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Abstract. Let V be a finite-dimensional vector space over the complex num-
bers and let G ≤ SL(V ) be a finite group. We describe the class group of

a minimal model (that is, Q-factorial terminalization) of the linear quotient

V/G. We prove that such a class group is completely controlled by the junior
elements contained in G.
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1. Introduction

Let V be a finite-dimensional vector space over C and let G ≤ GL(V ) be a
finite group. By the classical theorem of Chevalley–Serre–Shephard–Todd [Ser68,
Théorème 1’], the linear quotient

V/G := SpecC[V ]G

of V by G is smooth if and only if G is generated by reflections, that is, elements
g ∈ G with rk(g − idV ) = 1. If V/G is singular, we also refer to this affine
variety as a quotient singularity. Regarding the class group of Weil divisors Cl(V/G)
of V/G, there is a nowadays well-known theorem by Benson [Ben93] which says
that Cl(V/G) ∼= Hom(G/K,C×), where K ≤ G is the subgroup generated by the
reflections contained in G. Restricting to subgroups G ≤ SL(V ), we will show that
the class group of a certain partial resolution of V/G can be described in a similar
way.

The inclusion G ≤ SL(V ) implies that G cannot contain any reflections and V/G
is a singular variety. Further, by [BCHM10], there is a Q-factorial terminalization
– or minimal model – φ : X → V/G, that is, a crepant, partial resolution of
singularities of V/G with at most terminal singularities; see below for the precise

Date: 15th March 2024.
2020 Mathematics Subject Classification. Primary: 14C20 Divisors, linear systems, invertible

sheaves, 13C20 Class groups; Secondary: 14E16 McKay correspondence, 20H20 Other matrix
groups over fields.

Key words and phrases. Divisor class groups, linear quotient singularities, minimal models,
junior elements.

1

ar
X

iv
:2

30
9.

05
40

2v
3 

 [
m

at
h.

A
G

] 
 2

 M
ay

 2
02

4
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definition. Q-factorial terminalizations of quotient singularities are well studied
and, starting with the famous McKay correspondence [McK80], it is often observed
that properties of φ : X → V/G are controlled only by the action of G on V ,
see for example the survey [Rei02]. This leads to the expectation that questions
regarding the birational geometry of V/G should be answered by only considering
G, see Reid’s ‘principle of the McKay correspondence’ [Rei02, Principle 1.1].

In this note, we give further evidence of this phenomenon by describing the
class group Cl(X) of X. By a version of the McKay correspondence due to Ito
and Reid [IR96], the rank of the free part of this finitely generated abelian group
coincides with the number of conjugacy classes of junior elements in G; we recall
the definition of these distinguished elements of G below. In the literature, one
further finds a sufficient condition and a full characterization of the freeness of
Cl(X) by Donten-Bury–Wísniewski [DW17, Lemma 2.11] and Yamagishi [Yam18,
Proposition 4.14], respectively.

We study the torsion part Cl(X)tors of Cl(X) and obtain a theorem, which reads
similar to Benson’s result on Cl(V/G).

Theorem 1.1 (= Theorem 5.1). Let G ≤ SL(V ) be a finite group and let H ≤ G
be the subgroup generated by the junior elements contained in G. Let φ : X → V/G
be a Q-factorial terminalization of V/G. Then we have a canonical isomorphism
of abelian groups

Cl(X)tors ∼= Hom(G/H,C×) ,

which is induced by the push-forward map φ∗ : Cl(X) → Cl(V/G).

Combining our result with [IR96] gives a complete description of the class group.

Corollary 1.2 (= Corollary 5.2). With the assumptions in Theorem 1.1, we have

Cl(X) ∼= Zm ⊕ Hom(G/H,C×) ,

where m is the number of conjugacy classes of junior elements in G.

Remark 1.3. We emphasize that by Corollary 1.2, the class group of a Q-factorial
terminalization is completely controlled by the group G itself. This agrees well with
the mentioned principle of Reid [Rei02, Principle 1.1].

Remark 1.4. We make a further philosophical observation. Recall that by the the-
orem of Chevalley–Serre–Shephard–Todd, the variety V/G is smooth if and only if
G ≤ GL(V ) is generated by reflections. This is mirrored by a theorem of Yamagishi
[Yam18, Theorem 1.1] which generalizes a result of Verbitsky [Ver00, Theorem 1.1]
and says that, if a Q-factorial terminalization X → V/G is smooth, then G ≤ SL(V )
must be generated by junior elements.

We feel that Theorem 1.1 mirrors Benson’s theorem (Theorem 2.1) in the same
way. In both cases the geometry of the linear quotient V/G is controlled by the
reflections contained in G and the junior elements control the geometry of the
Q-factorial terminalization X → V/G. Still, it appears that this picture is far from
complete. The theorem of Verbitsky and Yamagishi on the smoothness of X is
not an equivalence and the freeness of the class group also depends in a somewhat
convoluted way on the junior elements, see Remark 6.1.

Notice that the mentioned theorem of Verbitsky and Yamagishi together with
our result implies that if X is smooth, then the class group is free. This result
was already shown in [DW17, Lemma 2.11] using different methods; a stronger
statement appears in [Yam18, Proposition 4.14], see also Corollary 5.4.

To prove Theorem 1.1, we study the Cox ring R(V/G) which is graded by
Cl(V/G). This directly extends the work of [Yam18]. The Cox ring R(V/G) was
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introduced by Cox [Cox95] in the context of toric varieties and transferred to a
more general setting of birational geometry by Hu and Keel [HK00].

After fixing the notation and recalling fundamental results in Section 2, we
present a correspondence of homogeneous elements in R(V/G) and effective di-
visors on V/G in Section 3. We do not claim originality for the results in these
sections, but only unify the different sources and transfer them to our setting. In
Section 4, we analyse the grading of the Cox ring R(V/G) by Cl(V/G) in more
detail and finally use this in Section 5 to prove our theorem. We close with some
small examples in Section 6.

Acknowledgements. This paper originates from my PhD thesis [Sch23]; I thank
my supervisor Ulrich Thiel as well as Alastair Craw for valuable comments and for
encouraging me to publish this result separately. I thank the anonymous referees
for helpful comments that improved the presentation in this article and David J.
Benson for pointing out [Nak82, Theorem 2.11] in the context of Theorem 2.1 to me.
This work was supported by the SFB-TRR 195 ‘Symbolic Tools in Mathematics
and their Application’ of the German Research Foundation (DFG).

2. Preliminaries

Let V be a finite-dimensional vector space over C and let G ≤ GL(V ) be a
finite group. Note that we will restrict to subgroups of SL(V ) after a short general
discussion. Write V/G := SpecC[V ]G for the linear quotient, where C[V ]G is the
invariant ring of G. The variety V/G is normal and Q-factorial, see [Ben93].

2.1. The class group of V/G. Recall that by a reflection (or pseudo-reflection),
we mean an element g ∈ GL(V ) with rk(g− idV ) = 1. The class group of V/G was
first described by Benson [Ben93, Theorem 3.9.2] building on work of Nakajima
[Nak82, Theorem 2.11].

Theorem 2.1 (Benson). Let G ≤ GL(V ) be a finite group and let K ≤ G be the
subgroup generated by the reflections contained in G. Then there is an isomorphism

Cl(V/G) ∼= Hom(G/K,C×)

of abelian groups.

With K as in the theorem, let Ab(G/K) := (G/K)/[G/K,G/K] be the abelian-
ization of G/K and write Ab(G/K)∨ for the group of irreducible (hence linear)
characters of this group. By elementary character theory [BKZ18, Theorem I.9.5],
we have

Hom(G/K,C×) = Ab(G/K)∨

and we hence often write Ab(G/K)∨ for the class group of V/G.

2.2. Q-factorial terminalizations. From now on, let G ≤ SL(V ) be a finite
subgroup.

Definition 2.2 (Q-factorial terminalization). Let Y be a normal Q-factorial vari-
ety. A Q-factorial terminalization of Y is a projective birational morphism φ :
X → Y such that X is a normal Q-factorial variety with terminal singularities and
φ is crepant.

In our context, a Q-factorial terminalization X → V/G is often referred to as
minimal model, see for example [IR96]. However, the usage of this terminology
is not entirely uniform, which is why we decided to use the more unwieldy term
‘Q-factorial terminalization’.

We have the following special case of the deep result achieved in [BCHM10].
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Theorem 2.3 (Birkar–Cascini–Hacon–McKernan). Let G ≤ SL(V ) be a finite
group. There exists a Q-factorial terminalization of V/G.

This is [BCHM10, Corollary 1.4.3] together with the fact that V/G has canonical
singularities by the Reid–Tai criterion [Kol13, Theorem 3.21], see [Sch23, The-
orem 2.1.15] for details.

2.3. McKay correspondence. Throughout let φ : X → V/G be a Q-factorial
terminalization. A deep connection between X → V/G and the group G itself is
given by a version of the McKay correspondence due to Ito and Reid [IR96]. We
recall some notation from [IR96].

For the following definition, let g ∈ GL(V ) be of finite order r and fix a primitive
r-th root of unity ζr. Then there are integers 0 ≤ ai < r, such that the eigenvalues
of g are given by the powers ζa1

r , . . . , ζan
r , where dimV = n.

Definition 2.4 (Age and junior elements). We call the number

age(g) :=
1

r

n∑
i=1

ai

the age of g. Elements of age 1 are called junior.

By construction, the number age(g) is an integer if g ∈ SL(V ) and the junior
elements in SL(V ) are hence the non-trivial elements of minimal age 1. The age is
by definition invariant under conjugacy and we refer to the conjugacy classes of a
group G ≤ SL(V ) consisting (only) of junior elements as junior conjugacy classes.

Remark 2.5. The age as defined above depends on the choice of the root of unity
ζr, although this is hidden in the notation. See [IR96, p. 224, Remark 3] for
an example demonstrating this. However, the subgroup generated by the junior
elements, which is relevant for Theorem 1.1, is independent of any choices. We give
a short argument for this in Appendix A, see Lemma A.4.

Definition 2.6 (Monomial valuation). For non-negative integers a1, . . . , an ∈ Z≥0

with gcd(a1, . . . , an) = 1, we construct a discrete valuation v : C(x1, . . . , xn) → Z
defined on C[x1, . . . , xn] via∑

α∈Zn
≥0

λαx
α1
1 · · ·xαn

n 7→ min
α∈Zn

≥0

λα ̸=0

n∑
i=1

αiai .

We call v a monomial valuation.

This construction indeed gives a well-defined discrete valuation, see [Kal02, Defini-
tion 2.1].

Notation 2.7. Let g ∈ SL(V ) of finite order r be a junior element with respect to
the primitive r-th root of unity ζr. That is, the eigenvalues of g are ζa1

r , . . . , ζan
r

with 1
r

∑n
i=1 ai = 1. For d := gcd(a1, . . . , an), we obtain 1

d as the age of g with

respect to the root of unity ζdr . As age(g) is an integer, we conclude d = 1 and we
can therefore define a monomial valuation

vg : C(x1, . . . , xn) → Z

for g via a1, . . . , an.

The construction of vg again depends on the choice of a root of unity, see Re-
mark 2.5 above. The valuation vg is stable under conjugacy of g and we can hence
associate valuations to conjugacy classes in G without needing to specify a partic-
ular representative.
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Theorem 2.8 (Ito–Reid, ‘McKay correspondence’). Let G ≤ SL(V ) be a finite
group and let X → V/G be a Q-factorial terminalization. Then there is a one-to-
one correspondence between the junior conjugacy classes of G and the irreducible
exceptional divisors on X.

More precisely, if E is a divisor corresponding to a conjugacy class of a junior
element g ∈ G of order r in this way, then vE = 1

rvg, where vE is the valuation of

E and we identify C(X) = C(V )G via the birational morphism X → V/G.

See [IR96, Section 2.8] for a proof.
Let m ∈ Z≥0 be the number of junior conjugacy classes in G. Using [Har77,

Proposition II.6.5 (c)], we have an exact sequence of abelian groups⊕m
i=1 ZEi Cl(X) Cl(V/G) 0 ,

φ∗
(1)

where Ei are the irreducible exceptional divisors on X. As Cl(V/G) is finitely
generated, this implies that Cl(X) is finitely generated as well.

Notation 2.9. We write Cl(X)tors ≤ Cl(X) for the torsion subgroup of Cl(X) and
Cl(X)free for the corresponding factor group, that is, Cl(X)free = Cl(X)/Cl(X)tors.

The sequence in (1) can be extended to a short exact sequence by Grab [Gra19].

Proposition 2.10 (Grab). There is a short exact sequence of abelian groups

0
⊕m

i=1 ZEi Cl(X) Cl(V/G) 0 ,
φ∗

where Ei ∈ Div(X) are the irreducible components of the exceptional divisor of φ
and φ∗ : Cl(X) → Cl(V/G) is the induced push-forward map.

See [Gra19, Proposition 4.1.3] for a proof.

Remark 2.11. As Cl(V/G) is a torsion group, we can deduce with Theorem 2.8 and
Proposition 2.10 that Cl(X)free ∼= Zm for the free part of Cl(X), where m ∈ Z≥0 is
the number of junior conjugacy classes in G.

2.4. Cox rings. To understand the torsion part Cl(X)tors of Cl(X) we use the
Cox ring R(V/G) of V/G. The precise definition of this ring for a normal variety
Y is a bit involved and here we just remark that if the class group Cl(Y ) is a free
group, we have

R(Y ) =
⊕

[D]∈Cl(Y )

Γ(Y,OY (D)) ,

see [ADHL15, Section 1.4] for the general case. The Cox ring is well-defined for
normal varieties Y with finitely generated class group Cl(Y ) under the additional
assumption Γ(Y,O×

Y ) = C×. These properties are in particular fulfilled for linear
quotients V/G and we may hence speak about the Cox ring R(V/G).

We summarize a result on the Cox ring of R(V/G) by Arzhantsev and Gǎıfullin
[AG10]. Recall that Cl(V/G) ∼= Ab(G)∨ as G ≤ SL(V ) cannot contain any reflec-
tions. There is an action of Ab(G) on the ring C[V ][G,G] induced by the action of
G. This action induces a grading by Ab(G)∨ by setting the graded component of
a character χ ∈ Ab(G)∨ to be

C[V ][G,G]
χ := {f ∈ C[V ][G,G] | γ.f = χ(γ)f for all γ ∈ Ab(G)} ,

where we write γ.f for the action of γ ∈ Ab(G) on f ∈ C[V ][G,G].

Theorem 2.12 (Arzhantsev–Gǎıfullin). Let G ≤ SL(V ) be a finite group. Then
there is an Ab(G)∨-graded isomorphism R(V/G) ∼= C[V ][G,G].

See [AG10, Theorem 3.1] for a proof.
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3. Correspondence of effective divisors and homogeneous elements

To be able to deduce information about Cl(X), we use the connection between
effective divisors and canonical sections in the Cox ring R(V/G) of V/G. We recall
this correspondence and adapt it to our setting.

Notation 3.1. For a divisor D ∈ Div(V/G), we write χ[D] ∈ Ab(G)∨ for the char-
acter corresponding to the class [D] ∈ Cl(V/G) under the isomorphism in The-
orem 2.1.

Remark 3.2. Working with the ring R(V/G) brings two subtle problems. First of
all, homogeneous elements f ∈ R(V/G) are only residue classes of elements of the
function field C(V )G as Cl(V/G) is a torsion group. We hence cannot immediately
identify such elements f with a function in C(V )G. However, for a divisor D ∈
Div(V/G) we have an isomorphism

ψD : Γ(V/G,OV/G(D)) → R(V/G)[D]

by [ADHL15, Lemma 1.4.3.4]. That means, once we fixed a representative of the
degree of a homogeneous element f ∈ R(V/G) we can uniquely lift f to an element
of C(V )G.

The second problem comes from the fact that we make heavy use of the graded
isomorphism Ψ : R(V/G) → C[V ][G,G] as in Theorem 2.12 to the extent that one
might forget that the isomorphism is not an identity. This is in particular important
when we work with a valuation v : C(V ) → Z. We can only use v on elements of
C[V ][G,G] and cannot apply v to elements of R(V/G) in a well-defined way without
choosing a system of representatives for the class group. For D ∈ Div(V/G), we
have an isomorphism of vector spaces

ψ̃D : Γ(V/G,OV/G(D)) → C[V ][G,G]
χ[D]

by setting ψ̃D := Ψ ◦ ψD. Notice that for the trivial divisor, this gives an identity
as we have

Γ(V/G,OV/G(0)) = C[V ]G = C[V ]
[G,G]
1 ,

where 1 denotes the trivial character.

Notation 3.3. Let χ ∈ Ab(G)∨ and let D ∈ Div(V/G) with χ = χ[D]. For a

homogeneous element 0 ̸= f ∈ C[V ]
[G,G]
χ , let f̃ ∈ C(V )G be the rational function

mapping to f via the isomorphism determined by D as in Remark 3.2. We associate
to f an effective divisor

div[D](f) := div(f̃) +D ∈ Div(V/G) ,

the [D]-divisor of f . This construction is well-defined, see [ADHL15, Proposi-
tion 1.5.2.2]. In particular, the [D]-divisor is independent of the choice of the
representative D. We have [div[D](f)] = [D] by definition.

The construction of a [D]-divisor is not limited to our setting; see [ADHL15,
Construction 1.5.2.1] for more details and the general case. We point out that
f ∈ C[V ][G,G] is in general not an element of C(V )G, that is, there is no meaning
in writing div(f).

The [D]-divisor behaves well with respect to the multiplication of elements.

Lemma 3.4. For non-zero homogeneous elements f ∈ C[V ]
[G,G]
χ[D1]

and g ∈ C[V ]
[G,G]
χ[D2]

,
we have

div[D1]+[D2](fg) = div[D1](f) + div[D2](g) .

See [ADHL15, Proposition 1.5.2.2 (iii)] for a proof.
We have a converse to the construction of the [D]-divisor.



THE CLASS GROUP OF A MINIMAL MODEL OF A QUOTIENT SINGULARITY 7

Proposition 3.5. Let E ∈ Div(V/G) be an effective divisor. There exist a class

[D] ∈ Cl(V/G) and an element f ∈ C[V ]
[G,G]
χ[D]

with E = div[D](f). The element f
is unique up to constants; it is called a canonical section of E.

See [ADHL15, Proposition 1.5.2.2 (i)] and [ADHL15, Proposition 1.5.3.5 (ii)] for a
proof.

Using the correspondence between effective divisors and homogeneous elements
one can derive a precise description of the image of the strict transform of an
effective divisor D ∈ Div(V/G) in the free group Cl(X)free. The general idea of this
argument appeared to our knowledge first in [DW17, Lemma 3.22]. We require a
bit of notation.

Recall that by Theorem 2.8 we have a one-to-one correspondence between the
junior conjugacy classes of G and the irreducible components of the exceptional
divisor of φ : X → V/G. Let {g1, . . . , gm} ∈ G be a minimal set of represent-
atives of the junior conjugacy classes corresponding to exceptional prime divisors
E1, . . . , Em ∈ Div(X). For each i ∈ {1, . . . ,m}, write vi for the monomial valuation
on C(V ) defined by gi and recall from Theorem 2.8 that we have vEi

= 1
ri
vi, where

vEi
is the divisorial valuation of Ei and ri the order of gi.

The following also appears in [Gra19, Proposition 4.1.9]. We present the argu-
ment from [Yam18, Lemma 4.3] for completeness. Denote the canonical projection
by ρ : Cl(X) → Cl(X)free.

Proposition 3.6. Let D ≥ 0 be an effective divisor on V/G and let f ∈ C[V ]
[G,G]
χ[D]

be a canonical section. Write D := φ−1
∗ (D) for the strict transform of D via φ.

Then we have the equality

ρ([D]) = −
m∑
i=1

1

ri
vi(f)ρ([Ei])

in Cl(X)free.

Proof. As f is homogeneous with respect to the action of Ab(G), there is r ∈ Z>0

such that fr ∈ C[V ]
[G,G]
1 = C[V ]G ⊆ C(V )G and rD is principal. In particular, we

have
rD = div[rD](f

r) = div[0](f
r) = div(fr) ,

where the first equality is by Lemma 3.4, the second by the independence of choice
of representative and the third is by the fact that fr ∈ C[V ]G, see Remark 3.2.
Then we have

div(φ∗(fr)) = rD +

m∑
i=1

vEi(φ
∗(fr))Ei .

Hence, we have the equality of classes

[rD] = −
m∑
i=1

vEi
(φ∗(fr))[Ei]

in Cl(X). Now vEi
(φ∗(fr)) = 1

ri
vi(f

r) by Theorem 2.8. Noting that vi is a

valuation on C(V ) (and not just C(V )G) this yields

[rD] = −
m∑
i=1

r

ri
vi(f)[Ei] .

We may finally cancel r in the free group Cl(X)free giving

ρ([D]) = −
m∑
i=1

1

ri
vi(f)ρ([Ei]) .

□
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Remark 3.7. Notice that the proof of Proposition 3.6 in fact computes the degree of
a preimage of the canonical section f under a graded surjective morphism R(X) →
R(V/G) induced by φ. See [ADHL15, Proposition 4.1.3.1] for the construction of
this morphism between the Cox rings.

4. A digression on gradings

To understand the group Cl(X), we first have to get a better understanding of
the grading of C[V ][G,G] by Ab(G)∨. Unfortunately, there are a few subtle details
involved, turning this into quite a technical discussion.

Again, let g1, . . . , gm ∈ G be representatives of the junior conjugacy classes
corresponding to the exceptional divisors E1, . . . , Em ∈ Div(X) of φ and write
v1, . . . , vm for the monomial valuations corresponding to the gi.

At first, fix i ∈ {1, . . . ,m}. Let the eigenvalues of gi be given by ζ
ai,1
ri , . . . , ζ

ai,n
ri

with a primitive ri-th root of unity ζri and integers 0 ≤ ai,j < ri, where ri is the
order of gi in G and n = dimV . This induces a Z-grading degi on C[x1, . . . , xn] by
putting degi(xj) := ai,j . For a polynomial f ∈ C[x1, . . . , xn], the valuation vi(f)
is then the degree of the homogeneous component of f of minimal degree with
respect to degi. Notice that in this construction, we consider V in an eigenbasis of
gi giving rise to the isomorphism C[V ] ∼= C[x1, . . . , xn]. However, the grading degi

is well-defined on C[V ] for any basis of V , although the variables of the polynomial
ring are in general not homogeneous. As we endow the same ring with gradings by
different groups, we use the non-standard notation (C[V ],Z,degi) for the ring C[V ]
graded by Z via degi.

The group ⟨gi⟩ acts on C[V ] and hence induces a grading by ⟨gi⟩∨ ∼= Z/riZ,
which we denote by degi. Write (C[V ],Z/riZ,degi) for the ring C[V ] graded by
Z/riZ via degi. We directly obtain:

Lemma 4.1. With the above notation, if f ∈ C[V ] is degi-homogeneous, then f is
degi-homogeneous as well and we have

degi(f) ≡ degi(f) mod ri .

In particular, there is a graded morphism

(C[V ],Z,degi) → (C[V ],Z/riZ,degi)

given by the identity on the rings and by the projection Z → Z/riZ on the grading
groups.

Write gi.f for the linear action of gi on f ∈ C[V ]. Observe that for every
1 ≤ i ≤ m we have an action of gi on C[V ][G,G]. Indeed, for any f ∈ C[V ][G,G] and
h ∈ [G,G], we have

h.(gi.f) = (hgi).f = (hgi).((g
−1
i h−1gih).f) = gi.(h.f) = gi.f ,

so gi.f ∈ C[V ][G,G] as required. Hence the grading by ⟨gi⟩∨ descends to C[V ][G,G].
As the actions of the elements g1, . . . , gm on C[V ][G,G] commute, we can consider
all the induced gradings at the same time and hence obtain a grading by the group
Z/r1Z× · · · × Z/rmZ on C[V ][G,G].

The gi do not commute with each other in general, so we cannot decompose
their actions on C[V ] into a common eigenbasis. Hence, we cannot put the above
gradings together to obtain a grading by Zm or Z/r1Z × · · · × Z/rmZ on C[V ]
as there are in general no polynomials which are homogeneous with respect to all
gradings at the same time.

Let H ≤ G be the subgroup of G generated by the junior elements contained in
G. In general, the representatives g1, . . . , gm do not suffice to generate H. Let

H := H/(H ∩ [G,G]) ≤ Ab(G)
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and notice that this group is generated by the residue classes g1, . . . , gm modulo
[G,G]. This gives a map

⟨g1⟩ × · · · × ⟨gm⟩ → Ab(G) ,

which is surjective onto H. This surjection corresponds to an embedding of charac-

ter groups H
∨ → Z/r1Z×· · ·×Z/rmZ. Further, the inclusion H → Ab(G) induces

a projection of characters Ab(G)∨ → H
∨

by restriction. We conclude:

Lemma 4.2. The gradings on C[V ][G,G] coming from the actions of the groups
Ab(G), H and ⟨g1⟩ × · · · × ⟨gm⟩ are compatible in the sense that there is a graded
morphism

(C[V ][G,G],Ab(G)∨) → (C[V ][G,G],Z/r1Z× · · · × Z/rmZ)

which factors through (C[V ][G,G], H
∨

).

We state for later reference:

Lemma 4.3. We have Ab(G/H) ∼= Ab(G)/H and H
∨ ∼= Ab(G)∨/Ab(G/H)∨.

Proof. For the first statement, we note that the image of [G,G] under the projection
G→ G/H is [G/H,G/H]. Hence,

Ab(G/H) ∼= (G/H)/([G,G]/[G,G] ∩H) ∼= G/(H[G,G])

and an application of the isomorphism theorems gives the claim. The second state-
ment follows directly as ∨ is a contravariant functor. □

The following three lemmas are key ingredients for our theorem on Cl(X).

Lemma 4.4. Let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous. For every index i ∈
{1, . . . ,m}, we have vi(f) ≡ degi(f) mod ri.

Proof. Let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous. Fix an i ∈ {1, . . . ,m}. Then f
is degi-homogeneous by Lemma 4.2. By Lemma 4.1, there exist degi- and degi-ho-
mogeneous elements fi,j ∈ C[V ] such that f =

∑
j fi,j and degi(fi,j) < degi(fi,j′)

whenever j < j′. In particular, we have degi(fi,1) = vi(f) and degi(fi,1) = degi(f).
Hence, we conclude

vi(f) ≡ degi(fi,1) = degi(f) mod ri

by Lemma 4.1. □

Lemma 4.5. Let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous. We have ri | vi(f) for
all i ∈ {1, . . . ,m} if and only if f ∈ C[V ]H , where H ≤ G is the subgroup generated
by the junior elements contained in G.

Proof. By Lemma 4.4, we have vi(f) ≡ degi(f) mod ri for every i. Therefore,
ri | vi(f) is equivalent to degi(f) = 0 for every i. Equivalently, every gi acts
trivially on f . Since f is furthermore [G,G]-invariant, we conclude that this is
the case if and only if every junior element in G leaves f invariant and hence
f ∈ C[V ]H . □

Lemma 4.6. Let [D] ∈ Cl(V/G) be a class of divisors. There exists a homogeneous
element in C[V ][G,G] of degree χ[D].

Proof. This is saying that the relative invariants with respect to the linear charac-
ters of Ab(G) on C[V ][G,G] are non-empty which holds by [Nak82, Lemma 2.1]. □

Notice that the lemma also implies that we can find an effective divisor in any
class of divisors in Cl(V/G).
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5. The class group

We are now prepared for our theorem.

Theorem 5.1. Let G ≤ SL(V ) be a finite group and let H ≤ G be the subgroup
generated by the junior elements contained in G. Let φ : X → V/G be a Q-factorial
terminalization of V/G. Then we have a canonical isomorphism of abelian groups

Cl(X)tors ∼= Ab(G/H)∨ = Hom(G/H,C×) ,

which is induced by the push-forward map φ∗ : Cl(X) → Cl(V/G).

Proof. For ease of notation, we identify Cl(V/G) with Ab(G)∨ via Theorem 2.1 and
use both groups synonymously. Notice that Ab(G/H)∨ is the subgroup of Ab(G)∨

consisting of those characters which take value 1 on every junior element. We claim
that restricting φ∗ to Cl(X)tors induces a bijection onto Ab(G/H)∨.

We first show that we indeed have φ∗(Cl(X)tors) ⊆ Ab(G/H)∨. Let D ∈ Div(X)
be a divisor on X. By Lemma 4.6, there is f ∈ C[V ][G,G] of degree χ[φ∗D] and we
have the effective divisor D′ := div[φ∗D](f) on V/G with [D′] = [φ∗D]. Write

D′ ∈ Div(X) for the strict transform of D′ via φ. Then φ∗D′ = D′, hence by
Proposition 2.10 we have

[D′] = [D] +

m∑
i=1

ai[Ei] ,(2)

with ai ∈ Z and where E1, . . . , Em ∈ Div(X) are the irreducible components of the
exceptional divisor of φ. As before let ρ : Cl(X) → Cl(X)free := Cl(X)/Cl(X)tors

be the canonical projection. Applying ρ on both sides of (2) and using Proposi-
tion 3.6 yields

ρ([D]) = −
m∑
i=1

1

ri
vi(f)ρ([Ei]) −

m∑
i=1

aiρ([Ei]) .(3)

Assume now [D] ∈ Cl(X)tors. Then ρ([D]) = 0 and we conclude by (3) that
vi(f) = −riai for all i and, in particular, ri | vi(f). Hence, f ∈ C[V ]H by Lemma 4.5
and therefore we can identify [D′] = [φ∗D], or more precisely χ[φ∗D], with an

element of Hom(G/H,C×). This means that we obtain a well-defined map

ψ : Cl(X)tors → Hom(G/H,C×), [D] 7→ [φ∗D]

by restricting φ∗ to Cl(X)tors.
We now prove that ψ is bijective. For injectivity, notice that the morphism of

groups

ϑ : Cl(X) → Cl(V/G) ⊕ Cl(X)free, [D] 7→ ([φ∗D], ρ([D]))

is injective. This follows from the exactness of the sequence in Proposition 2.10 noti-
cing that the group

⊕m
i=1 ZEi embeds into Cl(X)free, see also [Gra19, Lemma 4.1.4].

The injectivity of ϑ implies the injectivity of ψ: if we have ψ([D]) = ψ([D′]) for
[D], [D′] ∈ Cl(X)tors, then ϑ([D]) = ϑ([D′]) as by construction ρ([D]) = 0 =
ρ([D′]).

Now let χ ∈ Hom(G/H,C×) be a character, which we identify with a class of

divisors [D] ∈ Cl(V/G). By Lemma 4.6, there exists 0 ̸= f ∈ C[V ]
[G,G]
χ and we

may assume without loss of generality that D ∈ Div(V/G) is effective and f is the
canonical section of D as in Proposition 3.5. By the assumption on χ, we have
1
ri
vi(f) ∈ Z for all i by Lemma 4.5. Let

E := −
m∑
i=1

1

ri
vi(f)Ei ∈ Div(X)
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and set D′ := D − E, where D := φ−1
∗ (D) is the strict transform of D via φ. By

Proposition 2.10, we have [E] ∈ ker(φ∗) and therefore [φ∗D
′] = [φ∗D] = [D]. Using

Proposition 3.6, we have ρ([D]) = ρ([E]), hence ρ([D′]) = 0 and [D′] ∈ Cl(X)tors.
We conclude ψ([D′]) = [D] and ψ is surjective. □

Combining Theorem 2.8, see Remark 2.11, and Theorem 5.1 enables us to de-
scribe the class group of X in general.

Corollary 5.2. Let G ≤ SL(V ) be a finite group and let H ≤ G be the subgroup
generated by the junior elements contained in G. Let φ : X → V/G be a Q-factorial
terminalization of V/G. Then we have

Cl(X) ∼= Zm ⊕ Ab(G/H)∨,

where m is the number of junior conjugacy classes in G. Further, the canonical

embedding ι :
⊕m

i=1 ZEi → Cl(X)free satisfies coker(ι) = H
∨

with H := H/(H ∩
[G,G]) as above.

Proof. The first part follows directly from the mentioned theorems. For the second
part, we combine Proposition 2.10 and the first part to obtain Ab(G)∨ ∼= coker(ι)⊕
Ab(G/H)∨ and then the claim follows by Lemma 4.3. □

Remark 5.3. As the isomorphism in Theorem 5.1 is induced by φ∗, we can see the
sequence in Proposition 2.10 as the direct sum of the short exact sequences

0
⊕m

i=1 ZEi Cl(X)free H
∨

0

and

0 0 Cl(X)tors Ab(G/H)∨ 0 .

We obtain [Yam18, Proposition 4.14] as a further corollary.

Corollary 5.4 (Yamagishi). Let G ≤ SL(V ) be a finite group and let φ : X → V/G
be a Q-factorial terminalization of V/G. Then the class group Cl(X) is free if and
only if G is generated by the junior elements contained in G together with [G,G].

6. Examples and closing remarks

Remark 6.1. Note that in Corollary 5.4 we cannot drop the part ‘together with
[G,G]’ for the equivalence, that is, there are groups which are not generated by
junior elements such that Cl(X) is free. For example, let I ≤ SL2(C) be the binary
icosahedral group [LT09, Theorem 5.14] and set G := {diag(g, g) | g ∈ I} ≤ SL4(C).
The abelianization Ab(I) = {1} is trivial, so the same is true for Ab(G). However,
every non-trivial element in I is of age 1, hence all non-trivial elements of G are
of age 2 and G does not contain any junior elements. Hence, the class group of a
Q-factorial terminalization of C4/G is trivial and therefore free. For an example of
a non-trivially free class group, one considers the direct product of G with a group
generated by junior elements.

Example 6.2. As a ‘reality check’, let G ≤ SL(V ) be a group which does not con-
tain any junior elements. Then age(g) > 1 for every non-trivial g ∈ G, so V/G has
terminal singularities by [Kol13, Theorem 3.21]. Hence, V/G is a Q-factorial termi-
nalization of itself and Corollary 5.2 gives Cl(V/G) = Ab(G)∨ as in Theorem 2.1.

Example 6.3. For a non-trivial example, we consider the group

G :=
〈
diag(−1,−1,−ζ3,−ζ23 )

〉
≤ SL4(C)

of order 6, where ζ3 is a primitive third root of unity. As G does not contain any
reflections, we have Cl(C4/G) ∼= Z/6Z.
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To determine the age of elements in G, we need to fix a primitive sixth root
of unity. However, the two possible choices −ζ3 and −ζ23 both result in the same
junior elements of G, namely

g1 := diag(1, 1, ζ23 , ζ3) and g2 := diag(1, 1, ζ3, ζ
2
3 ) .

By the Reid–Tai criterion [Kol13, Theorem 3.21], the existence of junior elements
in G implies that V/G is not terminal. As G is abelian, the conjugacy classes in G
are trivial. So, the rank of the free part of the class group Cl(X) of a Q-factorial
terminalization X → C4/G is 2. For the torsion part, we determine that G/H ∼= C2

is cyclic of order 2 and we conclude

Cl(X) ∼= Z2 ⊕ Z/2Z .

We write the elements of Cl(X) as 3-tuples with the first two entries correspond-
ing to the free part and the last entry corresponding to the torsion part. Then the
push-forward morphism Cl(X) → Cl(C4/G) is induced by

(1, 0, 0) 7→ g1, (0, 1, 0) 7→ g2, (0, 0, 1) 7→ −I4 ,

where I4 denotes the identity matrix.

Appendix A. Age revisited

Recall that for g ∈ G the integer age(g) depends on a choice of root of unity. In
this appendix, we study this issue in more detail to show that the results in this
paper are in fact independent of any choices.

Remark A.1. In [IR96], Ito and Reid avoid making any choices by defining the age
not for the group G, but for the set Γ := Hom(µR, G), where µR is the group of
roots of unity of order R and R is a common multiple of the orders of the elements
of G. On Γ, the notion of age is independent of any choices. Any primitive root of
unity ζ ∈ C× of order R gives a bijection Γ → G, φ 7→ φ(ζ) and one may endow Γ
with a group operation via this map. However, for the arguments in this paper we
need a notion of age on G; this is quite common, see for example [Rei02].

First of all, to be able to speak about junior elements in a uniform way, we
introduce the following definition. Let e(G) be the exponent of G and let ζ ∈ C×

be a primitive e(G)-th root of unity. For any g ∈ G, we have ge(G) = idV , so there

are 0 ≤ a′i < e(G) such that the eigenvalues of g are given by ζa
′
i , i = 1, . . . , n, with

n := dimV . If r is the order of g, we must have e(G)
r | a′i and set ai :=

ra′
i

e(G) ∈ Z.

Definition A.2. With the above notation, we set ageζ(g) := 1
r

∑n
i=1 ai. We call

the integers a1, . . . , an the weights of g with respect to ζ. We call g a ζ-junior
element, if ageζ(g) = 1.

The integer ageζ(g) coincides with age(g) as constructed above for an appropriate
choice of ζ.

Lemma A.3. Let ζ, η ∈ C× be primitive e(G)-th roots of unity. Then there is a
bijection (of sets) φ : G→ G such that ageη(φ(g)) = ageζ(g) for all g ∈ G. Further,
the weights of g ∈ G with respect to ζ and φ(g) with respect to η coincide.

Proof. By assumption, there is a ∈ Z>0 with η = ζa and gcd(a, e(G)) = 1. Then
there is b ∈ Z>0 with ab ≡ 1 mod e(G). Hence we have a map

φ : G→ G, g 7→ ga

with inverse g 7→ gb.
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Let g ∈ G be an element of order r ∈ Z>0. There are 0 ≤ ai < r such that the

eigenvalues of g are given by ζ
e(G)ai

r . Then the eigenvalues of φ(g) are given by

(ζ
e(G)ai

r )a = η
e(G)ai

r and

ageη(φ(g)) =
1

r

n∑
i=1

ai = ageζ(g)

as claimed. □

Lemma A.4. Let ζ, η ∈ C× be primitive e(G)-th roots of unity and write Hζ ≤ G,
respectively Hη ≤ G, for the subgroup of G generated by the ζ-junior elements,
respectively the η-junior elements. Then we have Hζ = Hη.

Proof. Let φ : G → G be the bijection in Lemma A.3, so taking powers by some
a ∈ Z>0. If g ∈ Hζ is a ζ-junior element, then φ(g) = ga ∈ Hη is an η-junior
element. Further, we clearly have ga ∈ Hζ , hence Hη ⊆ Hζ and an analogous
argument gives the reverse inclusion. □
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automorphisms of affine varieties’. In: Mat. Sb. 201.1 (2010), pp. 3–24.

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon and James Mc-
Kernan. ‘Existence of minimal models for varieties of log general type’.
In: J. Amer. Math. Soc. 23.2 (2010), pp. 405–468.

[Ben93] David J. Benson. Polynomial invariants of finite groups. Vol. 190. Lon-
don Mathematical Society Lecture Note Series. Cambridge: Cambridge
University Press, 1993.

[BKZ18] Yakov G. Berkovich, Lev S. Kazarin and Emmanuel M. Zhmud’. Char-
acters of finite groups. Vol. 1. second. Vol. 63. De Gruyter Expositions
in Mathematics. Berlin: De Gruyter, 2018.

[Cox95] David A. Cox. ‘The homogeneous coordinate ring of a toric variety’.
In: J. Algebraic Geom. 4.1 (1995), pp. 17–50.

[DW17] Maria Donten-Bury and Jaros law A. Wísniewski. ‘On 81 symplectic
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