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Abstract

Log-linear models are widely used to express the association in multivariate fre-
quency data on contingency tables. The paper focuses on the power analysis for testing
the goodness-of-fit hypothesis for this model type. Conventionally, for the power-related
sample size calculations a deviation from the null hypothesis (effect size) is specified
by means of the chi-square goodness-of-fit index. It is argued that the odds ratio is
a more natural measure of effect size, with the advantage of having a data-relevant
interpretation. Therefore, a class of log-affine models that are specified by odds ratios
whose values deviate from those of the null by a small amount can be chosen as an
alternative. Being expressed as sets of constraints on odds ratios, both hypotheses are
represented by smooth surfaces in the probability simplex, and thus, the power analysis
can be given a geometric interpretation as well. A concept of geometric power is intro-
duced and a Monte-Carlo algorithm for its estimation is proposed. The framework is
applied to the power analysis of goodness-of-fit in the context of multinomial sampling.
An iterative scaling procedure for generating distributions from a log-affine model is
described and its convergence is proved. To illustrate, the geometric power analysis is
carried out for data from a clinical study.

KEYWORDS: Bregman divergence, chi-square test, goodness-of-fit, iterative proportional
scaling, log-linear model, test power

1 Introduction

Log-linear models are frequently employed in the social sciences, machine learning, itera-
tive image reconstruction, and natural language processing. Among them are the conven-
tional (hierarchical) log-linear models for contingency tables (Bishop, Fienberg, & Holland,
1975), topological models (Hauser, 1978), non-standard log-linear models (Rindskopf, 1990),
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Markov random fields (Malouf, 2002; Huang, Hsieh, Chang, & Lin, 2010), indicator models
(Zelterman, 2006), and relational models (Klimova, Rudas, & Dobra, 2012; Forcina, 2019).
Several further generalizations, known as the generalized log-linear models (GLLM), were
described in Thompson & Baker (1981), Espeland (1986), Kateri (2014), among others. A
log-linear model is a set of distributions on a discrete finite sample space, for example, a
contingency table, whose parameters, p, can specified as

logp = Aβ, (1)

where A is a design matrix with linearly-independent columns, and β is a vector of so-called
log-linear parameters. The structure of A is entailed by the model-specific constraints. For
many model types, such as conventional log-linear models, A is a 0-1 matrix. This paper
focuses on the class of models, referred to as general log-linear by Haber (1984), which
can be (re-)parameterized in a way that their design matrix has exclusively non-negative
integer entries. Examples can be found among the probabilistic trees and monomial models
(Görgen & Smith, 2018; Leonelli & Riccomagno, 2019). In this manuscript, for simplicity of
presentation, the models in this generality will be addressed as log-linear, although the level
of generalization considered by Haber (1984) will be assumed throughout.

This paper discusses several aspects of the power analysis for goodness-of-fit testing
under log-linear models. In applied research, for example in clinical studies, two kinds of
power analyses are routinely performed. Apriori power analysis is conducted before a study
begins and aims at finding a sample size which would allow to reach a nominal power, often
80%, in testing the study’s primary hypothesis. Such calculations are especially relevant for
planning prospective clinical trials where the study size may need to be specified in advance.
After a study is complete, a power analysis is also sometimes carried out to estimate the
achieved (posteriori) power in testing statistical significance under the observed data. If the
null hypothesis concerns the goodness of fit of a log-linear model, then, for the purpose of
power calculations, the actually observed frequency distribution which is used to test the
goodness-of-fit is assumed to be the alternative model. The power is then calculated using
a noncentral chi-square distribution whose noncentrality parameter is equal to the observed
value of the Pearson chi-square statistic normalized by the observed total. This parameter
characterizes the discrepancy between the null and alternative hypotheses and can be given
an effect size interpretation.

The apriori power analysis poses more of a challenge with respect to the choice of an
alternative model. One option is to use a hypothetical frequency distribution that seems to be
a plausible alternative and calculate the resulting test power against the null model. Several
examples illustrating this approach for hierarchical log-linear models were given by Oler
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(1985). The second option is to conduct power calculations by specifying the noncentrality
parameter directly, relating it to an omnibus value of the goodness-of-fit index (Cohen, 1988).
Apart from the fact that it can be hard either to justify a specific choice of an alternative
distribution or to interpret a noncentrality parameter in data-relevant terms, a more serious
concern can be raised. In the analyses of categorical variables, an effect-size interpretation
is routinely given to the proximity between an odds ratio and the unity (cf. Chen, Cohen, &
Chen, 2010). However, it can happen that the interpretation of a strength of association in
terms of odds ratios does not agree with the interpretation implied from the goodness-of-fit
test. As illustrated by Haddock, Rindskopf, & Shadish (1998) for the model of independence
on a 2 × 2 table, there exist distributions which are close to independence if the proximity
is measured by the odds ratio but far from it if the deviation is assessed using the chi-
square test. One can expect that this inconsistency persists when larger tables and more
complex models are involved. This paper aims to address this issue and proposes a geometric
framework for the power analysis of log-linear models.

Assume that the null hypothesis of interest is posed as a log-linear model, G0, and tested
against a log-affine model, G1(ξ), with the same design matrix:

G0 : logπ = Aβ vs G1(ξ) : logπ = Aβ + log ξ,

for a given offset-vector ξ. Recall that a set of restrictions specifying a log-linear or log-affine
model defines a smooth surface in the probability simplex ∆I of an appropriate dimension
I (Sturmfels, 1996; Sullivant, 2018). Then, because a goodness-of-fit chi-square statistic
(for example the Pearson chi-square) may be interpreted as a squared distance between a
distribution and a log-linear model, a significance testing procedure can be given a geometric
interpretation (cf. Diaconis & Efron, 1985). The idea of geometric power analysis developed
in this manuscript is the following. Take ϵ > 0 and surround the surface G0 by a “tube”
consisting of the probability distributions in ∆I whose goodness-of-fit statistic under G0 is
less than ϵ. Call this tube an “acceptance region” of radius ϵ, and its complement in ∆I

a “rejection region”. The relative surface area of the subset of G1(ξ) outside the tube with
respect to the whole surface area of G1(ξ) is defined as geometric power. The geometric
power is thus equivalent to the probability of rejection of G0 in favor of G1(ξ) assuming the
latter holds.

Notice that the concept of geometric power describes a relationship between two surfaces
in a probability simplex but lacks the stochastic component. In particular, the definition
does not take into account that the data represent a realization of a discrete random variable.
For the power calculations in this manuscript, it will be assumed that the data come from
a multinomial distribution. In this case the sample size is fixed in advance, so the apriori
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power calculations are more relevant. A Monte-Carlo-based stochastic extension of the ge-
ometric power is defined for a given pair of G0 and G1(ξ) and a fixed sample size N . The
multinomial sampling scheme is applied to draw a frequency distribution parameterized by
N and a probability distribution from G1(ξ). The goodness-of-fit of the obtained realization
with respect to the null model can be assessed using the chi-square test under a prespecified
significance level, so the corresponding acceptance radius is equal to a quantile of the rele-
vant chi-square distribution. The procedure is replicated by sampling different probability
distributions from G1(ξ) and obtaining a multinomial realization from each. Finally, the pro-
portion of replicates in the Monte-Carlo sample which were rejected by the chi-square test is
computed. Because a multinomial distribution can result in multiple stochastic realizations
as frequency distributions, the empirically obtained stochastic extension is referred to as a
cumulative geometric power. The cumulative power analysis can be implemented for a range
of sample sizes to obtain a power table that can be used to select a sample size sufficient to
achieve a desired power in the goodness-of-fit testing.

Whereas the geometric or cumulative power for a given pair of models can be approxi-
mated using a Monte-Carlo procedure in a straightforward way, the generation of probability
distributions from an alternative log-affine model is non-trivial. The construction algorithm
proposed here utilizes the fact that a log-affine model is an exponential family and thus
induces a mixed parameterization of distributions in the probability simplex ∆I . Given a
matrix D formed by a basis of the kernel space of A, each p ∈ ∆I is uniquely specified by its
mean-value parameters A′p and its canonical parameters D logp. Under such parameteriza-
tion, the canonical parameters of distributions in G1(ξ) stay constant and equal to log ξ. The
model generation is carried out in two steps: (a) selection of values for the mean-value pa-
rameters A′p, and (b) computation of the unique distribution parameterized by the selected
values and the canonical parameters log ξ. The procedure is essentially the MLE computation
under G1(ξ). Step (a) can be implemented, for example, by using the mean-value parameters
from a randomly drawn point from the probability simplex ∆I . Step (b) is a classical setup
for using iterative scaling. In fact, the original iterative proportional fitting (IPF) algorithm
for classical hierarchical log-linear models has a clear geometric interpretation in terms of
projections with respect to the Kullback-Leibler information divergence (Csiszar, 1975). An
analogous interpretation can be given to the generalization of the IPF called the generalized
iterative scaling (GIS) of Darroch & Ratcliff (1972), see Csiszar (1989). However, one of the
main assumptions standing behind the convergence of IPF and GIS, namely, the presence
of the genuine overall effect, prevents one from using these algorithms for log-linear models
in which no such effect is intrinsically possible. The iterative scaling algorithm proposed
here can be applied in the no-overall effect case as well and is shown to generate a sequence
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of projections with respect to the Bregman information divergence (Bregman, 1967) which
converges to the unique distribution in G1(ξ) with prespecified values of A′p. The proposed
algorithm and its proof generalize the GIS itself and its geometric interpretation given by
Csiszar (1989). Finally, although a procedure with a geometric meaning might be better
suited for a geometry-based framework, step (b) can, of course, be performed using a version
of Newton’s algorithm (cf. Kateri, 2014; Vermunt, 1997), or methods of convex optimization
(cf. Bertsekas, 1999). However, in these methods, the values for canonical parameters would
be reestimated at each iteration, and, as a result, the limiting distribution would be close to
the model of interest G1(ξ) only up to a given precision.

The manuscript is structured as follows. In Section 2, the definition of log-linear models
and their properties relevant for the power analysis are reviewed. Section 3 introduces
a geometry-based framework for the power analysis of goodness of fit and proposes the
concepts of geometric power and cumulative geometric power. The respective Monte-Carlo
algorithms for the power estimation are described. In Section 4, an iterative scaling procedure
for generating distributions under the alternative hypothesis of Section 3 is proposed and
its convergence is proved. In Section 5, the framework is applied to carry out the geometric
power analysis for a clinical study. Concluding remarks appear in Section 6.

2 Background and notation

Let Y be a discrete random vector on a finite sample space I which is treated as an ordered
sequence of I = |I| elements called cells. Suppose the distribution of Y is parameterized
by δ = (δi)

I
i=1 ∈ RI

>0, where δ is either a probability vector, δ ≡ p, with
∑I

i=1 pi = 1, or
a vector of intensities, δ ≡ λ. Write P for the set of all strictly positive distributions on I
and ∆I for the open (I − 1) dimensional simplex.

Let A = (aij) ∈ ZI×J
≥0 be an I×J matrix with linearly-independent columns. The general

log-linear model G(A) is the subset of P that satisfies:

G(A) =
{
δ ∈ P : log δ = Aβ, for some β ∈ RJ

}
. (2)

Here, the components of β are the log-linear parameters of the model. Equivalently, the
model can be expressed either as an exponential family or in a multiplicative form:

G(A) = {δ ∈ P : δi = exp{
J∑

j=1

aijβj} =
J∏

j=1

θ
aij
j , i ∈ I, for some θ ∈ RJ

>0}, (3)

where θj = exp (βj), and θ = (θ1, . . . , θJ) ∈ RJ
>0 denotes the vector of (multiplicative)

parameters associated to columns of A. The column span of A is called the design space,
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and its co-dimension gives the model’s degrees of freedom K = dim(Ker(A)) = I − J . For
example, in conventional log-linear models, the model matrix A comprises the indicators of
cylinder sets of marginal distributions of Y , and the components of β are the interaction
parameters associated to these sets (Agresti, 2002). In the framework of relational models,
the columns of A are indicators of arbitrary subsets of I, with β being the subset parameters
(Klimova et al., 2012). In the case of probabilistic staged trees, the columns of A reflect on
root-to-leaf paths, and θ = exp(β) correspond to tree edges (Görgen & Smith, 2018).

Routinely, the unitary column 1 = (1, . . . , 1)′ is assumed to belong to the design space. If
this holds, G(A) can be reparameterized to have a parameter, referred to as the overall effect,
that is common to all cells in I. In the models for probabilities, the presence of the overall
effect implies that the normalization constraint 1′p = 1 can be tailored in the log-linear
representation log δ = Aβ. However, if 1 /∈ colspan(A), that is, no genuine overall effect is
present, the normalization has to be imposed in addition to the log-linear constraints.

A dual representation of the model (2) can be obtained using a K×I matrix, D, comprised
by a basis of the kernel space Ker(A). Because DA = 0, one has:

G(A) = {δ ∈ P : Dlog δ = 0}. (4)

For example, if G(A) is a hierarchical log-linear model, one can find a dual representation
consisting entirely of marginal and conditional (log) odds ratios (Agresti, 2002).

Being an exponential family, a log-linear model induces a mixed parameterization of all
positive probability distributions δ ∈ P , where A′δ and D log δ play the roles of mean value
and canonical parameters, respectively. The variation independence and dual representation
(4) imply that for all δ ∈ G(A) the canonical parameters equal to zero and the distributions
are uniquely specified by their mean-value parameters. As an illustration, take a probability
distribution p = (p00, p01, p10, p11)

′ on a 2× 2 contingency table. The row- and column sums
p0+ = p00+p01, p1+ = p10+p11, p+0 = p00+p10, p+1 = p01+p11 are the mean-value parameters
entailed by the two-way independence model and are variation independent from the odds
ratio OR = p00p11/(p01p10). All distributions in the model of independence satisfy OR = 1

and can be reproduced uniquely by prescribing p0+, p1+, p+0, p+1 (cf. Bishop et al., 1975).
The main points about the maximum likelihood estimation under log-linear models are

outlined next. Assume that Y has either a multivariate Poisson distribution Pois(λ) or a
multinomial distribution Mult(N,p), and let y be an observed realization of Y . If the MLE
of λ or p exists, it is the unique maximum of the Poisson or multinomial likelihood function,
respectively. Implementing the Lagrange multiplier method, one can show that the MLE is
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Figure 1: Tree representation for the model in Example 2.1

the unique solution to the system of equations (Silvey, 1959; Aitchison & Silvey, 1960):

A′λ̂ = A′y, Dlog λ̂ = 0 (Poisson case); (5)

A′p̂ = γA′(y/N), Dlog p̂ = 0, 1′p = 1 (Multinomial case). (6)

The coefficient γ appearing in (6) stands for a Lagrangian multiplier. If G(A) is a model
for intensities, then γ ≡ 1, that is, the mean-value parameters (sufficient statistics) of the
MLE are equal to those of the observed distribution (cf. Klimova et al., 2012). This property
characterizing the observed and estimated mean-value parameters is sometimes referred to
as the mean-value theorem or Birch theorem. If G(A) is a model for probabilities with the
overall effect, the mean-value theorem holds as well (cf. Andersen, 1974), so γ ≡ 1. Moreover,
the equality of sufficient statistics A′p̂ = A′(y/N) automatically entails the normalization
1′p = 1. However, when G(A) is a model for probabilities without the overall effect, the
Lagrangian multiplier depends on the data, γ = γ(y), and the sufficient statistics of the
MLE are proportional, but not equal, to those observed. This result is a generalization of
Birch theorem, and γ is called the adjustment factor (Klimova et al., 2012; Forcina, 2019).

A model without a genuine overall effect is used for a running example presented next.
As emphasized, the absence of the overall effect is not a matter of inconvenience but rather
an intrinsic feature of the model.

Example 2.1. Consider an experiment with repeated observations in which all participants
are subsequently administered the same treatment with two outcomes, success or failure.
Suppose that, by design, the treatment can be reapplied to each participant up to three
times but is stopped as soon as the first success is achieved. A clinical study where this
design is relevant will be described in Section 5. A graphical representation is given in
Figure 1, where θ1 denotes the probability of success, θ0 = 1− θ1 the probability of failure,
and p = (p1, p2, p3, p4) the probabilities of corresponding treatment paths. The model of
independence of subsequent failures given the previous ones can be expressed either as a
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collection of risk equations that can be read out from Figure 1:

p1 + p2
p1 + p2 + p3

=
p1

p1 + p2
= 1− p4, (7)

or in a multiplicative form:

p1 = θ30, p2 = θ20θ1, p3 = θ0θ1, p4 = θ1. (8)

By substituting (8) into the risk equations (7), one can show that the condition θ0 + θ1 = 1

is necessary and sufficient for 1′p = 1. A log-linear form of (8) can be obtained using the
design matrix

A′ =

(
3 2 1 0
0 1 1 1

)
. (9)

Because (1, 1, 1, 1)′ /∈ colspan(A), the model (9) does not have the genuine overall effect.
Let y = (y1, y2, y3, y4)

′ represent the number of participants observed in each response
category after the experiment is complete. In the absence of drop-outs, one can assume
that y is a realization of Mult(N,p), where N =

∑4
i=1 yi. The kernel of the multinomial

log-likelihood is equal to L(θ | y) = (3y1 + 2y2 + y3)log θ0 + (y2 + y3 + y4)log θ1, and S1 =

3y1 +2y2 + y3 and S2 = y2 + y3 + y4 are the sufficient statistics of the model. The maximum
likelihood estimators have a closed form, namely: θ̂0 = S1/(S1 +S2), θ̂1 = S2/(S1 +S2), and

p̂ =

(
S3
1

(S1 + S2)3
,

S2
1S2

(S1 + S2)3
,

S1S2

(S1 + S2)2
,

S2

(S1 + S2)

)′

. (10)

Revisiting the system (6), notice that the adjustment factor γ = N(θ̂20+θ̂0+1)/(S1 + S2).

The goodness of fit testing for general log-linear models, whether or not the overall effect
is present, can be carried out using the methods described in Aitchison & Silvey (1958,
1960) and Silvey (1959). When the model holds, the Pearson chi-square statistic X2 and the
likelihood ratio test statistic G2:

X2(y) =
I∑

i=1

(yi − ŷi)
2

ŷi
and G2(y) = 2(

I∑
i=1

yi log (yi/ŷi)− (yi − ŷi))

are asymptotically distributed as χ2 with K = dim(Ker(A)) degrees of freedom. Otherwise,
when the model does not hold, X2(y) and G2(y) are distributed as a noncentral χ2

K with
parameter ϕ equal to

ϕ =
I∑

i=1

(yi/N − ŷi/N)2

ŷi/N
= 1/N ·X2(y). (11)

The noncentrality parameter ϕ can be used to characterize a deviation of a hypothetical
true distribution from the null model whose goodness-of-fit is tested, and the goodness-of-fit
index computed as w =

√
ϕ is interpreted as an effect size (cf. Cohen, 1988).
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A major caveat with interpretation of such an effect size will be illustrated next using
the model of independence on a 2 × 2 table. The model is frequently used in practice, and
a detailed computation of the MLE can be spared.

Outcome
Treatment Failure Success

Control 1 9
Experimental 9 33

Table 1: A frequency table with OR ≈
0.41 (1/OR ≈ 2.45) and X2 ≈ 0.68

Outcome
Treatment Failure Success

Control 3 7
Experimental 7 35

Table 2: A frequency table with OR ≈
2.11 and X2 ≈ 0.92

Example 2.2. Denote by y1 = (1, 9, 9, 33)′ and y2 = (3, 7, 7, 35)′ the hypothetical observed
data presented in Tables 1 and 2, respectively. Assume that y1,y2 are realizations of
Mult(N,π), where N = 52, and π stands for the true probability vector. Under the model of
independence, the corresponding Pearson statistics equal X2(y1) ≈ 0.68 and X2(y2) ≈ 0.92,
and the noncentrality parameters computed from (11) are: ϕ1 = 0.68/52, ϕ2 = 0.92/52.
Assuming a 5% significance level, the achieved (posteriori) power in rejecting the hypothesis
of independence is equal, in the first case, to 82% and, in the second, to 99%. The results of
power analysis agree with the values of the goodness-of-fit index: the alternative distribution
in the first case is closer to the model of independence than the distribution in the second
case, and is thus more difficult to reject. However, a closer look at the data shows that if the
deviation from independence is measured using the odds ratio then the conclusion should be
exactly the opposite, because OR(y1) ≈ 0.41 (1/OR(y1) ≈ 2.45) and OR(y2) ≈ 2.11. The
inconsistency is elaborated further.

The phenomenon demonstrated in Example 2.2 is, in fact, a consequence of the variation
independence between the odds ratio and the marginal sums in a 2 × 2 table. The MLE
under independence, and in turn the Pearson statistic X2 and deviance G2, are all functions of
row-and column sums of the table. The variation independence entails that, depending on a
choice of marginal distributions, the same odds ratio value can lead to different χ2 goodness-
of-fit indices, and vice versa, the same value of the goodness-of-fit index may correspond
to a large variety of association structures expressed using odds ratios. To obtain a more
detailed illustration, we generated 104 probability vectors p ∈ ∆4 using the flat Dirichlet
distribution. In Figure 2, their goodness-of-fit indices w = w(p) with respect to the 2 × 2

independence are plotted against the odds ratios p00p11/(p01p10). For example, the odds
ratios for the distributions p1 = (0.250365, 0.230925, 0.181938, 0.336772)′, p2 = (0.703505,

0.252487, 0.025576, 0.0184322)′ are about 2, while w(p1) ≈ 0.171 and w(p2) ≈ 0.071. On

9



the other hand, the distributions p3 = (0.589401, 0.13757, 0.077083, 0.195946)′, and p4 =

(0.425385, 0.012916, 0.288966, 0.272734)′ both have w ≈ 0.5, while OR(p3) ≈ 10.9, and
OR(p4) ≈ 31.1. Several examples with real frequency data illustrating that the relationship
between the Pearson chi-square statistic and the odds ratio is not monotone can be found
in Haddock et al. (1998).

Further, the issue of multiple possible association structures leading to the same value of
a goodness-of-fit statistic stays in the shadow during the apriori power analysis used for the
power-related sample size determination. For a sample size calculation based on a noncentral
χ2 distribution, one has to specify a noncentrality parameter ϕ which is supposed to reflect
on the magnitude of deviation of a hypothetical true distribution from the model of interest,
for example independence. In practice, one can choose ϕ relating it to an omnibus value
of a goodness-of-fit index (Cohen, 1988), although it would be difficult to argue that an
ad hoc chosen noncentrality parameter is a practically relevant effect size. Another way to
proceed is to calculate ϕ from a prespecified probability distribution, as was described in Oler
(1985) for the conventional log-linear models on contingency tables. Such a distribution is
constructed based on a set of restrictions on the odds ratios and some plausible values for
marginals of the table. This procedure is more intuitive than the index-based one, especially
because the proximity between an odds ratio and the unity is routinely given an effect-size
interpretation, see Chen et al. (2010), among others. On the other hand, it does not take
into account that the resulting value of ϕ will depend on the preselected marginals, so the
issue brought up in Example 2.2 persists.

The power analysis framework proposed in the next section allows for defining a discrep-
ancy from a log-linear model using exclusively odd ratios while placing no restrictions on
the marginal distributions. Being “marginal-free“, the proposed method takes into account
the whole family of values of the goodness-of-fit test statistics which are entailed by the
distributions with a given odds ratios structure.

3 A geometric power of the chi-square test

Let π ∈ P denote the true distribution on I and G0(A) = {p ∈ P : log p = Aβ} be a
log-linear model which is believed to describe the association structure in π. Suppose that
the null hypothesis H0 : π ∈ G0(A) is tested against a class of alternatives defined as a
log-affine model:

H1 : π ∈ G1(A, ξ) = {p ∈ P : log p = Aβ + log ξ},

10



Figure 2: Goodness-of-fit w-indices with respect to the model of independence on 2× 2 con-
tingency table, computed for 104 probability distributions generated from the open simplex
∆4 using the Dirichlet distribution Dir4(1).

for a fixed ξ ∈ RI
>0. Letting D be a kernel basis matrix of A, one can reformulate both

hypotheses in the dual form (4):

H0 : π ∈ G0(D) = {p ∈ P : Dlog p = 0}, (12)

H1 : π ∈ G1(D, ξ) = {p ∈ P : Dlog p = Dlog ξ}, (13)

In the sequel, to unify and simplify the notation, the models are referred to as G0 and G1(ξ).
Notice that the alternative hypothesis (13) is expressed using only the canonical param-

eters Dlog p. Because of their variation independence from the mean-value parameters, the
alternative does not incur any restrictions on A′p. Thus the discrepancy between the null
and alternative hypotheses is quantified in terms of the canonical parameters only.

The statistical power of a hypothesis test characterizes the ability of the test to distin-
guish between the null and alternative hypotheses. For the goodness-of-fit test of H0 versus
H1, the power is the probability of rejection of the model G0 given that the model G1(ξ) holds.
Because this definition refers to a hypothesis about two association structures rather than
a hypothesis of goodness-of-fit of a particular distribution with respect to a certain model,
a formal statistical power estimation would be very challenging. A geometric framework for
power analysis of goodness-of-fit is introduced next. Looking at test power from a geomet-
ric perspective highlights the intuition behind this concept and suggests a straightforward
approach for the power estimation.
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Take an ϵ > 0 and a suitable goodness-of-fit statistic, for example the Pearson X2.
Denote by T0,ϵ the set of probability distributions in the simplex whose Pearson statistic X2

computed under the model G0 is less than ϵ:

T0,ϵ = {p ∈ ∆I : X2(p) < ϵ}. (14)

In geometric terms T0,ϵ may be seen as a tube of radius ϵ around the surface G0. In statistical
terms, one can say that this tube is comprised by distributions for which the null hypothesis
H0 is not rejected. Thus T0,ϵ is an “acceptance region” of radius ϵ, and the complement
T̄0,ϵ = ∆I \ T0,ϵ is a “rejection region”. Further, let

G1,ϵ(ξ) = G1(ξ) ∩ T̄0,ϵ = {p ∈ G1(ξ) : X2(p) ≥ ϵ}. (15)

That is, G1,α(ξ) consists of distributions in the model G1(ξ) for which the null hypothesis H0

will be (correctly) rejected. Both G1(ξ) and G1,α(ξ) are surfaces in ∆I , with the latter being
the proper subset of the former, and the ratio between their surface areas can be interpreted
as the probability of rejection of H0 given H1 holds. Thus the following definition is proposed.

Definition 3.1. Let H0 and H1 be the null and alternative hypotheses specified as a log-
linear and log-affine models in (12) and (13), respectively. For a given ϵ > 0 let G1,ϵ(ξ) be
the surface defined in (15). Then the ratio between the surface areas of G1,ϵ(ξ) and G1(ξ),

Powerg :=
Surface area of G1,ϵ(ξ)

Surface area of G1(ξ)
,

is called the geometric power of the goodness-of-fit test of G0 versus G1(ξ).

In practice, Powerg can be estimated using the following Monte-Carlo algorithm.

Monte-Carlo Geometric Power of G0 versus G1(ξ):

Input: an acceptance radius ϵ > 0, a number of replications Nsim.

• For each u ∈ 1, . . . , Nsim, repeat Steps 1, 2 :

Step 1 - Generate a probability distribution πu ∈ G1(ξ).

Step 2 - Compute the MLE π̂u under the null model G0 and collect the Pearson statistic X2(πu).

• A Monte-Carlo estimate of geometric power is equal to:

MC-Powerg :=
1

Nsim

Nsim∑
u=1

I(X2(πu) ≥ ϵ) =
1

Nsim

Nsim∑
u=1

I(πu ∈ G1,ϵ(ξ)),

where I(·) stands for the indicator function.
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Remark : The geometric power can be computed with respect to the deviance statistic G2 as
well. This case is not considered for the sake of space.

Example 3.1. To illustrate the geometric power calculations, the model of independence for a
2×2 contingency table is revisited. In the dual representation, this model can be formulated
using the odds ratio constraint p00p11/(p01p10) = 1. As an alternative G1(ξ) consider the
set of distributions whose odds ratio is equal to p00p11/(p01p10) = ξ for a given 0 < ξ ̸= 1.
Because of the variation independence between the odds ratio and the marginal distributions,
the alternative model specification does not result in any restrictions on the row- or column
sums p0+, p1+, p+0, p+1 (Rudas, 2018, Chapter 6). The geometric power calculations were
performed for three alternatives, ξ = 1/10; 5; 50, and for the acceptance radii ϵ ∈ (0.1, 0.4).
The distribution generation in Step 1 were performed in two steps: (1a) sampling a point
p = (p00, p01, p10, p11)

′ ∈ ∆4; (1b) applying the iterative proportional fitting (IPF) procedure
to find the distribution π = (π00, π01, π10, π11)

′ ∈ ∆4 such that π0+ = p0+, π0+ = p1+,
π0+ = p+0, π0+ = p+1 and π00π11/(π01π10) = ξ. In fact, the resulting distribution π is equal
to the MLE under the model G1(ξ). The MLE in Step 2 can be found in closed form (cf.
Bishop et al., 1975). The resulting power curves are shown in Figures 3 and 4. One can
see that an increase of acceptance radius would make the rejection region smaller, and thus
would lead to a smaller rejection probability (geometric power). Given the same acceptance
radius, the rejection rate would be higher for an alternative which is further from the null
model (ξ = 1). That is, the geometric power increases as the effect size gets bigger.

The proposed definition of geometric power describes a relationship between two surfaces
in the probability simplex but does not take into account that the data on I represent a
realization of a discrete random variable and, in fact, consists of absolute frequencies. In
the sequel, unless specified otherwise, it is assumed that the data are collected using the
multinomial sampling scheme, so the sample size N is fixed in advance. The Monte-Carlo
based stochastic extension of the power concept introduced below describes a relationship
between the model of interest and a realization of a multinomial distribution parameterized
by N and some p ∈ G1(ξ). Because for multinomial data the Pearson statistic of the
MLE is asymptotically chi-squared as N → ∞, the acceptance radius can be naturally
specified using a quantile of the appropriate central chi-square distribution, χ2

0;1−α, for some
α ∈ (0, 1). Essentially, a geometric goodness-of-fit can be assessed using the conventional
chi-square test with α being the significance level. In order to emphasize that multiple
drawings from the same multinomial distribution can result in different stochastic realizations
as frequency distributions, the MC-obtained stochastic extension defined here is referred to
as the cumulative geometric power.
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Monte-Carlo Cumulative Geometric Power of G0 versus G1:

Input: a sample size N , a critical value α ∈ (0, 1), χ2
0;1−α, a number of replications Nsim.

• For each u ∈ 1, . . . , Nsim repeat Steps 1, 2, 3 :

Step 1 - Generate a probability distribution πu ∈ G1(ξ).

Step 2 - Obtain a frequency distribution fu as a realization of Mult(N,πu).

Step 3 - Compute the MLE f̂u under the null model G0 and collect the Pearson statistic X2(fu).

• A Monte-Carlo estimate of the power of the goodness-of-fit hypothesis test is computed
as the empirical rejection rate, namely:

MC-Powerc :=
1

Nsim

Nsim∑
u=1

I(X2(fu) ≥ χ2
0;1−α). (16)

The cumulative power analysis is relevant, for example, for creating the sample size-
power tables, used for selecting a sample size needed to reach a prespecified power in testing
(12) versus (13). In addition, a cumulative analysis can be performed posteriori, that is, to
estimate a cumulative power achieved by testing an observed frequency distribution, say f 0.
For posteriori analysis, the exponents of the canonical parameters of p0 = f 0/(1

′f 0), are
used as the offset, ξ = exp{D logp0}, and N = 1′f 0 is the observed total.

Both Monte-Carlo algorithms described in this section are relatively straightforward to
implement. The multinomial sampling in Step 2 can be performed using a statistical soft-
ware. Numerous options are available for the MLE computation in Step 3. However, the
distribution generation in Step 1 is quite non-trivial for a general log-linear model. Follow-
ing the exponential family approach used in Example 3.1, the construction procedure can
be conducted in two steps: (1a) draw a p ∈ ∆I and compute the mean-value parameters
A′p, (1b) determine the unique distribution whose mean-value parameters are A′p and the
canonical parameters log ξ. Equivalently, in order to generate a distribution π ∈ G1(ξ), draw
a p ∈ ∆I , compute the MLE p̂ of p under the model G1(ξ) and set π = p̂. Step (1a) can
be implemented by using the mean-value parameters from a randomly drawn point from the
probability simplex ∆I . For instance, in the simulations in Example 3.1, the Dirichlet dis-
tribution DirI(α), where α = (1, . . . , 1) (uniform distribution on ∆I) or α = (1/2, . . . , 1/2)

(Jeffreys prior on ∆I) was used. The setup in Step (1b) naturally calls for using iterative
scaling. Moreover, the original iterative proportional fitting algorithm for classical hierarchi-
cal log-linear models and its generalization called the generalized iterative scaling (Darroch
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& Ratcliff, 1972) both have a clear geometric interpretation in terms of projections with
respect to the Kullback-Leibler information divergence (Csiszar, 1975, 1989). The iterative
scaling approach to constructing distributions from a log-linear model is considered in detail
in the following section.

4 Iterative scaling for sampling from a log-linear model

The classical Iterative Proportional Fitting (IPF) is a well-known procedure for the maximum
likelihood estimation under traditional log-linear models, see, for example, Agresti (2002)
and references therein. Numerous extensions of IPF were developed in order to incorporate
the MLE computation under different kinds of non-standard log-linear models, in particular,
those allowing for non-negative but not necessarily 0-1 design matrices. Firstly, it was the
GIS of Darroch & Ratcliff (1972) and, later, its further generalizations, see Herman & Lent
(1976); Censor & Segman (1987); C. Byrne (1996); Holte et al. (1990); Lent & Censor (1991);
Winkler (1990), among others. The Multiplicative Algebraic Reconstruction Techniques
(MART), widely used in image reconstruction, is also a special type of iterative scaling
(cf. C. Byrne, 1996). Among other usages of IPF is a population synthesis which aims at
generating frequency distributions with a given set of marginals and a particular interaction
structure. For example, in the small area estimation studies the IPF may be used to calculate
distributions whose interactions coincide with those in the population while the marginals
are retained from a specific sub-population. Therefore, using the iterative scaling for the
distribution generation in Step 1b would be a natural choice. However, a closer look at the
algorithms mentioned above brings attention to the following three points.

The first point concerns the fact that the proof of convergence of the original GIS was
given under the assumption that all sums along columns of the design matrix equal 1:

J∑
j=1

aij = 1, for each i ∈ 1, . . . , I. (17)

In the studies of convergence of iterative scaling, the condition (17) or its more general
version 1′A = C1′, where C = const > 0, are almost always imposed. Some authors do
it directly, among those are Herman & Lent (1976); Censor & Segman (1987); C. Byrne
(1996); Holte et al. (1990); C. Byrne (2009); C. L. Byrne (1997); Abou Al-Ola et al. (2022);
Winkler (1990), while others, for example, Lent & Censor (1991), do not mention explicitly
but require in the proofs of convergence. Our extensive literature search on MART-type
algorithms did not find any examples where the assumption 1 ∈ colspan(A) was completely
relaxed, that is, not being used for the convergence proofs. Even a very thorough account
of the simultaneous MART (SMART) given in C. Byrne (2009, 1996) did not discuss any
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design matrices where the overall effect was not present. Moreover, the presence of the overall
effect by design is simply anticipated in the image reconstruction context, where MART is
employed. The second point is, because the assumption (17) is necessary and sufficient for
the presence of the genuine overall effect, 1 ∈ colspan(A), neither GIS nor (S)MART is
suitable for the general log-linear models without the overall effect, for instance, the one in
Example 2.1. As the third point, notice that Klimova & Rudas (2015) already developed
an algorithm specifically designed to handle the absence of the overall effect. However, their
proof of convergence was given for 0-1 design matrices and cannot be extended to those with
non-negative integer entries (Klimova & Rudas, 2015), such as (9) in Example 2.1.

The algorithm IPF(γ, ξ) proposed below is, on one hand, a generalization of Darroch
and Ratcliff’s GIS to models without the overall effect, and, on the other hand, an extension
of IPF(γ) of Klimova & Rudas (2015) that can be applied to non-negative integer design
matrices. Introducing an additional parameter ξ > 0 is a further generalization, as both
original algorithms were designed for ξ ≡ 1.

Let G(A) be a general log-linear model. Unless otherwise specified, assume that A ≡
A/∥A∥1, where ∥A∥1 stands for the L1 norm of A (its maximal row sum):

∥A∥1 = max
1≤j≤I

J∑
j=1

|aij|.

Write A1, . . . , AJ for the columns of A, and consider a q ∈ RI
≥0 such that A′

1q, . . . , A
′
Jq > 0.

Let D denote a kernel basis matrix of A.

Iterative Proportional Fitting Algorithm IPF(γ, ξ):

Input: a design matrix A and its kernel basis matrix D; q ∈ RI
≥0; γ > 0; ξ ∈ RI

≥0.

• Initialize: set n = 0; choose δ(0) ∈ RI
≥0 such that Dlog δ(0) = D log ξ.

• Iterate for n ≥ 0:

δ
(n+1)
i = δ

(n)
i

J∏
j=1

[
γ

A′
jq

A′
jδ

(n)

]aij
for all i ∈ I. (18)

A formal proof of convergence of the sequence (18) is presented as Theorem 4.2 in the
Appendix. It is shown that for a γ > 0, as n → ∞, the sequence δ(n)

γ converges, and its limit
δ∗
γ is the unique solution to the system:

(i) A′δ∗
γ = γA′q, (ii) Dlog δ∗

γ = D log ξ.
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As corollary, it is proved that when G(A) is either a model for probabilities with the
overall effect, 1 ∈ colspan(A), or a model for intensities (with or without the overall effect)
the MLE under this model can be computed using IPF(γ, ξ) by setting γ = 1 and ξ = 1.
These corollary results are not entirely new. Firstly, if the model matrix satisfies (17), IPF(1,
1) coincides with the generalized iterative scaling of Darroch & Ratcliff (1972). Secondly,
if 1 ∈ colspan(A), IPF(γ, ξ) is an instantiation of MART. Thus, in these two cases, the
convergence is already known. However, because in the context where MARTs are applied
the overall effect is present by design, their convergence in the no-overall-effect case had not
been considered. Therefore, the results of Theorem 4.2 concerning the convergence of IPF(γ,
ξ) when 1 /∈ colspan(A) are absolutely novel.

Notice that in the case of probabilities, δ ≡ p, Theorem 4.2 does not guarantee that
the sequence limit is a probability distribution, that is, 1′δ∗

γ = 1. The two-stage procedure
described next incorporates an additional normalization step and is an extension of the
algorithm proposed by Klimova & Rudas (2015) for relational models.

Generalized Iterative Proportional Fitting Algorithm G-IPF(ξ):

Input: a design matrix A and its kernel basis matrix D; q ∈ ∆I ; ξ ∈ RI
≥0.

• Initialize: set n = 0; γ(0) = 1; choose a δ(0) > 0 for which D log δ(0) = D log ξ.

• Core step: for d ≥ 0, apply IPF(γ(d), ξ) to obtain δ̃
(d)

γ that satisfies A′δ̃γ(d) = γ(d)A′q

and D log δ̃γ(d) = D log ξ.

• Adjustment step: adjust γ(d) in such a way that after the (d+1)th Core step, the total
of the limit δ̃γ(d+1) is closer to 1 than the total of δ̃γ(d) :

|1′δ̃γ(d+1) − 1| < |1′δ̃γ(d) − 1|.

• Iterate between Core step and Adjustment step until |1′δ̃γ(d+1) − 1| is smaller than a
desired precision.

Theorem 4.2 and a result of Forcina (2019) imply that as d → ∞, the sequence δ̃γ(d)

obtained from G-IPF (ξ) converges, its limit, δ(∗), is the unique solution to the system:

A′δ(∗) = γ(∗)A′q, D log δ(∗) = D log ξ, 1′δ(∗) = 1,

for a unique γ(∗) > 0. Therefore, the G-IPF(ξ) algorithm can be used to generate distribu-
tions from G1(ξ).
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Finally, as seen in the proof of Theorem 4.2, the sequence generated by G-IPF is built
by successive projections with respect to the Bregman information divergence (Bregman,
1967). This result generalizes the geometric interpretation associated to IPF and GIS given
by Csiszar (1975, 1989).

In the next section, the geometric framework for power analysis is applied to real data.

5 An example of geometric power analysis

The study Dia-Vacc (NCT04799808) was initiated in January 2021 in several nephrology
centers in Germany (Stumpf et al., 2021). The participants were initially vaccinated with
two doses either of BNT162b2mRNA or 1273-mRNA vaccine, and those who developed the
vaccine-specific antibodies were said to have a positive immune response to the vaccination.
The study participants without a positive response were revaccinated, boostered, after six
months, and those who did not respond to the booster, were given another one later. As a
result, the study participants can be classified into four groups according to their vaccination
profile, see Example 2.1 and Figure 1. Denote by p = (p1, p2, p3, p4)

′ the probabilities
of corresponding paths, by θ1 the probability of positive response and θ0 = 1 − θ1 the
probability of non-response to a single vaccination. Then, the hypothesis of independence
between outcomes of subsequent vaccinations, or in other words, of the non-existence of
delayed immune response, can be expressed using the model (8):

p1 = θ30, p2 = θ20θ1, p3 = θ0θ1, p4 = θ1. (8)

In this manuscript, only the data of kidney transplant recipients participating in the study
will be analyzed. After three vaccination rounds, the observed frequencies were y = (80,

12, 44, 64)′ in each respective category. As obtained in (10), the MLEs for probabilities
under the model (8) are equal to p̂ = ((308/428)3, 3082 · 120/4283, 308 · 120/4282, 120/428)′

≈ (0.373, 0.145, 0.202, 0.280)′. The Pearson statistic X2 ≈ 11.85 and deviance G2 ≈ 14.65,
on two degrees of freedom, indicate medium-strength evidence against the hypothesis of
independence. Assuming the significance level of 5%, the achieved (conventional) statistical
power is about 88% (Silvey, 1959; Aitchison & Silvey, 1960).

Using the Monte-Carlo method of Section 3, two posteriori MC-based cumulative power
estimates were obtained. The distributions on the simplex were drawn from the distribution
Dir4(1) and Dir4(1/2), respectively. In each case, ten Monte-Carlo sequences of 104 repli-
cations were generated. The average rejection rates were equal to 0.903 and 0.845, with the
95% confidence intervals (0.901, 0.905) and (0.841, 0.849), respectively. The convergence of
three of those sequences (for the sake of graphical clarity) is illustrated in Figures 5 and 6.
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Suppose a researcher would like to conduct a study with a similar design. The question
about the study size needed to reach a prespecified power in rejecting the null hypothesis
(8) using the chi-square test will be addressed below using the geometric power framework.
In order to carry out the apriori Monte-Carlo power calculations, one starts with specifying
the null and alternative hypotheses in a dual form, using a set of constraints on odds ratios.
For the hypothesis of independence (8), a dual form can be obtained from the matrix

D =

(
1 −2 1 1
0 1 −2 1

)
.

In this case, the null hypothesis is formulated as:

H0 : π ∈ G0 = {p ∈ ∆4 : p1p3p4/p
2
2 = 1, p2p4/p

2
3 = 1}. (19)

As an alternative, one can take:

H1 : π ∈ G1 = {p ∈ ∆4 : p1p3p4/p
2
2 = 1, p2p4/p

2
3 = k}, (20)

for a fixed k > 0. Power calculations for k = 2 and k = 3 are presented in Table 3. According
to the simulation results, in order to reach a power of 80% (under a 5% significance level),
a sample size of about 490 would be needed for the alternative with k = 2 and of about 210
for the alternative with k = 3.

For comparison, notice that in the observed data above, the sample size is N = 200 and
p = (0.4, 0.06, 0.22, 0.32), and therefore, p1p3p4/p22 ≈ 7.822 and p2p4/p

2
3 ≈ 0.397. Considering

the magnitude of the observed ratios, the classical posteriori power estimate of 88% and the
cumulative power estimates of 90% and 84% seem to be in a reasonable agreement with the
power-sample size summary in Table 3.

6 Conclusion

The statistical power analysis for log-linear models is routinely conducted using the noncen-
tral chi-square distribution, with the goodness-of-fit index performing the role of effect size.
This method overlooks the phenomenon that the same goodness-of-fit index corresponds
to a variety of association structures expressed in terms of odds ratios. In the context of
power analysis, this property may lead to contradicting interpretations of the proximity be-
tween the null hypothesis and its alternative. This paper focuses on the power analysis of
goodness-of-fit of a log-linear model against a log-affine alternative. In this case, the devia-
tion of the alternative hypothesis from the null one can be quantified exclusively using odds
ratios. The power analysis is given a geometric interpretation, and a concept of geometric
power is proposed. A Monte-Carlo method for power analysis is described and demonstrated
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using several examples. An additional original contribution of the paper is the new proof
of convergence of generalized interactive scaling for log-linear models. This result extends a
previously known geometric interpretation of this algorithm as well. All computations were
performed using the R Environment for statistical computing (R Core Team, 2021).
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Appendix: Convergence of the IPF(γ, ξ) algorithm

Algorithm IPF(γ, ξ):

Input: γ > 0; ξ ∈ RI
≥0; δ

(0) ∈ RI
≥0 such that Dlog δ(0) = D log ξ.

Iterate for n ≥ 0:

δ
(n+1)
i = δ

(n)
i

J∏
j=1

[
γ

Ajq

Ajδ
(n)

]aij
for all i ∈ I. (18)

For t,u ∈ R|I|
>0 , let D(t,u) denote the Bregman divergence between t and u:

D(t,u) =
∑
i∈I

tilog (ti/ui)− (
∑
i∈I

ti −
∑
i∈I

ui). (21)

Then, for the sequence (18) obtained in IPF(γ, ξ) the following holds:

Lemma 4.1. Set γ = 1. Then,

I∑
i=1

δ
(n+1)
i ≤

I∑
i=1

δ
(n)
i +

J∑
j=1

(A′
jq − A′

jδ
(n)),

and for any z ∈ RI
>0,

D(z, δ(n+1)) ≤ D(z, δ(n))−D(A′q,A′δ(n)).

Proof. The first statement:

First recall that, for x1, . . . xn > 0, and wi ≥ 0, such that w1 + · · · + wn = w, according
to the weighted AM-GM (arithmetic mean - geometric mean) inequality, one has:

w1x1 + . . . wnxn

w
≥ (xw1

1 · · ·xwn
n )1/w . (22)

Notice that

δ
(n+1)
i = δ

(n)
i

J∏
j=1

[
A′

jq

A′
jδ

(n)

]aij
· 11−

∑J
j=1 aij ,

and apply the inequality (22):

δ
(n+1)
i ≤ δ

(n)
i

(
J∑

j=1

aij
A′

jq

A′
jδ

(n)
+ 1−

J∑
j=1

aij

)
.
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After regrouping terms:

δ
(n+1)
i ≤

J∑
j=1

aijδ
(n)
i

A′
jq

A′
jδ

(n)
+ δ

(n)
i −

J∑
j=1

aijδ
(n)
i .

Therefore,

I∑
i=1

δ
(n+1)
i ≤

I∑
i=1

J∑
j=1

aijδ
(n)
i

A′
jq

A′
jδ

(n)
+

I∑
i=1

δ
(n)
i −

I∑
i=1

J∑
j=1

aijδ
(n)
i

=
I∑

i=1

δ
(n)
i +

J∑
j=1

A′
jq

A′
jδ

(n)

I∑
i=1

aijδ
(n)
i −

J∑
j=1

A′
jδ

(n)

=
I∑

i=1

δ
(n)
i +

J∑
j=1

A′
jq

A′
jδ

(n)
A′

jδ
(n) −

J∑
j=1

A′
jδ

(n) =
I∑

i=1

δ
(n)
i +

J∑
j=1

(A′
jq − A′

jδ
(n)).

The second statement:
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For a z ∈ RI
>0, one has:

D(z, δ(n+1)) =
∑
i

zi log zi −
∑
i

zi log δ
(n+1)
i − (

∑
i

zi −
∑
i

δ
(n+1)
i )

≤
∑
i

zi log zi −
∑
i

zi log δ
(n+1)
i −

∑
i

zi +
I∑

i=1

δ
(n)
i +

J∑
j=1

A′
jq −

J∑
j=1

A′
jδ

(n)

=
∑
i

zi log zi −
∑
i

zi log δ
(n)
i

J∏
j=1

[
A′

jq

A′
jδ

(n)

]aij

−
∑
i

zi +
I∑

i=1

δ
(n)
i +

J∑
j=1

A′
jq −

J∑
j=1

A′
jδ

(n)

=
∑
i

zi log zi −
∑
i

zi log δ
(n)
i −

∑
i

zi

J∑
j=1

aij log

[
A′

jq

A′
jδ

(n)

]

−
∑
i

zi +
I∑

i=1

δ
(n)
i +

J∑
j=1

A′
jq −

J∑
j=1

A′
jδ

(n)

=
∑
i

zi log(zi/δ
(n)
i )− (

∑
i

zi −
I∑

i=1

δ
(n)
i )−

∑
i

zi

J∑
j=1

aij log

[
A′

jq

A′
jδ

(n)

]

+
J∑

j=1

A′
jq −

J∑
j=1

A′
jδ

(n)

= D(z, δ(n))−
J∑

j=1

log

[
A′

jq

A′
jδ

(n)

]∑
i

ziaij +
J∑

j=1

A′
jq −

J∑
j=1

A′
jδ

(n)

= D(z, δ(n))−
J∑

j=1

A′
jz · log

[
A′

jq

A′
jδ

(n)

]
+

J∑
j=1

A′
jq −

J∑
j=1

A′
jδ

(n).

Therefore, after taking z ≡ q,

D(q, δ(n+1)) ≤ D(q, δ(n))−D(A′q,A′δ(n)).

Theorem 4.2. Fix a γ > 0. Then, as n → ∞, the sequence δ(n)
γ converges, and its limit δ∗

γ

is the unique solution to the system:

(i) A′δ∗
γ = γA′q,

(ii) Dlog δ∗
γ = D log ξ.
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Proof. (i) First, let γ = 1. By Lemma 4.1, the sequence D(q, δ(n)) is monotone decreasing.
Therefore, because D(q, δ(n)) ≥ 0, one has that D(A′q,A′δ(n)) → 0 as n → ∞. By the
properties of Bregman divergence, the latter implies that A′δ(n) → A′q (Bregman, 1967).

In more generality, when 0 < γ ̸= 1, after replacing q with γq, and, respectively, δ(n)

with δ(n)
γ , one has

D(z, δ(n+1)) ≤ D(z, δ(n))−
J∑

j=1

A′
jz · log

[
γA′

jq

A′
jδ

(n)

]
+

J∑
j=1

γA′
jq −

J∑
j=1

A′
jδ

(n),

and for a z ∈ RI
>0, that A′z = γA′q:

D(z, δ(n+1)) ≤ D(q, δ(n))−D(γA′q,A′δ(n)).

Analogous to the above, A′δ(n) → γA′q, so one concludes that the sequence δ(n)
γ converges

and its limit, δ∗
γ, satisfies

A′δ∗
γ = γA′q.

(ii) The proof is by induction. Since Dlog δ(0)
γ = D log ξ, the statement holds for n = 0.

Further, suppose Dlog δ(d)
γ = D log ξ for an n > 0. Set Cj =

γA′
jq

A′
jδ

(n)
γ

. Then,

Dlog δ(n+1)
γ = Dlog


δ
(n)
γ,1 ·

∏J
j=1C

a1j
j

δ
(n)
γ,2 ·

∏J
j=1C

a2j
j

...
δ
(n)
γ,I ·

∏J
j=1 C

aIj
j

 = D


log δ

(n)
γ,1 +

∑J
j=1 a1jlog Cj

log δ
(n)
γ,2 +

∑J
j=1 a2jlog Cj

...
log δ

(n)
γ,I +

∑J
j=1 aIjlog Cj


= Dlog δ(n)

γ +
J∑

j=1

log CjDAj = D log ξ,

because D is a kernel basis matrix and thus DAj = 0. Therefore, Dlog δ(n)
γ = D log ξ for all

n ≥ 0, and, by continuity of matrix multiplication and logarithm, Dlog δ∗
γ = D log ξ. This

completes the proof.

Corollary 4.3. Let G(A) be a general log-linear model for intensities whose design matrix
A satisfies the properties specified in the beginning of this section. Suppose y is a realization
of Pois(λ) and assume that the MLE λ̂ given y exists. The sequence {λ(n)} ∈ RI

≥0 obtained
as:

λ(n) = 1,

λ
(n+1)
i = λ

(n)
i

J∏
j=1

[
A′

jy

A′
jλ

(n)

]aij
for all i ∈ I, n ≥ 0, (23)

converges and its limit is λ(∗) is equal to the MLE λ̂ under the model G(A).
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Proof. Apply Theorem 4.2 to q ≡ y, ξ ≡ 1, γ = 1. The limit satisfies (5), as required.

Corollary 4.4. Let G(A) be a general log-linear model for probabilities with 1 ∈ colspan(A).
Suppose y is a realization of Mult(N,p) and assume that the MLE p̂ given y exists. Let
q = y/N . Then, the sequence {p(n)} ∈ RI

≥0 obtained as:

p(n) = 1,

p
(n+1)
i = p

(n)
i

J∏
j=1

[
A′

jq

A′
jp

(n)

]aij
for all i ∈ I, n ≥ 0, (24)

converges and its limit is p(∗) is equal to the MLE p̂ under the model G(A).

Proof. Taking ξ ≡ 1, γ = 1 in Theorem 4.2, one sees that the sequence limit satisfies the first
two equations in (6). Because 1 ∈ colspan(A) and 1′q = 1, it also holds that 1′p(∗) = 1.
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Supplementary Material

Figure 3: Geometric power of the goodness-of-fit test of 2 × 2 independence for different
acceptance radii. Samples from ∆4 were drawn using Dir4(1)
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Figure 4: Geometric power of the goodness-of-fit test of 2× independence for different ac-
ceptance radii. Samples from ∆4 were drawn Dir4(1/2)
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Figure 5: Convergence of rejection rates of MCMC generated using Dir4(1)

Figure 6: Convergence of rejection rates of MCMC generated using Dir4(1/2)
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Sampling from Dirichlet4(1) Sampling from Dirichlet4(1/2)

H1 =
{
p1p3p4/p

2
2 = 1, H1 =

{
p1p3p4/p

2
2 = 1, H1 =

{
p1p3p4/p

2
2 = 1, H1 =

{
p1p3p4/p

2
2 = 1,

p2p4/p
2
3 = 2

}
p2p4/p

2
3 = 3

}
p2p4/p

2
3 = 2

}
p2p4/p

2
3 = 3

}
N α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10

200 0.45 0.59 0.84 0.90 0.43 0.55 0.80 0.87
220 0.49 0.62 0.87 0.92 0.47 0.60 0.83 0.89
240 0.53 0.66 0.90 0.94 0.50 0.63 0.85 0.90
260 0.57 0.69 0.91 0.95 0.55 0.67 0.88 0.92
280 0.60 0.72 0.94 0.96 0.58 0.70 0.90 0.93
300 0.64 0.75 0.94 0.97 0.61 0.72 0.91 0.94
320 0.67 0.78 0.95 0.97 0.63 0.74 0.92 0.95
340 0.70 0.79 0.97 0.98 0.66 0.76 0.92 0.95
360 0.73 0.83 0.97 0.98 0.70 0.79 0.93 0.96
380 0.75 0.84 0.98 0.99 0.71 0.80 0.94 0.96
400 0.77 0.85 0.98 0.99 0.73 0.82 0.94 0.96
420 0.79 0.86 0.98 0.99 0.75 0.83 0.96 0.97
440 0.81 0.88 0.98 0.99 0.77 0.85 0.96 0.97
460 0.83 0.89 0.99 0.99 0.79 0.86 0.96 0.97
480 0.85 0.90 0.99 0.99 0.80 0.87 0.96 0.97
500 0.86 0.91 0.99 0.99 0.82 0.88 0.96 0.98

Table 3: Rejection rates of H0 specified in (19) against the alternative H1 in (20) for k = 2
and k = 3, respectively. Sampling from ∆4 implemented using Dirichlet distribution Dir4(1)
or Dir4(1/2)
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