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We use the discrete element method, taking particle contact and hydrodynamic lubrication into
account, to unveil the shear rheology of suspensions of frictionless non-Brownian rods in the dense
packing fraction regime. We find that, analogously to the random close packing volume fraction,
the shear-driven jamming point of this system varies in a non-monotonic fashion as a function of
the rod aspect ratio. The latter strongly influences how the addition of rod-like particles affects the
rheological response of a suspension of frictionless non-Brownian spheres to an external shear flow.
At fixed values of the total (rods plus spheres) packing fraction, the viscosity of the suspension is
reduced by the addition of “short” ( ≤ 2) rods but is instead increased by the addition of “long”
( ≥ 2) rods. A mechanistic interpretation is provided in terms of packing and excluded-volume
arguments.

Suspensions of non-Brownian, micron-sized, particles
dispersed in Newtonian fluid are ubiquitous in nature and
have widespread industrial applications, especially in the
dense regime where solid and fluid are mixed in similar
proportions [1–4]. The application of a shear deforma-
tion leads to a (shear-driven) jamming transition upon
increasing the solid packing fraction ϕ towards a so-called
jamming point ϕJ [5, 6]. While a dense non-Brownian
suspension can flow under an external shear stress for
ϕ < ϕJ, the viscosity η of the suspension increases dra-
matically when ϕ → ϕJ, and the system consequently
develops a solid-like behavior with a finite yield stress at
ϕ ≥ ϕJ. Although the mechanism underlying this flow
arrest is not yet understood, the jamming transition is
commonly believed to crucially influence the shear rhe-
ology of non-Brownian suspensions in the dense regime
(i. e. below but not too far from ϕJ) of packing fraction
[2, 7, 8].

When the particles are frictionless and spherical, the
viscosity η of the suspension exhibits a power law diver-
gence η(ϕ) ≈ (ϕJ − ϕ)−β , where β is a scaling parameter
much discussed in the literature [8] and reported to be
β ≈ 2 in shear flow experiments [9], while ϕJ coincides
with the random close packing (RCP) volume fraction,
ϕRCP ≈ 0.64, of a collection of hard spheres [6]. The
value of ϕRCP for a generic ensemble of hard particles
is defined as the highest packing fraction for a “disor-
dered” arrangement of those particles [10]. Since non-
sheared systems in the liquid phase for ϕ < ϕRCP reach
mechanical rigidity at ϕRCP, the latter quantity is of-
ten referred to as the jamming point [11, 12]. Never-
theless, by contrast with ϕJ, ϕRCP for a given system is
measured by means of an isotropic compression rather
than a shear deformation. To highlight this difference,
some authors have recently referred to the transitions
occurring at ϕJ and ϕRCP as shear-driven jamming and
compression-driven jamming, respectively [13, 14].

An increasing number of numerical and experimental
studies have recently investigated how ϕRCP of Brown-

FIG. 1. Randomly packed rod-sphere mixture. The spheres
have diameter D, while the rods (spherocylinders formed by
glued spheres) have aspect ratio L/D = 4. Packing fraction
is ϕ = 0.6.

ian and non-Brownian suspensions is influenced by the
nonspherical shape of the dispersed particles [15–19].
How this latter property affects the shear-driven jam-
ming point ϕJ and the related shear rheology in the re-
gion ϕ < ϕJ has remained, instead, poorly understood.
Even less attention has been devoted to exploring how
the shear rheology varies when particles with different
shapes are dispersed within the same suspension.

To fill this gap, we consider a mixture of spheres and
rods under simple shear flow. Rods are modelled as sphe-
rocylinders: axially symmetric cylinders of length L and
diameter D, capped by hemispheres also of diameter D
(see Fig. 1). We compute how the viscosity η of the
mixture varies as a function of both the aspect ratio
(AR) L/D of the rods and the relative concentration x
of the spheres. We employ a recently introduced numer-
ical method [20], which is based on an analogy between
dense non-Brownian suspensions and dry granular mat-
ter. This analogy exploits the fact that, by contrast with
dilute regimes where long-range hydrodynamic interac-
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FIG. 2. (a) Dimensionless viscosity η/ηf of a suspension of pure (no spheres in the mixture) spherocylinders, fixed aspect ratio
L/D = 4 and packing fraction ϕ = 0.412, as a function of the shear strain γ̇t for several values of the shear rate γ̇. (b) After a
start up regime in which the viscosity increases with strain, a plateau is reached. At this plateau, orientational order (negligible
for short ARs) has been developed as proved by a plot of the nematic scalar order parameter S as a function of γ̇t, (c). The
shear rate is measured in simulation units.

tions, particle contact interactions and random packing
dominate the dynamics in the dense regime near jamming
[2].

Unlike spheres, rods behave differently when subjected
to isotropic compression or to shear. While in the for-
mer case they show no long-range orientational order
upon jamming, in the latter case they do show orienta-
tional ordering as a result of torques induced by the shear
flow. This shear-induced orientational ordering has been
widely demonstrated both in simulations [21–23] and in
experiments [21, 22, 24]. Comparatively, little attention
has been devoted to understanding the implications of
this ordering on the shear-induced jamming point ϕJ.
In simulations of bidisperse mixtures of two-dimensional
spherocylinders, Refs. [13, 14] have found a monotonic
increase of ϕJ with the AR.

Here we show that, analogously to the random close
packing volume fraction ϕRCP, the shear-driven jamming
point ϕJ of a suspension of spherocylinders also varies
non-monotonically as a function of the AR L/D. Fur-
thermore, we show that the addition of rods strongly af-
fects the rheological response of a suspension of friction-
less non-Brownian spheres to an external shear stress.

Our simulations employ a well-established code imple-
mented in LAMMPS [25]. We simulate the trajectories of
mixtures of NS spheres and NR rods in a periodic cubic
box of side LB . Rods (spherocylinders) consist of linear
assemblies of spheres (diameter: D, density: ρ, and stiff-
ness: kn) of varying length L. To ensure bulk conditions,
we ensure LB ≫ D and LB ≫ L. Spheres follow Newto-
nian dynamics, subject to forces and torques arising due
to Stokes drag, hydrodynamic lubrication and repulsive
contact. Drag forces are computed relative to a back-
ground streaming fluid flow (viscosity ηf ) so that a linear
velocity profile u∞ = (γ̇y, 0, 0) is established with shear

rate γ̇. The lubrication forces are computed according
to Ref. [26], and they are truncated at 0.001(D/2) to
prevent divergence. Contacts are modelled as stiff lin-
ear springs with repulsive force set by the sphere-sphere
overlap and stiffness. We indicate the stress tensor by Σ.
Full details of the forces and torques are given by Cheal
and Ness [20].

For spheres, we sum the force at each timestep and up-
date the acceleration according to the Velocity-Verlet al-
gorithm. For rods, we sum the forces over all constituent
spheres then distribute the resultant force uniformly to
each sphere. This ensures that rods act as rigid bod-
ies with no relative translation or rotation between con-
stituent spheres. Further details are given in Ref. [27].
We set ργ̇(D/2)2/ηf < 10−2 and γ̇

√
ρ(D/2)3/kn < 10−4

to ensure, respectively, inertia-free and hard sphere con-
ditions. The total packing fraction is ϕ = ϕS + ϕR,
where ϕS = (4/3)π(D/2)3ρ and ϕR = (4/3)π(D/2)3ρR+
π(D/2)2ρL. Moreover x ≡ ϕS/ϕ is the relative compo-
nent of spheres in the mixture, and ϕR/ϕ = 1 − x. To
simulate simple shear we use a triclinic periodic box with
a tilt length LB

xy that is incrementally increased linearly

in time as LB
xy(t) = LB

xy(t0)+LB
y γ̇t, giving a deformation

equivalent to that obtained using Lees-Edwards condi-
tions. The viscosity of the mixture is η = Σxy/(γ̇ηf ),
where Σxy is the xy component of Σ and ηf is the viscos-
ity of the hosting fluid. We thus compute the viscosity η
of mixtures of spheres and rods, for several combinations
of the total (spheres plus rods) particle packing fraction
ϕ ≡ ϕS + ϕR, the relative concentration of the spheres
x (≡ ϕS/ϕ), and the AR of the rods L/D.

We start from the case x = 0, corresponding to a
monodisperse ensemble of rods (for which ϕS = 0 and
ϕ ≡ ϕR, respectively). In Fig. 2(a), we plot the dimen-
sionless viscosity η/ηf at fixed ϕ = 0.412 and L/D = 4 as
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FIG. 3. Shear viscosity η/ηf of a rod-sphere mixture as a function of the total (rods plus spheres) particle concentration ϕ,
for several values of the rod aspect ratio L/D at fixed concentration of spheres x = 0 (a), and for several values of x at fixed
L/D = 0.5 (red points) and L/D = 4 (blue points) (b). All data can be fitted to the KD relation (Eq. (1)). The ϕJ and β
coefficients of the curves in Fig. (a) are plotted in (c) and (d), respectively. The ϕJ and β coefficients of the curves in Fig. (b),
i. e. at fixed L/D = 0.5 (red) and L/D = 4 (blue), are plotted in (e) and (f), respectively.

a function of the shear strain γ̇t, for several values of the
shear rate γ̇. As it can be observed, our results do not
depend on the chosen value of γ̇. Fig. 2(b) shows that
after a start up transient in which the viscosity increases
with strain, a plateau is reached. At this plateau, orien-
tational order (negligible for short ARs) has developed in
the system. This is shown in Fig. 2(c) where the nematic
scalar order parameter S is plotted as a function of γ̇t. To
compute the shear-induced orientational order we diago-

nalize the tensor Qαβ = 1
NR

∑NR

i=1

(
3
2u

i
αu

i
β−

δαβ

2

)
, where

α, β = x, y, z. In this definition, ui is a unit vector along
the long axis of particle i, and the sum is considered over
all the NR rods in the mixture. The scalar nematic order
parameter S is defined as the largest eigenvalue of Q.

In all cases the viscosity is measured at a value of
strain γ̇t sufficiently large for the plateau of Fig. 2(b)
to be reached. For several values of L/D ∈ [0, 4], we plot
the viscosity η of this system as a function of ϕ, with
symbols in Fig. 3(a). In all cases, we express η rescaled
by ηf . In the figure, black points represent the limiting
case L/D = 0, which corresponds to a monodisperse sus-
pension of non-Brownian frictionless spheres. The black
points in Fig. 3(a) can be fitted to the widely used
Krieger-Dougherty (KD) relation

η/ηf = α(1− ϕ/ϕJ)
−β , (1)

with fitting parameters α = 1, β = 1.6 and ϕJ = 0.644,
respectively. Moreover we show that, besides the case
L/D = 0, all the numerical data plotted in Fig. 3(a) can
be fitted to the KD relation (1), once the values of β and
ϕJ are properly fitted. All the fitted curves are plotted
with full lines in Fig. 3(a) and Fig. 3(b). The values of
β and ϕJ are plotted as a function of L/D in Figs. 3(c)

and 3(d), respectively. Analogously to ϕRCP, we find ϕJ

to vary non-monotonically as a function of L/D, with a
maximum reached at L/D = 0.75.

FIG. 4. Mean contact numbers (z) in a rod-sphere mixture at
the shear-driven jamming point ϕJ, versus the concentration
x of spheres in the mixture. The number of rods in contact
with each rod is zRR, the number of rods in contact with each
sphere is zRS, the number of spheres in contact with each rod
is zSR and the number of spheres in contact with each sphere
is zSS. Left: the rods have aspect ratio L/D = 4. Right: the
rods have aspect ratio L/D = 0.36.

After having explored the case x = 0, corresponding
(for L/D > 0) to the absence of spheres in the system,
we consider a more complex situation in which both rods
and spheres are present in the sample so that x ̸= 0. As
for the case of monodisperse rods, for rod-sphere mix-
tures it is convenient to use a collection of frictionless
spheres as a reference state. The latter situation can be
obtained in two distinct ways: either (i) choosing the
value of spheres concentration x = 1 independently of
the AR of the rods, or (ii) fixing L/D = 0 independently
of the spheres concentration x. In both cases, the depen-
dence of the viscosity η on ϕ is given by the black curve
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depicted in Fig. 3(a). To explore other non-trivial situ-
ations, while keeping the AR L/D of the rods fixed, we
compute the viscosity η of the mixture as a function of
ϕ, for several values of x ∈ [0, 1]. We repeat this protocol
for (almost) the same values of AR considered in Fig.
3(a), for L/D ∈]1, 5]. The results can be already guessed
from Fig. 3(a). Each curve plotted in this figure, indeed,
represents the case x = 0 at fixed L/D. The black curve,
instead, represents the case x = 1 for any value of L/D.
It follows that all the “colored” curves must collapse on
the black one by increasing the relative concentration x
of the spheres in the mixture.

Thus, by adding rods to spheres, two contrasting be-
haviors are observed, depending on L/D. While addition
of short rods (L/D < 2) results in a decrease of the vis-
cosity at fixed ϕ, addition of long rods (L/D ≥ 2) results
in an increase. This scenario is depicted in Fig. 3(b), il-
lustratively for the case of rods with AR L/D = 0.5 (red
points) and L/D = 4 (blue points), respectively. Full
lines represent fits to the KD relation (1) whose param-
eters are reported in Figs. 3(e) and 3(f), respectively.

This result can be interpreted in terms of the average
number of contacts per particle, z, required for a rod-
sphere mixture to be mechanically stable. The average
contact numbers for the various species computed from
the simulations are shown in Fig. 4, as a function of the
concentration of spheres x, for two ARs.

Again it is instructive to start from pure rods, x = 0.
As it is known [17, 28], the average critical contact num-
ber zJ in a monodisperse system of jammed rods increases
from the value z = 6 at L/D = 0 until a value zJ ≈ 10 is
reached at approximately L/D = 0.5 and then remains
constant upon further increment of L/D. As argued in
[17], the way zJ varies as a function of L/D provides
an explanation for the non-monotonic variation (shown
in Fig. 3(c)) of ϕJ on L/D, which is confirmed here,
for the first time, for jamming under shear flow. More
specifically, the number of degrees of freedom per parti-
cle in the system increases with L/D as rotational de-
grees of freedom add to the translational ones when rods
replace spheres [29]. The increase in the number of de-
grees of freedom per particle results in an increase of
the overall number of particle contacts zJ required to
mechanically stabilize the packing as L/D increases. In
turn, an increase of zJ, at the onset of mechanical sta-
bility is associated with an increase of the corresponding
ϕJ [28, 30]. After a certain threshold (L/D ≈ 0.5) is
reached, the number of degrees of freedom does not de-
pend on L/D anymore, then zJ remains constant after
the value z = 10 has been reached. In this situation, the
subsequent decrease of ϕJ for markedly aspherical par-
ticles in orientationally disordered packings is explained
by strong excluded-volume effects à la Onsager [28, 31].
This argument explains the non-monotonic trend of ϕJ of
rod-sphere mixtures vs L/D also in the presence of shear
flow, observed here for the first time.

A quantitative explanation of the dependence of the
viscosity η of the system on L/D follows from ϕJ be-
ing the point at which η diverges (from Eq. (1) and as
numerically shown in the above). In particular, in the
first regime where ϕJ increases with increasing L/D, the
viscosity decreases because the viscosity is always lower
when ϕJ is larger, cfr. also Eq. (1). Conversely, when ϕJ

decreases with increasing L/D (excluded-volume effects
à la Onsager), for the reasons explained above, then the
viscosity increases with further increasing L/D. How-
ever, rather than at L/D = 0.5, we find the maximum
value of ϕJ to be located at L/D = 0.75.
To summarize, for a system of pure rods there are two

different mechanisms which determine the location of the
jamming point ϕJ as a function of the AR L/D. For short
rods excluded-volume effects à la Onsager are not dom-
inant, the increase of ϕJ as a function of L/D is caused
by the increase of z due to the emergence of additional
rotational degrees of freedom. Excluded-volume effects
à la Onsager instead dominate in orientationally disor-
dered packings of long rods [28], from which a decrease
of ϕJ in the region L/D ≥ 0.75 arises. The trend of ϕJ

then determines the trend of the viscosity versus L/D,
which will be opposite, i.e. anti-correlated, to that of ϕJ,
according to Eq. (1).
This scenario can be generalized to the case of a rod-

sphere mixture. In this case, four contact numbers exist,
see Fig. 4. When spheres are added to a system of ran-
domly jammed long rods, they mainly act as to fill the
large voids between the rods. As a consequence, the jam-
ming point ϕJ, at which the viscosity diverges, increases
upon increasing the fraction of spheres, and the viscos-
ity decreases. By contrast, when spheres are added to a
system of randomly jammed short rods, they mainly act
as to reduce the number of degrees of freedoms in the
system, by effectively “killing” the rotational degrees of
freedom. As a consequence, the jamming point ϕJ de-
creases with the addition of spheres, in this regime, and
the viscosity increases.
In summary, we unveiled the shear rheology of a bi-

nary mixture of spheres and rods (spherocylinders) nu-
merically. Our main finding is that the effect of adding
rods on the viscosity of the mixture strongly depends,
in a non-monotonic fashion, on the rod aspect ratio AR.
Adding rods to spheres reduces the viscosity of the sus-
pension as long as the rods have AR L/D < 2, with a
minimum value of the viscosity at L/D = 0.75. When
rods with L/D ≥ 2 are added, instead, the viscosity dra-
matically increases. Our findings pave the way for the
rational control of viscosity for energy-saving purposes.
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