception methods,
which leverage semidefinite, convex relaxations to find global
optima of perception problems in robotics. However, many of
these relaxations rely on simplifying assumptions that facilitate
the problem formulation, such as an isotropic measurement
noise distribution. In this paper, we explore the tightness of
the semidefinite relaxations of matrix-weighted (anisotropic) state-
estimation problems and reveal the limitations lurking therein:
matrix-weighted factors can cause convex relaxations to lose
tightness. In particular, we show that the semidefinite relaxations
of localization problems with matrix weights may be tight only
for low noise levels. To better understand this issue, we introduce
a theoretical connection between the posterior uncertainty of the
state estimate and the dual variable of the convex relaxation.
With this connection in mind, we empirically explore the factors
that contribute to this loss of tightness and demonstrate that
redundant constraints can be used to regain it. As a second
technical contribution of this paper, we show that the state-
of-the-art relaxation of scalar-weighted SLAM cannot be used
when matrix weights are considered. We provide an alternate
formulation and show that its SDP relaxation is not tight (even
for very low noise levels) unless specific redundant constraints are
used. We demonstrate the tightness of our formulations on both
simulated and real-world data.

Index Terms—Localization, SLAM, Anisotropic, Certifiable,
Optimization.

I. INTRODUCTION

STATE-ESTIMATION is an integral component of mod-
ern robotics systems. Workhorse algorithms for state-

estimation – such as localization and simultaneous localiza-
tion and mapping (SLAM) – are now capable of estimating
hundreds of thousands of states on a single processor in real
time [55] and are far from the computational bottleneck of
robotic systems. To obtain such levels of performance, these
algorithms typically rely on local optimization methods (e.g.,
Gauss-Newton), which often exhibit super-linear convergence.
In particular, SLAM has reached a high level of maturity
in terms of both breadth and depth of understanding in the
robotics community (see [4] and [28] for a comprehensive
review of SLAM).

In recent years, we have seen a surge in interest in the use of
convex, semidefinite relaxations to solve and certify the global
optimality of robotic state-estimation and perception problems.
In principle, these relaxations can be solved in polynomial time
using interior-point methods [62]. However, much of the in-
terest in these algorithms is related to recent improvements in
runtime, which have made certifiable methods more attractive
for real-time applications. These improvements have largely
been brought to the robotics community by SE-Sync [54],
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Fig. 1. An example of a local and global minimum for stereo SLAM
with 10 poses and 20 landmarks from the “Starry Night” dataset. Ground-
truth landmarks are shown as grey stars, ground-truth poses as blue frames,
pose/landmark estimates are shown as frames/stars coloured red and green for
local and global minima, respectively. Both minima are based on the same set
of measurements: stereo pixel coordinates converted to Euclidean coordinates
(example shown at the top of the figure) and relative-pose measurements.

which globally solves pose-graph optimization (PGO) – a
cornerstone of modern SLAM algorithms – by leveraging the
low-rank nature of its semidefinite program (SDP) relaxation.
A series of extensions to this method have been and continue
to be developed [55].

Despite the success of these methods, they often rely on
simplifying assumptions in order to apply these fast, low-
rank algorithms. Perhaps most striking is the assumption
of isotropic noise models that pervades the majority of the
literature. Isotropic noise is often an unrealistic assumption for
modern robotics, especially when more realistic sensor models
are considered. For example, [46] shows that conversion of
stereo pixel coordinates to Euclidean coordinates yields noise
distributions that should not be modeled isotropically. When
the correct model is used, the resulting maximum-likelihood
optimization includes matrix (rather than scalar) weighting
factors.

The introduction of matrix weighting in state-estimation
problems with rotations typically leads to solution meth-
ods that are more involved. For example, though a closed-
form, global solution exists for scalar-weighted Wahba’s prob-
lem [36], [37], [63],1 when matrix weights are introduced, an
iterative, local solver must be used [8], [20].

We will see that introduction of matrix weighting can also
have a profound effect on the convex relaxations of state-
estimation problems. In many cases, problems that have tight

1Wahba’s problem can also be referred to as point-set registration.
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relaxations in the scalar-weighted case have a duality gap
when matrix weighting is used. These relaxations can be
tightened by adding new constraints to the SDP, but the
addition of these constraints may degrade the performance of
low-rank optimization methods mentioned above. Therefore,
it is paramount to understand the key causes of this loss of
tightness.

In this paper, we explore the tightness of semidefinite
relaxations of perception problems that have been generalized
to include matrix weights and expose the limitations that result
from this generalization. In the next section, we introduce
works that are closely related to this paper and establish our
contributions to the field. We then introduce the requisite
background on measurement models and semidefinite relax-
ation methods in Section III. In Section IV, we explore the
impact of matrix weighting on the formulation of two key
state-estimation problems in robotics: localization and SLAM.
We then draw an interesting theoretical connection in Sec-
tion V between the posterior distribution of the state estimate
and dual solution (or certificate matrix) of the semidefinite
relaxation of the corresponding state estimation problem. In
Section VI, we provide an in-depth, empirical study of the
effects of matrix weighting, anisotropic noise, and stereo-
camera measurements on the tightness of the semidefinite
relaxations defined in Section IV, drawing connections to
Section V. We also evaluate these relaxations on real-world
datasets, both with and without redundant constraints, in
Section VII. In particular, we show how our globally optimal
solution to matrix-weighted Wahba’s Problem can be used in a
state-of-the-art, outdoor, stereo-localization pipeline. Finally,
Section VIII presents our conclusions and ideas for future
research in this area.

II. RELATED WORK AND CONTRIBUTIONS

There is a large range of problems for which certifiable
methods already exist. To name a few, methods for robust
state estimation [68], [69], sensor calibration [31], [65], in-
verse kinematics [31], image segmentation [38], pose-graph
optimization [54], multiple-point-set registration [19], [39],
range-only localization [27], planar SLAM [43], and range-
aided SLAM [50] have all been explored.

Many papers have considered the conditions under which
a given problem can be certified. In particular, [21] shows
that, under certain technical conditions, problems that have
zero duality gap when unperturbed (no noise) continue to
enjoy zero duality gap as long as the perturbation parameter is
within a bound (i.e., the underlying problem has sufficiently
low noise). For state-estimation problems, this bound is often
(but not always) found empirically to be larger than noise
levels encountered in practice [29], [54], [59].

At present, certifiable perception problems can be broadly
catagorized into two key groups: problems for which fast, low-
rank solvers are available and problems that can be certified,
but must still rely on slower SDP solution methods (e.g.,
interior-point methods). The next subsections provide more
detail on each of these two groups.

A. Fast Certifiable Perception

More so than other problems, global optimization of ro-
tation synchronization has been the subject of intense study
in the vision community [15], [29], [64] and was one of the
first to enjoy significant speed improvements by leveraging
the low-rank structure of the SDP relaxation via the so-called
Riemannian Staircase approach [5], [9].

Building off existing certification methods for PGO [17] and
inspired by the success of Riemannian methods for rotation-
synchronization, [54] introduced SE-Sync in the robotics
community. SE-Sync solves PGO over SE(d) by taking ad-
vantage of its separable structure [41], marginalizing the
translation variables, and using the Riemannian Staircase
to solve the resulting rotation-synchronization problem. It
was later shown that this technique could be used without
marginalizing translations [12] and extended to landmark-
based SLAM [35], in both cases further exploiting problem
sparsity. This method was also extended to a distributed
framework in [59] and has even been integrated into the
recent Kimera-Multi pipeline [58]. Not surprisingly, these
developments have inspired further advances in the original
rotational synchronization problem [24].

Some of these methods boast runtimes that even rival state-
of-the-art, local methods (e.g., Gauss-Newton-based meth-
ods [23]), with the added guarantee of a global certificate [12],
[40]. An excellent review of the current state of certifiable
methods is provided in [55].

B. Certifiable Perception with Redundant Constraints

Though SE-Sync and its derivatives are among the most
performant algorithms in certifiable perception, there are sev-
eral other certifiable perception problems for which low-rank
methods do not result in significant performance improve-
ments. In particular, this set of problems includes those whose
semidefinite relaxations are not initially tight, but can be
tightened through the addition of certain constraints. These
constraints are referred as redundant constraints because they
are redundant in the original formulation of the problem, but
become nonredundant (and, indeed, linearly independent) in
the lifted, semidefinite relaxation.

This ‘tightening trick’ has been known for some time in
the optimization community [47], and has been applied to
several problems [51], [56]. In the computer-vision commu-
nity, redundant constraints have been used to tighten gener-
alized essential-matrix estimation [71], relative-pose estima-
tion between cameras [14], [30], and registration using 3D
primitives [13]. The formulation given in the latter paper
is a degenerate version of our single-pose, matrix-weighted
localization formulation (see Section IV-A), in which the use
of (degenerate) matrix weights is motivated by geometry rather
than noise distribution.

Interestingly, both [30] and [14] showed that adding re-
dundant constraints increases the level of measurement noise
for which their respective problems remain tight. In the
context of robotics, [65] found a similar result when exploring
the effect of redundant constraints on a sensor-calibration
task. [69] introduced redundant constraints in conjunction
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with graduated nonconvexity [66] to solve robust point-set
registration globally. [67] and [68] extended these results to
several other robust perception problems by leveraging the
Lasserre-moment hierarchy [34], [42].

This hierarchy constitutes a powerful set of theoretical tools
that are guaranteed to tighten the SDP relaxation of any
polynomial optimization problem through the use of redundant
variables and constraints.2 The caveat to this method is that
it requires the addition of new variables and constraints –
possibly ad infinitum – and can quickly become intractable
in practice. Techniques such as Douglas-Rachford Splitting
for certification [69] and the STRIDE algorithm [68] have
improved runtimes when the moment hierarchy is used, but
are still far from real time.

Since certification generally depends on the number of
variables and constraints used, a more efficient tightening
approach is search for a small subset of variables and
constraints that is sufficient to render a given relaxation tight.
This reflects the approach that we take in this paper as well
as in our concurrent work [26], which searches for redundant
constraints using a sampling approach.

C. Our Contributions

The contributions of this paper are as follows:

• We demonstrate that introducing matrix weights (due to
anisotropic noise distributions) into existing certifiable
state estimation problems can severly impact the tightness
of the underlying SDP relaxation.

• We show that a set of redundant constraints can be used to
regain tightness in these problems. To do this, we leverage
results in our concurrent paper [26], which numerically
find a redundant constraint set for a specific problem.
We interpret these numerical constraints to find algebraic
constraints that can be applied to a broader range of
problem instances.

• We establish a connection between classical probabilistic
interpretations of uncertainty and the dual or certificate
matrix and leverage this connection to further understand
our empirical results and the effect of redundant con-
straints on tightness.

• We show that, while the SDP relaxation of matrix-
weighted SLAM is intractable for large-scale problems,
the relaxation of matrix-weighted Wahba’s problem can
be solved in near realtime. We apply the latter relaxation
in an outdoor, stereo-localization pipeline on real-world
data.

III. BACKGROUND MATERIAL

In this section, we provide the reader with some background
material and notation that will be useful for the understanding
of subsequent developments.

2Note that this class of problems encompasses almost all of the certifiable
perception problems to date.

A. Notation
We denote matrices with bold-faced, capitalized letters, A,

column vectors with bold-faced, lower-case letters, a, and
scalar quantities with normal-faced font, a. Let Sn denote the
space of n-dimensional symmetric matrices and Sn+ denote
the space of n-dimensional symmetric positive semidefinite
matrices. We equivalently write A ⪰ 0 whenever A ∈ Sn+.
Let ∥·∥F denote the Frobenius norm and let ⟨A,B⟩ denote the
Frobenius inner product. Let diag (A1, · · · ,AN ) denote the
block-diagonal matrix with blocks corresponding to matrices
A1, · · · ,AN . Note that this includes the case where the Ai

are scalar (i.e., diag (a1, · · · , aN ), ai ∈ R). Let I denote
the identity matrix, whose dimension will be clear from the
context or otherwise specified. Let 0 denote the matrix with
all-zero entries, whose dimension will be evident from the
context. Let the subscript “0” denote the world frame. Let
tjii denote a vector from frame i to frame j expressed in
frame i and Cij denote a rotation matrix that maps vectors
expressed in frame j to equivalent vectors in frame i. For
readability, we replace ti0i with ti and Ci0 with Ci. Let ⊗
denote the Kronecker product. Let |S| denote the cardinality
of the set S. Let A+ denote the Moore-Penrose pseudoinverse
of a given matrix A. Let vec(A) denote the column-wise
vectorization (reshape) of a given matrix A. Let (·)× denote
the linear, skew-symmetric operator as defined in [8]. Let
[N ] = {1, · · · , N} ⊂ N be the set of indexing integers.

B. MAP Estimation and the Fisher Information Matrix
In robotics, we often frame state estimation as maximum-a-

posteriori (MAP) problems, in which the optimal estimate is
given by

x∗
c = arg min

xc∈M
− log (p(xc|D)) , (1)

where p(xc|D) is the posterior distribution function of the
estimated parameter, xc, given all of the available data, D and
M characterizes the feasible set. In practice, it is common to
approximate Problem (1) as follows:

x∗ = arg min
x∈Rp

− log (p(x|D)) , (2)

where the optimization variable, x, has been locally parame-
terized to ensure that constraints are not explicitly required.3

Optimization then proceeds by iteratively updating the local
parameterization until convergence is reached.

It is often the case that we wish to ascertain not only
optimal estimates, but also the uncertainty associated with
these estimates. To do so, we use the Laplace approximation,
which models the posterior distribution as a Gaussian centered
at the MAP estimate, x∗, with inverse covariance equal to the
so-called Fisher Information Matrix (FIM),

Σ−1 = − ∂2

∂x2
log (p(x|D))

∣∣∣∣
x=x∗

u

. (3)

The FIM can be extracted directly from the Hessian of the cost
function in (2) (or an approximation thereof)4. Its properties

3When state estimates involve pose variables or orientations this uncon-
strained form can be derived using the Lie algebra vector space of SE(3) or
SO(3).

4When using Gauss-Newton to solve estimation problems, the Hessian is
often approximated as the product of the Jacobian with its transpose.
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have been intensely studied by the robotic state-estimation
community [18]. For instance, it is known that the minimum
eigenvalues of the FIM (and their respective eigenvectors)
characterize the worst-case uncertainty of an estimated param-
eter. Of particular interest here is the fact that the geometry
of the measurement data (e.g., aligned uncertainty ellipsoids)
can lead to degeneracy of the FIM [70].

C. Measurement Models

In this paper, we define a directed graph, G⃗ =
(
V , E⃗

)
, to

keep track of poses and measurements. The vertex set V =
Vp∪Vm is the union of the set of vertices representing poses,
Vp = [Np], and the set of vertices representing landmarks,
Vm = [Nm]. We assume that the edge set E⃗ ⊂ V × V is
partitioned as E⃗ = E⃗p ∪ E⃗m, where E⃗p ⊂ Vp×Vp represents
relative-pose measurements and E⃗m ⊂ Vp × Vm represents
measurements of a landmark from a given pose. We assume
that each edge, (i, j) ∈ E⃗ , is associated with an error term,
eij , and a matrix weight, Wij . The ith pose is a member of
the Special Euclidean group:

SE(3) =
{
(Ci, ti) : Ci ∈ SO(3), ti ∈ R3

}
. (4)

Ci represents the rotation from the world frame to the ith

pose frame and ti represents the translation vector from the
world frame to the pose frame, expressed in the pose frame.
Moreover, we will make use of the following homogeneous
transformation to represent a given robot pose:

Ti =

[
Ci −ti
0 1

]
. (5)

Here, we consider MAP optimization problems over pose
and landmark variables in which the cost (log-posterior) can
be expressed in the following factored form [8]:

− log (p(x|D)) =
∑

(i,j)∈E⃗p

Jp
ij +

∑
(i,k)∈E⃗m

Jm
ik ,

Jp
ij = eTijWijeij , Jm

ik = eTikWikeik,

(6)

where Jp
ij and Jm

ik are the cost ‘factors’, with error terms, eij
and eik, that depend on the problem variables and weighting
matrices, Wij and Wik. The exact form of these terms are
discussed in the next two sections. Though our formulation
here is matrix-weighted in general, we focus on anisotropic
noise for pose-landmark measurements, with relative-pose
measurements remaining isotropic.

1) Matrix-Weighted Pose-Landmark Measurements
Each edge, (i, k) ∈ E⃗m, represents a measurement of the

kth landmark from the ith pose. In robotics, the sensors that
provide measurements of landmarks can often be modeled as

dik = g(Cim
k0
0 − ti) + ϵd,ik, ϵd,ik ∈ N (0,Σd,ik), (7)

where dik represents the (raw) measurement of landmark k
from the ith pose variable, mk0

0 is the location of landmark
k in the global frame, g(·) is an invertible, smooth, nonlinear
function, and ϵd,ik is a zero-mean error term having normal
distribution with associated covariance matrix, Σd,ik.

It is often desirable to convert measurements dik to a more
convenient form by inverting the measurement model (if possi-
ble) and defining the pseudo-measurement, m̃ki

i = g−1(dik),
with mean given by

E(m̃ki
i ) = Cim

k0
0 − ti.

The deviation from the mean, given by

eik = m̃ki
i − (Cim

k0
0 − ti), (8)

is approximately Gaussian with zero mean and is exactly the
error term for this measurement factor. Regardless of whether
Σd,ik represents isotropic noise, the (linearly-transformed)
covariance of ϵik is typically anisotropic and is given by

Σik = GTΣd,ikG, (9)

where G is the Jacobian of the inverse measurement function
g−1(·) [46]. The weighting matrix in the cost factor in the
MAP estimation, (6), is then given by the inverse of the
covariance matrix, Wik = Σ−1

ik . Note that solving the problem
under the simplifying assumption of isotropic noise – that is,
Wik = σikI with σk ∈ R – can be extremely detrimental to
the quality of the final solution [45], [46].

A key example of such a situation arises in a common
preprocessing step of stereo-vision problems, in which pixel
and disparity measurements are converted to Euclidean point
measurements by inverting a known camera model. It has
been shown that this results in measurement uncertainty that
is much larger in the depth direction of a given camera
pose [7], [46] (c.f. Figure 1). A derivation of the inverse stereo
measurement model and associated covariance is provided in
Appendix E.

2) Relative-Pose Measurements
Each edge, (i, j) ∈ E⃗p, represents a relative-pose mea-

surement, (C̃ij , t̃
ji
i ) ∈ SE(3) and its associated homogeneous

transformation, T̃ij . In a robotics context, these relative-pose
measurements often represent IMU-based measurement infor-
mation, dynamics-based prior belief propagation, or aggregate
measurement data between keyframes. Similarly to [12], we
define the following relative-pose error term:

eij = vec(T̃ijTj − Ti). (10)

Though Wij ⪰ 0 can be an arbitrary, positive semidefi-
nite matrix, we select weight matrices of the form Wij =

diag
(
σ2
ij , σ

2
ij , σ

2
ij , τ

2
ij

)−1 ⊗ I , since it allows us to express
our cost factor as

Jij =
1

σ2
ij

∥∥∥C̃ijCj0 −Ci

∥∥∥2
F
+

1

τ2ij

∥∥∥t̃jii − C̃ijtj + ti

∥∥∥2
2

= eTijWijeij . (11)

where σij and τij are scalar weights.5 This form of cost factor
is similar to the cost used in pose-graph optimization problems
(c.f. [12], [35], [54]) and is quadratic for our choice of pose
variables, (4).6

5Note that these weights represent isotropic noise, although representing
other distributions may be possible.

6The choice to represent translation variables in the local frame (ti) rather
in the world frame (ti00 ) allows us to keep the cost function quadratic in the
variables.
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The relative-pose error formulation also allows for the
addition of prior information about the pose variables to (6).
In this case, the relative-pose error is defined with respect to
the world frame:

e0j = vec(T̃0jTj − I). (12)

D. Convex Relaxations of QCQPs

We review the well-known procedure for deriving convex,
SDP relaxations of a standard form of polynomial optimization
problem.7 This procedure was pioneered in [57] and has
become the cornerstone of certifiably correct methods in
robotics and computer vision [15], [55]. Here, we consider
a homogeneous, quadratically constrained quadratic problem
(QCQP) expressed in the following standard form:

min
z

{
zTQz | zTAiz = 0,∀i ∈ [Nc] , z

TA0z = 1
}
, (13)

where z ∈ Rn is the homogeneous optimization variable,
Q ∈ Rn×n represents the quadratic cost, the Ai correspond
to Nc quadratic constraints, and A0 corresponds to the so-
called homogenizing constraint [21]. Note that any problem
with quadratic cost and constraints can be converted into a
problem of this form [21]. This includes cost functions of the
form given in (6), as long as the error terms are linear in the
optimization variables and the constraints are quadratic.

In general, problems with quadratic equality constraints,
such as QCQPs, are difficult to solve optimally because they
are nonconvex [11]. However, a popular approach to obtaining
globally optimal solutions to QCQPs involves formulating
the convex, SDP relaxation of the QCQP and subsequently
showing that this relaxation is tight. In this context, ‘tight’
means that the relaxation and the original problem have the
same optimal cost and equivalent minimizers.

It can be shown that Problem (13) is equivalent to the
following problem [21]:

min
X

⟨Q,X⟩
s.t. ⟨Ai,X⟩ = 0, ∀i ∈ [Nc]

⟨A0,X⟩ = 1,
X ⪰ 0,
rank(X) = 1,

(14)

where the last two constraints implicitly enforce the fact that
X = xxT . In Problem (14), we see that all the non-convexity
of the problem has been relegated to a single non-convex
constraint on the rank. It follows that we can find a convex
relaxation of Problem (14) by removing the rank constraint:

min
Z

⟨Q,Z⟩
s.t. ⟨Ai,Z⟩ = 0, ∀i = [Nc]

⟨A0,Z⟩ = 1,
Z ⪰ 0.

(15)

It is well known that if the optimal solution Z∗ satisfies
rank (Z∗) = 1 then the convex relaxation is tight to the
original QCQP. Accordingly, this condition implies that the

7For the sake of brevity, our introduction of these problems and concepts in
this section have been stated without proof. The interested reader is referred
to [21], [62] and references therein for more extensive expositions.

solution can be factorized as Z∗ = z∗z∗T , where z∗ is the
globally optimal solution of Problem (13).

We note that Problems (15) and (14) have the same La-
grangian dual problem, which plays a central role in certifying
global optima and can be expressed as follows:

d∗ = max
H,λ,ρ

−ρ

s.t. H(λ, ρ) = Q+ ρA0 +
Nc∑
i=1

λiAi,

H(λ, ρ) ⪰ 0,

(16)

where ρ and λ = [λ1 · · · λNc ]
T are the Lagrange multi-

pliers corresponding to the single homogenizing and the Nc

quadratic constraints, respectively.
Since Problem (15) is convex, it has the same optimal cost

as its dual, Problem (16).8 When the relaxation is tight, the
optimal cost of the original QCQP, Problem (13), will also be
equal to the dual problem cost, a condition known as strong
duality.

In the sequel, we will also make use of the fact that strict
complementarity is a generic property of SDPs [1]. In our
context, strict complementarity implies that

rank(Z∗) + rank(H∗) = n, (17)

where H∗ represents the dual matrix at the optimal Lagrange
multipliers (λ∗, ρ∗).9 If strict complementarity holds, then the
relaxation is tight if and only if corank(H∗) = 1. Practically,
this means that we can study tightness by considering either
largest eigenvalues of Z∗ or by considering the smallest
eigenvalues of H∗.

In practice, there are typically two ways that globally
optimal solutions can be obtained for a QCQP with a tight
semidefinite relaxation:

1) We can solve Problem (15) or Problem (16) 10 directly
and extract the globally optimal solution.

2) Given a candidate solution, ẑ, found via fast optimiza-
tion methods, we can certify its global optimality using
the dual or certificate matrix, H .

In robotics, there is a strong preference for the latter method,
since it is often much more computationally efficient than
the former. State-of-the-art methods leverage low-rank SDP
techniques such as that of Burer and Monteiro (BM) [16] and
the Riemannian Staircase [9], [54] to solve larger problem
instances in real time.

However, these methods are far less performant when re-
dundant constraints are introduced to tighten the semidefinite
relaxation.11 As such, a key goal of this paper is to establish
whether SDP relaxations of problems with matrix weights

8This is a consequence of the fact that strong duality holds for convex
problems under sufficient constraint qualifications [11]. In our case, we
ensure that the SDPs that we solve satisfy the Linear Independent Constraint
Qualification.

9We replace H(λ, ρ) with H when it is clear from the context.
10The dual problem is solved in [12] and is then used to recover the primal

solution.
11For example, the BM approach requires a verification that the solution is

a second-order critical point [10]. When redundant constraints are used, this
verification step necessarily involves solving a different (non-low-rank) SDP,
since they are not uniquely determined.
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require redundant constraints and, if so, whether it is nev-
ertheless possible to find global solutions efficiently enough
for robotics applications.

IV. PROBLEM FORMULATIONS

In this section, we provide QCQP formulations for the
matrix-weighted localization and SLAM problems that are
considered herein. We demonstrate how the costs can be
formulated in the standard quadratic form of Problem (13). In
the interest of brevity, we do not explicitly show the conversion
of the constraints into the standard form.

A. Matrix-Weighted Localization

In this section, we consider localization problems with ma-
trix weights. That is, we consider the problem of determining
the estimate of a sequence of poses given matrix-weighted
measurements of a set of known landmarks. We assume that
point correspondences are known and correct.

The maximum-likelihood estimate of the poses is given
by the solution to the following least-squares optimization
problem:

min
Ci,ti,∀i∈Vp

∑
(i,k)∈E⃗m

eTikWikeik

s.t. CT
i Ci = I, ∀i = Vp,

(c1i )
×c2i − c3i = 0, ∀i = Vp,

where eik = m̃ki
i −Cim

k0
0 + ti,

(18)

where the variable definitions are consistent with those pro-
vided in Section III-B and cji denotes the jth column of matrix
Ci. It has been shown that the two constraints on the Ci in (18)
are sufficient to ensure that Ci ∈ SO(3) and can be expressed
in the standard quadratic form of (13) [60]. Therefore, this
problem is a QCQP since eik is linear in Ci and ti, and the
constraints are quadratic.

It is important to note that this problem is separable in
each set of pose variables, since there are no constraints or
cost elements linking any two poses. Therefore, the problem
may be divided into Np subproblems, each being equivalent to
the matrix-weighted version of Wahba’s problem [20], [63].12

In the scalar-weighted case (Wik = wikI), there is a closed-
form, global solution to Wahba’s problem [37]. However, for
the general matrix-weighted case, a key simplification of the
cost function is no longer possible and solutions must be found
iteratively with no guarantee of global optimality [7], [8], [22].

We collect the relevant optimization variables into a single
vector, xT

i =
[
cTi tTi w

]
, where ci = vec(Ci), which

allows us to re-express the cost element as

Jik = xT
i Qikxi, (19)

where the symmetric cost matrix, Qik, is given in Appendix D.
We have also introduced a so-called homogenizing variable, w,
which is subject to the homogenizing constraint, w2 = 1 and
facilitates the reformulation of Problem (18) into the standard
form of Problem (13) [21], [65].

12In the remainder of this paper, we refer to single-pose instances of
Problem 18 as Wahba’s problem, though it is also known as registration or
single-pose localization.

The full cost of Problem (18) can be constructed by per-
muting and summing the matrices, Qik, according to edges in
E⃗m and a given pose variable ordering:

zT =
[
cT1 tT1 · · · cTNp

tTNp
w
]
. (20)

In practice, it is more efficient to leverage the separability
of the problem and solve for each pose via separate instances
of Wahba’s problem. Since each separate problem is small
in dimension (13-by-13), its SDP relaxation can be solved
quickly using modern interior-point solvers (see Section VII-A
for runtimes with this approach).

The single-pose version of Problem (18) admits a convex
semidefinite relaxation that was also explored in [13] and [49]
with the motivation of representing different geometric prim-
itive measurements (lines and planes), rather than anisotropic
noise. It was found that the addition of a few key redundant
constraints made the relaxation tight even when noise levels
were high. We corroborate these results for anisotropic noise
with an extensive analysis in Section VI.

We could potientially introduce the relative-pose measure-
ments described in Section III-C2 to Problem (18) by adding
the associated cost factors to the objective. The cost function
given in (11) is a quadratic function in the optimization
variables and can be expressed in the standard homogeneous
QCQP form, as shown in Appendix D. However, the addition
of such factors to Problem (18) destroys the separability
property, meaning that directly solving the SDP relaxation
becomes much slower for reasonably sized problems (e.g.,
Np ≥ 20).

In Appendix F, we prove that the SDP relaxation of Prob-
lem (18) is always tight when measurement noise levels are
low and the weighting matrices are non-degenerate.

B. Matrix-Weighted Landmark-based SLAM

In this section, we explore the effect of matrix weighting
when the landmark locations, mk0

0 , are not known a priori.
The resulting problem, known as landmark-based SLAM, is
given by,

min
Ci,ti,m

k0
0

∀i∈Vp,
∀k∈Vm

∑
(i,k)∈E⃗m

eTikWikeik +
∑

(i,j)∈E⃗p

eTijWijeij

where eik = m̃ki
i −Ci0m

k0
0 + ti0i ,

eij = vec(T̃ijTj0 − Ti0),
s.t. CT

i Ci = I, ∀i ∈ Vp.
(c1i )

×c2i − c3i = 0, ∀i = Vp, .

(21)

Note that the cost of (21) includes both landmark measure-
ments and relative-pose measurements. In the scalar-weighted
context, the convex relaxation of an equivalent problem has
already been studied and was generally found to be tight
for noise levels well above those found in practical robotics
scenarios [35].

On the other hand, when matrix weights are used (i.e.,
the noise distribution is anisotropic), the landmark-based error
term (8) becomes quadratic in the optimization variables (due
to the Cim

k0
0 terms) and the cost function of Problem (21)

becomes quartic. In the scalar-weighted case (Wik = wikI),
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this issue is obviated by premultiplying the error terms by the
inverse pose rotations to regain linearity of the error terms.
However, preforming this operation in the matrix-weighted
case will change the cost function, since CT

i WikCi ̸= Wik

when Wik is an arbitrary positive definite matrix.13

In order to cast Problem (21) as a QCQP, we follow a similar
strategy to [27] and [14] by introducing substitution variables,
mki

i , corresponding to each available measurement, m̃ki
i .

These new variables must satisfy the following (quadratic)
constraints:

mki
i = Cim

k0
0 − ti, ∀(i, k) ∈ E⃗m. (22)

When the landmarks become unknown, a gauge freedom
is also introduced into the problem. This has an important
implication for the SDP solution; the well-known SLAM
gauge freedom results in solution symmetries that cause the
rank of the SDP solution to be higher than one, even when it
is numerically tight [14]. To fix this freedom, we assume that
a prior factor term is included in the pose-graph terms for at
least one pose.14

The optimization can now be written as

min
Ci,ti,

mk0
0 ,mki

i
∀i∈Vp, ∀k∈Vm

∑
(i,k)∈E⃗m

eTikWikeik +
∑

(i,j)∈E⃗p

eTijWijeij

where eik = m̃ki
i −mki

i ,

eij = vec(T̃ijTj − Ti),
s.t. CT

i Ci = I, ∀i ∈ Vp.
(c1i )

×c2i − c3i = 0, ∀i = Vp,

mki
i = Cim

k0
0 − ti, ∀(i, k) ∈ E⃗m.

(23)

The pose-landmark cost elements can now be written in the
standard form:

Jik =

[
mki

i

w

]T [
Wik −Wikm̃

ki
i

−m̃kiT

i Wik m̃kiT

i Wikm̃
ki
i

] [
mki

i

w

]
The cost elements can be then permuted and summed accord-
ing to our variable ordering,

zT =
[
vec(C10)

T t10
T

1 · · · vec(CNp0)
T t

Np0
T

Np

mk0T

0 · · · mkiT

i · · · w
]
, (24)

and we can apply the semidefinite relaxation described
in III-D. However, we have observed that, contrary to the
scalar case, this SDP relaxation is not tight even for low
levels of noise. A similar situation occurred in [14] and [69]
when substitution variables were introduced (though not when
introduced in [27]).

13This reflects the fact that the measurement noise has an orientation
and depends on the (unknown) observation frame. This would not be an
issue if all measurements were defined in a common frame, but, in practice,
measurements are typically taken in the robot’s frame of reference.

14As with SLAM problems in general, the pose variable in the prior, T̃j0, is
typically used to ‘lock’ the solution to a known pose using some exteroceptive
measurement, such as GPS. However, for our purposes it can be set arbitrarily
without loss of generality.

C. Tightening the Relaxations

One of the key contributions of this paper is a concise
set of redundant constraints for the problems presented above
that is capable of tightening their respective relaxations. In
the next sections, we empirically show that these constraints
are capable of restoring relaxation tightness that is otherwise
destroyed by the introduction of anisotropic noise.

One approach that can be used to tighten this relaxation is
to apply the Lasserre-moment hierarchy [34], [42]. However,
this method often introduces a prohibitive number of additional
variables and constraints to the problem [68].

In constrast, we have opted to discover a smaller set15 of
redundant constraints that is sufficient to render each of the
problems above tight for reasonable levels of noise. To do this,
we leverage a constraint learning concept from our concurrent
paper, which, for a given problem instance, uses samples that
are drawn from the feasible set to numerically find all possible
constraints via a nullspace argument [26].

We applied the constraint learning method to small instances
of the problems defined above. We then interpreted the nu-
merical, learned constraints and cast them as equations that
are commensurate with the properties of SO(3) and could be
extended to problems of any size (any number of landmarks
and poses). Finally, we selected a subset of these constraints
that were empirically found to lead to tightness across various
problem instances. The concept of SDP stability [21] provides
some guarantees that similar problems to the ones that we
study will also be tight, though we cannot claim that any
instance of Problem (23) will be tight.

We found that the following set of redundant constraints
could be used to tighten Problem (18):

CiC
T
i − I = 0, (25a)

(Cj
i )

×Ck
i −Cl

i = 0, ∀(j, k, l) ∈ {(2, 3, 1), (3, 1, 2)} ,
(25b)

CjT

i Cj
i − rk

T

i0 rki0 = 0, ∀j, k ∈ {1, 2, 3} , (25c)

where Cj
i and rki0 represent the jth column and kth row of

Ci, respectively, and cyclic() denotes the cyclic group. Note
that the first two redundant constraints were also necessary
in [13] and [65].

Moreover, our SLAM problem (Problem (23)) can be
tightened by using (25) in conjunction with the following
constraints:

ml0T

0 mk0
0 − (mli

i − ti)
T (mki

i − ti) = 0, (26a)

Ci

(
ml0

0 −mk0
0

)
−
(
mli

i −mki
i

)
= 0, (26b)(

ml0
0 −mk0

0

)
−CT

i

(
mli

i −mki
i

)
= 0, (26c)∥∥mli

i −mki
i

∥∥2 − ∥∥∥mlj
j −mkj

j

∥∥∥2 = 0, (26d)(
ml0

0 −mk0
0

)×
Ci −Ci

(
ml0

0 −mk0
0

)×
= 0, (26e)

ti −

(
1

Ni

Ni∑
i=1

Cim
k0
0 −mki

i

)
= 0, (26f)

∀i, j, l, k s.t. {(i, l), (i, k), (j, l), (j, k)} ⊂ E⃗m.

15Smaller in the sense that we do not include all possible constraints or
further ascend Lasserre’s hierarchy.
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Despite the fact that these constraints successfully tighten
our problems for practical noise levels, the presence of redun-
dant constraints prohibits the use of fast certification methods
as mentioned above, meaning that interior-point methods must
be used to certify or solve the relaxation. Therefore, it is
very important to characterize the noise regime for which the
convex relaxation of Problem (21) is still tight, which is the
subject of Section VI-A.

Due to the large number of variables and constraints that
must be introduced, the problem sizes that can be solved using
this method are still small. This may be mitigated by exploiting
the sparsity of the problem, but this remains as future work.
One notable exception is the localization problem without
relative-pose measurements, which is still reasonably tractable
due to the separability of the problem.

V. ESTIMATION UNCERTAINTY AND THE DUAL
CERTIFICATE

In this section, we present a set of theoretical results that
allows us to extend intuitions about uncertainty in state estima-
tion to tightness of SDP relaxations. We establish a connection
between the dual solution of the SDP relaxation (specifically
the certificate matrix, H) and the Fisher Information Matrix.

The following Lemma relates the dual SDP solution and the
Laplace approximation of an equivalent (local) unconstrained
problem of the form (2).

Lemma 1. Suppose a given MAP estimation problem can
be equivalently formulated as either a standard-form, ho-
mogenized QCQP (13) or as an unconstrained optimization
as in (2). Let z∗ and x∗ be the (global) optima of these
formulations, respectively. Given a neighborhood, U ⊆ Rp,
containing x∗, let ℓ : Rp 7→ Rn be a smooth, injective map on
U , such that its image is in the feasible set of (13). Moreover,
let the respective objective functions be equal under the map
in the neighborhood U . That is,

− log (p(x|D)) = zTQz, (27)

for all (x, z) such that z = ℓ(x) and x ∈ U . Then the FIM
of p(x|D) is given by

Σ−1 = LTHL, (28)

where H is the dual certificate matrix at the solution and L
is the Jacobian of the ℓ(x) at the solution, L = d

dxℓ(x)|x=x∗ .

We defer the proof of this Lemma to Appendix A. Intu-
itively, the Lemma uses the fact that the local curvature of
the two problems are equal on the feasible set to establish a
connection between the FIM and the certificate matrix.

Note that the existence of the mapping, ℓ, is not restrictive
in our context. In fact, since the feasible set of the problems
in this paper are smooth manifolds, this mapping can be
interpreted as the inverse coordinate chart from differential
geometry. We provide examples of how to construct such a
mapping for Wahba’s problem in Appendix B.

One implication of this Lemma is that the certificate matrix
can be interpreted as an information matrix in the higher-
dimensional, SDP space. It also provides a method to extract

posterior covariance matrices from a given SDP solution. We
use Lemma 1 in the following proposition, which will be
important to our subsequent analysis:

Proposition 2. Assume that the setting of Lemma 1 holds.
Then the following relation holds:

σ(H̄) ≤ σ(Σ−1)

σ(L)2
, (29)

where σ(·) denotes the smallest singular value (or eigenvalue
for PSD matrices) and H̄ is the certificate matrix with row
and column corresponding to the homogenization variable
removed.

The proof of this proposition is given in Appendix C. Note
that the σ(L)2 is a scaling that accounts for the choice of
parameterization for the unconstrained optimization. However,
for common choices of Lie algebra vector spaces, the eigen-
values of L are bounded between one and two.

This proposition implies that tightness of the SDP relaxation
is eroded as the posterior distribution becomes more uncertain.
To see why this is true, note that if there is large uncertainty
in the posterior estimate, then σ(Σ−1) decreases. Owing to
Theorem 2, we see that the upper bound on σ(H̄) also
decreases, pushing H̄ closer to being rank deficient. If H̄
actually becomes rank deficient then corank(H) > 1, and, as
long as strict complementarity holds,16 rank(X∗) > 1 and the
problem becomes nontight.

In our subsequent analyses, we will use the implication
above to understand the cause of loss of relaxation tightness
when anisotropic noise is introduced to our state estimation
problems.

VI. SIMULATED EXPERIMENTS

It is known that the tightness of SDP relaxations of least-
squares perception problems depends on the level of noise in
the measurements [13], [21], [54]. For the case of rotational
averaging, tightness of the relaxation has been linked to the
magnitude of residual uncertainty of pose estimates [29].

In this section, we empirically explore the effect that
introducing anisotropic noise and matrix weights have on
localization and SLAM. Our study is strongly motivated by
stereo-camera noise models, but not limited thereto. All of
the results in this and the next section were generated using
MOSEK’s interior-point, SDP solver [2].

It is common in the literature report average rank when
assessing tightness of the SDP relaxation, but we find that the
eigenvalue ratio (ER) of the optimal solution – that is, the
ratio between the first and second eigenvalues – is a more
informative metric for tightness. Generally, ER ≥ 106 is an
appropriate indicator that an SDP relaxation is rank-one and
therefore tight. In the subsequent analysis, we use this metric
as the main criterion for tightness.

As mentioned above, when measurements are based on a
stereo-camera model, the uncertainty ellipsoids in Euclidean
space become elongated. This elongation occurs along rays

16We acknowledge the fact that strict complementarity does not always
hold for SDPs, but have empirically observed that it holds for the problems
we consider herein.
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extending from the camera focal point and depends quadrat-
ically on the distance to the measured point. To capture this
elongation, we define the anisotropicity of a measurement
as the square root of the conditioning number of the noise
covariance matrix (i.e., square root of ratio of maximum to
minimum eigenvalues). Figure 2(a) presents a visualization of
the shape of an uncertainty ellipsoid as anisotropicity changes.

All of the studies in this section have the same general
format. Landmark locations were randomly generated from a
uniform distribution within a bounding cube of a given size
and distance relative to the pose/camera frame. Unless other-
wise specified, the default values for distance and bounding
cube length are 3 m and 1 m, respectively.

We searched for sets of parameters that have tight re-
laxations through a variety of analyses. For each analysis,
the parameter space was sampled using a 30-by-30 grid in
logspace across the ranges shown in the figures. For each point
in the parameter space, the SDP was solved for 100 random
landmark and pose geometries generated using random seeds
that were consistent across parameter points. For each point
in parameter space, the minimum ER was found across all
trials and boundaries were plotted along the parameter values
at which the minimum ER dropped below 1× 10−6.17

A. Anisotropic Noise in Wahba’s Problem

In this section, we directly control the level and alignment
of measurement noise anisotropicity (i.e., uncertainty ellipoid
size and shape) and observe their effect on the tightness of
Wahba’s problem.

1) Aligned Uncertainty Ellipsoids
We first study the effect of anisotropic noise on Wahba’s

problem and consider the simplified case in which all of the
error ellipsoids are aligned. The alignment of the ellipsoids
causes the uncertainty to be concentrated in a single direction
leading to high posterior uncertainty in that direction [70]. This
case is of interest since our analysis in Section V suggests that
there is a connection between high posterior uncertainty and
loss of tightness.

Figure 2 shows the boundary between tight and nontight
SDP relaxations for this problem as the standard deviation
(STD) of the noise, anisotropicity of the noise and number
of landmarks are varied. The problem setup is shown in
Figure 2(b), while Figure 2(a) demonstrates the effect of
increasing anisotropicity on the uncertainty ellipsoid.

Figure 2 (c) and (d) show the parameter-space regions
that have tight relaxations without and with (respectively)
the redundant constraints in (25). For the case without re-
dundant constraints, we see that when anisotropicity is close
to one (i.e., nearly isotropic), the noise level that yields
tight relaxations is high even for low numbers of landmarks.
These results are consistent with previous results for isotropic
noise [35]. Increasing the number of landmarks generally
improves tightness for a given noise level. We also see that for
any given level of noise, increasing anisotropicity eventually
results in a loss of tightness.

17Note that in reality, the raw contours are quite noisy. For convenience
to the reader, we first smooth the minimum ER values with a median filter,
then plot the contours. The smoothing method is reviewed Appendix H.

Fig. 2. Investigation of the effect of anisotropicity on tightness of semidefinite
relaxations for Wahba’s problem. Subplot (a) shows how varying anisotropic-
ity affects the uncertainty ellipsoid. Subplot (b) shows the problem setup, with
ellipsoids aligned to the z-axis of the pose. Subplot (c) shows the tightness
boundary for varying numbers of landmarks. Anisotropicity decreases the
tightness boundary while increasing number of observed landmarks increases
the boundary.

It is clear that the redundant constraints effectively make the
problem tight across almost all parameters studied. The effect
of the redundant constraints as well as the relationship between
tightness, the certificate matrix and the FIM are explored in
greater depth in Figure 3. This figure shows heatmaps for the
50 landmark case of Figure 2, without and with redundant
constraints, across three metrics: the solution ER (subplots (a)
and (b)), second smallest eigenvalue of the certificate matrix
(subplots (c) and (d)), and the minimum eigenvalue of the
FIM ((e) and (f)). The FIM was calculated using (28) with the
mapping L as defined in Appendix B.

A number of key observations can be drawn. First, we note
that the tightness boundary in (a) (magenta line)18 coincides
almost exactly with the drop in the certificate matrix eigen-
value in (c), as expected.19

Second, by comparing (c), (d) and (f), we see that the
introduction of redundant constraints increases the certificate
eigenvalue to close to the FIM upper bound (though it does
not quite attain it). It is interesting to note that the bound in
Theorem 2 is quite loose without redundant constraints.

Finally, we note that the FIM changes very little when
redundant constraints are introduced. This is expected, since
the FIM for a given problem should not depend on the
redundant constraints. We posit that slight differences that we
observe between plots (e) and (f) are numerical in nature.

2) Misaligned Uncertainty Ellipsoids
We now consider the effect of varying the orientation of

the uncertainty ellipsoids. In classical state estimation, it is
known that high-quality estimates can still be obtained when
measurements have high uncertainty in a particular direction,
as long as these directions are not aligned. Leveraging our
insight from Section V, we expect to see a similar trend with
the tightness of the SDP relaxation.

18Note that this line is the same as the same boundary as shown in
Figure 2(c).

19This actually demonstrates that strict complementarity mostly holds for
this problem, since a drop in rank of the certificate is exactly complemented
by an increase in rank of the solution matrix.
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Fig. 3. Extended study of the results in Figure 2 for the 50 landmark case.
Heatmaps represent the value of each metric specified in the left-most column,
both without (left column) and with (right column) redundant constraints. The
presence of the redundant constraints pushes the second certificate eigenvalue
closer to the minimum eigenvalue of the FIM, leading to a relaxation that is
tight over a larger region of the parameter space. Note that there is a significant
heatmap scale difference between (a) and (b) and between (c) and (d).

Figure 4 demonstrates two experiments that vary uncertainty
ellipsoid orientation in the same setting as for Figure 2.
Figure 4(a) shows results for random rotational perturbation
of ellipsoid alignment while Figure 4(b) shows the effect of
the ‘fanning out’ of ray-aligned ellipsoids as the size of the
landmark bounding cube is increased.

In both cases, the trends coincide with our expectation:
when the ellipsoids are aligned, uncertainty is concentrated
on a single axis and tightness is lost at a lower noise level.
On the other hand, when the ellipsoids are highly misaligned,
uncertainty is not concentrated and the problems are tighter
for much higher noise levels.

Another interesting trend that we observe is that in most

Fig. 4. Tightness boundary for Wahba’s problem instance with 20 landmarks
observed. In (a), axes of maximum uncertainty are aligned to pose z-axis then
perturbed by random angles with different standard deviations (see legend).
In (b), maximum uncertainty axis is aligned to pose-landmark ray and size of
the bounding box on the landmarks is varied (size in legend). In both cases,
increased variation of uncertainty ellipsoid axes yields tighter relaxations as
anisotropicity increases. Additionally, in both cases, the entire parameter space
was tight when redundant constraints were used.

cases the tightness boundary begins to increase along the
noise-level axis as anisotropicity increases. Because the axes
are misaligned, high uncertainty of one measurement along
a given direction, can be complemented by low certainty of
a different measurement along the same direction. We posit
that this causes the posterior uncertainty (and hence tightness)
to be dominated by ellipsoid minor-axis uncertainty, which
decreases as anistropicity increases.

We did not include the results for Figure 4 with redundant
constraints because all of the studied parameter values were
tight.

B. Wahba’s Problem with Stereo-Camera Noise Model

Levaraging our understanding from the previous section, we
now turn our attention to Wahba’s problem with measurements
obtained from a less idealized, stereo-camera-based noise
model. Both the measurement noise level and anisotropicity
depend strongly on the distance between a pose and the
observed landmarks (see (44) at the end of Appendix E). Addi-
tionally, posterior uncertainty in stereo-camera-based localiza-
tion depends on the ‘spread’ of the landmarks being measured.
As such, our experiments in this section explore tightness as a
function of the distance to and size of the landmark bounding
cube (see Figure 5(a) for problem setup). The measurements
and their associated covariances are drawn from the stereo-
camera model with parameters given in Table II.

Figure 5 (b) and (c) show the tightness boundaries for this
setup without and with the redundant constraints given in (25).
The figure shows results for Wahba’s problem with different
numbers of landmarks. As expected, the level of noise for
which the relaxation is tight is inversely proportional to the
average distance between pose and landmarks. On the other
hand, increasing the spread (bounding cube) of the landmarks
increases the tightness boundary, which is consistent with our
previous observations for the ellipsoid model.

Note that for this camera model, Wahba’s problem is not
very tight without redundant constraints: the tightness bound-
ary when 50 landmarks are constrained to a unit cube is a
range of approximately 2 m for a 0.24 m baseline camera. In
constrast, the problem becomes considerably tighter when the
redundant constraints are employed, with the maximum range
of 100 m. This is a clear indication that redundant constraints
are required for practical robotics applications. As we will see
in Section VII-A, it is feasible to use redundant constraints in
this problem, while still maintaining computational efficiency.

C. SLAM with Stereo-Camera Noise Model

In Figure 6, tightness boundaries are shown for the SLAM
problem with redundant constraints using the same simulation
setup as in Figure 5. We do not show the results for SLAM
without redundant constraints because none of the cases that
we studied were found to be tight. Again, increasing the
number of landmarks expands the tightness boundary, but
curiously, the spread of the landmarks (indicated by the
bounding box) seems to have little-to-no effect on tightness.

We note that although the redundant constraints are capable
of tightening the problem, the runtime of these problems is
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Fig. 5. Investigation of tightness boundaries for Wahba’s problem with a
stereo-camera model without and with redundant constraints. A diagram of
experiment setup is shown in (a). (b) shows the effect of increasing the number
of landmarks without redundant constraints. (c) shows the boundaries for the
same model and scenario, but with redundant constraints included. Note that
the sampled distance parameter ranges are different between (a) and (b).

Fig. 6. Investigation of tightness boundaries for a single-pose SLAM problem
with a stereo-camera model with redundant constraints. A diagram of the
scenario is shown in Figure 5 (a). Boundaries are not shown when redundant
constraints are not used because the problem was not tight across all of the
parameters studied here.

prohibitive for real-time application. This is due to the size
of the problem: for a single pose problem with 20 landmarks
the dimension of the SDP variable is 133 and the number
of constraints required is 3343. These numbers also increase
quite rapidly as the number of poses increases.

VII. REAL-WORLD EXPERIMENTS

A. Outdoor Stereo Localization

In the preceding sections, we have mentioned the fact that
since matrix-weighted Wahba’s problem has a small number
of variables and constraints (13 and31, respectively), it is still
feasible to use the SDP relaxation for post processing or even
real-time applications. In this section, we apply our relaxation
of matrix-weighted Wahba’s problem (Problem (18)) in the
stereo-localization pipeline introduced in [33], which uses a
neural network to detect a set of features that are robust to
seasonal and lighting conditions.

1) Stereo-Localization Pipeline
The full pipeline can be seen in Figure 7(d). A neural

network is used to detect features and provide descriptors for
subsequent data association. The features are converted from
2D stereo keypoints to 3D keypoints, which are then used to
estimate relative poses between keyframe stereo images in a
stored map and corresponding stereo images from a ‘live run’.
In [33], the pose is estimated via random sample consensus

followed by pose refinement with a scalar-weighted Singular
Value Decomposition (SVD)20 approach.

2) Modifications to Pose Estimation
We replace the pose refinement block with a matrix-

weighted optimization (i.e., Wahba’s problem). A stereo-
camera model is used to compute the inverse covariances of
the 3D keypoint measurements (see Section E for details),
which are then used as the matrix weights. Since the pipeline
does not make use of relative-pose measurements (i.e., IMU
data), each pose can be solved separately.

We solved the matrix-weighted pose-refinement optimiza-
tion with both a local solver and global solver. The local
optimization was performed using a Gauss-Newton solver over
the SE(3) Lie group in an off-the-shelf framework called
Theseus [53]. Tolerances (relative and absolute) were set to
1×10−10 with 200 as the maximum number of iterations. The
maximum number of iterations recorded was 160. Theseus was
initialized using the best pose estimate from RANSAC, as is
common in practice.

The problem was solved globally via the SDP relaxation
of Problem (18) with the redundant constraints given in (25).
The cost matrix was computed as shown in Section D. For
each pose, we used CVXPY [25] with Mosek [2] to solve
the SDP. The solution was extracted by selecting the column
corresponding to the homogenizing variable in the solution
matrix. The relevant interior-point tolerances for Mosek were
also set to 1×10−10 with the maximum iterations set to 1000
(though the number of iterations did not exceed 30).

All approaches were implemented in PyTorch. Note that
the entire pipeline up to the pose refinement step (including
RANSAC with SVD to find inliers) was identical for both
solvers pipelines. On average, approximately 542 inlier 3D
measurements were returned by RANSAC for the refinement
step.

3) Dataset and Results
We tested the pipeline on runs 2, 11, 16, 17, 23, 28, and

35 from the ‘In-the-Dark’ dataset, which was used for training
and testing in [33].21 The number of poses in each run varies,
ranging between 886 and 3634, but the path taken in all runs
is shown in Figure 7 (c).

We localize between all pairs of the seven runs (21 local-
izations total). Each run can be used as either the ‘map’ or the
‘live’ run since all are equiped with ground truth. Localization
was performed for the Baseline (SVD), Local (Theseus), and
Global (SDP) solvers by running the pipeline with each on an
NVIDIA Tesla V100 DGXS GPU with a Intel Xeon 2.20GHz
CPU. We present the aggregate results of the analysis in terms
of average time per pose, longitudinal root-mean-square error
(RMSE), latitudinal RMSE, and heading RMSE for each of
the pipelines in Table VII-A3. A full set of results is provided
in Appendix I.

It is immediately clear that the Local solver performs
significantly worse than than the Baseline and Global methods.
Further investigation revealed that this was because, for several

20See [61] for more details on this method.
21Dataset is available at http://asrl.utias.utoronto.ca/datasets/

2020-vtr-dataset/. The selected runs correspond to the hold-out test
runs from [33].

http://asrl.utias.utoronto.ca/datasets/2020-vtr-dataset/
http://asrl.utias.utoronto.ca/datasets/2020-vtr-dataset/
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Fig. 7. Overview of the setup and results of the outdoor stereo localization
experiment introduced in Section VII-A (map run: 2, live run: 16). (a) shows
the estimated trajectory for all three methods and highlights the local minima
that appear when using the Local method. (b) shows the robot (Grizzly RUV)
and camera (Point Grey XB3) that were used. (c) shows an aerial view of the
localization track and (d) shows the stereo-localization pipeline (with modified
blocks in red).

poses throughout the runs, the Local solver converged to
egregious local minima. An example of such a minimum can
be seen in Figure 7(a). As such, we have added a ‘filtered’
row to Table VII-A3, which provides the Local solver results
when pose estimates with heading error larger than 3 deg are
removed. Even when filtered, the Local solver still has the
largest RMSE values, possibly due to less salient local minima.

It is interesting that the (scalar-weighted) Baseline approach
outperforms the (matrix-weighted) approaches in terms of
RMSE and compute time. However, we note that the ‘ground
truth’ trajectories for each run were computed by minimizing a
reprojection-based cost (see [52]) and are subject to additional
error, which is likely on the order of the difference between
the Baseline and Global solvers (≤ 0.005 m and ≤ 0.05 deg).
Further, the fact that the neural network was trained using
the Baseline approach likely contributes to the performance
difference.

Finally, we call attention to the fact that, in terms of speed,
the Global SDP approach was approximately as fast as the
Local approach and both of these approaches ran only about
2.3 times slower than the (closed-form) Baseline solution.
Given the speed (8.19 Hz) and accuracy of the SDP solver,
the authors argue that it could be used for online estimation,
especially if implemented in a more performant language than
Python (such as C++).

B. Stereo SLAM in a Controlled Environment

In this section, we test matrix-weighted SLAM on the
‘Starry Night’ dataset [6], which provides stereo-camera mea-
surements of a set of known landmark locations (with known
data association). The parameters of the stereo-camera model

TABLE I
AGGREGATE RESULTS ACROSS RUNS FOR IN-THE-DARK DATASET

Pipeline Weights Avg. Time
Per Pose

Long.
RMSE

(m)

Lat.
RMSE

(m)

Head.
RMSE

(deg)

Baseline scalar 0.055 0.025 0.013 0.249

Global matrix 0.121 0.033 0.021 0.335

Local matrix 0.118 0.175 0.153 5.415

Local
(filtered)

matrix 0.118 0.037 0.035 0.598

are shown in Table II, with parameter symbols consistent with
those described in Appendix E.

TABLE II
GROUND-TRUTH CAMERA PARAMETERS

Parameter b fu fv cu cv σu σv

Units m pix
m

pix
m pix pix pix pix

Values 0.24 484.5 484.5 0.0 0.0 6.32 11.45

To assess tightness of matrix-weighted SLAM with stereo-
image measurements, we randomly select 10 poses from the
dataset and solve the SDP relaxation with and without redun-
dant constraints. We add relative-pose measurements between
subsequent poses based on the ground-truth data and perturb
these measurements by a controlled amount of (isotropic)
noise allowing to assess the effect of these additional mea-
surements. All measurements and matrix-weights were defined
as explained in Section III and the related sections of the
Appendix.

The results are shown in Figure 8. At all times, the distance
between the pose and the landmarks is within 1.75 m. Without
redundant constraints, the problem is not tight across the
noise levels considered. On the other hand, with redundant
constraints, the problem remains tight until the relative-pose
measurement noise exceeds approximately 0.06 m and 0.06
rad, reflecting tightness up to a reasonable level of noise.

Figure 1 shows an example of a local and global minimum
for a 10-pose SLAM problem using measurements from the

Fig. 8. ER results with and without redundant constraints for SLAM on
random selections of 10 poses from the “Starry Night” dataset with relative-
pose measurements between subsequent poses. 10 trials (random selection
of poses) were performed at each noise level. Without redundant constraints
(blue), the SLAM problem is not tight for any of the tested noise levels. With
redundant constraints (orange) the problem is tight for reasonable noise levels.
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“Starry Night” dataset. Relative-pose measurements between
subsequent poses were perturbed by Gaussian noise with
standard deviation of 5.0 × 10−2 m and 5.0 × 10−2 rad
in both rotation and translation. The local minimum was
the result of running a Gauss-Newton (GN) solver from a
randomly selected, poor initialization point (gradient and cost
converged to 8.87×10−12 and 1.13×103, respectively) while
the global solution was found by solving the matrix-weighted
SLAM SDP relaxation with redundant constraints (ER and
cost converged to 2.43× 106 and 9.36, respectively).22

It is important to note that we have restricted these exper-
iments to a low number of poses because of the necessary
addition of variables and constraints, which makes the matrix-
weighted SLAM problem intractable for medium-to-large-
scale problems. However, we believe that the analysis and
results presented herein are valuable to the robotics community
and demonstrate that certifiable methods can be extended to
this problem.

VIII. CONCLUSIONS

A. Discussion

We have shown that inclusion of matrix weights in state-
estimation problems can have profound implications on the
tightness of their semidefinite relaxations. In the case of
Wahba’s problem, matrix weights can decrease the noise level
for which a given problem instance is tight to well below
those found in practice. For SLAM, the introduction of matrix
weights leads to a fundamental change in the formulation of
the problem and the resulting formulation is not tight even for
very low noise levels (without redundant constraints). We have
established a key connection between the posterior distribution
of a state estimate and the dual or certificate matrix. We have
also explored the relationship between the noise distribution
of measurements, the posterior distribution, and the tightness
of the semidefinite relaxation. Namely, anisotropicity in the
underlying noise model results in nontight relaxations when
uncertainty is aligned in a given direction. This effect can be
counteracted (to some extent) by increasing the number and
variety of measurements in the problem.

One of the goals of our analysis was to determine whether
redundant constraints are necessary for the problems consid-
ered herein. Based on the results in Sections VI-B and VI-C,
redundant constraints seem to be necessary to achieve reliable
robustness to noise in stereo-camera-based applications. In the
case of Wahba’s problem, our results in Section VII-A show
that, even with redundant constraints, the SDP is as fast as
off-the-shelf local methods (i.e., Theseus), and can be used in
real applications. Moreover, we have shown that even when
initialized well, local methods can converge to egregious local
minima. On the other hand, for matrix-weighted SLAM, the
addition of even a sparse set of redundant constraints seems
to be prohibitive for online use, as shown in Sections VI-C
and VII-B.

22Note that for good initializations, it was confirmed that the GN solver
converged to the same cost and solution as the SDP relaxation.

B. Future Work

The state-of-the-art, large-scale, certifiable perception meth-
ods in robotics concentrate on cases that do not require redun-
dant constraints [12], [54]. However, even a relatively small
change to the noise model (e.g., introducing anisotropicity)
seems to necessitate such constraints. Therefore, we posit that
a crucial area of development for certifiable algorithms in
robotics involves maintaining computational speed even with
these additional constraints.

The exploration of amendments to the Riemannian Staircase
and Burer-Monteiro techniques to accommodate redundant
constraints is one potential avenue of future work. This
would involve addressing potential bottlenecks during the
certification step due to a costly search for optimal Lagrange
multipliers.

Another key avenue, which has proved essential in the past,
is to exploit the sparsity of the SDP with redundant constraints
as shown in [72]. In conjunction with the design of sparsity-
promoting redundant constraints, this approach may yield the
speed that is required for more general, online, large-scale
certifiable solvers.
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APPENDIX

A. Proof of Lemma 1

Proof. The Lagrangian of the QCQP (13) can be expressed as
follows [11]:

L(z,λ, ρ) = zT

(
Q+ ρA0 +

Nc∑
i=1

λiAi

)
z − ρ.

Recalling the definition of the certificate matrix from the dual
problem, (16), we have

L(z,λ, ρ) = zTH(λ, ρ)z − ρ.

Let x = x∗+δx ∈ U be a perturbation of the optimal solu-
tion, x∗, of Problem (2). Since, by assumption, the objective
functions are locally equal, we have z∗ = ℓ(x∗). Let z = ℓ(x).
Since ℓ is smooth, we have the following perturbation to z∗:

δz = z − z∗ = Lδx+O(δx), (30)

where δx = x−x∗ and O(·) denotes Bachmann-Landau (“big-
o”) notation. Since z is in the feasible set of Problem (13),

the Lagrangian at z is equal to the objective of Problem (13)
and, by assumption, we have

L(z,λ, ρ) = L(ℓ(x),λ, ρ) = ℓ(x)TQℓ(x) = − log(p(x|D)).

We now proceed by considering second-order Taylor expan-
sions of the Lagrangian about z∗.23 Letting H = H(λ∗, ρ∗)
to simplify notation, we have

L(z,λ∗, ρ∗) = zTHz − ρ∗

= (z∗ + δz)TH(z∗ + δz)− ρ∗

= −ρ∗ + δzTHδz

where the third line follows from the first-order necessary
optimality conditions (Hz∗ = 0). Applying (30), we get

− log(p(x|D)) = −ρ∗ + δxTLTHLδx+O(δx2),

where c is a constant. Since the FIM is exactly the Hessian of
− log(p(x|D)) evaluated at δx = 0, we have the result:

Σ−1 = LTHL. (31)

We visualize Lemma 1 on a two-pose localization prob-
lem with stereo measurements by comparing the numerical
covariance matrix (obtained by running 10000 optimization
trials with different sampled noise values) with the theoretical
covariance matrix (inverse of FIM of the final sample). The
matrices match to numerical precision and can be seen in
Figure 9. The Jacobian of the mapping was derived as shown
in next section (Appendix B) and is given by

L =


(I ⊗ C̄1)Ḡd 0 0 0

0 I 0 0
0 0 (I ⊗ C̄2)Ḡd 0
0 0 0 I
0 0 0 0

 .

Fig. 9. Comparison of numerical covariance matrix to the theoretical covari-
ance matrix from Theorem 1, Σ = (LTHL)−1, for a two-pose localization
problem (Problem 18). Numerical covariance was found by considering the
average sample covariance of 10000 (globally optimal) estimates.

23As in [48, Theorem 12.5] we leave the Lagrange multipliers fixed
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B. Example of Unconstrained Parameterization

In this section, we show an equivalent unconstrained pa-
rameterization of the single pose version of Problem 18 given
in Section IV-A. This parameterization extends easily to any
of the problems given in this paper. Those familiar with state
estimation over Lie groups will recognize this parameterization
as the Lie-algebra vector space parameterization.

Let x =
[
xT
1 xT

2

]T ∈ R3 × R3 be the unconstrained
parameter. We relate this parameter to the variables given in 18
as follows:

C1 = exp(x∧
1 )C̄1, t1 = x2 + t̄1, (32)

where C̄1 and t̄1 are the optimal values of C1 and t1
(respectively) for a given problem instance, exp is the matrix
exponential and ∧ is the skew-symmetric operator (see [6] for
details). We can rewrite Problem (18) as the unconstrained
problem,

min
x∈R6

N∑
k=1

eTkWkek

where ek = m̃k1
1 − exp(x∧

1 )C̄1m
k0
0 + x2 + t̄1,

(33)

From (20), we see that the solution mapping is given by

z = ℓ(x) =

vec(exp(x∧
1 )C̄1)

x2 + t̄1
1

 . (34)

By construction, this map is bijective with its image in
a neighborhood around (C̄1, t̄1) and the cost functions of
Problems (18) and (33) are equal under the map. Finally, the
map is smooth by the properties of Lie groups and its Jacobian
is given by

L =

(I ⊗ C̄1)Ḡd 0
0 I
0 0

 , (35)

where Ḡd is a matrix of the vectorized generators of the Lie
algebra (see equations 7-10 of [24] for a detailed derivation
of the top-left block). In this example, it can be shown that
the minimum singular value of L is exactly unity and, if
applying Lemma 1, we have that the minimum eigenvalue
of the parameterized FIM exactly upper bounds the minimum
eigenvalue of the certificate matrix.

C. Proof of Theorem 2

Proof. By assumption, we have Σ−1 = LTHL. Without loss
of generality, assume that the homogenizing variable of z is
the last element in the vector. Since this element is always
equal to one, the Jacobian of the feasible set mapping is given
by LT =

[
L̄T 0T

]
. It follows that Σ−1 = L̄T H̄L̄.

Since ℓ is injective, L̄ has full column rank. It follows that24

σmin(L̄)∥v∥ ≤ ∥L̄v∥ ≤ σmax(L̄)∥v∥, (36)

where ∥ · ∥ denotes the Euclidean norm, σmin(L̄) is the
minimum singular value of L, and σmax(L̄) is the maximum
singular value of L. We proceed using the Raleigh quotient

24See proof of Corollary 2.4.4 in [32].

characterization of eigenvalues, noting that both Σ−1 and H̄
are positive definite matrices.

σmin(H̄) = min
y∈Rn

yT H̄y

∥y∥2
≤ min

y=L̄v
v∈Rp

yT H̄y

∥y∥2

= min
v∈Rp

vT L̄T H̄L̄v

∥L̄v∥2
≤ min

v∈Rp

vT L̄T H̄L̄v

σmin(L̄)2∥v∥2

=
σmin(Σ

−1)

σmin(L̄)2
,

where the first inequality follows from the fact that we are
restricting the feasible set of the optimization and the second
follows from (36). Finally, note that σmin(L̄) = σmin(L).

D. Cost Function Elements
In this section, we show how to determine the QCQP cost

matrices for the localization and SLAM problems given in
Sections IV-A and IV-B. Throughout this section, we use the
facts that tr (ABC) = (CT ⊗ A)vec(B), A = 1 ⊗ A, and
(A⊗B)(C ⊗D) = (AC ⊗BD) [44].

1) Landmark Measurements
Consider a single cost element corresponding to an edge in

E⃗m:

Jik =(m̃ki
i −Cim

k0
0 + ti)

TWk(m̃
ki
i −Cim

k0
0 + ti)

=m̃kiT

i Wkm̃
ki
i w2 − 2wm̃kiT

i WkCim
k0
0

+ 2wm̃kiT

i Wkti − 2mk0T

0 CT
i Wkti

+mk0T

0 CT
i WkCim

k0
0 + tTi Wkti,

Re-organizing terms, we see that this cost element can be
written as Jik = xTQikxi, where xT

i =
[
cTi tTi w

]
and ci = vec(Ci).

Qik =

 mk0
0 mk0T

0 ⊗Wk −mk0
0 ⊗Wk −mk0

0 ⊗Wkm̃
ki
i

−mk0T

0 ⊗Wk Wk Wkm̃
ki
i

−mk0T

0 ⊗ m̃kiT

i Wk m̃kiT

i Wk m̃kiT

i Wkm̃
ki
i

 .

2) Relative-Pose Measurements
Similarly, each edge in E⃗p represents a cost element of the

following form:

Jij =
1

σ2
ij

∥∥∥C̃ijCj −Ci

∥∥∥2
F
+

1

τ2ij

∥∥∥t̃jii − C̃ijtj + ti

∥∥∥2
2
. (37)

As before, we collect the relevant variables,

xT
ij =

[
cTi cTj tTi tTj w

]
,

allowing us to write the cost element as

Jij = xT
ijQijxij ,

Qij =

[
1

σ2
ij
Qr,ij 0

0 1
τ2
ij
Qt,ij

]
,

with

Qr,ij =

[
I −I ⊗ C̃T

ij

−I ⊗ C̃ij I

]
,

Qt,ij =

 I −C̃ij t̃jii
−C̃T

ij I −C̃ij t̃
ji
i

t̃ji
T

i −t̃ji
T

i C̃T
ij t̃ji

T

i t̃jii

 .
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The blocks of these cost elements can be permuted according
to the variable ordering defined for a given problem and the
final cost matrix is obtained by summing all cost elements.

E. Stereo-Camera Model

In this section, we seek to convert pixel measurements
from left- and right-rectified stereo images to Euclidean point
measurements. We also seek to determine an appropriate
model of the uncertainty of the measurement in the Euclidean
space. We assume that left and right stereo frames have their
z-axes aligned with the viewing direction and their other axes
coincident. We also assume that they are separated by baseline
distance b ∈ R and that the camera frame is coincident with
the left camera.

Consider a 3D point expressed in the world frame, xw =[
xw yw zw

]T
representing a feature that we wish to track.

This point can be expressed in the left camera frame as xc =
Ccwxw+twc

c , where Ccw ∈ SO(3) is the rotation matrix from
the world to the camera frame and twc

c ∈ R3 is vector from
the world frame origin to the camera frame origin expressed
in the camera frame.

Assuming a pinhole stereo-camera, the resulting pixel mea-
surements can be expressed as follows:

pul
pvl
pur
pvr

 =
1

zc


fu 0 cu 0
0 fv cv 0
fu 0 cu −bfu
0 fv cv 0

[xc

1

]
+ ϵp, (38)

where u and v subscripts represent horizontal and vertical
pixel directions, respectively, l and r subscripts represent
left and right cameras, respectively, pij represents the pixel
measurement, fi represents the focal length parameter, and
ci represents the camera centre parameter for direction i
of camera j. The variable ϵp represents noise on the pixel
measurements and is assumed to have zero-mean, Gaus-
sian distribution, ϵp ∼ N (0,Σp), with covariance matrix
Σp = diag

(
σ2
u, σ

2
v , σ

2
u, σ

2
v

)
, where σi represents the standard

deviation of the noise.
We define the disparity, d, of a given feature as the

horizontal difference between the feature’s position in the right
and left images in terms of pixels: d = pul − pur. We define
the intermediate, Gaussian-distributed measurement,

y =
[
pul pvl d

]T ∼ N (µy,Σy), (39)

where the mean and covariance matrices are given by

µy =

 1
zc
fuxc + cu

1
zc
fvyc + cv
1
zc
fub

 , Σy =

σ2
u 0 σ2

u

0 σ2
v 0

σ2
u 0 2σ2

u

 . (40)

Given this measurement, we can use the (known) in-
trinsic camera parameters to generate Euclidean pseudo-
measurements, x̂ =

[
x̂c ŷc ẑc

]T
, of the (unknown) feature

locations via the following mapping:

g−1 : (R2 × R+) → R3, s.t. x̂ = g−1(y) = b

pul−cu
d

pvl−cv
d
fu
d

 .

(41)

Although this transformation is nonlinear, we make the as-
sumption that the distribution of x̂ remains Gaussian. To
approximate the covariance of the pseudo-measurement, we
map the intermediate measurement covariance through the
linearized Jacobian of this transformation:

G =
∂g−1(y)

∂y
= b

 1
d 0 −pul−cu

d2

0 fu
fvd

− fu
fv

(pvl−cv)
d2

0 0 − fu
d2

 . (42)

Typically, such a linearization is performed about a prior belief
– as in a Kalman filter – or previous iterate – as in iteratively
re-weighted least squares – of the variables involved. However,
in the global-optimization context, neither of these options are
available and we choose to linearize about the measurement
itself.

Therefore, the noise model of the pseudo-measurement can
be expressed as

x̂ = xc + ϵx, ϵx ∼ N (0,Σx), (43)

where ϵx represents an approximately Gaussian-distributed
variable with zero mean and covariance given by Σx =
GΣyG

T .
It is instructive to consider the following alternate formula-

tion of the Jacobian:

G =


ẑc
fu

0 − x̂c

fu
ẑc
b

0 ẑc
fv

− ŷc

fu
ẑc
b

0 0 − ẑc
fu

ẑc
b

 . (44)

We see that the Jacobian matrix scales linearly with the z-
axis coordinate, ẑc, meaning that the variance of the Euclidean
measurement scales quadratically with this variable. Ignoring
the off-diagonal terms, we note that the anistropicity of the
measurement is approximately proportional to ẑc

b .

F. SDP Stability of Matrix-Weighted Localization

In this section, we prove that Problem (18) enjoys the
property of ‘SDP stability’ established in [21]. That is, the
convex relaxation of Problem (18) is tight whenever the set
of measurements has sufficiently low noise. In particular, we
connect the SDP stability to the well-known condition that the
observed landmarks are not coplanar, which has been shown to
lead to a unique solution for point-set regression [3]. Such re-
sults have been given for other state-estimation problems [54],
[59] and our proof closely follows the development given
in [65].

Definition 3 (Noise-free Measurements). Given the setting of
Problem (18), we define the set of noise-free measurements
for a given set of poses,

{
(C̄i, t̄i) ∀i ∈ Vp

}
, as{

m̄ki
i = C̄im

k0
0 − t̄i, ∀(i, k) ∈ E⃗m

}
, (45)

and collect all such measurements in a vector, m̄.

Theorem 4 (SDP-Stability of Matrix-Weighted Localization).
Consider the setting of Problem (18) with positive definite
weighting matrices (Wik ≻ 0) and suppose the set of land-
marks observed from a given pose are not coplanar. Let m̃ be
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a vector containing all of the pose-landmark measurements for
the problem and let m̄ be the set of noise-free measurements
associated with the globally optimal solution of the problem
with the same ordering as m̃. Then, there exists some ϵ > 0
such that if ∥m̃−m̄∥2 < ϵ, the SDP relaxation of the problem
is tight (strong duality holds) and the global minimizer can be
recovered from the SDP solution.

Proof. To prove the theorem, we show that the conditions of
Theorem 3.9 from [21] are satisfied when the assumptions of
our theorem hold. In the following, we treat the measurements,
m̃, as a set of parameters on which the cost of the problem
depends. Since there are no relative-pose measurements in
Problem (18), it is separable and we can prove the result for a
single-pose problem (fixed pose i) without loss of generality.
The conditions of Theorem 3.9 are as follows:

1) The cost and constraints are quadratic in the variables.
2) The cost depends continuously on the set of parameters,

m̃.
3) When constructed with m̄ rather than m̃, the cost

becomes strictly convex, with the same unconstrained
minimum as the original problem.

4) The Abadie Constraint Qualification (ACQ) holds for
the feasible set at the global solution.

Let y =
[
vec(Ci)

T tTi
]T ∈ R12 be the vectorized form of

the variables. The cost function for pose i in Problem (18) is
given by

fi(m̃,y) =
∑

(i,k)∈E⃗m

eTikWikeik. (46)

We can write eik as an affine function of y

eik = m̃ki
i −Aky, ∀ (i, k) ∈ E⃗m, (47)

where Ak =
[
mk0T

0 ⊗ I −I
]
∈ R3×12. The cost function

becomes
fi(m̃,y) = yTQy + bTy + c, (48)

where

Q =
∑

(i,k)∈E⃗m

AT
kWikAk, (49)

b = −2
∑

(i,k)∈E⃗m

Wikm̃
ik
i , (50)

c =
∑

(i,k)∈E⃗m

m̃ikT

i Wikm̃
ik
i . (51)

We see immediately that the cost function depends quadrati-
cally on the variables, y, and quadratically (thus continuously)
on the parameters, m̃. Together with the fact that the O(3)
constraints are quadratic, conditions 1) and 2) are satisfied.

Now, let ȳ represent the vectorized form of the global
solution and consider the cost function, fi(m̄,y), constructed
using the noise-free measurements, m̄, associated with the
global solution. Since fi(m̄,y) is a sum of quadratic forms,
we have that fi(m̄,y) ≥ 0. Moreover, its global minimizer is
ȳ since fi(m̄, ȳ) = 0.

To conclude that this minimizer is unique, we must
show strict convexity of fi(m̄,y), which is implied if

∇2
yfi(m̄,y) = Q is strictly positive definite [11]. Note that

since the weights are positive definite (Wik ≻ 0) we already
have that Q ⪰ 0. To show positive definiteness, it remains to
show that Q is full-rank. To this end, note that we can write

Q = ATWA, (52)

where

W = diag (Wi1, . . . ,WiN ) , (53)

A =

A1

...
AN

 =

m
10T

0 1
...

...
mN0T

0 1

⊗ I3, (54)

and we have re-indexed the landmarks from 1 to N for
convenience. We also define

B =

m
10T

0 1
...

...
mN0T

0 1

 .

Since W is full rank, we are required to show that rank (A) =
12. Recall that the singular values of a Kronecker product,
A⊗B, is given by {µλ, ∀µ ∈ σ(A), λ ∈ σ(B)}, where σ()
denotes the set of singular values. Therefore, rank (A) = 12
is equivalent to the fact that rank (B) = 4. We can subtract
the first row from the remaining rows of B without changing
its row rank. Thus,

rank (B) = rank
([

m10T

0 1
D 0

])
, D =

 (m
20
0 −m10

0 )T

...
(mN0

0 −m10
0 )T

 .

Since the landmarks are not coplanar by assumption,
rank (D) = 3 and, since rank (B) = rank (D)+1, condition 3
holds.

Finally, the ACQ holds at any feasible point by the argument
given in [21], giving the final condition of Theorem 3.9.

We conclude this section with two remarks. First, the
assumption that the weight matrices are positive definite
(i.e., not degenerate) is not strictly required as long as
rank

(
ATWA

)
= 12 is guaranteed by sufficient measure-

ments. As mentioned above, degenerate weight matrices were
encountered in [13] when measurements of lines and planes
were considered. Second, the extension of this proof to in-
clude relative-pose measurements should be straightforward
since it has already been proved when only relative-pose
measurements are considered (at least for the case of a weakly
connected measurement graph) [54].

G. Other Metrics of Tightness

In other works, it is sometimes the case that a ‘relative
gap’ is used as a metric for evaluating tightness of a convex
relaxation. This gap is typically defined as follows:

gap =
p(xr)− d∗

1 + d∗
,
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where p(xr) represents the primal cost of the closest feasible,
rank-1 solution (rounded solution) and d∗ represents the op-
timal SDP cost (equivalently, the dual cost). The one in the
denominator keeps the metric stable when d∗ is low.

In Figure 10, we compare this metric with the ER, our
metric of choice throughout the paper. We note that the corre-
sponding boundaries are very close, except when anistropicity
is large. When redundant constraints were used, both metrics
showed that the relaxation was tight for all parameter values.

Fig. 10. Comparison of ER and duality gap tightness boundary contours for
the results in Figure 2 (without redundant constraints). The ER boundary
corresponds to an ER of 1 × 10−6 whereas the duality gap boundary
corresponds to a relative gap of 1× 10−10.

H. Tightness Boundary Smoothing

As mentioned in the main body, we plot tightness bound-
aries based on the parameters for which the minimum ER
across all trials passes a threshold. These contours were plotted
using the ‘contour’ function from PyPlot. However, it was
initially found that the resulting contour plots were quite
noisy and difficult to interpret even when the number of trials
was increased considerably. To filter the data, the median of
minimum ER values was taken over an N -by-N block in the
parameter space (centered on a given parameter value) and
the result was used to generate the smoothed contours. It was
found that N = 7 was sufficient to ensure adequate smoothing.
A comparison of the contours on the raw minimum ER data
versus the filtered data is shown in Figure 11, in which the
data corresponds to the data in Figure 2 in the main text.

I. Extended Results for Table VII-A3

Fig. 11. Comparison of tightness boundary contours with and without median
filter for the results in Figure 2. Darker contours (marked “filt.” in legend)
represent the smoothed contours that were used in the body text.

TABLE III: Extended Results for Table VII-A3

Map
Run

Live
Run

Pipeline Avg.
Time

Per
Pose

(s)

Long.
RMSE

(m)

Lat.
RMSE

(m)

Head.
RMSE

(deg)

2 11 Baseline 0.054 0.023 0.009 0.130

2 11 Global 0.120 0.026 0.014 0.212

2 11 Local 0.117 0.202 0.138 1.883

2 11 Local
(filtered)

0.117 0.031 0.027 0.448

2 16 Baseline 0.055 0.039 0.018 0.315

2 16 Global 0.119 0.043 0.027 0.439

2 16 Local 0.120 0.203 0.202 5.215

2 16 Local
(filtered)

0.120 0.063 0.049 0.846

2 17 Baseline 0.056 0.038 0.019 0.351

2 17 Global 0.122 0.045 0.028 0.468

2 17 Local 0.121 0.238 0.192 5.400

2 17 Local
(filtered)

0.121 0.062 0.049 0.864

2 23 Baseline 0.052 0.024 0.009 0.139

2 23 Global 0.117 0.027 0.015 0.213

2 23 Local 0.111 0.035 0.029 0.475

2 23 Local
(filtered)

0.111 0.035 0.029 0.475

2 28 Baseline 0.053 0.025 0.012 0.234

2 28 Global 0.119 0.027 0.019 0.312

2 28 Local 0.113 0.033 0.035 0.607

Continued on next page
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TABLE III: Extended Results for Table VII-A3 (Continued)

2 28 Local
(filtered)

0.113 0.033 0.032 0.547

2 35 Baseline 0.053 0.022 0.009 0.145

2 35 Global 0.118 0.025 0.013 0.208

2 35 Local 0.109 0.029 0.025 0.428

2 35 Local
(filtered)

0.109 0.029 0.025 0.428

11 16 Baseline 0.055 0.028 0.017 0.307

11 16 Global 0.120 0.029 0.023 0.414

11 16 Local 0.118 0.227 0.191 5.063

11 16 Local
(filtered)

0.118 0.038 0.040 0.715

11 17 Baseline 0.056 0.027 0.018 0.352

11 17 Global 0.120 0.126 0.058 0.455

11 17 Local 0.118 0.270 0.203 7.413

11 17 Local
(filtered)

0.118 0.039 0.040 0.730

11 23 Baseline 0.053 0.017 0.008 0.148

11 23 Global 0.118 0.019 0.012 0.221

11 23 Local 0.110 0.154 0.129 1.982

11 23 Local
(filtered)

0.110 0.024 0.023 0.401

11 28 Baseline 0.054 0.021 0.012 0.250

11 28 Global 0.122 0.026 0.018 0.337

11 28 Local 0.114 0.034 0.033 0.621

11 28 Local
(filtered)

0.114 0.033 0.032 0.555

11 35 Baseline 0.053 0.021 0.010 0.188

11 35 Global 0.117 0.023 0.015 0.256

11 35 Local 0.111 0.029 0.028 0.474

11 35 Local
(filtered)

0.111 0.029 0.028 0.474

16 17 Baseline 0.055 0.020 0.016 0.313

16 17 Global 0.120 0.016 0.016 0.321

16 17 Local 0.113 0.200 0.154 5.134

16 17 Local
(filtered)

0.113 0.021 0.024 0.437

16 23 Baseline 0.056 0.019 0.014 0.252

16 23 Global 0.122 0.022 0.018 0.322

16 23 Local 0.122 0.265 0.192 8.152

16 23 Local
(filtered)

0.122 0.029 0.032 0.550

16 28 Baseline 0.062 0.030 0.017 0.317

Continued on next page

TABLE III: Extended Results for Table VII-A3 (Continued)

16 28 Global 0.127 0.034 0.026 0.414

16 28 Local 0.143 0.428 0.420 20.310

16 28 Local
(filtered)

0.143 0.050 0.047 0.754

16 35 Baseline 0.058 0.027 0.015 0.269

16 35 Global 0.123 0.034 0.024 0.389

16 35 Local 0.121 0.131 0.122 8.239

16 35 Local
(filtered)

0.121 0.045 0.043 0.736

17 23 Baseline 0.056 0.021 0.014 0.272

17 23 Global 0.123 0.022 0.019 0.360

17 23 Local 0.118 0.048 0.112 5.278

17 23 Local
(filtered)

0.118 0.029 0.033 0.579

17 28 Baseline 0.062 0.037 0.018 0.346

17 28 Global 0.125 0.040 0.029 0.470

17 28 Local 0.142 0.522 0.468 21.384

17 28 Local
(filtered)

0.142 0.049 0.046 0.764

17 35 Baseline 0.057 0.027 0.015 0.285

17 35 Global 0.121 0.035 0.025 0.421

17 35 Local 0.122 0.334 0.213 11.511

17 35 Local
(filtered)

0.122 0.047 0.044 0.740

23 28 Baseline 0.053 0.021 0.012 0.264

23 28 Global 0.120 0.023 0.017 0.316

23 28 Local 0.113 0.028 0.028 0.485

23 28 Local
(filtered)

0.113 0.028 0.028 0.485

23 35 Baseline 0.053 0.023 0.009 0.150

23 35 Global 0.125 0.025 0.014 0.210

23 35 Local 0.113 0.105 0.169 1.950

23 35 Local
(filtered)

0.113 0.032 0.029 0.462

28 35 Baseline 0.053 0.024 0.012 0.198

28 35 Global 0.118 0.032 0.018 0.280

28 35 Local 0.118 0.162 0.137 1.710

28 35 Local
(filtered)

0.118 0.040 0.035 0.560
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