
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.1120000

GReAT: A Graph Regularized Adversarial Training
Method
SAMET BAYRAM1, (Member, IEEE), KENNETH BARNER2, (Fellow, IEEE)
1Electrical and Computer Engineering Department, University of Delaware, Newark, DE 19716 USA (e-mail: sbayram@udel.edu)
2Electrical and Computer Engineering Department, University of Delaware, Newark, DE 19716 USA (e-mail: barner@udel.edu)

Corresponding author: Samet Bayram (e-mail: sbayram@udel.edu).

ABSTRACT This paper presents GReAT (Graph Regularized Adversarial Training), a novel regularization
method designed to enhance the robust classification performance of deep learning models. Adversarial
examples, characterized by subtle perturbations that can mislead models, pose a significant challenge in ma-
chine learning. Although adversarial training is effective in defending against such attacks, it often overlooks
the underlying data structure. In response, GReAT integrates graph-based regularization into the adversarial
training process, leveraging the data’s inherent structure to enhance model robustness. By incorporating
graph information during training, GReAT defends against adversarial attacks and improves generalization
to unseen data. Extensive evaluations on benchmark datasets demonstrate that GReAT outperforms state-
of-the-art methods in robustness, achieving notable improvements in classification accuracy. Specifically,
compared to the second-best methods, GReAT achieves a performance increase of approximately 4.87% for
CIFAR-10 against FGSM attack and 10.57% for SVHN against FGSM attack. Additionally, for CIFAR-10,
GReAT demonstrates a performance increase of approximately 11.05% against PGD attack, and for SVHN,
a 5.54% increase against PGD attack. This paper provides detailed insights into the proposed methodology,
including numerical results and comparisons with existing approaches, highlighting the significant impact
of GReAT in advancing the performance of deep learning models.

INDEX TERMS Adversarial examples, adversarial learning, adversarial training, graph regularization,
image classification, semi-supervised learning, robustness.

I. INTRODUCTION

DEEP learning is a subset of machine learning (ML)
that uses artificial neural networks with multiple lay-

ers and neurons to analyze and learn from large amounts
of data. Deep learning algorithms automatically learn and
extract relevant features from the data to make predictions.
The feature extraction process allows algorithms to achieve
higher levels of accuracy and perform more complex tasks.
In recent decades, deep learning has achieved impressive
results in various domains, including image and text classi-
fication, speech recognition, image generation, and natural
language processing [1], [2], [3]. Supervised learning meth-
ods achieved the most successful results. In this learning
technique, the model is trained on a labeled dataset, meaning
the input data is accompanied by its corresponding output
labels. Supervised learning aims to predict new, unseen data
based on the patterns learned from the labeled data. Deep
neural networks adjust the weights and biases of the network
through back-propagation using output labels and original

labels.
Semi-supervised learning combines both supervised and

unsupervised learning techniques. In this type of learning, a
model is trained on a data set that has labeled and unlabeled
instances. The goal is to use the labeled data to make pre-
dictions on unlabeled and new, unseen, data. This method is
used often when there is a limited amount of labeled data but a
larger amount of unlabeled data. There are various algorithms
for propagating labels through the graph, such as label prop-
agation [4, 5], pseudo-labeling [6], transductive SVMs [7],
and self-training [8]. Label propagation provides outstanding
performance for semi-supervised learning to classify graph
nodes. It is based on the idea that a node’s labels can be
propagated to its neighbors based on the assumption that
nodes with similar labels are more likely to be connected.
Despite their significant success, deep learning models

are known to be vulnerable to adversarial examples. These
examples are created by adding small, carefully chosen per-
turbations to the input data. The perturbed data remain vi-
sually similar to the original data, but are misclassified by

VOLUME 11, 2023 1

ar
X

iv
:2

31
0.

05
33

6v
2 

 [
cs

.L
G

] 
 3

 M
ay

 2
02

4



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

the model [9–11]. The existence of adversarial examples has
drawn significant attention to the machine-learning commu-
nity. Showing the vulnerabilities of machine learning algo-
rithms has opened critical research areas in the attack and
robustness areas. Studies have shown that adversarial attacks
are highly effective on many existing AI systems, especially
on image classification tasks; [10, 12–18]. For instance, [12]
show that even small perturbations in input testing images can
significantly change the classification accuracy.

The authors of [9] attempt to explain the existence of adver-
sarial examples and proposes one of the first efficient attack
algorithms in white–box settings. [19] proposed projected
gradient descent (PGD) as a universal first-order adversarial
attack. They stated that network architecture and capacity
play a significant role in adversarial robustness. Notable other
popular adversarial attack methods are the Carlini-Wagner
Attack (CW) [10], Basic Iterative Method (BIM) [16], and
Momentum Iterative Attack [20]. [21] show the transferabil-
ity of black-box attacks among different ML models.

Adversarial defense mechanisms can broadly be classi-
fied into three categories. The first category predominantly
centers on pre-processing techniques tailored for DL mod-
els to mitigate adversarial perturbations in the adversarial
examples. Methods in this category include feature denois-
ing [22], Fourier filtering [23] and random resizing coupled
with random padding [24] among others. The second category
targets modifications in the architecture of neural networks,
including alterations in activation functions [25], adaptations
to learning processes such as distillation [26], the introduc-
tion of novel loss functions [27] and adjustments in training
procedures [9]. The last category attempts to implement the
combination of the first two categories.

The authors of [28] introduce two adversarial training
methods, topology aligning adversarial training (TAAT) and
adversarial topology aligning (ATA), which leverage topol-
ogy information to maintain consistency in the topological
structure within the feature space of both natural and adver-
sarial examples, and further introduce a Knowledge-Guided
(KG) training scheme to ensure stability and efficiency in
topology alignment. TRADES (tradeoff-inspired adversarial
defense via surrogate-loss minimization) [29] focuses on de-
composing the prediction error for adversarial examples into
natural error and boundary error. The authors also introduce a
differentiable upper bound using the theory of classification-
calibrated loss, which serves as the foundation for their de-
fense method, TRADES, designed to trade off adversarial
robustness against accuracy.

The authors of adversarial logit pairing (ALP) [30] in-
troduce a technique called logit pairing, which encourages
similarity between logits for pairs of examples, resulting
in improved accuracy on adversarial examples compared to
standard adversarial training [19]. Triplet Loss Adversarial
(TLA) training [31] introduces a metric learning approach
to regularize the representation space under attack, result-
ing in increased robustness of classifiers against adversarial
attacks. Adversarial Contrastive Learning (ACL) [32] en-

hances robustness-aware self-supervised pre-training by in-
corporating adversarial perturbations into a contrastive learn-
ing framework. This approach improves feature consistency
under both data augmentations and adversarial perturbations,
leading to models that are label-efficient and robust.
The existing literature underscores the effectiveness of un-

labeled samples in improving deep learning performance [4,
33–35]. Additionally, studies show that unlabeled data im-
prove adversarial robustness, [36]. Motivated by these in-
sights, we propose a Graph-Regularized Adversarial Training
method (GReAT) to improve the robustness performance. The
proposed method utilizes the structural information from the
input data to improve the robustness of deep learning models
against adversarial attacks. The main idea within GReAT is to
construct a graph representation of clean data with an adver-
sarial neighborhood, where each node represents a data point,
and the edges encode the similarity between the nodes. This
approach allows us to incorporate the structural information
from the data into the training process, which helps create
robust classification models. To evaluate the effectiveness of
our approach, we conduct experiments on data sets: Tensor-
Flow’s flower data set [37] and CIFAR-10 [38]. We compare
GReAT with several state-of-the-art methods. The results
show that the proposed approach consistently outperforms
the baselines in terms of accuracy and robustness against
adversarial attacks. Our proposed GReAT graph-based semi-
supervised learning approach for adversarial training pro-
vides a promising direction for improving the robustness of
deep learning models against adversarial attacks. We list the
main contributions of our proposed method below:

• GReAT integrates graph structure into the adversarial
training process.

• It improves the model’s feature extraction performance
by including neighboring information.

• The model enhances the learning capabilities of the
model by leveraging the underlying structure of the
training samples.

• The proposed method shows advantages in the adversar-
ial training method, compared with the state-of-the-art
methods, thereby improving generalization and robust-
ness.

II. BACKGROUND AND RELATED WORKS
This section covers the relevant background and related
works. In particular, we cover deep learning and semi-
supervised learning, adversarial learning, and graph-based
semi-supervised learning.

A. DEEP LEARNING AND SEMI-SUPERVISED LEARNING
DL models are complex non-linear mapping functions be-
tween input and output. They consist of multiple layers and
neurons with activation functions. They extract features from
input samples and predict labels based on those features.
Neural networks are trained using vast amounts of labeled
data and can learn and improve their performance over time
utilizing backpropagation algorithms.

2 VOLUME 11, 2023



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

The following equation represents the prediction process
of the classical deep learning paradigm:

Y : f (X ,θ, b), (1)

where X is the data fed into the neural network f , θ represent
the values assigned to the connections between the neurons
in the network, and b is the offsets applied to the input data.
The output is the result produced by the neural network after
processing the input data through its layers of neurons.

Semi-supervised learning uses labeled and unlabeled data
to train a model. The following representation shows the
prediction process of semi-supervised learning:

Y : f (X l ,Xul ,θ, b), (2)

where X l is the labeled data and Xul is the unlabeled data.
The weights and biases are the same as in supervised-learning
learning. The output is the result produced by the model after
processing the labeled and unlabeled data through its layers
of neurons. A label assignment procedure typically exists in
semi-supervised learning to annotate the unlabeled data. This
procedure employs a smoothing function or similarity metrics
to assign the label of the most similar labeled sample to the
unlabeled sample, [5].

B. ADVERSARIAL LEARNING
A data instance x′ is considered an adversarial example of
a natural instance x when x′ is close to x, under a specific
distance metric, while f (x′) ̸= y, where y is the label of x,
[39]. Formally, an adversarial example of x is can be defined
as

x′ : D(x′, x) < ϵ, f (x′) ̸= y, (3)

where D(·, ·) represents a distance metric, such as the ∥·∥2
norm, and ϵ is a distance constraint, which limits the amount
of allowed perturbations. Since the existence of adversarial
examples is a significant threat to DL models, adversarial
attack and defense algorithms are intensively investigated to
improve the robustness and security of such models.

For instance, FGSM [9] was proposed to generate adver-
sarial examples and attack DL models. The PGD algorithm,
an iterative version of the FGSM attack, was proposed to
generate adversarial examples by maximizing the loss in-
crement within an L∞ norm-ball, [19]. Although many de-
fense methods have been proposed, adversarial training is the
most efficient approach against adversarial attacks, [9, 19].
The authors of [9] proposed using adversarial attack samples
during training so that the classifier can learn the features
of adversarial examples and their perturbations. The classi-
fier’s robustness against adversarial attacks is substantially
enhanced due to the integration of adversarial examples in
the training phase. It effectively empowers the classifier to
develop a more robust defense mechanism against adversarial
instances. Formally, adversarial training is defined as

θ∗ = argmin
θ∈Θ

1

L

L∑
i=1

max
D(x′i ,xi)<ϵ

ℓadv(θ, x′i , yi). (4)

The above equation states a min-max procedure under
the specific distance constraint. In the inner maximization
component, the adversarial training seeks an adversarial ex-
ample x′j to maximize the loss ℓadv, under the distance metric
D(x′j , xj) < ϵ, given the natural sample xj. The outer mini-
mization seeks the optimal gradient θ∗ that yields the global
minimum empirical loss. In their work, Madry et al. itera-
tively applies the PGD algorithm during training to search
for strong adversarial examples to maximize ℓadv. This helps
the model yield improved robustness against PGD and FGSM
attacks. Adversarial training with PGD is considered one of
the strongest defense methods, [19].

C. GRAPH-BASED SEMI-SUPERVISED LEARNING
Graph-based semi-supervised learning uses labeled and unla-
beled data to train DLmodels, [33, 35, 40–43]. This approach
uses a small amount of labeled data and a large amount of
unlabeled data to learn the graph structure of the given data.
A given graph can be represented asG = (V ,E ,W ), where V
indicates data points as vertices, E represents edges between
data points, and W is the edge weight matrix. The edges
between the vertices are created on the basis of a similarity
metric between the data points. Graph-based semi-supervised
learning aims to use the graph structure and the labeled data
to learn the label for the unlabeled data points. This technique
is typically done by propagating the labels from the labeled
data points to the unlabeled data points through the similarity
graph of the entire data, [5, 34, 43, 44].

In graph-based semi-supervised learning, label propaga-
tion is often used to classify nodes in a graph when only
a few nodes have been labeled. This method starts with the
labeled nodes and propagates their labels to their neighbors.
The labels are then iteratively propagated repeatedly until the
mapping function converges and the entire graph is labeled.
As shown in [5], the loss function of the graph-based semi-
supervised learning can be represented as:

L∑
i=1

ℓ(θ, xi, yi) + λ
∑
i,j

wi,j∥h(xi)− h(xj)∥2, (5)

where the first term represents the standard supervised loss
while the second term represents the penalty of the neigh-
borhood loss. Note that wij represents the similarity between
different instances, and λ controls the contribution of neigh-
borhood regularization. When λ = 0, the loss term becomes
the standard supervised loss. The amount of penalty depends
on the similarity between the instance xi and its neighbors. In
addition, h represents a lookup table that contains all samples
and similarity weights. It can be obtained with a closed-form
solution, according to [44].

The authors of [40] proposed embedding samples instead
of using lookup tables by extending the regularization term in
Eq. 5. The regularization term becomes λ

∑
i,j αi,j∥gθ(xi) −

gθ(xj)∥2, where gθ(·) indicates the embedding of samples
generated by a neural network. Transforming the regular-

VOLUME 11, 2023 3



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

FIGURE 1. GReAT framework.

ization term by transitioning from f to g leverages stronger
constraints on the neural network, according to [5].

Here, we extend Eq. 5 by replacing the lookup table term
with the embedding term in the regularization component and
defining a general neighbor similarity metric. This approach
yields Eq. 6 as

L∑
i=1

ℓ(θ, xi, yi) + λ
∑
i=1

wiD(gθ(xi),N(gθ(xi))). (6)

In the Eq. 6, N represents the neighbors of a given sample
xi, wi represents the edge weight between the sample xi and
its neighbors, and D represents the distance metric between
embeddings.

III. GRAPH REGULARIZED ADVERSARIAL TRAINING
In this Section, we integrate the adversarial learning pro-
cess, [19], into the graph-based semi-supervised learning
framework, [5, 40, 43], to take advantage of both adversarial
training and semi-supervised learning. The main framework
of GReAT is shown in Fig. 1.

The feature space encompasses both the labeled original
training samples and the adversarial examples that are created
through adversarial regularization and neighbor similarities.
This feature space is crucial for identifying the nearest-
neighbor samples. When we feed a batch of input samples to
the neural network, it includes not only the original samples
but also their corresponding neighbors. In the final layer of
the neural network, we derive a sample embedding for each
of these samples. The training objective for regularization
includes two components: the supervised loss and the label
propagation loss, which accounts for neighbor-related loss.

In other words, it considers the impact of neighbors on the
overall training objective. Thus,

LGReAT = Ladv + λLN , (7)

whereLadv represents the supervised loss from training labels
of clean and adversarially perturbed samples, and LN repre-
sents the neighbor loss, which includes the loss from the clean
training samples and adversarially perturbed samples.
We consider similar instances as neighbors of sample x in

the graph regularized semi-supervised learning case. In our
case, we consider an adversarial example, x′, in addition to
a neighbor of sample x. Next, we extend Eq. 6 by including
adversarial and adversarial neighbor losses as new regularizer
terms. Formally, the unpacked form of Eq. 7 is:

LGReAT (Θ) =

L∑
i=1

ℓ(θ, xi, yi)

+ α11

L∑
i=1

ℓN (yi, xi,N(xi))

+ α22

L∑
i=1

ℓN (yi, x′i ,N(x′i ))

+ α3

L∑
i=1

ℓ(θ,Nadv(xi), yi).

(8)

In the above equation,N(x) represents neighbors of sample
x. The neighbors could be clean or adversarially perturbed
samples. Thus, N(x′) represents the neighbors of adversarial
example x′. Its neighbors could be clean samples and adver-
sarial examples. Specifically,Nadv(x) represents the adversar-
ial neighbor of the sample x. The adversarial neighbors have

4 VOLUME 11, 2023



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

FIGURE 2. Densenet121 for generating image embeddings.

the same label as the original sample x similar to the standard
adversarial training.

We obtain adversarial examples using PGD as it’s de-
scribed in [19]. Note that the α11, α22, α3 hyperparameters
determine the contributions of different neighborhood types,
which are shown in Fig. 6 as sub-graph types. The α terms
can be tuned according to the performance on clean and
adversarially perturbed testing inputs. The pseudo-code of
GReAT method is given in the Algorithm 1. Furthermore, a
detailed explanation of the embedding of neighbor nodes and
graph construction between clean and adversarial examples is
shown in Section III-B.

Algorithm 1 Graph Regularized Adversarial Training
(GReAT)
1: Input: Labeled data X l , unlabeled data Xul , model pa-

rameters Θ, hyperparameters α11, α22, α3, λ
2: Output: Trained model Θ∗

3: 1: Train classifier f (X l ,Θ) on labeled data using super-
vised loss ℓ

4: 2: Generate adversarial examples Xadv

5: 3: Propagate labels of X l to Xul using label propagation
on graph

6: 4: Construct graph G with nodes X l ,Xul ,Xadv

7: 5: Compute neighbor set N(x), N(x′), Nadv(x) for each
sample x, x′

8: 6: Train model using loss LGReAT defined in Eq. 8
9: return Θ∗

A. RELATED PREVIOUS METHODS
Creating graph embeddings using Deep Neural Networks
(DNNs) is a well-knownmethod, [40]. Furthermore, the prop-
agation of unlabeled graph embeddings using transductive
methods, [5, 34], are efficient and well studied. Neural Graph
Machines (NGMs), [43], are a commonly used example of la-
bel propagation and graph embeddings, alongwith supervised
learning. The proposed training objective takes advantage of
these frameworks and provides more robust image classifiers.
Therefore, the training objective can be considered a combi-
nation of nonlinear label propagation and a graph-regularized
version of adversarial training.

B. GRAPH CONSTRUCTION
We use a pre-trained model, DenseNet121, [45], to generate
image embeddings as a feature extractor. The pre-trained
model has weights obtained by training on ImageNet. The
pre-trained model is more complex than the model we use
to train and test the proposed regularization algorithm in our
simulations. Numerous studies show that complex DNNs are
better feature extractors than shallow networks, [46, 47]. An-
other significant advantage of using larger pre-trained models
to obtain embeddings is to reduce computational costs. The
process of creating embeddings is illustrated in Fig. 2.
Generating appropriate inputs to the neural network plays

a significant role in yielding correct predictions. As noted
above, we use a pre-trained DL model to create node em-
beddings. We generate embeddings of clean samples and
adversarial examples to obtain the neighborhood relation-
ship between clean and adversarially perturbed examples.

FIGURE 3. Graph creation from embedding of clean and adversarial examples.

VOLUME 11, 2023 5



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

FIGURE 4. Samples in embedding space. The left figure represents all the samples in the validation data set. The right figure shows some clean samples
and their adversarial neighbors.

The overall graph construction process is shown in Fig. 3.
Similarly, one-dimensional embedding is a crucial process
for measuring sample similarities. Since the size of the em-
beddings is the same, we can visualize clean and adversarial
examples in the embedding space using the [48] t-distributed
stochastic neighbor embedding (t-SNE) method.

In Fig. 4, we utilize t-SNE (t-Distributed Stochastic Neigh-
bor Embedding) to create a visual representation of the valida-
tion data set obtained from TensorFlow’s flower dataset. The
primary purpose of this visualization is to provide insight into
the distribution and relationships among the data points.The
left panel of the figure is dedicated to displaying all the
samples that constitute the validation data set. It is important
to note that this data set encompasses samples belonging to
five distinct classes. Each class represents a specific category
or type of data within the dataset, and the samples within each
class share certain common characteristics or features.

By visually representing the data set using t-SNE, we aim
to reduce the dimensionality of the data while preserving its

inherent structure and relationships. This reduction in dimen-
sionality allows us to plot the data points in a two-dimensional
space, making it easier to discern patterns, clusters, and simi-
larities among the samples. Visualization is a valuable tool for
gaining a deeper understanding of how the different classes
are distributed and how they relate to each other within the
validation data set. The figure panel on the right shows how
adversarial examples are distributed around clean samples.

The visualization of the embeddings highlights a strong
connection between individual samples and their respective
neighbors, effectively distinguishing between various classes.
We use the strong neighborhood connections to learn better
and create more robust models. Consequently, we use these
node embeddings as input features to the neural network by
creating an adjacency embedding matrix, as shown in Fig. 5.
In particular, we use the label propagation method, [6], to
propagate the information from the labeled data points to
the unlabeled instances, which improves the model’s perfor-
mance on both clean and adversarial examples.

FIGURE 5. A: A sample with two neighbors showing their sub-graph and feature inputs. Blue nodes represent clean samples, and red nodes represent
adversarially perturbed samples. B,C,D,E,F, and G show how clean samples and adversarial examples may link on the graph structure.

6 VOLUME 11, 2023



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

FIGURE 6. From left to right: labeled sample, the first neighbour and the second neighbour. The samples are taken from Tensorflow’s flowers data set.

Sample sub-graph of training instances are shown in Fig. 5.
These examples might be labeled or unlabeled since we gen-
erate embeddings for each sample and create the graph based
on the similarity between embeddings. A visual example of a
sub-graph is demonstrated in Fig. 6. Three examples of sub-
graph types are shown. The first column of the figure shows
labeled samples. The second and third columns show the
labeled samples’ two most similar neighbors. We associate
these samples and their neighbors with the sub-graph exam-
ples, as noted in Fig. 5. For instance, the first row of images
in Fig. 6 represents Fig. 5-D, since the labeled sample is clean
and its first and second neighbors are adversarially perturbed
samples. The second row of Fig. 6 represents Fig. 5-F, since
the labeled sample is adversarially perturbed and its neighbors
are one clean sample and one adversarially perturbed sample.
Finally, the third row represents Fig. 5-C, since the labeled
instance is clean and its neighbors are clean and adversarially
perturbed samples.

Note that a labeled sample may have one neighbor or none,
for instance, if the similarity measure of the embeddings

cannot pass the similarity threshold. In that case, the labeled
sample goes through the neural network as a regular input
without graph regularization.

C. OPTIMIZATION
The training process begins with a minibatch of samples and
their edges. Instead of using all available data at once, the
training process randomly selects a subset of edges for each
iteration. This helps introduce randomness and variability
into the training process, which is beneficial to the learning
process. Additionally, to further improve the training process,
selected edges are chosen from a nearby region to increase
the likelihood of some edges. This can help reduce noise and
speed up the learning process. As was implemented in other
benchmark models [28], The Stochastic Gradient Descent
(SGD) algorithm updates network weights utilizing the cross-
entropy loss function.
Note that the overall open form of the cost function in

the following is equivalent to Eq. 6. The cost function incor-
porates the cost of supervised loss from labeled clean and

VOLUME 11, 2023 7



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

labeled adversarial examples and neighbor losses. That is,
the cost includes different neighbor types/edges, as shown in
Fig. 5. Formally,

LGReAT (Θ) =

L∑
i=1

ℓ(θ, xi, yi) +
L∑
i=1

ℓ(θ, x′i , yi),

+ λ

[
α11

L∑
i=1

waD(gθ(xi),N(gθ(xi)))

+ α12

L∑
i=1

wbD(gθ(xi),N(gθ(x′i )))

+ α21

L∑
i=1

wcD(gθ(x′i ),N(gθ(xi)))

+ α22

L∑
i=1

wdD(gθ(x′i ),N(gθ(x′i )))

]
,

(9)

wherewa,wb,wc,wd represent the similarity weights between
the samples and their neighbors calculated by cosine similar-
ity measurement.

The similarity weights are (possibly) unique for each sam-
ple and its neighbors, with a range of zero to one. A sample
and neighbor candidate are dissimilar if the similarity weight
is near zero. For calculating the neighbor loss, we use D as
it represents the distance between a sample and its neigh-
bor, where we use the norms L1 and L2 as distance metrics
for calculating the neighbor distance. The hyperparameters
α11, α12, α21 and α22 control the contributions of the differ-
ent types of edges. For simulations, we set all αs as one to
include all edges in the training. The new objective function
makes SGD possible with clean and adversarial examples and
their neighbors in mini-batch training.

D. COMPLEXITY ANALYSIS
The proposed method incorporates graph regularization into
its training process, applying it to both labeled and unlabeled
data instances within the graph, which includes benign and
adversarial examples. The computational complexity of each
training epoch is dependent on the number of edges in the
graph, denoted as Ec. To assess the complexity of the training,
we can express it asO(count(Ec)). It is important to note that
the quantityEc is directly proportional to several factors. First,
it scales with the number of neighboring data points taken
into account, indicating that more neighbors will increase
the complexity. Second, it is influenced by a parameter that
determines the selection of themost similar neighbors, further
impacting the computational load. Furthermore, the step size
used for adversarial regularization is tied to Ec.

For instance, if we opt for a single-step adversarial regu-
larization method like FGSM, each clear example will have
only one adversarial neighbor. However, when employing a
multi-step adversarial regularization approach, the number
of edges substantially increases, as adversarial examples are
generated at each step. This type of PGD-based adversarial
regularization tends to enhance the model’s robustness com-

pared to FGSM regularization. Nevertheless, it introduces a
trade-off between robustness and training time. Training a
model with PGD regularization demands more computational
resources because of the increase in the number of edges and
samples involved. This trade-off is essential when choosing
the appropriate adversarial regularization method for a given
application. For our simulations, we used FGSM to create
adversarial examples for training and testing stages to reduce
computational time.

IV. EXPERIMENTS
We conducted experiments to show the performance of the
proposed GReAT method. Each experiment is carried out on
clean data sets with a fixed number of epochs and training
steps. The typical hyperparameters are fixed to ensure fair
comparisons with other state-of-the-art methods. The base
CNNmodel is trained and then regularized with the proposed
loss function. We use the copy of the base model to obtain
the regularized model each time to preserve the original base
model. Once themodels are trained, we test eachmodel on the
same clean and adversarially perturbed test data to measure
the generalization and robustness performances.

A. DATASETS
The Canadian Institute for Advanced Research dataset (Ci-
far10) [38], The Street View House Numbers (SVHN) [49],
and flowers [37] dataset are used to evaluate the methods. The
Cifar10 dataset consists of 60,000 images with ten classes,
and each class contains a fixed size of 32× 32 three-channel
RGB images. To further assess the robust generalization ca-
pabilities of our proposed method, we conduct evaluations
using the SVHN dataset. SVHN comprises 73,257 training
samples and 26,032 testing samples. The flowers dataset
contains 3,670 imageswith five classes, each containing high-
resolution RGB images. The image sizes are not fixed in the
flowers dataset. Resizing is, therefore, required as one of the
pre-processing steps.
The image distributions of each class are balanced for

both data sets. We split the dataset 80%-10%-10%, as train-
validation-test data sets, respectively. In the simulations, we
use the flowers dataset only for the ablation study since the
state-of-the-art methods on the benchmark do not use flowers.
In the ablation study, we reduce the training set to 20%, and
50%, to observe the model performances with fewer labeled
samples.

B. PRE-PROCESSING STEPS
A few essential pre-processing steps are required to prepare
the batches for training. After creating image embeddings, we
measure the similarity between each embedding and create
training batches based on this similarity metric.

1) Similarity measure
Identifying the closest neighbors for a given sample requires
the measurement of similarity amongst the embeddings.
Various metrics are available, including Euclidean distance,

8 VOLUME 11, 2023



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

cosine similarity, and Structural Similarity Index Measure
(SSIM). We have opted for cosine similarity due to its proven
effectiveness in quantifying the similarity of image embed-
dings within a multidimensional space. Formally defined, the
cosine similarity of two vectors can be expressed as follows:

Cos(xi, xj) =
xi · xj

∥xi∥ ∗ ∥xj∥
. (10)

The similarity weights are between 0 and 1, depending
on the angle between the two vectors. Two overlapping em-
beddings have weight 1 when the angle between the two
embeddings is zero. Conversely, if two embedding vectors
are orthogonal, they are dissimilar, and the similarity weight
is zero. Once all similarity weights are calculated, the most
similar neighbors are identified as candidates for regulariza-
tion. We pre-define a similarity threshold to consider those
neighbors. Embeddings that fall under the threshold are not
considered as neighboring candidates on the graph.

2) Training batches
Once the graph structure is created with clean samples and
adversarial examples, we generate training batches that are
fed into the neural network model. Each training batch con-
sists of samples, their neighbors, and adversarial neighbors.
The number of neighbors is predetermined, although other
strategies can be utilized. In our simulations, we pick the
number of neighbors as two.

3) Adversarial Examples Generation
In the training phase, we adhere to the conventional configu-
ration of the ℓ∞ threat model with a radius of 8/255. Adver-
sarial examples are crafted using the PGD attack, iterating 10
steps with a size of 2/255 for all datasets.

C. NETWORK
For our experiments, we utilize ResNet-18 [50] as the default
baseline model architecture. We employ the SGD optimizer
for training all models, with a momentum of 0.9 and weight
decay set to 0.0005. The training batch size is set to 128. We
use the same baseline model architecture and training param-
eters with other methods for a fair comparison. Additionally,
we included the GReAT model trained with Adam optimizer
to the benchmark. We noticed that using the Adam optimizer
performs better than SGD during our experiments. The Adam
optimizer with a 0.001 learning rate is utilized.

D. RESULTS
1) Ablation Study
As mentioned earlier, we use the flowers dataset for the
ablation study. Because the dataset is relatively small, we
deployed a smaller network architecture for the ablation
study. This training model consists of 6 convolution layers
and max-pooling layers. Dropout and batch normalization
layers in the base model are deployed to minimize over-
fitting. Subsequently, experiments are conducted on both
clean and adversarially perturbed datasets to gauge model

generalization and robustness. We set the perturbation mag-
nitude to 0.2 in these experiments and employ the FGSM
attack method. We compare the results with the standard AT
model [19] and standard graph regularized model [43] to
show the performance improvements with varying training set
sizes. The performance of the proposed method, along with
other methods on the clean testing dataset, is summarized in
Table 1.

TABLE 1. Clean Accuracy Results for Flowers Data Set

Model Accuracy

train set(%) Base NSL AT GReAT adv GREAT

20% 0.548 0.553 0.525 0.207 0.550
50% 0.564 0.608 0.575 0.245 0.659
80% 0.597 0.613 0.583 0.277 0.671

Table 1 indicates that the NSL approach, [43], yields sig-
nificantly better performance. This is largely due to its train-
ing on clean samples and their respective neighbors. For a
comprehensive evaluation, we introduced GReATadv, which
trains only adversarial examples and their neighbors to assess
the impact of adversarial regularization. Given its exclusive
focus on adversarial examples during training, this model
faces challenges when tested on clean datasets. However, the
proposed GReAT method consistently yields positive results.

TABLE 2. Robust Accuracy for Flowers Data Set

Attack Norm train set(%) Model Accuracy

Base NSL AT GReAT adv GReAT

L2 20% 0.011 0.011 0.450 0.836 0.605
50% 0.014 0.024 0.496 0.854 0.647
80% 0.016 0.063 0.526 0.891 0.668

Linf 20% 0.001 0.000 0.727 0.924 0.883
50% 0.002 0.001 0.753 0.942 0.892
80% 0.005 0.005 0.819 0.968 0.931

Finally, the models were evaluated using adversarially per-
turbed test data from the flowers data set, and the results are
shown in Table 2. As the table shows, models not trained
on adversarial examples, particularly the base model, exhibit
diminished performance. Although the NSL model is trained
only on clean samples, it still exhibits some robustness to
adversarially perturbed test samples. The proposed GReAT
model outperforms the other models and provides a bal-
anced result for clean and adversarially perturbed testing
data. GReATadv gives the highest accuracy for perturbed test
samples. This experiment shows how graph regularization
with adversarial training is effective on both adversarially
perturbed and clean testing samples.

2) Accuracy vs attack strength
We evaluate the robustness of the proposed methods by ad-
justing the step size of the perturbations, which provides
insights into the model performance under varying attack
strengths. As illustrated in Fig. 7, the accuracy of the base

VOLUME 11, 2023 9



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

model declines sharply with increasing attack intensity. Al-
though the model trained with standard adversarial training
also exhibits a notable decrease in confidence, the proposed
GReAT model consistently displays significant robustness,
retaining its efficacy even under substantial perturbations.

0 20 40 60 80 100
Perturbation Size (eps)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Attack Norm: L_2

Base AT NSL GReAT-ADV GReAT

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation Size (eps)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Attack Norm: L_inf

Base AT NSL GReAT-ADV GReAT

FIGURE 7. Robustness test with increasing perturbation size.

The perturbation sizes for adversarial training samples are
20 for L2 norm and 0.2 for L∞ constrained models, respec-
tively. Training samples for L2 norm trained model are not
normalized to one since we follow the training procedures as
described in [19]. As the figure shows, the models trained on
adversarial examples exhibit peak performance around these
specific training perturbation sizes (ϵ). This phenomenon oc-
curs when the attack perturbation step size is smaller than the
step size of the adversarial examples used for training [19].
Ideally, we aim to train a model with varying perturbation
sizes to enhance its robustness against adversarial attacks,
given that attack perturbation sizes might differ from the
training perturbation size. However, for the sake of simulation
simplicity, we utilize only a single-step perturbation size for
the model training.

3) Ablation study on Cifar10 Data Set
Next, we evaluate the performance on the Cifar10 dataset,
which is made up of images with lower resolution with more

classes and quantities. Tables 3 and 4 detail the performance
on the clean and adversarially perturbed image datasets, re-
spectively. The proposed GReAT methodology yields bal-
anced results, indicating that GReAT demonstrates both gen-
eralization and robust performance. In stark contrast, alterna-
tive methodologies are significantly impacted by adversarial
attacks. These simulation results underscore that regularizing
the deep learning model with both benign and adversarial
examples results in improved generalization and robustness.

TABLE 3. Clean Accuracy Results for Cifar10 Data Set.

Model Accuracy

train set(%) Base NSL AT GReAT adv GReAT

20% 0.522 0.523 0.296 0.227 0.560
50% 0.612 0.648 0.437 0.285 0.649
80% 0.701 0.713 0.688 0.327 0.731

Compared to other methods, the proposed method shows
outstanding performance on the benign testing set. This is be-
cause more training data and classes provide more underlying
information between classes with graph regularization.

TABLE 4. Robust Accuracy for Cifar10 Data Set.

Attack Norm train set(%) Robust Accuracy

Base NSL AT GReAT adv GReAT

L2 20% 0.121 0.161 0.343 0.556 0.525
50% 0.090 0.172 0.367 0.594 0.567
80% 0.135 0.191 0.385 0.651 0.638

Linf 20% 0.003 0.071 0.415 0.599 0.583
50% 0.004 0.079 0.517 0.640 0.626
80% 0.004 0.105 0.570 0.694 0.648

Table 4 provides the performance of each model on ad-
versarially perturbed testing data. As detailed in the table,
the proposed method provides superior results to the NSL
and standard adversarial training models. We observe similar
results for GReATadv in the Cifar10 data set, which shows
the learning ability of GReAT over adversarial deceptive
perturbations.

4) Comparison with the State-of-the-art Models
Our proposed method’s robust accuracy comparison results
and various baseline models are presented under different
attack methods, FGSM and PGD-100, on CIFAR-10 and
SVHNdatasets, using the ℓ∞ normwith ϵ = 8/255. All models
are based on the ResNet-18 architecture. The best checkpoint
is selected based on the highest robust accuracy on the test
set.
The benchmark Table 5 illustrates the robustness results

for the CIFAR-10 dataset, showcasing the performance of
various methods in defending against FGSM and PGD-100
adversarial attacks. Our proposed method notably outper-
forms existing approaches in terms of robust accuracy. How-
ever, it is observed that the natural accuracy achieved by our
method is slightly lower compared to some other methods.
Despite this, the significant improvement in robust accuracy

10 VOLUME 11, 2023



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

TABLE 5. Robust Benchmark under linf type attack for CIFAR-10

CIFAR-10, linf = 8/255 , untargeted attack

Method Natural Acc FGSM PGD-100

AT [19] 82.97 57.77 51.35
ALP [30] 84.86 57.55 51.57
TLA [31] 83.49 58.17 51.96
ACL [32] 83.26 57.54 51.51

TRADES [29] 83.74 59.54 52.73
ATA [28] 83.41 57.96 52.39
TAAT [28] 83.12 59.91 54.45

GReAT (SGD) 82.64 62.78 60.58
GReAT (ADAM) 82.89 72.47 71.31

demonstrates the effectiveness of our proposed method in
enhancing the robustness of CIFAR-10 classification models
against adversarial attacks.

TABLE 6. Robust Benchmark under linf type attack for SVHN

SVHN, linf = 8/255 , untargeted attack

Method Natural Acc FGSM PGD-100

AT [19] 90.5 65.08 52.87
ALP [30] 90.67 65.51 54.07
TLA [31] 90.63 64.66 52.96
ACL [32] 90.33 63.57 52.07

TRADES [29] 90.38 73.31 57.94
ATA [28] 89.11 62.81 53.75
TAAT [28] 90.44 72.59 59.91

GReAT (SGD) 90.24 74.47 63.45
GReAT (ADAM) 90.54 75.81 65.66

The benchmark Table 6 displays the robustness outcomes
for the SVHN dataset, presenting the accuracy of different
methods in countering FGSM and PGD-100 adversarial at-
tacks. The proposed method demonstrates superior perfor-
mance compared to other approaches in terms of robust ac-
curacy.

V. CONCLUSION
In this paper, we have presented a Graph Regularized Ad-
versarial Training Method (GReAT), designed to enhance
the robustness of classifiers. By leveraging classical adver-
sarial training, the graph regularization technique enhances
the robustness of deep learning classifiers. This technique
employs graph-based constraints to regularize the training
process, thereby bolstering the model’s capacity to withstand
adversarial attacks. Integrating these constraints enables the
model to learn more robust features and be less prone to
manipulation via adversarial examples. This strategy has
demonstrated significant potential to enhance the robustness
and generalization of deep learning classifiers, indicating that
it is a valuable tool in adversarial training.

REFERENCES
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton. Imagenet classification with deep convolutional
neural networks. Advances in neural information pro-
cessing systems, 25:1097–1105, 2012.

[2] Ming Liang and Xiaolin Hu. Recurrent convolutional
neural network for object recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 3367–3375, 2015.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
networks. Communications of the ACM, 63(11):139–
144, 2020.

[4] Yoshua Bengio, Olivier Delalleau, and Nicolas
Le Roux. Label Propagation and Quadratic Criterion.
In Semi-Supervised Learning. The MIT Press, 09 2006.

[5] Zhilin Yang,WilliamW. Cohen, and Ruslan Salakhutdi-
nov. Revisiting Semi-Supervised Learning with Graph
Embeddings, May 2016. arXiv:1603.08861 [cs].

[6] Dong-Hyun Lee. Pseudo-Label : The Simple and
Efficient Semi-Supervised Learning Method for Deep
Neural Networks. ICML 2013 Workshop : Challenges
in Representation Learning (WREPL), July 2013.

[7] Thorsten Joachims. Transductive inference for text clas-
sification using support vector machines. In ICML ’99:
Proceedings of the Sixteenth International Conference
on Machine Learning, pages 200–209, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[8] Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto,
Emilie Devijver, and Yury Maximov. Self-training: A
survey, 2022.

[9] Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning
Representations, 2015.

[10] Nicholas Carlini and David Wagner. Towards evaluat-
ing the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57,
2017.

[11] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep
neural networks are easily fooled: High confidence pre-
dictions for unrecognizable images, 2015.

[12] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks, 2014.

[13] Battista Biggio and Fabio Roli. Wild patterns: Ten years
after the rise of adversarial machine learning. Pattern
Recognition, 84:317–331, Dec 2018.

[14] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
and Pascal Frossard. Deepfool: a simple and accurate
method to fool deep neural networks, 2016.

[15] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and
Michael K. Reiter. Accessorize to a crime: Real and
stealthy attacks on state-of-the-art face recognition. In

VOLUME 11, 2023 11



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
page 1528–1540, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

[16] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
Adversarial examples in the physical world. CoRR,
abs/1607.02533, 2016.

[17] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes,
Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash,
Tadayoshi Kohno, and Dawn Song. Robust physical-
world attacks on deep learning models, 2018.

[18] Samet Bayram and Kenneth Barner. A black-box attack
on optical character recognition systems, 2022.

[19] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks,
2019.

[20] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings.
In 2016 IEEE European symposium on security and
privacy (EuroS&P), pages 372–387. IEEE, 2016.

[21] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan
Boneh, and PatrickMcDaniel. The space of transferable
adversarial examples, 2017.

[22] Cihang Xie, YuxinWu, Laurens van der Maaten, Alan L
Yuille, and Kaiming He. Feature denoising for im-
proving adversarial robustness. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 501–509, 2019.

[23] Mitali Bafna, Jack Murtagh, and Nikhil Vyas. Thwart-
ing adversarial examples: An l_0-robustsparse fourier
transform. arXiv preprint arXiv:1812.05013, 2018.

[24] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren,
and Alan Yuille. Mitigating adversarial effects through
randomization. arXiv preprint arXiv:1711.01991, 2017.

[25] Bao Wang, Alex T Lin, Wei Zhu, Penghang Yin,
Andrea L Bertozzi, and Stanley J Osher. Adver-
sarial defense via data dependent activation function
and total variation minimization. arXiv preprint
arXiv:1809.08516, 2018.

[26] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense to
adversarial perturbations against deep neural networks.
In 2016 IEEE symposium on security and privacy (SP),
pages 582–597. IEEE, 2016.

[27] Hao-Yun Chen, Jhao-Hong Liang, Shih-Chieh Chang,
Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng
Juan. Improving adversarial robustness via guided
complement entropy. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
4881–4889, 2019.

[28] Huafeng Kuang, Hong Liu, Xianming Lin, and Ron-
grong Ji. Defense against adversarial attacks using
topology aligning adversarial training. IEEE Transac-
tions on Information Forensics and Security, pages 1–1,

2024.
[29] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P.

Xing, Laurent El Ghaoui, and Michael I. Jordan. Theo-
retically principled trade-off between robustness and ac-
curacy. In ICML, volume 97 of Proceedings of Machine
Learning Research, pages 7472–7482. PMLR, 2019.

[30] Harini Kannan, Alexey Kurakin, and Ian Goodfellow.
Adversarial logit pairing, 2018.

[31] Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Von-
drick, and Baishakhi Ray. Metric learning for adversar-
ial robustness. In NeurIPS, pages 478–489, 2019.

[32] Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang
Wang. Robust pre-training by adversarial contrastive
learning, 2020.

[33] Dengyong Zhou, Jiayuan Huang, and Bernhard
Schölkopf. Learning from labeled and unlabeled
data on a directed graph. In Proceedings of the 22nd
international conference on Machine learning - ICML
’05, pages 1036–1043, Bonn, Germany, 2005. ACM
Press.

[34] Xiaojin Zhu, John Lafferty, and Ronald Rosenfeld.
Semi-Supervised Learning with Graphs. PhD the-
sis, Language Technologies Institute, School of Com-
puter Science, Carnegie Mellon University, USA, 2005.
AAI3179046.

[35] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani.
Manifold Regularization: A Geometric Framework for
Learning from Labeled and Unlabeled Examples. Jour-
nal of Machine Learning Research, 7(85):2399–2434,
2006.

[36] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt,
John C Duchi, and Percy S Liang. Unlabeled Data
Improves Adversarial Robustness. In Advances in Neu-
ral Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[37] TensorFlow. Flowers, jan 2019.
[38] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

Cifar10 dataset. Technical report, Canadian Institute for
Advanced Research, Canada, 2009.

[39] Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu.
Adversarial attacks and defenses in deep learning. En-
gineering, 6(3):346–360, 2020.

[40] Jason Weston, Frédéric Ratle, and Ronan Collobert.
Deep learning via semi-supervised embedding. In Pro-
ceedings of the 25th International Conference on Ma-
chine Learning, ICML ’08, page 1168–1175, NewYork,
NY, USA, 2008. Association for ComputingMachinery.

[41] Nitin Agarwal, Huan Liu, Sudheendra Murthy, Arun-
abha Sen, and Xufei Wang. A Social Identity Approach
to Identify Familiar Strangers in a Social Network. Pro-
ceedings of the International AAAI Conference on Web
and Social Media, 3(1):2–9, March 2009. Number: 1.

[42] Yann Jacob, Ludovic Denoyer, and Patrick Gallinari.
Learning latent representations of nodes for classifying
in heterogeneous social networks. In Proceedings of the
7th ACM international conference on Web search and

12 VOLUME 11, 2023



Bayram et al.: GReAT: A Graph Regularized Adversarial Training Method

data mining, pages 373–382, NewYorkNewYorkUSA,
February 2014. ACM.

[43] Thang D. Bui, Sujith Ravi, and Vivek Ramavajjala.
Neural Graph Learning: Training Neural Networks Us-
ing Graphs. In Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining,
pages 64–71, Marina Del Rey CA USA, February 2018.
ACM.

[44] Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Ja-
son Weston, and Bernhard Schölkopf. Learning with
Local and Global Consistency. page 8, 2004.

[45] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q.Weinberger. Densely connected convolutional
networks, 2016.

[46] Alex Krizhevsky. Learning multiple layers of fea-
tures from tiny images. Technical report, University of
Toronto, Canada, 2009.

[47] Hrushikesh Mhaskar, Qianli Liao, and Tomaso A. Pog-
gio. When and why are deep networks better than shal-
low ones? In Satinder P. Singh and Shaul Markovitch,
editors, AAAI, pages 2343–2349. AAAI Press, 2017.

[48] Laurens van der Maaten and Geoffrey Hinton. Visual-
izing data using t-SNE. Journal of Machine Learning
Research, 9:2579–2605, 2008.

[49] Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits
in natural images with unsupervised feature learning.
NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition,
2015.

VOLUME 11, 2023 13


	Introduction
	Background and Related Works
	Deep Learning and Semi-supervised Learning
	Adversarial Learning
	Graph-based Semi-supervised Learning

	Graph Regularized Adversarial Training
	Related Previous Methods
	Graph Construction
	Optimization
	Complexity Analysis

	Experiments
	Datasets
	Pre-processing Steps
	Similarity measure
	Training batches
	Adversarial Examples Generation

	Network
	Results
	Ablation Study
	Accuracy vs attack strength
	Ablation study on Cifar10 Data Set
	Comparison with the State-of-the-art Models


	Conclusion

