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Local Lipschitz Filters for Bounded-Range Functions with

Applications to Arbitrary Real-Valued Functions

Jane Lange∗ Ephraim Linder† Sofya Raskhodnikova‡ Arsen Vasilyan§

Abstract

We study local filters for the Lipschitz property of real-valued functions f : V → [0, r], where the
Lipschitz property is defined with respect to an arbitrary undirected graph G = (V,E). We give nearly
optimal local Lipschitz filters both with respect to ℓ1-distance and ℓ0-distance. Previous work only
considered unbounded-range functions over [n]d. Jha and Raskhodnikova (SICOMP ‘13) gave an algo-
rithm for such functions with lookup complexity exponential in d, which Awasthi et al. (ACM Trans.
Comput. Theory) showed was necessary in this setting. We demonstrate that important applications
of local Lipschitz filters can be accomplished with filters for functions whose range is bounded in [0, r].
For functions f : [n]d → [0, r], we achieve running time (dr log n)O(log r) for the ℓ1-respecting filter and
dO(r) polylog n for the ℓ0-respecting filter, thus circumventing the lower bound. Our local filters provide
a novel Lipschitz extension that can be implemented locally. Furthermore, we show that our algorithms
are nearly optimal in terms of the dependence on r for the domain {0, 1}d, an important special case
of the domain [n]d. In addition, our lower bound resolves an open question of Awasthi et al., removing
one of the conditions necessary for their lower bound for general range. We prove our lower bound via a
reduction from distribution-free Lipschitz testing and a new technique for proving hardness for adaptive
algorithms.

Finally, we provide two applications of our local filters to real-valued functions, with no restrictions on
the range. In the first application, we use them in conjunction with the Laplace mechanism for differential
privacy and noisy binary search to provide mechanisms for privately releasing outputs of black-box
functions, even in the presence of malicious clients. In particular, our differentially private mechanism
for arbitrary real-valued functions runs in time 2polylogmin(r,nd) and, for honest clients, has accuracy
comparable to the Laplace mechanism for Lipschitz functions, up to a factor of O(logmin(r, nd)). In the
second application, we use our local filters to obtain the first nontrivial tolerant tester for the Lipschitz

property. Our tester works for functions of the form f : {0, 1}d → R, makes 2Õ(
√

d) queries, and has
tolerance ratio 2.01. Our applications demonstrate that local filters for bounded-range functions can be
applied to construct efficient algorithms for arbitrary real-valued functions.
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1 Introduction

We study local Lipschitz filters for real-valued functions. Local Lipschitz filters were first investigated
by Jha and Raskhodnikova [JR13] who motivated their research by an application in private data analysis.
Intuitively, a local filter for some property of functions (in our case, the Lipschitz property) is a randomized
algorithm that gets oracle access to a function f and locally reconstructs the desired property in the following
sense: it provides query access to a related function g that is guaranteed to have the property (in our case,
guaranteed to be Lipschitz). The implicit output function g may depend on the internal randomness of the
algorithm, but not on the order of queries. When the input function f has the desired property, then g = f .
If, in addition, the distance between f and g is relatively small compared to the distance from f to the
nearest function with the desired property, the filter is called distance-respecting. The goal in the design
of local filters is to minimize the running time and the number of lookups1, i.e., oracle calls to the input
function f .

The computational task performed by local filters is called local reconstruction. It was introduced by
Saks and Seshadhri [SS10] and is one of the fundamental tasks studied in the area of local computa-
tion [RTVX11, ARVX12] and sublinear-time algorithms. It has been studied for properties of functions, in-
cluding monotonicity [SS10, BGJ+12, AJMR15, LRV22, LV23] and the Lipschitz property [JR13, AJMR15],
as well as for properties of graphs [CGR13].

Local filters are useful in applications where some algorithm A computing on a large dataset requires
that its input satisfy a certain property. For example, in the application to privacy, which we will discuss
in detail later, correctness of algorithm A is contingent upon the input function f being Lipschitz. In such
applications, rather than directly relying on the oracle for f , algorithm A can access its input via a local
filter that guarantees that the output will satisfy the desired property, modifying f on the fly if necessary.
Local filters can also be used in distributed settings, where multiple processes access different parts of the
input, as well as in other applications described in previous work [SS10, BGJ+12, JR13, AJMR15]. Local
reconstruction is also naturally related to other computational tasks and, for example, has been recently
used to improve learning algorithms for monotone functions [LRV22, LV23].

1.1 Our Contributions

We demonstrate that important applications of local Lipschitz filters can be accomplished with computa-
tional objects that are much weaker than local Lipschitz filters for general functions: it suffices to construct
local Lipschitz filters for bounded-range functions. This holds even for applications that deal with arbitrary
real-valued functions, with no a priori bound on the range. We achieve efficient local Lipschitz filters for
bounded-range functions, circumventing the existing lower bounds that are exponential in the dimension
and enabling applications to real-valued functions, with no restriction on the range.

1.1.1 Local Lipschitz Filters

Motivated by the applications, we consider functions over [n]d, where [n] is a shorthand for {1, . . . , n}. A
function f : [n]d → R is called c-Lipschitz if increasing or decreasing any coordinate by one can only change
the function value by c. The parameter c is called the Lipschitz constant of f . A 1-Lipschitz function is
simply referred to as Lipschitz2. Intuitively, changing the argument to the Lipschitz function by a small
amount does not significantly change the value of the function.

In previous work, only unbounded-range functions were considered in the context of Lipschitz reconstruc-
tion. Jha and Raskhodnikova [JR13] obtained a deterministic local filter that runs in time O((log n+ 1)d).
This direction of research was halted by a strong lower bound obtained by Awasthi et al. [AJMR16]. They
showed that every local Lipschitz filter, even with significant additive error, needs exponential in the dimen-
sion d number of lookups.

1Oracle calls by the filter are called lookups to distinguish them from the queries made to the filter.
2In this work, we focus on reconstruction to Lipschitz functions. All our results extend to the class of c-Lipschitz functions

via scaling all function values by a factor of c.
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We demonstrate that important applications of local Lipschitz filters can be accomplished with filters
for functions whose range is bounded in [0, r]. By focusing on this class of functions, we circumvent the
lower bound from [AJMR16] and achieve running time polynomial in d for constant r. Moreover, our
filters satisfy additional accuracy guarantees compared to the filter in [JR13], which is only required to
(1) give access to a Lipschitz function g; (2) ensure that g = f if the input function f is Lipschitz. Our
filters achieve an additional feature of being distance-respecting, i.e., they ensure that g is close to f . We
provide this feature w.r.t. both ℓ1 and ℓ0-distance. The ℓ1-distance between functions f and g is defined
by ‖f − g‖1 = Ex[|f(x) − g(x)|], and the ℓ0-distance is defined by ‖f − g‖0 = Prx[f(x) 6= g(x)], where the
expectation and the probability are taken over a uniformly distributed point in the domain. The distance of
f to Lipschitzness is defined as the minimum over all Lipschitz functions g of the distance from f to g, and
can be considered with respect to both norms. Our filters are distance-respecting in the following sense: the
distance between the input function f and the output function g is at most twice the distance of f to the
Lipschitz property (w.h.p.).

Our algorithms work for functions over general graphs. To facilitate comparison with prior work and our
lower bound, we state their guarantees only for the [n]d domain. (It can be represented by the d-dimensional
hypergrid graph Hd

n.) Our first local Lipschitz filter is distance-respecting w.r.t. the ℓ1-distance.

Theorem 2.1 (ℓ1-filter, informal). There is an algorithm A that, given lookup access to a function
f : [n]d → [0, r], a query x ∈ [n]d, and a random seed ρ ∈ {0, 1}⋆, has the following properties:

• Efficiency: A has lookup and time complexity (dr · polylogn)O(log r) per query.
• Consistency: With probability at least 1−n−d over the choice of ρ, algorithm A provides query access
to a 1.01-Lipschitz function gρ with ‖gρ − f‖1 at most twice the ℓ1-distance from f to Lipschitzness.
If f is Lipschitz, then the filter outputs f(x) for all queries x and random seeds.

Our second local Lipschitz filter is distance-respecting w.r.t. ℓ0. Unlike the filter in Theorem 2.1, the
ℓ0-respecting filter provides access to a 1-Lipschitz function.

Theorem 3.1 (ℓ0-filter, informal). There is an algorithm A that, given lookup access to a function
f : [n]d → [0, r], a query x ∈ [n]d, and a random seed ρ ∈ {0, 1}⋆, has the following properties:

• Efficiency: A has lookup and time complexity dO(r) polylog(n).
• Consistency: With probability at least 1−n−d over the choice of ρ, algorithm A provides query access
to a 1-Lipschitz function gρ with ‖gρ − f‖0 at most twice the ℓ0-distance from f to Lipschitzness.
If f is Lipschitz, then the filter outputs f(x) for all queries x and random seeds.

An important special case of the hypergrid domain is the hypercube, denoted Hd. (It corresponds to the
case n = 2, but its vertex set is usually represented by {0, 1}d instead of [2]d.) Prior to our work, no local
Lipschitz filter for the hypercube domain could avoid lookups on the entire domain (in the worst case). Our
algorithms do that for the case when r ≤ d/ log2 d. Moreover, we show that our filters are nearly optimal

in terms of their dependence on r for this domain. Our next theorem shows that the running time of dΩ̃(r)

is unavoidable in Theorems 2.1 and 3.1; thus, our filters are nearly optimal. Moreover, even local Lipschitz

filters that are not distance-respecting (as in [JR13]) must still run in time dΩ̃(r).

Theorem 4.1 (Filter lower bound, informal). Let A(x, ρ) be an algorithm that, given lookup access to a
function f : {0, 1}d→ [0, r], a query x ∈ {0, 1}d, and a random seed ρ ∈ {0, 1}∗, has the following property:

• Weak Consistency: With probability at least 3
4 over the choice of ρ, the algorithm A(·, ρ) provides

query access to a 1-Lipschitz function gρ such that whenever f is 1-Lipschitz gρ = f .

Then, for all integers r ≥ 4 and d ≥ Ω(r), there exists a function f : {0, 1}d → [0, r] for which the lookup
complexity of A is (dr )

Ω(r).

The lower bound for local Lipschitz filters in [AJMR15] applies only to filters that are guaranteed to
output a Lipschitz function (or a Lipschitz function with small error in values) for all random seeds. They
can still have a constant error probability, but the only mode of failure allowed is returning a function that
is far from f when f already satisfied the property. Awasthi et al. [AJMR15] suggest as a future research
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direction to consider local filters whose output does not satisfy the desired property P with small probability
and mention that their techniques do not work for this case. We overcome this difficulty by providing
different techniques that work for filters whose output fails to satisfy the Lipschitz property with constant
error probability. In particular, Theorem 4.1 applied with r = Θ(d) yields the lookup lower bound of 2Ω(d),
as in [AJMR15], but without their restriction on the mode of failure, thus answering their open question.

1.1.2 Applications

We showcase two applications of our local Lipchitz filters: to private data analysis and to tolerant testing.
Both of them deal with real-valued functions with no a priori bound on the range.

Application to black-box privacy. Our first application is for providing differentially private mecha-
nisms for releasing outputs of black-box functions, even in the presence of malicious clients. Differential
privacy, introduced by [DMNS06], is an accepted standard of privacy protection for releasing information
about sensitive datasets. A sensitive dataset can be modeled as a point x in {0, 1}d, representing whether
each of the d possible types of individuals is present in the data3. More generally, it is modeled as a point x
in [n]d that represents a histogram counting the number of individuals of each type.

Definition 1.1 (Differential Privacy). Two datasets x, x′ ∈ [n]d are neighbors if vertices x, x′ are neighbors
in the hypergrid Hd

n. For privacy parameters ε > 0 and δ ∈ (0, 1), a randomized mechanism M : [n]d → R

is (ε, δ)-differentially private if, for all neighboring x, x′ ∈ [n]d and all measurable sets Y ⊂ R,

Pr[M(x) ∈ Y ] ≤ eε Pr[M(x′) ∈ Y ] + δ.

When δ = 0, then we callM purely differentially private; otherwise, it is approximately differentially private.

A statistic (or any information about the sensitive dataset) is modeled as a function f(x). One of the most
commonly used building blocks in the design of differentially private algorithms is the Laplace mechanism4.
The Laplace mechanism computing on a sensitive dataset x can approximate the value f(x) for a desired
c-Lipschitz function f by adding Laplace noise proportional to c to the true value f(x). The noisy value is
safe to release while satisfying differential privacy.

Multiple systems that allow analysts to make queries to a sensitive dataset while satisfying differential pri-
vacy have been implemented, including PINQ [McS10], Airavat [RSK+10], Fuzz [HPN11], and PSI [GHK+16].
They all allow releasing approximations to (some) real-valued functions of the dataset. In these implemen-
tations, the client sends a program to the server, requesting to evaluate it on the dataset, and receives
the output of the program with noise added to it. The program f can be composed from a limited set of
trusted built-in functions, such as sum and count. In addition, f can use a limited set of (untrusted) data
transformations, such as combining several types of individuals into one type, whose Lipschitzness can be
enforced using programming languages tools.

The limitation of the existing systems is that the functionality of the program is restricted by the set of
trusted built-in functions available and the expressivity of the programming languages tools. Ideally, future
systems would allow analysts to query arbitrary functions, specified as a black box. One reason for the
black-box specification is to allow the clients to construct arbitrarily complicated programs. Another reason
is to allow researchers analyzing sensitive datasets to obfuscate their programs in order to hide what analyses
they are running from the data curator and their competitors.

The difficulty with allowing general queries is that when f (supplied by a distrusted client) is given as
a general purpose program, it is hard to compute its least Lipschitz constant, or even an upper bound on
it. The data curator can ask the client to supply the Lipschitz constant for the query function f . However,
as noted in [JR13], even deciding if f has Lipschitz constant at most c is NP-hard for functions over the

3A point x ∈ {0, 1}d can also represent a dataset containing data of d individuals, with one bit per individual: e.g., xi = 1
could indicate that the individual i has a criminal record or some illness.

4Gaussian mechanism is another popular differentially private algorithm that calibrates noise to the Lipschitz constant of f ;
for simplicity, we focus on the Laplace mechanism as a canonical example.
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finite domains we study (if f is specified by a circuit). Applying the Laplace mechanism with c smaller than
a Lipschitz constant (if the client supplied incorrect c) would result in a privacy breach, while applying it
with a generic upper bound on the least Lipschitz constant of f would result in overwhelming noise. One
reason that a client might supply incorrect c is simply because analyzing Lipschitz constants is difficult
even for specialists (see [CSVW22] for significant examples of underestimation of Lipschitz constants in the
implementations of the simplest functions, such as sums, in differentially private libraries). Another reason
is that client could lie in order to gain access to sensitive information5.

To the best of our knowledge, no existing (ε, δ)-DP mechanisms for the black-box privacy problem
simultaneously achieve a runtime that is polynomial in d and log 1

δ while providing an accuracy guarantee
that is comparable to the Laplace mechanism. One solution to the black-box privacy problem with the
untrusted client can be obtained using the propose-test-release method of Dwork and Lei [DL09] and is

described in [CD14]. However, the runtime of this mechanism is dO( 1
ε log 1

δ ) which, when δ = 1
poly d is

dΩ(log d), and it remains the same even when the input function has bounded range6. Note that the propose-
test-release method does not yield a local Lipschitz filter). A second solution to the black-box privacy
problem was recently proposed in [KL23]. They present a mechanism called “TAHOE” which runs in time

dO( 1
ε log 1

δ ) and outputs an answer with significantly more noise than the Laplace mechanism for 1-Lipschitz
functions. The advantage of TAHOE is that the algorithm need only query the function on subsets of the
input. Another solution to the black-box privacy problem was proposed by Jha and Raskhodnikova [JR13]
who designed the following filter mechanism: A client who does not have direct access to x can ask the data
curator for information about the dataset by specifying a Lipschitz7 function f . The data curator can run a
local filter to obtain a value g(x), where g is guaranteed to be Lipschitz. Then the curator can use the Laplace
mechanism and release the obtained noisy value. If the client is truthful (i.e., the function is Lipschitz),
then, assuming that the local filter gives access to g = f in the case that f is already Lipschitz, the accuracy
guarantee of the filter mechanism is inherited from the Laplace mechanism. However, if the client is lying
about f being Lipschitz, the filter ensures that privacy is still preserved. Observe that the running time and
accuracy of the filter mechanism directly depends on the running time and accuracy of the local Lipschitz
filter. The lower bound by Awasthi et al. [AJMR16] on the complexity of local Lipschitz filters implies 2Ω(d)

running time for filter mechanisms, even for releasing functions of the form f : {0, 1}d→ R.
We provide a mechanism for privately releasing outputs of black-box functions, even in the presence of

malicious clients, in time that is quasi-polynomial in the dimension d while providing accuracy comparable
to the Laplace mechanism. For bounded-range functions, the running time of our mechanism is polynomial
in d and log 1

δ . We bypass the lower bound in [AJMR16] by using the filter mechanism for bounded-range
functions repeatedly to simulate a noisy binary search. Our mechanism needs only query access to the input
function, that is, it can be specified as a black box (e.g., as a complicated or obfuscated program).

Theorem 5.6 (Binary search filter mechanism, informal). For all ε > 0 and δ ∈ (0, 1), there exists
an (ε, δ)-differentially private mechanism M that gets lookup access to a function f : [n]d → [0, r] and has
the following properties. Let κ = logmin(r, nd).

• Efficiency: The lookup and time complexity ofM are dO( 1
εκ log κ) polylog n

δ .
• Accuracy: If f is Lipschitz, then for all x ∈ [n]d, we haveM(x) ∼ f(x) +Laplace(κε ) with probability

at least 0.99.

5We give a specific example when f has domain {0, 1}d and a small range. Suppose xi = 1 if the individual i has some
illness that would disqualify them from getting a good rate on insurance and 0 otherwise. Say, a client would like to determine
the secret bit of individual i in the dataset. The client can submit a function f such that f(x) = 0 if xi = 0 and f(x) = 10/ε
if xi = 1, obfuscated or with really complicated code. The range of the function is [0, 10/ε]. If the data curator (incorrectly)
believes that the function is 1-Lipschitz and uses the Laplace mechanism (formally specified in Lemma 5.1) with noise parameter
1/ε then the client will be able to figure out the bit xi with high probability, violating the privacy of i in the strongest sense.

6Since the mechanism stated in [CD14, Ch. 7.3, algorithm 13] computes the distance to the nearest “unstable” point, the

runtime is actually nd. However, the following small modification suffices to obtain the runtime of dO( 1
ε
log 1

δ
). When releasing

a noisy “distance to the nearest unstable instance” d̂, one can add noise from a Laplace distribution truncated to ± 1
ε
log 1

δ

instead of a regular Laplace distribution. As a result, the mechanism need only consider points at distance at most 2
ε
log 1

δ
.

7If the function is c-Lipschitz, it can be rescaled by dividing by c.
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In Section 5, we state and prove more detailed guarantees for black-box privacy mechanisms. In partic-
ular, our guarantees are stronger for the case when the client can provide an upper bound r on the range
diameter that is significantly smaller than nd. There are many bounded-range functions that are hard to
implement with a fixed set of trusted functions (and thus they are not implemented in current systems).
One primitive often used in differentially private algorithms is determining whether the secret dataset x is
far from a specified set S (where “far” means that many records in x would have to change in order to
obtain S). The set S could capture datasets with the desired property or satisfying a certain hypothesis.
For instance, S is the set of datasets with no outliers in Brown et al. [BGS+21]. To solve this, the client
could submit a function f : [n]d → [0, 10/ε] that outputs max(distance(x, S), 10/ε), where ε is the privacy
parameter. The range of f is [0, 10/ε]. Here n and d can be huge, whereas ε could be, say 1/10 (a typical
value of ε used in industry today is even larger than that). Since f is 1-Lipschitz, it can be released with
sufficient accuracy to determine whether x is far from S with high probability.

Both of our filters can be used in the filter mechanism, and we show the type of resulting guarantees
for bounded-range functions in Section 5. The work of [JR13] provides a Lipschitz filter as well, intended
to be used in the filter mechanism. The filter mechanism instantiated with their filter satisfies the stronger
guarantee of pure differential privacy, while performing Θ((logn+ 1)d) lookups per query. In contrast, the
filter mechanism instantiated with either of our filters uses only poly(d) lookups per query with constant-
range functions, satisfies approximate differential privacy, and has a stronger accuracy guarantee because of
the distance-respecting nature of the filters. Whereas the accuracy guarantee of [JR13] only holds when the
client is honest about the function f being Lipschitz, our distance-respecting filters provide an additional
accuracy guarantee for “clumsy clients” that submit a function that is close to Lipschitz—on average over
possible datasets, the error of the mechanism is proportional to f ’s distance to the class of Lipschitz functions.

Finally, we use the filter mechanism for bounded-range functions to construct a mechanism for arbitrary-
range functions and prove Theorem 5.6. Since every Lipschitz function with domain [n]d can have image
diameter at most nd, we can require that the client translate the range of their function to the interval [0, nd].
Observe that the range restriction f(x) ∈ [0, nd] can be easily enforced locally8, i.e., without evaluating f at
points other than x. In order to privately release f(x) at some x ∈ [n]d in time exp(polylog(nd)), we simulate
a noisy binary search for the value of f(x). The simulation answers queries of the form “Is f(x) > v?”,
by clipping the range of f to the interval [v − r, v + r], where r = Θ(1ε lognd), and running an instance of
the filter mechanism on the clipped function to obtain a noisy answer a(x). The noisy answer a(x) can be
interpreted as f(x) > v if a(x) > v + 1

ε log r; f(x) ≈ v if a(x) ∈ [v − 1
ε log r, v + 1

ε log r]; and f(x) < v,
otherwise. The resulting noisy implementation of the binary search provides accurate answers when f is
Lipschitz and results in a mechanism that is always differentially private, no matter how the client behaves.

Application to tolerant testing. The second application we present is to tolerant testing of the Lipschitz
property of real-valued functions on the hypercube domains. Tolerant testing, introduced in [PRR06] with
the goal of understanding the properties of noisy inputs, is one of the fundamental computational tasks
studied in the area of sublinear algorithms. Tolerant testing has been investigated for various properties
of functions, including monotonicity, being a junta, and unateness [FF05, ACCL07, FR10, BCE+19, LW19,
CGG+19, PRW22, BKR23].

In the standard property testing terminology, a property P is a set of functions. Given a parameter
ε ∈ (0, 1), a function f is ε-far from P if at least an ε fraction of function values have to change to make
f ∈ P ; otherwise, f is ε-close to P . Given parameters ε0, ε ∈ (0, 1) with ε0 < ε and query access to an input
function f , an (ε0, ε)-tolerant tester for P accepts with probability at least 2/3 if f is ε0-close to P and
rejects with probability at least 2/3 if f is ε-far from P . For the special case when ε0 = 0, the corresponding
computational task is referred to as (standard) testing.

Testing of the Lipschitz property was introduced in [JR13] and subsequently studied in [CS13, DJRT13,
BRY14, AJMR16, CDJS17, DRTV18, KRV23]. Lipschitz testing of functions f : {0, 1}d → R can be

8Other natural assumptions (which can be viewed as promises on the function that filter gets and which one can potentially
try to use to circumvent strong lower bounds for local Lipschitz filters) cannot be enforced as easily. Some examples are
monotonicity (which is not easy to enforce and has been studied in the context of local filters [SS10, BGJ+12, AJMR15]) and
C′-Lipschitzness (i.e., assuming the function is C′-Lipschitz and trying to enforce that it is c-Lipschitz for c < C′).
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performed with O(dε ) queries [JR13, CS13]. In contrast, prior to our work, no nontrivial tolerant tester was
known for this property. As shown in [FF05], tolerant testing can have drastically higher query complexity
than standard testing: some properties have constant-query testers, but no sublinear-time tolerant testers.

As an application of our local filters,we construct the first nontrivial tolerant Lipschitz tester (see
Theorem 6.1) for functions f : {0, 1}d → R. Our tester is (ε, 2.01ε)-tolerant and has query and time

complexity 1
ε2 d

O(
√

d log(d/ε)). We stress that this tester handles functions with any range. Given that Lip-

schitz functions on {0, 1}d can have range [0, d], and our ℓ0-filter has time complexity dO(r) for functions
f : {0, 1}d→ [0, r], one might expect our tester to run in time exp(d) when no a priori upper bound on f is
available. We leverage additional structural properties of Lipschitz functions to reduce this to exp(

√
d).

1.2 Our Techniques

Algorithms. Our ℓ1-respecting filter for functions with range [0, r] is essentially a local simulation of a new
distributed algorithm that iteratively “transfers mass” from large function values to small function values,
with each round reducing a bound on the Lipschitz constant by a factor of 2/3. Previous work [AJMR16]
used the idea of transferring mass for integer-valued functions on the hypergrid and transferred one unit
along a single dimension in each iteration. We transfer mass along an arbitrary matching, with an amount
proportional to a bound on the Lipschitz constant; transferring any constant amount of mass would yield
an r-round algorithm. Transferring mass equal to 2/3 of the bound on the Lipschitz constant in each round
preserves the invariant that the Lipschitz constant is at most r · (2/3)t in round t, thus giving a bound of
O(log r) on the number of rounds.

Our local Lipschitz filters leverage powerful advances in local computation algorithms (LCAs). Both
of them are built on an LCA for obtaining a maximal matching based on Ghaffari’s LCA [Gha22] for
maximal independent set, and they rely on the locality of the independent set algorithm to give lookup-
efficient access to the corrected values. We run the maximal matching LCA on the violation graph of a
function f with each edge labeled by the violation score |f(x)− f(y)|−distG(x, y), as developed in property
testing [DGL+99, FLN+02, JR13, AJMR16]. To get efficient local filters for functions with range [0, r], we
take advantage of the fact that, for such functions, the maximum degree of the violation graph is at most
degree(G)r and the fact that the matching LCA has lookup complexity that is polynomial in the degree.

Our ℓ1-respecting filter runs in multiple stages. In each stage, it calls the maximal matching LCA on
the current violation graph, which captures pairs of points with relatively large violation score. For each
matched pair, the filter decreases the larger value and increases the smaller value by an amount proportional
to the current bound on the violation score. This shrinking operation reduces the Lipschitz constant by
a multiplicative factor, and does not increase the ℓ1-distance to the class of Lipschitz functions. Our ℓ0-
respecting filter uses a different approach that only requires one stage. It relies on a well known technique
for computing a Lipschitz extension of any real-valued function with a metric space domain. Leveraging an
LCA for maximal matching allows us to simulate this extension procedure locally.

We remark that Lange, Rubinfeld and Vasilyan [LRV22] used an LCA for maximal matching to correct
monotonicity of Boolean functions. Their corrector fixes violated pairs by swapping their labels; however,
this technique fails to correct Lipschitzness. Additionally, unlike the corrector of [LRV22], which may change
a monotone function on a constant fraction of the domain, our filters guarantee that Lipschitz functions are
never modified.

Lower bounds. The first idea in the proof of our lower bound for local filters is to reduce from the
problem of distribution-free property testing. Our hardness result for this problem uses novel ideas for
proving lower bounds for adaptive algorithms, typically a challenging task, for which the community has
developed relatively few techniques. Specifically, we show that our construction allows an adaptive algorithm
to be simulated by a nonadaptive algorithm with extra information and the same query complexity. One of
our main technical contributions is a query lower bound for distribution-free Lipschitz testing of functions
f : {0, 1}d → [0, r] that is exponential in r and log(d/r) for any even r satisfying 4 ≤ r ≤ 2−16d. The lower
bound we achieve demonstrates that our filters have nearly optimal query complexity.
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Distribution-free testing — property testing with respect to an arbitrary distribution D on the domain
using both samples from D and queries to the input — was first considered in [HK07]. Lipschitz testing
has been investigated with respect to uniform distributions [CS13, DJRT13, BRY14, AJMR16, CDJS17,
DRTV18, KRV23] and product distributions [DJRT13, CDJS17], but not with respect to arbitrary distribu-
tions. Our lower bound demonstrates a stark contrast in the difficulty of Lipschitz testing with respect to
arbitrary distributions compared to product distributions. In particular, the Lipschitz tester of [CDJS17] for
functions f : {0, 1}d → R has query complexity linear in d for all product distributions, whereas our lower
bound for distribution-free Lipschitz testing (formally stated in Theorem 4.2) implies that a query complex-
ity of 2Ω(d) is unavoidable for arbitrary distributions. To prove our lower bound for distribution-free testing,
we start by constructing two distributions, on positive and negative instances of this problem, respectively.
The instances consist of a pair (f, U), where f : {0, 1}d → [0, r] is a function on the hypercube and U is a
uniform distribution over an exponentially large set of points called anchor points. The anchor points come
in pairs (x, y) such that x and y are at distance r for the positive distribution and distance r − 1 for the
negative. The function values are set to f(x) = 0 and f(y) = r. For the points not in the support of U , the
values are chosen to ensure that the Lipschitz condition is locally satisfied around the anchor points, and
then the remaining values are set to r/2. We note that [HK05] also uses a construction involving pairs of
anchor points to prove query and sample complexity lower bounds for distribution-free monotonicity testing;
however, our approach introduces a novel “simulation” technique for proving lower bounds on the query
complexity of adaptive algorithms.

The crux of the proof of Theorem 4.2 is demonstrating that every deterministic (potentially adaptive)
tester T with insufficient sample and query complexity distinguishes the two distributions only with small
probability. (By the standard Yao’s principle this is sufficient.) An algorithm is called nonadaptive if it
prepares all its queries before making them. A general (adaptive) algorithm, in contrast, can decide on
queries based on answers to previous queries. One of the challenges in proving that the two distributions
are hard to distinguish for T is dealing with adaptivity. We overcome this challenge by showing that T
can be simulated by a nonadaptive algorithm Tna that is provided with extra information. Specifically, it
gets one point from every pair of grouped anchor points. One of the key ideas in the analysis is that our
hard distributions, and the sampling done by the tester, can be simulated by first obtaining the information
provided to Tna using steps which are identical for the two hard distributions, and only then selecting the
remaining anchor points to obtain the full description of the function f and the distribution U . It allows us
to show that, conditioned on avoiding a small probability bad event, T cannot distinguish the distributions.

Applications. Our main technical contribution to the two application areas we consider is realizing that
they can benefit from local filters for bounded-range functions, even when the functions in the applications
have unbounded range. For the privacy application, we obtain our differentially private mechanism for
general real-valued functions provided by using our local filters to simulate a noisy binary search. For the
application to tolerant testing, we use McDiarmid’s inequality and the observation that our ℓ0-respecting
Lipschitz filter works even with partial functions.

1.3 Preliminaries on Lipschitz Functions

First, we define two important special families of graphs. We consider the hypercube Hd with vertices
{0, 1}d and the hypergrid Hd

n with vertices [n]d. For both of them, two vertices are adjacent if they differ by
one in one coordinate and agree everywhere else. Now, we give preliminaries on Lipschitz functions. When
we discuss the range (or image) of functions, we often refer to its diameter. The diameter of a closed and
bounded S ⊂ R is maxy∈S(y)−miny∈S(y). Let G = (V,E) be an undirected graph and let f : V → R.

Definition 1.2 (c-Lipschitz functions). Fix a constant c > 0 and a graph G = (V,E). A function f : V → R

is c-Lipschitz w.r.t. G if |f(x) − f(y)| ≤ c · distG(x, y) for all x, y ∈ V . A 1-Lipschitz function is simply
referred to as Lipschitz. Let Lip(G) be the set of Lipschitz functions w.r.t. G.

Definition 1.3 (Distance to Lipschitzness). For all graphs G = (V,E), functions f : V → R, distributions
D over V , and b ∈ {0, 1}, define the ℓb-distance to Lipschitz w.r.t. a distribution D as ℓb,D(f,Lip(G)) =
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ming∈Lip(G) ‖f − g‖b,D, where ‖f − g‖0,D = Prx∼D[f(x) 6= g(x)]; ‖f − g‖1,D = Ex∼D[|f(x)− g(x)|]. When
D is the uniform distribution, we omit it from the notation. The definition of ‖f − g‖0 applies when f and
g are partial functions.

Next, we define the violation score of a pair of points, and the violation graph of a function.

Definition 1.4 (Violated pair, violation score). For x, y ∈ V , let distG(x, y) denote the shortest path distance
from x to y in G. A pair (x, y) of vertices is violated with respect to f if |f(x) − f(y)| > distG(x, y). The
violation score of a pair (x, y) with respect to f , denoted V Sf (x, y), is V Sf(x, y) = |f(x)−f(y)|−distG(x, y)
if (x, y) is violated and 0 otherwise. We extend these definitions to partial functions g : V → R∪ {?}, where
? denotes an undefined value, by stipulating that if x or y is in g−1(?) then (x, y) is not violated.

Definition 1.5 (Violation Graph). The τ-violation graph with respect to f is a directed graph, denoted Bτ,f ,
with vertex set V and edge set {(x, y) : V Sf (x, y) > τ and f(x) < f(y)}.

1.4 Preliminaries on Local Computation Algorithms

First, we define a local computation algorithm (LCA) for a graph problem.

Definition 1.6 (Graph LCA). Fix δ ∈ (0, 1). A graph LCA A(x, ρ) is a randomized algorithm that gets
adjacency list access9 to an input graph G = (V,E), a query x ∈ V , and a random seed ρ ∈ {0, 1}∗. For
each ρ, the set of outputs {A(x, ρ) | x ∈ V } is consistent with some object defined with respect to G, such as
a maximal matching in G. The fraction of possible random strings for which A fails (i.e., defines an object
that does not satisfy the constraints) of the problem, is at most δ.

We use an LCA for obtaining a maximal matching based on Ghaffari’s LCA [Gha22] for maximal inde-
pendent set. The description of how to obtain an LCA for a maximal matching based on Ghaffari’s result
[Gha22] is standard and appears, for example, in [LRV22].

Theorem 1.1 ([Gha22]). Fix N,D0 ∈ N, and δ0 ∈ (0, 1). There exists a graph LCA GhaMatch for the
maximal matching problem for graphs with N vertices and maximum degree D0. Specifically, on input x, it
outputs y if (x, y) or (y, x) is in the matching, and outputs ⊥ if x has no match. GhaMatch uses a random
seed of length poly(D0 · log(N/δ0)), runs in time poly(D0 · log(N/δ0)) per query, and has failure probability
at most δ0.

We specify an LCA for accessing the violation graph. To simplify notation, we assume that any algorithm
used as a subroutine gets access to the inputs of the algorithm which calls it; only the inputs that change in
recursive calls are explicitly passed as parameters.

Algorithm 1 LCA: Viol(f(·), τ, x)
Input: Adjacency lists access to G = (V,E), lookup access to f : V → [0, r], range diameter r ∈ R, threshold
τ ≤ r, vertex x ∈ V
Output: Neighbor list of x in Bτ,f

1: return {y | distG(x, y) < |f(x) − f(y)| − τ} ⊲ Compute by performing a BFS from x

Local filters were introduced by Saks and Seshadhri [SS10] and first studied for Lipschitz functions by
Jha and Raskhodnikova [JR13].

Definition 1.7 (Local Lipschitz filter). For all c > 0 and δ ∈ (0, 1), a local (c, δ)-Lipschitz filter10 over a
graph G = (V,E) is an algorithm A(x, ρ) that gets a query x ∈ V and a random seed ρ ∈ {0, 1}⋆, as well
as lookup access to a function f : V → R and adjacency lists access to G. With probability at least 1 − δ
(over the random seed), the filter A provides query access to a c-Lipschitz function gρ : V → R such that
whenever f is c-Lipschitz gρ = f . In addition, for all λ > 0, the filter is ℓp-respecting with blowup λ if
‖f − gρ‖p ≤ λ · ℓp(f,Lip(G)) whenever gρ is c-Lipschitz.

9An adjacency list lookup takes a vertex x and returns the set of vertices adjacent to x.
10While the graph is hardcoded in this definition, our filters work when given adjacency list access to any graph.
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2 ℓ1-respecting Local Lipschitz Filter

The d-dimensional hypergrid of side length n is the undirected graph, denoted Hd
n, with the vertex set

[n]d and the edge set {(x, y) : |x− y| = 1}.

Theorem 2.1. For all γ > 0 and δ ∈ (0, 1), there is an ℓ1-respecting local (1+γ, δ)-Lipschitz filter with blowup
2 over the d-dimensional hypergrid Hd

n. Given lookup access to a function f : [n]d → [0, r], and a random seed
ρ of length dO(r) ·polylog(n log(r/γ)/δ)), the filter has lookup and time complexity (dr ·polylog(n/δ))O(log(r/γ))

for each query x ∈ [n]d. If f is Lipschitz, then the filter outputs f(x) for all queries x and random seeds.

We first give a global Lipschitz filter (Algorithm 2) and then show how to simulate it locally (in Algorithm 3)
by using the result of [Gha22] stated in Theorem 1.1.

2.1 Analysis of the Global Filter

Algorithm 2 GlobalFilter1

Input: Graph G = (V,E), function f : V → [0, r], range diameter r ∈ R, and parameter γ > 0
Output: (1 + γ)-Lipschitz function g : V → [0, r]

1: Let g1 ← f
2: for t← 2 to log3/2(

r
γ ) + 1 do ⊲ Start at t = 2 for GlobalFilter1-LocalFilter1 analogy.

3: Set threshold τ ← r · (23 )t−1 and move-amount ∆← r
3 · (23 )t−2

4: Construct Bτ,gt−1
(Definition 1.5) and compute a maximal matching Mt of Bτ,gt−1

5: Set gt ← gt−1

6: for (x, y) ∈Mt do ⊲ Recall: f(x) < f(y)
7: Set gt(x)← gt(x) + ∆
8: Set gt(y)← gt(y)−∆

9: return gt, where t = log3/2(
r
γ ) + 1

The guarantees of GlobalFilter (Algorithm 2) are summarized in the following lemma.

Lemma 2.2. For all input graphs G = (V,E), functions f : V → [0, r], and γ > 0, if g is the output of
GlobalFilter1, then g is a (1 + γ)-Lipschitz function and ‖g − f‖1 ≤ 2ℓ1(f,Lip(G)).

We prove Lemma 2.2 via a sequence of claims. Claim 2.3 makes an important observation about the
violation scores on adjacent edges in the violation graph. Claim 2.4 argues that the violation scores decrease
after each iteration of the loop. Claim 2.5 converts the guarantee for each iteration to the guarantee on the
Lipschitz constant for the output function. Finally, Claim 2.6 bounds the ℓ1-distance between the input and
output functions.

Claim 2.3. If (x, y) and (y, z) are edges in the violation graph B0,f then V Sf (x, z) ≥ V Sf (x, y)+V Sf (y, z).

Proof. Since (x, y) and (y, z) are edges in the violation graph B0,f , then f(x) < f(y) < f(z). Therefore,

V Sf (x, z) = f(z)− f(x)− distG(x, z)

≥ f(z)− f(y) + f(y)− f(x)− distG(x, y)− distG(y, z)

= V Sf (x, y) + V Sf(y, z),

by the definition of the violation score and the triangle inequality.

Next, we abstract out and analyze the change to the function values made in each iteration of the loop
in Algorithm 2.
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Claim 2.4 (Violation Score Reduction). Let G = (V,E) be a graph and let g : V → [0, r] be a function such
that V Sg(x, y) ≤ v for all x, y ∈ V . Let M be a maximal matching in B2v/3,g such that g(x) < g(y) for all
(x, y) ∈M . Obtain h as follows: set h = g and then, for every edge (x, y) ∈M , set h(x)← h(x) + v/3 and
h(y)← h(y)− v/3. Then V Sh(x, y) ≤ 2v/3 for all x, y ∈ V.

Proof. Suppose x, y ∈ V , assume w.l.o.g. that g(x) ≤ g(y), and consider the following two cases. Recall that
edges in the violation graph (x, y) are directed from the smaller value x to the larger value y.

Case 1: (x, y) is an edge in B2v/3,g. By Claim 2.3, we cannot have vertices a, b, c such that (a, b) and (b, c)
are both in B2v/3,g, since otherwise V Sg(a, c) would be at least V Sg(a, b) + V Sg(b, c) > 2v/3 + 2v/3 > v,
contradicting the upper bound of v on violation scores stated in Claim 2.4. Thus, in B2v/3,g, each edge
incident on x is outgoing and each edge incident on y is incoming. Consequently, h(x) ≥ g(x) and h(y) ≤ g(y).

Moreover, since (x, y) is in B2v/3,g and M is a maximal matching, at least one of x, y must participate
in M . W.l.o.g. assume that M contains an edge (x, z). Then h(x) = g(x) + v/3. Since h(y) ≤ g(y), we have
V Sh(x, y) ≤ V Sg(x, y)− v/3 ≤ 2v/3.

Case 2: (x, y) is not an edge in B2v/3,g. Then V Sg(x, y) ≤ 2v/3. Consider how the values of x and y
change when we go from g to h. Observe that |h(x) − g(x)| is 0 or v/3 for all x ∈ V . If both values for x
and for y stay the same, or move in the same direction (both increase or both decrease), then V Sh(x, y) =
V Sg(x, y) ≤ 2v/3. If they move towards each other, then V Sh(x, y) ≤ 2v/3, whether h(x) ≤ h(y) or not.

Now consider the case when they move away from each other, that is, h(x) ≤ g(x) and h(y) ≥ g(y),
and at least one of the inequalities is strict. First, suppose both inequalities are strict. Then there are
vertices zx, zy such that (zx, x), (y, zy) ∈ M . By Claim 2.3, pair (x, y) is not violated in g (since otherwise
V Sg(zx, zy) would be at least V Sg(zx, x) + V Sg(x, y) + V Sg(y, zy) > 4v/3, contradicting the assumption on
violation scores in the claim). Since the values of the endpoints move by v/3 each, the new violation score
V Sh(x, y) ≤ 2v/3.

Finally, consider the case when only one of the inequalities is strict. W.l.o.g. suppose h(y) > g(y). Then
there is z ∈ V such that (y, z) ∈ M . By Claim 2.3, the violation score V Sg(x, y) ≤ v/3, since otherwise
V Sg(x, z) would be at least V Sg(x, y) + V Sg(y, z) > v/3 + 2v/3 = v, contradicting the assumption on
violation scores in the claim. Thus, V Sh(x, y) ≤ V Sg(x, y) + v/3 ≤ 2v/3, as required.

Next, we use Claim 2.4 to bound the Lipschitz constant of the function output by the global filter.

Claim 2.5. For all t ≥ 1, the function gt computed in Algorithm 2 is (1+ r(23 )
t−1)-Lipschitz. In particular,

if t∗ = log3/2(r/γ) + 1 then gt∗ is (1 + γ)-Lipschitz.

Proof. Fix a graph G = (V,E) and a function f : V → [0, r]. Then V Sf (x, y) < r for all x, y ∈ V .
For all t ≥ 1, let vt = r(23 )

t−1. Notice that, in Line 3 of Algorithm 2, we set τ = 2
3vt−1 and ∆ =

r
3 (

2
3 )

t−2 = 1
3vt−1. To prove the claim, it suffices to show that for all t ≥ 1 and x, y ∈ V,

V Sgt(x, y) ≤ vt, (1)

since then |gt(x) − gt(y)| ≤ distG(x, y)(1 + vt). We prove Equation (1) by induction on t.
In the base case of t = 1, we have V Sg1(x, y) < r = v1 for all x, y ∈ V . Assume Equation (1) holds for

some t ≥ 1. Then, instantiating Claim 2.4 with g = gt, h = gt+1, and v = vt yields V Sgt+1
(x, y) ≤ 2vt/3 =

vt+1 for all x, y ∈ V . In conclusion, since vt∗ = γ, the function gt∗ is (1 + γ)-Lipschitz.

Finally, we argue that the ℓ1-distance between the input and the output functions of Algorithm 2 is small.

Claim 2.6. Fix a graph G = (V,E) and a function f : V → [0, r]. Suppose h is the closest (in ℓ1-
distance) Lipschitz function to f . Then for all t ≥ 1, the functions gt computed by Algorithm 2 satisfy
‖gt+1 − h‖1 ≤ ‖gt − h‖1 and ‖gt − f‖1 ≤ 2ℓ1(f,Lip(G)).

Proof. Fix t ≥ 1. Since gt and gt+1 only differ on the endpoints of the edges in the matching Mt+1, we
restrict our attention to those points. For each edge (x, y) ∈Mt+1, we will show

|gt+1(x) − h(x)|+ |gt+1(y)− h(y)| ≤ |gt(x)− h(x)| + |gt(y)− h(y)|. (2)
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Let τ = r(23 )
t and ∆ = r

3 (
2
3 )

t−1 = τ
2 . Suppose (x, y) ∈Mt+1. Recall that this implies that V Sgt(x, y) >

τ = 2∆ and gt(x) < gt(y). By construction, gt+1(x) = gt(x) + ∆ and gt+1(y) = gt(y) − ∆. Thus, the
violation score of (x, y) decreased by 2∆, so (x, y) is still violated by gt+1, i.e.,

gt+1(x) + distG(x, y) < gt+1(y). (3)

Define Φ(z) = |gt+1(z)−h(z)|−|gt(z)−h(z)| for all z ∈ V . (Intuitively, it captures how much further from
h(z) the value on z moved when we changed gt to gt+1.) Then Equation (2) is equivalent to Φ(x)+Φ(y) ≤ 0.
If both Φ(x) ≤ 0 and Φ(y) ≤ 0, then Equation (2) holds. Otherwise, Φ(x) > 0 or Φ(y) > 0. Suppose w.l.o.g.
Φ(x) > 0. Since gt+1(x) = gt(x) + ∆, we know that Φ(x) ≤ ∆. To demonstrate that Equation (2) holds, it
remains to show that Φ(y) ≤ −∆.

Since Φ(x) > 0, the value h(x) is closer to gt(x) than to gt+1(x). Since gt+1(x) = gt(x) + ∆, it implies
that h(x) must be below the midpoint between gt(x) and gt+1(x), which is gt+1(x) = ∆/2. That is,

h(x) < gt+1(x) −∆/2. (4)

We use that h is Lipschitz, then apply Equations (4) and (3) to obtain

h(y) < h(x) + distG(x, y) < gt+1(x)−∆/2 + distG(x, y) < gt+1(y)−∆/2.

Since h(y) < gt+1(y) −∆/2 and gt+1(y) = gt(y) −∆, we get that gt(y) and gt+1(y) are both greater than
h(y). Thus, |gt+1(y)− h(y)| = |gt(y)− h(y)| −∆ and hence, Φ(y) = −∆, so Equation (2) holds.

We proved that Equation (2) holds for every edge in Mt+1. Moreover, for all vertices z outside of
Mt+1, we have gt+1(z) = gt(z) and, consequently, Φ(z) = 0. Summing over all vertices, we get that
∑

x∈V Φ(x) ≤ 0. Thus, ‖gt+1−h‖1 ≤ ‖gt−h‖1. By the triangle inequality, ‖gt−f‖1 ≤ ‖gt−h‖1+‖h−f‖1 ≤
‖g1 − h‖1 + ‖f − h‖1 = 2ℓ1(f,Lip(G)).

Lemma 2.2 follows from Claims 2.5 and 2.6.

2.2 Analysis of the Local Filter

In this section, we present a local implementation of Algorithm 2 and complete the proof of Theorem 2.1.
We claim that for each t ∈ [log(r/γ) + 1], Algorithm 3 simulates round t of Algorithm 2 and, for graphs on
N vertices with maximum degree D, has lookup complexity (Dr · polylog(N/δ))O(log(r/γ)).

Algorithm 3 LCA: LocalFilter1(x, t, ρ1 ◦ ... ◦ ρt)
Input: Adjacency lists access to graph G = (V,E), lookup access to f : V → [0, r], range diameter r ∈ R,
vertex x ∈ V , iteration number t, approximation parameter γ > 0, and random seed ρ = ρ1 ◦ ... ◦ ρt
Subroutines: GhaMatch (see Theorem 1.1) and Viol (see Algorithm 1)
Output: Query access to (r · (23 )t−1)-Lipschitz function gρ : V → [0, r]

1: if t = 1 or r · (23 )t−1 < γ then
2: return f(x)

3: Set threshold τ ← r · (23 )t−1 and move amount ∆← r
3 · (23 )t−2

4: Set ft(x)← LocalFilter1(x, t− 1, ρ1 ◦ ... ◦ ρt−1)
5: Set y ← GhaMatch(Viol(LocalFilter1(·, t− 1, ρ1 ◦ ... ◦ ρt−1), τ, ·), x, ρt)
6: if y 6= ⊥ then
7: ft−1(y)← LocalFilter1(y, t− 1, ρ1 ◦ ... ◦ ρt−1)
8: ft(x)← ft(x) + sign(ft−1(y)− ft(x)) ·∆
9: return ft(x)

Definition 2.1 (Good seed). Let G = (V,E) be a graph and fix t ≥ 1. Consider a function f : V → [0, r].
A string ρ = ρ1 ◦ ... ◦ ρt is a good seed for G and f if, for all i ∈ [t], the matching computed by GhaMatch
in LocalFilter1(·, i, ρ1 ◦ ... ◦ ρi) is maximal.
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Claim 2.7. Fix a graph G = (V,E), a function f : V → [0, r], and γ > 0. Let t∗ = log3/2(r/γ) + 1 and
fix a good seed ρ = ρ1 ◦ · · · ◦ ρt∗ . Let g(x) denote LocalFilter1(x, t

∗,ρ) for all x ∈ V . Then g is a
(1 + γ)-Lipschitz function with range [0, r] and ‖f − g‖1 ≤ 2ℓ1(f,Lip(G)).

Proof. For all t ∈ [t∗], let gt be the function computed by GlobalFilter1 on G, r, f, and γ after iteration t
using the matching computed by the call to GhaMatch in LocalFilter1(x, t, ρ1 ◦ ... ◦ ρt). Recall that the
matching computed by each call to GhaMatch in LocalFilter1(x, t, ρ1 ◦ ... ◦ ρt) is maximal and therefore
can be used as the matching in the iteration t of the loop in GlobalFilter1.

By an inductive argument, LocalFilter1(x, t, ρ1 ◦ . . . ◦ ρt) = gt(x) for all x ∈ V and t ∈ [t∗]. The base
case is LocalFilter1(x, 1, ρ1) = f(x) = g1, and every subsequent gt computed by GlobalFilter1 is the
same as LocalFilter1(·, t, ρ1 ◦ . . . ◦ ρt). Hence, LocalFilter1(x, t

∗,ρ) provides query access to gt∗ . By
Lemma 2.2, gt∗ is (1 + γ)-Lipschitz and satisfies ‖gt∗ − f‖ ≤ 2ℓ1(f,Lip(G)).

Lemma 2.8. Fix γ > 0 and δ ∈ (0, 1). Let G = (V,E) be a graph with |V | = N and maximum degree D. Let
f : V → [0, r] and t∗ = log3/2(r/γ) + 1. Then, for a random seed ρ = ρ1 ◦ ... ◦ ρt∗, which is a concatenation

of t∗ strings of length DO(r) polylog(Nt∗/δ) each, the algorithm LocalFilter1(·, t∗,ρ) is an ℓ1-respecting
local (1 + γ, δ)-Lipschitz filter with blowup 2 and lookup and time complexity (Dr · polylog(N/δ))O(log(r/γ)).

Proof. Since the range of f is at most r, two vertices in a violated pair can be at distance at most r − 1.
Hence, the maximum degree of the violation graph Bτ,f is at most Dr. By Theorem 1.1 instantiated with

D0 = Dr and δ0 = t∗

δ , the failure probability of each call to GhaMatch is at most δ
t∗ . Since there are

at most t∗ calls to GhaMatch, the probability that any call fails is at most δ. It follows that a random
string ρ of length specified in the lemma is a good seed (see Definition 2.1) with probability at least 1 − δ.
This allows us to apply Claim 2.7, and conclude that LocalFilter1(x, t

∗,ρ) provides query access to a
(1 + γ)-Lipschitz function and fails with probability at most δ over the choice of ρ.

Let Q(t) be the lookup complexity of LocalFilter1(x, t, ρ1 ◦ ... ◦ ρt). Then Q(1) = 1 and, since the
max degree of Bτ,f is Dr, each lookup made by GhaMatch to the violation graph oracle in the (t− 1)-st
iteration requires at most DrQ(t − 1) lookups to compute. Since GhaMatch makes DO(r) polylog(N/δ)
such lookups, Q(t) ≤ DO(r) polylog(n/δ)Q(t − 1). Thus, the final lookup complexity is Q(t∗) ≤ (Dr ·
polylog(N/δ))O(log(r/γ)). By inspection of the pseudocode, we see that the running time is polynomial in
the number of lookups.

Proof of Theorem 2.1. The theorem follows as a special case of Lemma 2.8 with G equal to the hypergrid
Hd

n. The hypergrid has nd vertices and maximum degree 2d. This gives lookup and time complexity
(dr · polylog(n/δ))O(log(r/γ)). If f is Lipschitz, then all violation graphs are empty; therefore, any local
matching algorithm returns an empty matching (or can otherwise be amended to do so by checking whether
the returned edge is in the graph and returning ⊥ if it is not). Thus, when f is Lipschitz, the returned value
is always f(x).

3 ℓ0-respecting Local Lipschitz Filter

In this section, we present a local Lipschitz filter that respects ℓ0-distance rather than ℓ1-distance. Unlike
the ℓ1-respecting filter, the ℓ0-respecting filter outputs a function that is 1-Lipschitz.

Theorem 3.1. For all δ ∈ (0, 1), there exists an ℓ0-respecting local (1, δ)-Lipschitz filter with blowup 2 over
the d-dimensional hypergrid Hd

n. Given lookup access to a function f : [n]d → [0, r], and a random seed ρ
of length dO(r) · polylog(n/δ)), the filter has lookup and time complexity dO(r) · polylog(n/δ) for each query
x ∈ [n]d. If f is Lipschitz, then the filter outputs f(x) for all queries x and random seeds. If for all y ∈ [n]d

we have |f(x)− f(y)| ≤ |x− y| then the filter outputs f(x).

We give a global view (Algorithm 4) and prove its correctness before presenting a local implementation
(Algorithm 5). We use the convention that maxy∈S(·) is defined to be zero when S is the empty set.
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3.1 Analysis of the Global Filter

Algorithm 4 GlobalFilter0

Input: Graph G = (V,E), function f : V → [0, r]
Output: Lipschitz function g : V → [0, r]

1: Construct B0,f (see Definition 1.5) and compute a vertex cover C of B0,f

2: Set gC ← f
3: for every vertex u ∈ C do
4: Set gC(u)← max(0,maxv∈V \C(gC(v)− distG(u, v)))

5: return gC

Algorithm 4 reassigns the labels on a vertex cover C of the violation graph B0,f . Observe that the partial
function f on the domain V \ C is Lipschitz w.r.t. G, because its violation graph has no edges. We claim
that this algorithm extends this partial function to a Lipschitz function defined on all of G. It is well known
that for a function f : X → R with a metric space domain, if f is Lipschitz on some subset Y ⊂ X , then
f can be made Lipschitz while only modifying points in X \ Y . See, for example, [JR13] and [BL00]. We
include a proof for completeness.

Claim 3.2 (Lipschitz extension). Let G = (V,E) be a graph, and f : V → [0, r] a function. Then, for all
vertex covers C of B0,f , the function gC returned by Algorithm 4 is Lipschitz.

Proof. Let f : V → [0, r] ∪ {?} be a partial Lipschitz function and let Af be the set of points on which f
is defined. Fix a vertex x 6∈ Af and obtain the function g as follows: Set g(y) = f(y) for all y ∈ Af . Set
g(x) = maxv∈Af

(f(v) − distG(x, v))). Note that in the case where Af is empty, the function f is nowhere
defined, and hence setting g(x) = 0 will always result in a Lipschitz function. Thus, assume w.l.o.g. that Af

is not empty.
We will first argue that g is Lipschitz. Let v∗ = argmaxv∈Af

(f(v)− distG(x, v)), i.e., a vertex such that
g(x) = f(v∗)− distG(x, v

∗). Then, for all v ∈ Af ,

g(x)− g(v) = f(v∗)− distG(x, v
∗)− f(v) ≤ distG(v, v

∗)− distG(x, v
∗) ≤ distG(x, v).

Similarly, g(v)−g(x) ≤ f(v)+distG(x, v)−f(v) = distG(x, v), so g is Lipschitz. Notice that if g is a Lipschitz
function, then max(0, g) is also a Lipschitz function (truncating negative values can only decrease the distance
between g(x) and g(y) for all pairs x, y in the domain). Thus, setting g(x) = max(0,maxv∈Af

(f(v) −
distG(x, v))) will also yield a Lipschitz function.

Next, we argue that the order of assignment does not affect the extension. Let Ag be set of points on
which g is defined and note that Ag = Af ∪ {x}. We will show that for all z 6∈ Ag we have

max(0,max
v∈Af

(f(v)− distG(z, v))) = max(0,max
v∈Ag

(g(v)− distG(z, v))).

Let f(z) = max(0,maxv∈Af
(f(v) − distG(z, v))) and g(z) = max(0,maxv∈Ag (g(v) − distG(z, v))). Then,

since Ag = Af ∪ {x}, we obtain g(z) = max(f(z), g(x)− distG(x, z)). If g(x) = 0 then f(z) = g(z) since by
definition f(z) ≥ 0. On the other hand, if g(x) > 0 then g(x) = f(v∗)− distG(x, v

∗) and hence,

f(z) ≥ f(v∗)− distG(v
∗, z) ≥ (f(v∗)− distG(x, v

∗))− distG(x, z)

= g(x)− distG(x, z),

which implies f(z) = g(z). To complete the proof of Claim 3.2, Let f : V → [0, r] be a function with
violation graph B0,f . Notice that if C is a vertex cover of B0,f then f : V \C → [0, r] is Lipschitz, and thus,
setting f(x) =? for all x ∈ C and applying the extension procedure inductively, we see that gC is a Lipschitz
function.
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The following claim relates the distance to Lipschitzness to the vertex cover of the underlying graph. This
relationship is standard for the Lipschitz and related properties, such as monotonicity over general partially
ordered sets [FLN+02, Corrolary 2]. See [CS13, Theorem 5] for the statement and proof for the special case
of hypergrid domains. The arguments in these papers extend immediately to the setting of general domains.

Claim 3.3 (Distance to Lipschitz). For all graphs G = (V,E) on n vertices and functions f : V → R, the
size of the minimum vertex cover of the violation graph B0,f is exactly n · ℓ0(f,Lip(G)).

Proof of Claim 3.3. Let C be any minimum vertex cover of B0,f . We first argue that n · ℓ0(f,Lip(G)) ≤ |C|.
If g is a partial function that is equal to ? on vertices in C and equals f elsewhere, then g is Lipschitz outside
of C. Then, by Claim 3.2 with C as the cover in Algorithm 4, there exist values y1, . . . , y|C| such that setting
g(xi) = yi for each xi ∈ C yields a Lipschitz function. It follows that n · ℓ0(f,Lip(G)) ≤ |C|.

Next, using the function g defined in the previous paragraph, suppose the set P = {x : g(x) 6= f(x)} is
not a vertex cover for B0,f . Then, there exists some edge (x, y) in B0,f such that f(x) = g(x) and f(y) = g(y)
(i.e. x, y 6∈ P ). But by definition of B0,f , this implies that |g(x)− g(y)| > distG(x, y) which contradicts the
fact that g is Lipschitz. It follows that n · ℓ0(f,Lip(G)) = |C|.

3.2 Analysis of the Local Filter

Using Algorithm 1 andGhaMatch from Theorem 1.1, we construct Algorithm 5, an LCA which provides
query access to a Lipschitz function close to the input function. It is analyzed in Lemma 3.4.

Algorithm 5 LCA: LocalFilter0(x, ρ)

Input: Adjacency lists access to graph G = (V,E), lookup access to f : V → [0, r], range diameter r ∈ R,
vertex x ∈ V , random seed ρ
Subroutines: GhaMatch (see Theorem 1.1) and Viol (see Algorithm 1).
Output: Query access to Lipschitz function g : V → [0, r].

1: if GhaMatch(Viol(f, 0, ·), x, ρ) = ⊥ then
2: return f(x)
3: else
4: S ← {y | distG(x, y) ≤ r and GhaMatch(Viol(f, 0, ·), y, ρ) = ⊥}
5: return max(0,maxy∈S(f(y)− distG(x, y)))

Lemma 3.4 (LocalFilter0). Fix δ ∈ (0, 1). Let G = (V,E) be a graph with N vertices and maximum
degree D. Then, for a random seed ρ of length DO(r) · polylog(N/δ), the algorithm LocalFilter0(x, ρ)
(Algorithm 5) is an ℓ0-respecting local (1, δ)-Lipschitz filter with blowup 2 and lookup and time complexity
DO(r) · polylog(N/δ).

Proof. Since the range of f is bounded by r, a pair of violated vertices x, y must have distG(x, y) < r, and
thus, the maximum degree of B0,f is at most Dr. By Theorem 1.1 instantiated with D0 = Dr and δ0 = δ, the
algorithm GhaMatch has lookup and time complexity DO(r) · polylog(N/δ) per query, and fails to provide
query access to a maximal matching with probability at most δ over the choice of ρ. Since LocalFilter0

makes at most Dr queries to GhaMatch and only fails when GhaMatch fails, LocalFilter0 has lookup
and time complexity DO(r) · polylog(N/δ) and failure probability at most δ. Let ρ be a seed for which
GhaMatch does not fail, and let C be the set of vertices that are matched by GhaMatch when given
adjacency lists access to B0,f . Since the matching is maximal, C is a 2-approximate vertex cover of B0,f .
Hence, we can run GlobalFilter0 (Algorithm 4) and use C as the vertex cover. Since LocalFilter0 and
GlobalFilter0 apply the same procedure to every vertex in V , and since C has at most twice as many
vertices as a minimum vertex cover, Claims 3.2 and 3.3 imply that LocalFilter0 provides query access to
some Lipschitz function g satisfying ‖f − g‖0 = |C| ≤ 2ℓ0(f,Lip(G)).

Proof of Theorem 3.1. This is an application of Lemma 3.4 to the d-dimensional hypergrid Hd
n. The hy-

pergrid has nd vertices and a maximum degree of 2d, therefore, the lookup and time complexity are
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dO(r)·polylog(nd/δ) = dO(r)·polylog(n/δ). Similarly, the length of the random seed is also dO(r)·polylog(n/δ).
If f is Lipschitz, then all violation graphs are empty; therefore, any local matching algorithm returns an
empty matching (or can otherwise be amended to do so by checking whether the returned edge is in the
graph and returning ⊥ if it is not). Thus, when f is Lipschitz, the returned value is always f(x).

If for all y ∈ [n]d we have |f(x)− f(y)| ≤ |x− y| then no edges in the violation graph are incident on x.
Therefore, every local matching algorithm returns a matching that does not contain x, or can otherwise be
amended to do so by checking whether the returned edge is in the graph and returning ⊥ if it is not. Hence,
the returned value is always f(x).

4 Lower Bounds

In this section, we prove our lower bound for local filters, stated in Section 1. We start with a more
detailed statement of the lower bound.

Theorem 4.1 (Local Lispchitz filter lower bound). For all local (1, 1
4 )-Lipschitz filters A over the hypercube

Hd, for all even r ≥ 4 and integer d ≥ 216r, there exists a function f : {0, 1}d → [0, r] for which the lookup
complexity of A is (dr )

Ω(r).

Note that the same bound on lookup complexity applies to local (1 + 1
2r ,

1
4 )-Lipschitz filters over Hd.

This can be seen by observing the Lipschitz constant in the hard distributions constructed in the proof of the
theorem (in Definition 4.2). Our proof is via a reduction from distribution-free testing. In Section 4.1, we
state our lower bound on distribution-free testing of Lipschitz functions and use it to derive the lower bound
on local Lipschitz filters stated in Theorem 4.1. In Section 4.2, we prove our lower bound for distribution-free
testing.

4.1 Testing Definitions and the Lower Bound for Local Lipschitz Filters

We start by defining distribution-free testing of the Lipschitz property.

Definition 4.1 (Distribution-free Lipschitz testing). Fix ε ∈ (0, 1/2] and r ∈ R. A distribution-free Lips-
chitz ε-tester T is an algorithm that gets query access to the input function f : {0, 1}d → [0, r] and sample
access to the input distribution D over {0, 1}d. If f is Lipschitz, then T (f,D) accepts with probability at
least 2/3, and if ℓ0,D(f,Lip(Hd)) ≥ ε, then it rejects with probability at least 2/3.

We give a sample and query lower bound for this task.

Theorem 4.2 (Distribution-free testing lower bound). Let T be a distribution-free Lipschitz 1
2 -tester. Then,

for all sufficiently large d ∈ N and even integers 4 ≤ r ≤ 2−16d, there exists a function f : {0, 1}d → [0, r]
and a distribution D, such that T (f,D) either has sample complexity 2Ω(d), or query complexity (dr )

Ω(r).

Before proving Theorem 4.2, we use it to prove the lower bound on the lookup complexity of local
Lipschitz filters, stated in Theorem 4.1. Recall that it says that every local (1, 1

4 )-Lipschitz filter over the

hypercube Hd w.r.t. ℓ0-distance has worst-case lookup complexity (dr )
Ω(r).

Proof of Theorem 4.1. Let A be a local (1, 14 )-Lipschitz filter for functions f : {0, 1}d → [0, r] over the hy-
percube Hd. Then, given an instance (f,D) of the distribution-free Lipschitz testing problem with proximity
parameter ε, we can run the following algorithm, denoted T (f,D):

1. Sample a set S of 3/ε points from D.

2. If A(x, ρ) 6= f(x) for some x ∈ S then reject; otherwise, accept.

If f is Lipschitz then, with probability at least 3/4 > 2/3, we have A(x, ρ) = f(x) for all x ∈ S and,
consequently, T (f,D) accepts. Now suppose f is ε-far from Lipschitz with respect to D. Then A fails with
probability at most 1/4. With the remaining probability, it provides query access to some Lipschitz function
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gρ. This function disagrees with f on a point sampled from D with probability at least ε. In this case, T
incorrectly accepts with probability at most (1 − ε)3/ε ≤ e−3. By a union bound, T fails or accepts with
probability at most 1

4 + e−3 ≤ 1
3 . Therefore, T satisfies Definition 4.1. By Theorem 4.2, T needs at least

(dr )
Ω(r) queries, so A must make at least (dr )

Ω(r) lookups.

4.2 Distribution-Free Testing Lower Bound

We prove Theorem 4.2 by constructing two distributions, D0 and D1, on pairs (f,D) and then applying
Yao’s Minimax Principle [Yao77]. We show that D0 has most of its probability mass on positive instances
and D1 has most of its mass on negative instances of distribution-free Lipschitz testing. The crux of the
proof of Theorem 4.2 is demonstrating that every deterministic (potentially adaptive) tester with insufficient
sample and query complexity distinguishes D0 and D1 only with small probability.

We start by defining our hard distributions. In both distributions, D is uniform over a large set of points,
called anchor points, partitioned into sets A and A′, both of size 2d/64. We treat A (and A′), both as a set
and as an ordered sequence indexed by i ∈ [2d/64]. Points in A and A′ with the same index are paired up;
specifically, the pairs are (A[i], A′[i]) for all i ∈ [2d/64]. For every point in x ∈ {0, 1}d and radius t > 0, let
Ballt(x) denote the open ball centered at x, that is, the set {y ∈ {0, 1}d : |x − y| < t}. For each point
x ∈ A, the function value of every point y ∈ Ball r

2
(x) is equal to the distance from x to y. For each point

x ∈ A′, the function value of every point y ∈ Ball r
2
(x) is equal to r minus the distance from x to y where

r is the desired image diameter of the functions. The points in A′ are chosen so that every pair (A[i], A′[i])
satisfies the Lipschitz condition with equality in D0 and violates the Lipschitz condition in D1.

Definition 4.2 (Hard Distributions). Fix sufficiently large d ∈ N and 4 ≤ r ≤ 2−16d. For all b ∈ {0, 1}, let
Db be the distribution given by the following sampling procedure:

1. Sample a list A of 2d/64 elements in {0, 1}d independently and uniformly at random.

2. Sample a list A′ of the same length as A as follows. For each i ∈ [2d/64], pick the element A′[i]
uniformly and independently from {y ∈ {0, 1}d : |A[i]− y| = r − b}. The elements of A ∪ A′ are called
anchor points. Additionally, for each i ∈ [2d/64], we call A[i] and A′[i] corresponding anchor points.

3. Define f : {0, 1}d → [0, r] by

f(x) =











|x−A[i]| if x ∈ Ball r
2
(A[i]) for some i ∈ [2d/64];

r − |x−A′[i]| else if x ∈ Ball r
2
(A′[i]) for some i ∈ [2d/64];

r/2 otherwise.

4. Output (f, U), where U is the uniform distribution over A ∪ A′.

Next, we define a bad event B that occurs with small probability and analyze the distance to Lipschitzness
of functions arising in the support of distributions Db, conditioned on B. For a distribution D and an event
E, let D|E denote the conditional distribution of a sample from D given E.

Lemma 4.3 (Distance to Lipschitzness). Let B0 be the event that |A[i] − A[j]| ≤ d/4 for some distinct
i, j ∈ [2d/64]. Then

1. PrDb
[B0] ≤ 2−d/32 for all b ∈ {0, 1}.

2. If (f, U) ∼ D0|B0
then f is Lipschitz, and if (f, U) ∼ D1|B0

then ℓ0,U (f,Lip(Hd)) ≥ 1
2 .

Proof. To prove Item 1, choose x, y ∈ {0, 1}d by setting each coordinate to one independently with probability
p = 1

2 . Let µ = Ex,y[d(x, y)] = 2dp(1 − p) = d
2 . By Chernoff bound, Prx,y[d(x, y) ≤ µ

2 ] ≤ e−
µ
8 ≤ 2−d/16.

There are at most 2d/32 pairs of points in A. By a union bound over all such pairs, Pr[B0] ≤ 2−d/16 · 2d/32 =
2−d/32. To prove Item 2, recall that r ≤ 2−16d. Suppose that B0 did not occur. If b = 0 then f is Lipschitz
because balls Ball r

2
(x) are disjoint for all anchor points x. When b = 1, every pair (A[i], A′[i]) violates the

Lipschitz condition, so f is 1/2-far from Lipschitz w.r.t. U .
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4.2.1 Indistinguishability of the Hard Distributions by a Deterministic Algorithm

Fix a deterministic distribution-free Lipschitz 1
2 -tester T that gets access to input (f, U), takes s =

1
8 · 2d/128 samples from U and makes q queries to f . Since the samples from U are independent (and, in
particular, do not depend on query answers), we assume w.l.o.g. that T receives all samples from U prior
to making its queries. One of the challenges in proving that the distributions D0 and D1 are hard to
distinguish for T is dealing with adaptivity. We overcome this challenge by showing that T can be simulated
by a nonadaptive algorithm Tna that is provided with extra information. In addition to its samples: Tna gets
at least one point from each pair (A[i], A′[i]), as well as function values on these points. Next, we define the
extended sample given to Tna and the associated event B1 that indicates that the sample is bad. We analyze
the probability of B1 immediately after the definition.

Definition 4.3 (Sample set, extended sample, bad sample event B1). Fix b ∈ {0, 1} and sample (f, U) ∼ Db.
Let S denote the sample set of 1

8 · 2d/128 points obtained i.i.d. from U by the tester T . The extended sample

S+ is the set S ∪ {A[i] : i ∈ [2d/64]∧A[i] 6∈ S ∧A′[i] 6∈ S}. Let S− denote the set (A∪A′) \ S+. A set S+ is
good if all distinct x, y ∈ S+ satisfy |x− y| > d/5 and bad otherwise. Define B1 as the event that S+ is bad.

Lemma 4.4 (B1 bound). Fix b ∈ {0, 1}. Then PrDb,S [B1] ≤ 1
30 .

Proof. Recall the bad event B0 from Lemma 4.3. By the law of total probability,

PrDb,S [B1] = PrDb,S[B1|B0] · PrDb
[B0] + PrDb,S [B1|B0] · PrDb

[B0] ≤ PrDb
[B0] + PrDb,S [B1|B0]. (5)

To bound PrDb,S [B1|B0], observe that if B0 did not occur, then all pairs (x, y) of anchor points, except
for the corresponding pairs, satisfy |x − y| > d

4 − 2r > d
5 because r < d · 2−16. In particular, it means

that all anchor points are distinct. Now, condition on B0. Then event B1 can occur only if both A[i] and
A′[i] for some i ∈ [2d/64] appear in the extended sample S+. By Definition 4.3, this is equivalent to the
event that both A[i] and A′[i] for some i ∈ [2d/64] appear in S. Each pair of samples in S is a pair of
corresponding anchor points with probability at most 2−d/64. By a union bound over the at most 1

64 · 2d/64
pairs of samples taken for S, the probability that A[i], A′[i] ∈ S for some i is at most 1

64 · 2d/64 · 2−d/64 = 1
64 .

Hence, PrDb,S[B1|B0] ≤ 1
64 . The lemma follows from Equation (5) and Lemma 4.3.

4.2.2 The Simulator

One of the key ideas in the analysis is that our hard distributions, and the sampling done by the tester,
can be simulated by first obtaining the set S+ using steps which are identical for b = 0 and b = 1, and only
then selecting points in S− to obtain the full description of the function f and the distribution U . Next, we
state the simulation procedure. Note that the first 3 steps of the procedure do not use bit b, that is, are the
same for simulating D0 and D1.

Definition 4.4 (Simulator). Fix b ∈ {0, 1}. Let D̂b be the distribution given by the following procedure:

1. Sample a list S+ of 2d/64 elements in {0, 1}d independently and uniformly at random.

2. For each i ∈ [2d/64], do the following: if i ≤ 1
8 ·2d/128, then assign S+[i] to either A[i] or A′[i] uniformly

and independently at random; if i > 1
8 · 2d/128 then assign S+[i] to A[i].

3. Proceed as in Step 3 of the procedure in Definition 4.2 to set f(x) for all x ∈ S+.

4. For each i ∈ [2d/64], pick the element S−[i] uniformly and independently from {y ∈ {0, 1}d : |S+[i]−y| =
r − b}. Assign it to A′[i] if S+[i] was assigned to A[i] and vice versa.

5. Proceed as in Step 3 of the procedure in Definition 4.2 to set f(x) for all x /∈ S+ and output (f, U, S+),
where U is the uniform distribution over A ∪ A′.
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Observation 4.5 states that, conditioned on B1, the simulator produces identical distributions on the
extended sample S+ and function values f(x) on points x ∈ S+, regardless of whether it is run with b = 0
or b = 1. Moreover, conditioned on B1, it faithfully simulates sampling (f, U) from Db and S from U , and
then extending S to S+ according to the procedure described in Definition 4.3.

Observation 4.5 (Simulator facts). Let (fb, Ub, S
+
b ) ∼ D̂b|B1

for each b ∈ {0, 1}. Let f(S+) denote function

f restricted to the set S+. Then the distribution of (S+
0 , f(S+

0 )) is identical to the distribution of (S+
1 , f(S+

1 )).
Now fix b ∈ {0, 1}. Sample (f, U) ∼ Db|B1

and S ∼ U . Then the distribution of (f, U, S+) is identical to

the distribution of (fb, Ub, S
+
b ).

Proof. Since the first 3 steps in Definition 4.4 do not depend on b, the distribution of (S+
0 , f(S+

0 )) is the
same as the distribution of (S+

1 , f(S+
1 )). Now, fix b ∈ {0, 1}. Notice that in the procedure for sampling from

Db (Definition 4.2), for all i ∈ [2d/64] the anchor point A[i] is a uniformly random point in {0, 1}d, and the
anchor point A′[i] is sampled uniformly from {y : |y − A[i]| = r − b}. By the symmetry of the hypercube,
the marginal distribution of A′[i] is uniform over {0, 1}d. Hence, sampling A′[i] uniformly at random from
{0, 1}d and then A[i] uniformly at random from {y : |y −A′[i]| = r − b} yields the same distribution. Thus,
the distribution of anchor points is the same under D̂b as under Db for each b ∈ {0, 1}. Now, conditioned on
B1, the set S+ contains exactly one anchor point from each corresponding pair. By the preceding remarks,
we can assume the anchor point in S+ was sampled uniformly at random from {0, 1}d, and the corresponding
anchor point was sampled uniformly from the set of points at distance r − b. Thus, conditioned on B0, the
distribution over S+ and S− is the same as the distribution over S+

b and S−
b . Since (U, f) and (Ub, fb) are

(respectively), uniquely determined by (S+, S−) and (S+
b , S−

b ), the distribution of (U, f, S+) is the same as
the distribution of (Ub, fb, S

+
b ).

4.2.3 The Bad Query Event and the Proof that Adaptivity Doesn’t Help

Observation 4.5 assures us that distributions of {(x, f(x)) : x ∈ S+} are the same (conditioned on
B1) for both hard distributions. The function values f(y) for y ∈ ⋃

x∈S+ Ball r
2
(x) are determined by

{(x, f(x)) : x ∈ S+}. Moreover, the function values f(y) are set to r/2 for all y /∈ ⋃

x∈(S+∪S−) Ball r
2
(x).

So, intuitively, the tester can distinguish the distributions only if it queries a point in Ball r
2
(x) for some

x ∈ S−. Our last bad event, introduced next, captures this possibility.

Definition 4.5 (Revealing point, bad query event BT ). Fix b ∈ {0, 1} and sample (f, U) ∼ Db. A point x
is revealing if x ∈ Ball r

2
(y) for some y ∈ S−. Let BT be the event that T queries a revealing point.

To bound the probability of BT , we first introduce the nonadaptive tester Tna that simulates T to decide
on all of its queries. Tester Tna gets query access to a function f sampled from Db, a sample S ∼ U and
{(x, f(x)) : x ∈ S+}. Subsequently, in Claim 4.6, we argue that if T queries a revealing point then Tna queries
such a point as well. This implies that PrDb,S [BT ] ≤ PrDb,S [BTna ], where BTna is defined analogously to
BT , but for the tester Tna. Finally, in Lemma 4.7, we upper bound the probability of BTna by first arguing
that, conditioned on B1, the probability that Tna queries a revealing point is small. Combining this fact
with the bound on B1 yields an upper bound on BTna and, consequently, BT .

Definition 4.6 (Tna). Let Tna be a nonadaptive deterministic algorithm that gets query access to f sampled
from Db, sets S ∼ U and {(x, f(x)) : x ∈ S+}, and selects its queries by simulating T as follows:

1. Provide S as the sample and answer each query x ∈ {0, 1}d with g(x) defined by

g(x) =











|x− y| if x ∈ Ball r
2
(y) for some y ∈ S+ satisfying f(y) = 0;

r − |x− y| else if x ∈ Ball r
2
(y) for some y ∈ S+ satisfying f(y) = r;

r/2 otherwise.

2. Let x1, . . . , xq be the queries made by T in the simulation. Query f on x1, . . . , xq.
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Claim 4.6 (Adaptivity does not help). If T queries a revealing point then Tna queries a revealing point.

Proof. Let x1, . . . , xq be the queries made by T and y1, . . . , yq be the queries made by Tna. Since T is
deterministic and the sample set S is the same in both Tna and in T , we have x1 = y1. Assume T queries a
revealing point. Let m ∈ [q] be the smallest index such that xm is revealing. By definition of g and revealing
point, g(xi) = f(xi) for all i ∈ [m− 1]. Consequently, ym = xm and Tna queries a revealing point.

Lemma 4.7 (BT bound). Fix b ∈ {0, 1}. There exists a constant α > 0 such that, for all sufficiently large
d, if T makes q = 2αr log(d/r) queries then PrDb,S [BT ] <

2
30 .

Proof. By Claim 4.6, PrDb,S [BT ] ≤ PrDb,S [BTna]. Applying the law of total probability we obtain the
inequality PrDb,S[BTna ] ≤ PrDb,S[BTna |B1]+PrDb,S [B1]. Next, we compute PrDb,S[BTna |B1], which is equal
to PrD̂b

[BTna |B1], since by Observation 4.5, the simulator faithfully simulates sampling (f, U) ∼ Db and

then obtaining S ∼ U , conditioned on B1. By the principle of deferred decisions, we can stop the simulator
after Step 3, then consider queries from Tna, and only then run the rest of the simulator. Since Tna is a
nonadaptive q-query algorithm, it is determined by the collection (x1, . . . , xq) of query points that it chooses
as a function of its input (sets S and {(x, f(x)) : x ∈ S+}). We will argue that the probability (over the
randomness of the simulator) that the set {x1, . . . , xq} contains a revealing point (i.e., a point on which f
and g disagree) is small. Consider some query x made by Tna. By Definition 4.5, a point x is revealing if
x ∈ Ball r

2
(S−[i]) for some i ∈ [2d/64]. Recall that each S−[i] satisfies |S+[i]− S−[i]| = r− b, and thus each

revealing point is in Ball3r/2(S
+[i]) for some i ∈ [2d/64]. All such balls around anchor points in S+ are

disjoint, because r ≤ 2−16 · d and we are conditioning on B1 (the event that all pairs of points in S+ are at
distance greater than d/5).

Suppose x ∈ Ball3r/2(S
+[i]) for some i ∈ [2d/64]. (If not, x cannot be a revealing point.) For x to be

revealing, it must be in Ball r
2
(S−[i]) or equivalently, S−[i] must be in Ball r

2
(x). The simulator chooses

S−[i] uniformly and independently from {y ∈ {0, 1}d : |S+[i]−y| = r− b}. The number of points at distance
r − b ≥ r − 1 from S+[i] is at least

(

d
r−b

)

> (dr )
r−1 ≥ (dr )

3r/4, where the last inequality holds because r ≥ 4.
Out of these choices, only those that are in Ball r

2
(x) will make x a revealing point. The number of points

in Ball r
2
(x) is

∑r/2
i=0

(

d
i

)

≤ r
(

d
r/2

)

≤ r(2der )r/2. Then

PrD̂b
[x is revealing | B1] ≤ r

(2de

r

)r/2( r

d

)3r/4

≤ r(2e)r/2
( r

d

)r/4

= 2log(r)+
r
2
log(2e)− r

4
log(d/r)

≤ 22r−
r
4
log(d/r) ≤ 2−

r
8
log(d/r) <

1

30
· 2−αr log(d/r),

where the first inequality in the second line holds because r ≥ 4, the next inequality holds since r ≤ 2−16d and,
for the last inequality, we set α = 1

32 and use both bounds on r. By a union bound over the q = 2−αr log(d/r)

queries, PrDb,S[BTna |B1] = PrD̂b
[BTna |B1] <

1
30 . Using the bound from Lemma 4.4 on the probability of

B1, we obtain

PrDb,S[BTna ] ≤ PrDb,S[BTna |B1] + PrDb,S[B1] ≤
2

30
,

completing the proof of Lemma 4.4.

4.2.4 Proof of Distribution-Free Testing Lower Bound

Before proving Theorem 4.2, we argue that conditioned on B1 ∪BT , the distribution of samples and
query answers seen by T is the same whether (f, U) ∼ D0 or (f, U) ∼ D1.

Definition 4.7 (D-view). For all distributions D over instances of distribution-free testing, and all t-sample,
q-query deterministic algorithms, let D-view be the distribution over samples s1, . . . , st and query answers
a1, . . . , aq seen by the algorithm on input (f, U) when (f, U) ∼ D.
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Lemma 4.8 (Equal conditional distributions). D0-view|B1∪BT
= D1-view|B1∪BT

.

Proof. Conditioned on B1 and BT , every query answer f(x) given to T is determined by the function g in
Definition 4.6. In particular, every query answer is a deterministic function of the points in S+, the restricted
function f(S+), and (possibly) previous query answers. By Observation 4.5, the distribution of (S+, f(S+))
is the same under bothD0|B1

andD1|B1
. Hence, the distribution of query answers f(x1), ..., f(xq) is identical.

The lemma follows.

Next, we recall some standard definitions and facts that are useful for proving query lower bounds.

Definition 4.8 (Notation for statistical distance). For two distributions D1 and D2 and a constant δ, let
D1 ≈δ D2 denote that the statistical distance between D1 and D2 is at most δ.

Fact 4.9 (Claim 4 [RS06]). Let E be an event that happens with probability at least 1−δ under the distribution
D and let B denote the conditional distribution D|E. Then B ≈δ′ D where δ′ = 1

1−δ − 1.

We use the version of Yao’s principle with two distributions from [RS06].

Fact 4.10 (Claim 5 [RS06]). To prove a lower bound q on the worst-case query complexity of a randomized
property testing algorithm, it is enough to give two distributions on inputs: P on positive instances, and N
on negative instances, such that P-view ≈δ N -view for some δ < 1

3 .

We now complete the proof of Theorem 4.2, the main theorem on distribution-free testing.

Proof of Theorem 4.2. We apply Fact 4.10 (Yao’s principle) with P = D0|B0
andN = D1|B0

. By Lemma 4.3,

D0|B0
is over positive instances and D1|B0

is over negative instances of distribution-free Lipschitz 1
2 -testing.

Let δ0 = Pr[B0] and δ1 = Pr[B1 ∪ BT ]. Set δ′0 = 1
1−δ0

− 1 and δ′1 = 1
1−δ1

− 1. By Fact 4.9, we have the
following chain of equivalences:

D0-view|B0
≈δ′

0
D0-view ≈δ′

1
D0-view|B1∪BT

= D1-view|B1∪BT
≈δ′

1
D1-view ≈δ′

0
D1-view|B,

where the equality follows from Lemma 4.8. By Lemmas 4.3, 4.4 and 4.7 (that upper bound the probabilities
of bad events), for sufficiently large d, we have δ′0 ≤ 1

27 , and δ′1 ≤ 1
9 . Hence, 2(δ′0 + δ′1) <

1
3 . Theorem 4.2

now follows from Yao’s principle (as stated in Fact 4.10).

5 Application to Differential Privacy

In this section, we show how to use a local Lipschitz filter for bounded-range functions to construct a
mechanism (Theorem 5.5) for privately releasing outputs of bounded-range functions even when the client is
malicious (i.e., lies about the range or Lipschitz constant of the function). Then, we show how the mechanism
can be extended to privately release outputs of unbounded-range functions (Theorem 5.6).

5.1 Preliminaries on Differentially Private Mechanisms

We start by defining the Laplace mechanism, used in the proofs of Theorems 5.5 and 5.6. It is based on
the Laplace distribution, denoted Laplace(λ), that has probability density function f(x) = 1

2λe
−|x|/λ. We

use abbreviation (ε, δ)-DP for “(ε, δ)-differentially private” (see Definition 1.1).

Lemma 5.1 (Laplace Mechanism [DMNS06]). Fix ε > 0 and c > 1. Let f : [n]d → R be a c-Lipschitz
function. Then the mechanism that gets a query x ∈ [n]d as input, samples N ∼ Laplace( cε ), and outputs
L(x) = f(x)+N , is (ε, 0)-DP. Furthermore, for all α ∈ (0, 1), the mechanism satisfies |L(x)−f(x)| ≤ c

ε+ln 1
α

with probability at least 1− α.

In addition to the Laplace mechanism (Lemma 5.1), the proof of Theorem 5.6 uses the following well
known facts about differentially private algorithms. These can be found in [CD14].
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Fact 5.2 (Composition). Fix ε1, ε2 > 0 and δ1, δ2 ∈ (0, 1). SupposeM1 andM2 are (respectively) (ε1, δ1)-
DP and (ε2, δ2)-DP. Then, the mechanism that, on input x, outputs (M1(x),M2(x)) is (ε1+ε2, δ1+δ2)-DP.

Fact 5.3 (Post-processing). Fix ε > 0 and δ ∈ (0, 1). Suppose M : D → R is an (ε, δ)-DP mechanism. If
A is an algorithm with input space R then the algorithm given by A ◦M is (ε, δ)-DP.

Fact 5.4. If X ∼ Laplace(λ) then Pr[|X | ≥ tλ] ≤ e−t for all t > 0.

In particular, if λ = log r
ε and t = log(200 log r) then Pr[|X | ≥ log(r) log(200 log r)

ε ] ≤ 1
200 log r .

5.2 Mechanism for Bounded-Range Functions

The filter mechanism can be instantiated with either one of our filters (from Theorem 2.1 or from
Theorem 3.1), providing slightly different accuracy guarantees. In Theorem 5.5, we state the guarantees
for the mechanism based on the l1-respecting filter. Next, we establish the terminology used in the theorem.
Recall that BallR(x) denotes the set {y : |x − y| < R}. We say a vertex x ∈ {0, 1}d is dangerous w.r.t. f
if there exists a vertex y ∈ {0, 1}d such that |f(x) − f(y)| > distG(x, y). A client that submits a Lipschitz
function is called honest; a client that submits a non-Lipschitz function that is close to Lipschitz is called
clumsy (the distance measure could be ℓ1 or ℓ0, depending on the filter used). Finally, we assume that
sampling from the Laplace distribution requires unit time.

Theorem 5.5 (Filter mechanism). For all ε > 0 and δ ∈ (0, 1), there exists an (ε, δ)-differentially private
mechanism M that, given a query x ∈ [n]d, lookup access to a function f : [n]d → [0, r], and range diameter
r ∈ R, outputs a value h(x) ∈ R, and has the following properties.

• Efficiency: The lookup and time complexity ofM are (dr · polylog(n/δ))O(log r).
• Accuracy for an honest client: If f is Lipschitz then for all x ∈ [n]d we have h(x) ∼ f(x) +

Laplace(2ε ).
• Accuracy for a clumsy client: For all x ∈ [n]d such that Ballr log3/2(r)

(x) does not contain any
dangerous vertices, the “accuracy for an honest client” guarantee holds. Moreover, with probability at
least 1− 2δ, the mechanism satisfies Ez∼[n]d [|h(z)− f(z)|] ≤ 2ℓ1(f,Lip(Hd

n)) +O(1ε ).

We stress that the differential privacy guarantee in Theorem 5.5 holds whether or not the client is honest.

Proof of Theorem 5.5. Fix ε > 0 and δ ∈ (0, 1). Let A denote LocalFilter1 (Algorithm 3) run with
iteration parameter t = log3/2(r/2) + 1. Recall that by Theorem 2.1 instantiated with γ = 1 and failure
probability δ, the algorithm A is an ℓ1-respecting local (2, δ)-Lipschitz filter with blowup 2 over the d-
dimensional hypergrid Hd

n. The “efficiency” and “accuracy for honest client” guarantees hold for any local
Lipschitz filter of the type stated in Theorem 2.1. However, the first guarantee of “accuracy for a clumsy
client” requires properties specific to the construction of LocalFitler1.

Let M be the following mechanism: Sample a random seed ρ of length specified in Theorem 2.1, run
A(x, ρ) to obtain gρ(x), sample N ∼ Laplace(2ε ), and output gρ(x) +N .

First, we prove thatM is (ε, δ)-differentially private. If the function gρ is 2-Lipschitz, then, by Lemma 5.1
instantiated with c = 2 and privacy parameter ε, the mechanismM is (ε, 0)-DP. Conditioned on the event
that gρ is 2-Lipschitz, we obtain that for all measurable sets Y ⊂ R,

Pr[M(x, ρ) ∈ Y | gρ is 2-Lipschitz] ≤ eε Pr[M(x′, ρ) ∈ Y | gρ is 2-Lipschitz].

By Theorem 2.1, A fails to output a 2-Lipschitz function with probability at most δ. By the law of total
probability,

Pr[M(x, ρ) ∈ Y ] ≤ eε Pr[M(x′, ρ) ∈ Y | gρ is 2-Lipschitz] Pr[gρ is 2-Lipschitz] + δ

≤ eε Pr[M(x′, ρ) ∈ Y ] + δ.

The efficiency guarantee follows directly from Theorem 2.1. The accuracy guarantee for an honest client
holds since Theorem 2.1 guarantees that if f is Lipschitz, then A(x, ρ) = f(x) for all x and ρ. The average
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accuracy guarantee for the clumsy client follows from the ℓ1-respecting, 2-blowup guarantee of Theorem 2.1
and the fact that E[|Laplace(2ε )|] ≤ O(1ε ). To demonstrate that the stronger accuracy guarantee holds
when no dangerous vertices are in Ballr log3/2(r)

(x), we make the following observation: if no vertex y ∈
Ballr log3/2(r)

(x) is dangerous, then A(x, ρ) = f(x). We prove this claim as follows. Recall that t =

log3/2(r/2) + 1 and, for each i ∈ [t], let A(x, i, ρ) denote the output after iteration i of Algorithm 3. By
construction, A(x, 1, ρ) = f(x). Suppose no vertex y ∈ Ballr(t−1)(x) is dangerous. Then, since the range of
f is [0, r], every dangerous vertex v can, in a single iteration, only create new dangerous vertices in Ballr(v).
Thus, in t− 1 iterations, no dangerous vertices can be introduced in Ballr(x). Since A(x, 1, ρ) = f(x), and
in every subsequent iteration 1 < i ≤ t, no dangerous vertices are in Ballr(i−1)(x), we obtain A(x, t, ρ) =
A(x, 1, ρ) = f(x) for each i ∈ [t]. Thus, if no dangerous vertex is in Ballr log3/2(r)

(x) then A(x, ρ) = f(x),
and hence, the “accuracy for an honest client” guarantee holds.

5.3 Mechanism for Unbounded Range Functions

In this section, we use the mechanism for bounded-range functions to construct a mechanism for arbitrary-
range functions.

Theorem 5.6 (Binary search filter mechanism). For all ε > 0 and δ ∈ (0, 1
200 ), there exists an (ε, δ)-

differentially private mechanismM that, given a query x ∈ [n]d, lookup access to a function f : [n]d → [0,∞)
and an optional range parameter r ∈ R, outputs value h(x) ∈ R and has the following properties.

Let κ = logmin(r, nd), where the optional parameter r is set to ∞ by default.

• Efficiency: The lookup and time complexity ofM are dO( 1
εκ log κ) polylog(nδ ).

• Accuracy for an honest client: If f is Lipschitz then, for all x ∈ [n]d, we have h(x) ∼ f(x) +
Laplace(κε ) with probability at least 0.99.

• Accuracy for a clumsy client: There exists a constant c > 0 such that for all x ∈ [n]d, if f(x) ≤ nd
and |f(x) − f(y)| ≤ |x − y| for all y ∈ Ball c

ε
κ log κ(x), then the “accuracy for an honest client”

guarantee holds.

As in Theorem 5.5, we emphasize that the differential privacy guarantee holds whether or not the client
is honest. Note that the accuracy guarantee for an honest client is subsumed by the guaranty for a clumsy
client, but we state the former guarantee separately for clarity.

Proof of Theorem 5.6. Our private mechanism is presented in Algorithm 6. It uses the following “clipping”
operation to truncate the range of a function.

Definition 5.1 (Clipped function). For any f : V → R and interval [ℓ, u] ⊂ R, the clipped function f [ℓ, u]
is defined by

f [ℓ, u](x) =











f(x) f(x) ∈ [ℓ, u];

ℓ f(x) < ℓ;

u f(x) > u.
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Algorithm 6 Binary search filter mechanismM(x, f, ε)

Input: Dataset x ∈ [n]d, lookup access to f : [n]d → [0,∞), range diameter r ∈ R, adjacency lists access to
the hypercube Hd, ε > 0, and δ ∈ (0, 1)
Subroutines: Local (1, δ

log r )-Lipschitz filter A obtained in Theorem 3.1

Output: Noisy value h(x) satisfying the guarantees of Theorem 5.6

1: set r ← min(r, nd) and f ← f [0, r] ⊲ If the client is honest then f [0, r] = f .
2: set t← r/2 and α← 1

ε log(r) log(200 log r)
3: for i = 2 to ⌈log r⌉ do
4: let h(x)← A(x, f [t− 2α, t+ 2α]) + Laplace( log r

ε )
5: if h(x) ∈ [t− α, t+ α] then
6: return h(x)
7: else t← t+ sign(h(x) − t) · ⌈r/2i⌉
8: return h(x)

Next, we complete the analysis of the binary search filter mechanism. We first argue thatM (Algorithm 6)
is (ε, δ)-DP. In every iteration of the for-loop,M uses Laplace mechanism on a function that is 1-Lipschitz
with probability at least 1− δ

log r . By Lemma 5.1 and an argument similar to the proof of Theorem 5.5, each

iteration is( ε
log r ,

δ
log r )-DP. It follows by Facts 5.2 and 5.3 that Algorithm 6 is (ε, δ)-DP.

Next, we prove the accuracy guarantee for the clumsy client. Observe that it subsumes the accuracy
guarantee for the honest client. Suppose f : [n]d → [0, r] and that x satisfies |f(x) − f(y)| ≤ |x − y| for all
y ∈ Ballα(x) (the α in line 2 of Algorithm 6). Then, for all intervals I of diameter α, the point x satisfies
|f [I](x) − f [I](y)| ≤ |x − y| for all y ∈ [n]d. By Theorem 3.1, A(x, f [I]) = f [I](x), which is equal to f(x)
whenever f(x) ∈ I.

Condition on the event that A does not fail and that the Laplace noise added is strictly less than α in
every iteration ofM. Then, if h(x) ∈ [t−α, t+α], we must have f [t− 2α, t+2α](x) ∈ (t− 2α, t+2α), and
therefore f [t− 2α, t+ 2α](x) = f(x). Next, suppose h(x) 6∈ [t− α, t+ α]. If f(x) < t then h(x) < t+ α and
thus h(x) < t − α. Similarly, if f(x) > t then h(x) > t − α and thus h(x) > t + α. It follows that in every
iterationM either continues the binary search in the correct direction, or halts and outputs h(x) such that
|h(x)− f(x)| ≤ α. By the union bound and the guarantee obtained in Theorem 3.1, the algorithm A fails in
some iteration ofM with probability at most δ. Moreover, by Fact 5.4 and the union bound, the Laplace
noise added is at least α in some iteration ofM with probability at most 1

200 . It follows that for sufficiently

small δ, the mechanismM outputs h(x) such that h(x) ∼ f(x) + Laplace( logmin(r,nd)
ε ) with probability at

least 99
100 .

6 Application to Tolerant Testing

In this section, we give an efficient algorithm for tolerant Lipschitz testing of real-valued functions over
the d-dimensional hypercube Hd and prove Theorem 6.1, which we restate here for convenience.

Theorem 6.1. For all ε ∈ (0, 13 ) and all sufficiently large d ∈ N, there exists an (ε, 2.01ε)-tolerant tester
for the Lipschitz property of functions on the hypercube Hd. The tester has query and time complexity
1
ε2 d

O(
√

d log(d/ε)).

Our tester utilizes the fact that the image of a function which is close to Lipschitz exhibits a strong
concentration about its mean on most of the points in the domain. Hence, if a function is close to Lipschitz,
it can be truncated to a small interval around its mean without modifying too many points. This truncation
guarantees that the the local filter in Theorem 3.1 runs in time subexponential in d. A key idea in the
truncation procedure is that if a function f is ε-close to Lipschitz then either not very many values are
truncated, or the truncated function is close to Lipschitz.
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To prove Theorem 6.1, we design an algorithm (Algorithm 7) that, for functions f : {0, 1}d → R, accepts
if f is ε-close to Lipschitz, rejects if f is 2.01ε-far from Lipschitz and fails with probability at most 45

100 . The
success probability can then be amplified to at least 2

3 by repeating the algorithm Θ(1) times and taking the
majority answer. Before presenting Algorithm 7, we introduce some additional notation. For all functions
f and intervals I ⊂ R, the partial function fI is defined by fI(x) = f(x) whenever f(x) ∈ I and fI(x) =?
otherwise. Additionally, for all events E, let 1E denote the indicator for the event E. Algorithm 7 runs
the ℓ0-filter given by Algorithm 5 with lookup access to a partial function fI . Our analysis of Algorithm 5
presented in Theorem 3.1 is for total functions. In Observation 6.2, we extend it to partial functions.

Observation 6.2. Let h : [n]d → R ∪ {?} be a partial function with ℓ0-distance to the nearest Lipschitz
partial function equal to εh. Let A denote Algorithm 5. Then, for all δ ∈ (0, 1), the algorithm Ah provides
query access to a Lipschitz partial function g such that g(x) =? if and only if h(x) =?, and ‖g − h‖0 ≤ 2εh.
The runtime and failure probability guarantees are as in Theorem 3.1.

Proof. Consider x ∈ h−1(?). By Definition 1.4, V Sh(x, y) = 0 for all y ∈ [n]d, and hence the vertex x is
not incident to any edge of the violation graph of h. By construction, Ah(x) = h(x) =?. Next, consider the
induced subgraph G of Hd with vertex set V = {x : h(x) 6=?}. By Claim 3.3, the size of the minimum vertex
cover of the violation graph of h is at most |V |εh. It follows that Ah provides query access to a Lipschitz
partial function g such that ‖g − h‖0 ≤ εh. The runtime and failure probability are the same as for total
functions by definition of the algorithm.

Algorithm 7 Tolerant Lipschitz tester T (f, ε)
Input: Query access to f : {0, 1}d → R, adjacency lists access to Hd, and ε ∈ (0, 13 )
Subroutines: Local (1, 1

100 )-Lipschitz filter A given by Algorithm 5
Output: accept or reject

1: sample a point p ∼ {0, 1}d uniformly at random and a random seed ρ of length specified in Theorem 3.1
2: set t← 2

√

d log(d/ε) and I ← [f(p)− t, f(p) + t]
3: sample a set S of (1500ε )2 points uniformly and independently from {0, 1}d
4: for all xi ∈ S do
5: if fI(xi) =? then set yi ←?
6: else set yi ← A(xi, ρ), where A is run with lookup access to fI and adjacency lists access to Hd

7: if 1
|S|

∑

xi∈S 1f(xi) 6=yi
< 2.005ε then accept

8: else reject

We use McDiarmid’s inequality [McD89], stated here for the special case of the {0, 1}d domain.

Fact 6.3 (McDiarmid’s Inequality[McD89]). Fix d ≥ 2 and let g : {0, 1}d → R be a Lipschitz function w.r.t.
Hd. Let µg = Ex∼{0,1}d [g(x)]. Then, for all γ ∈ (0, 1),

Prx∼{0,1}d [|g(x)− µg| ≥
√

d log(d/γ)] ≤ γ

d
.

Next, we introduced a definition which, for each function f , attributes some part of its ℓ0-distance to
Lipschitz to a particular interval I in the range of f .

Definition 6.1. Let f : {0, 1}d → R and C be a minimum vertex cover of the violation graph of f . (If
there are multiple vertex covers, use any rule to pick a canonical one.) For an interval I ⊂ R define ε[I] as
|{x ∈ C : f(x) ∈ I}|/2d.

For a function f , let εf denote the ℓ0-distance from f to Lipschitz. Then εf = ε[I]+ ε[I] for all intervals
I. Moreover, since fI is a partial function defined only on points x such that f(x) ∈ I, the distance from fI
to the nearest Lipschitz partial function is at most ε[I]. Using Definition 6.1, we argue that if εf ≤ ε, then
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with high probability the interval I chosen in Algorithm 7 satisfies ‖fI−f‖0 ≤ ε[I]+ ε
d . Since ε[I]+ε[I] ≤ ε,

Lemma 6.4 implies that if ‖fI − f‖0 is very close to ε, then the distance of fI to Lipschitz, which is at most
ε[I], must be small. Leveraging this fact, we can approximate the ℓ0-distance from f to Lipschitz using the
distance from f to fI and the distance from fI to Lipschitz.

Lemma 6.4. Fix ε ∈ (0, 13 ) and d ≥ 4. Let f : {0, 1}d → R be ε-close to Lipschitz over Hd. Choose

p ∈ {0, 1}d uniformly at random. Set t← 2
√

d log(d/ε) and I ← [f(p)−t, f(p)+t]. Then ‖f−fI‖0 > ε[I]+ ε
d

with probability at most 5
12 .

Proof. Let C be a minimum vertex cover of the violation graph B0,f (see Definition 1.5). Let g be a Lipschitz
function obtained by extending f from {0, 1}d \ C to {0, 1}d (such an extension exists by Claim 3.2). By
Fact 6.3, Prx∼{0,1}d [|g(x) − µg| ≥ t

2 ] ≤ ε
d . Notice that if |f(p) − µg| ≤ t

2 then [µg − t
2 , µg + t

2 ] ⊂ I.
Conditioned on this occurring,

Prx[f(x) 6∈ I] ≤ ε[I] + Prx[g(x) 6∈ I] ≤ ε[I] + ε

d
.

Since Prx∼{0,1}d [x ∈ C] ≤ ε, we have |f(p)− µg| ≤ t
2 with probability at most ε+ ε

d ≤ 5
12 .

Next, we argue that, after boosting the success probability via standard amplification techniques, we
obtain a (ε, 2.01ε)-tolerant Lipschitz tester.

Proof of Theorem 6.1. Fix ε ∈ (0, 1
3 ) and let f : {0, 1}d → R and let T denote Algorithm 7. Define the

following events: Let E1 be the event that local filter A fails. Set ω = Prx[f(x) 6= A(x, ρ)] and ω̂ =
1
|S|

∑

xi∈S 1f(xi) 6=yi
, and let E2 be the event that |ω − ω̂| ≥ ε

300 .

Suppose f is ε-close to Lipschitz, and let E3 be the event that the interval I chosen in T satisfies
‖f − fI‖ > ε[I] + ε

d . Condition on the event that none of E1, E2, and E3 occur. Then fI is at distance
at most ε[I] from some Lipschitz partial function and, by Observation 6.2, A provides query access to a
Lipschitz partial function g such that ‖f − g‖0 ≤ 2ε[I]. Using the fact that ε[I] + ε[I] ≤ ε we obtain

ω̂ ≤ 2ε[I] + ε[I] + ε

d
+

ε

300
< 2.005ε

for sufficiently large d. Hence T accepts.
Now consider the case that f is 2.01ε-far from Lipschitz and suppose neither of the events E1 and E2

occur. Since A provides query access to a Lipschitz function, and the nearest Lipschitz function is at distance
at least 2.01ε, we must have ω̂ ≥ 2.01ε− ε

300 > 2.005ε. Hence T rejects.
Next, we show that the events E1, E2 and E3 all occur with small probability. By Observation 6.2,

Pr[E1] ≤ 1
100 . To bound Pr[E2], notice that E[ŵ] = w and Var[ŵ] ≤ 1

4|S| . By Chebyshev’s inequality and

our choice of |S| we have, PrS [|w − ŵ| ≥ ε
300 ] ≤ 3002

4|S|ε2 ≤ 1
100 . Moreover, if f is ε-close to Lipschitz, then by

Lemma 6.4, Pr[E3] ≤ 5
12 . Thus, the failure probability of T can be bounded above by Pr[E1 ∪ E2 ∪ E3] ≤

2
100 + 5

12 ≤ 45
100 . The success probability can the be boosted to 2

3 by running the algorithm O(1) times
and taking the majority answer. Finally, we bound the query and time complexity of tester by bounding
the query and time complexity of T . The algorithm T runs the local filter A with lookup access to fI , a
function with range I of diameter O(

√

d log(d/ε)), and sets A’s failure probability to δ = 1
100 . Consequently,

Observation 6.2 implies T has query and time complexity bound of 1
ε2 d

O(
√

d log(d/ε)).
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