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Adversarial robustness and generaliza-
tion are both crucial properties of reli-
able machine learning models. In this pa-
per, we study these properties in the con-
text of quantum machine learning based on
Lipschitz bounds. We derive parameter-
dependent Lipschitz bounds for quantum
models with trainable encoding, showing
that the norm of the data encoding has a
crucial impact on the robustness against
data perturbations. Further, we derive a
bound on the generalization error which
explicitly involves the parameters of the
data encoding. Our theoretical findings
give rise to a practical strategy for training
robust and generalizable quantum mod-
els by regularizing the Lipschitz bound
in the cost. Further, we show that, for
fixed and non-trainable encodings, as those
frequently employed in quantum machine
learning, the Lipschitz bound cannot be in-
fluenced by tuning the parameters. Thus,
trainable encodings are crucial for system-
atically adapting robustness and general-
ization during training. The practical im-
plications of our theoretical findings are il-
lustrated with numerical results.

1 Introduction

Robustness of machine learning (ML) models
is an increasingly important property, especially
when operating on real-world data subject to per-
turbations. In practice, there are various possible
sources of perturbations such as noisy data acqui-
sition or adversarial attacks. The latter are tiny
but carefully chosen manipulations of the data,
and they can lead to dramatic misclassification
in neural networks [1, 2]. As a result, much re-
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search has been devoted to better understanding
and improving adversarial robustness [3, 4, 5]. It
is well-known that robustness is closely connected
to generalization [1, 2, 6, 7, 8], i.e., the ability of
a model to extrapolate beyond the training data.
Intuitively, if a model is robust then small input
changes only cause small output changes, thus
counteracting the risk of overfitting.

A Lipschitz bound of a model f is any L > 0
satisfying

∥f(x1) − f(x2)∥ ≤ L∥x1 − x2∥ (1)

for all x1, x2 ∈ D ⊆ Rd. By definition, Lip-
schitz bounds quantify the worst-case output
change that can be caused by data perturba-
tions and, thus, they provide a useful measure
of adversarial robustness. Therefore, they are
a well-established tool for characterizing robust-
ness and generalization properties of ML mod-
els [2, 6, 9, 10, 11, 12, 13, 14, 15]. Lipschitz
bounds cannot only be used to better understand
these two properties, but they also allow one to
improve them by regularizing the Lipschitz bound
during training [2, 6, 16, 17, 18].

In this paper, we study the interplay of ro-
bustness and generalization in quantum ma-
chine learning (QML). Variational quantum cir-
cuits are a well-studied class of quantum mod-
els [20, 21, 22, 23] and they promise benefits over
classical ML in various aspects including train-
ability, expressivity, and generalization perfor-
mance [24, 25]. Data re-uploading circuits gener-
alize the classical variational circuits by concate-
nating a data encoding and a parametrized quan-
tum circuit not only once but repeatedly, thus it-
erating between data- and parameter-dependent
gates [26]. This alternation provides substantial
improvements on expressivity, leading to a uni-
versal quantum classifier even in the single-qubit
case [26, 27].
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Figure 1: Schematic illustration of the quantum model and training setup considered in this work for an exemplary
Fashion MNIST data set [19]. The data, x, enter the quantum circuit via a trainable encoding, i.e., they are encoded
into unitary operators Uj,Θj

(x) via an affine function w⊤
j x + θj with trainable parameters wj , θj . During training,

we minimize a cost function consisting of the empirical loss as well as an additional regularization term penalizing
the norms of the parameters wj . This regularization reduces the Lipschitz bound of the quantum model w.r.t. data
perturbations. We show with both theoretical and numerical results that smaller values of ∥wj∥, as encouraged by
the proposed regularization, lead to more robust and generalizable quantum models.

Just as in the classical case, robustness is cru-
cial for quantum models. First, if QML is to
provide benefits over classical ML, it is neces-
sary to implement QML circuits which are ro-
bust w.r.t. quantum errors occurring due to im-
perfect hardware in the noisy intermediate-scale
quantum (NISQ) era [28]. Questions of robust-
ness of quantum models against such hardware
errors have been studied, e.g., in [29, 30]. Lip-
schitz bounds can be used to study robustness
of quantum algorithms against certain types of
hardware errors, e.g., coherent control errors [31].

However, robustness against hardware errors is
entirely different from and independent of the ro-
bustness of a quantum model against data per-
turbations, which is the subject of this paper.
The latter type of robustness has been studied
in the context of quantum adversarial machine
learning [32, 33]. Not surprisingly, just like their
classical counterparts, quantum models are also
vulnerable to adversarial attacks, both when op-
erating based on classical data [34, 35] and quan-
tum data [36, 34, 37, 38, 39, 40, 41]. To miti-
gate these attacks, it is desirable to design train-
ing schemes encouraging adversarial robustness
of the resulting quantum model. Existing ap-
proaches in this direction include solving an (ad-
versarial) min-max optimization problem during
training [34] or adding adversarial examples to
the training data set [42].

Besides robustness, another important aspect
of any quantum model is its ability to general-
ize to unseen data [43, 44]. In particular, various
works have shown generalization bounds [24, 45,
46, 47, 48], i.e., bounds on the expected risk of a
model depending on its performance on the train-
ing data. While these bounds provide insights
into possibilities for constructing quantum mod-
els that generalize well, they also face inherent
limitations due to their uniform nature [49].

Contribution

This paper presents a flexible and rigorous frame-
work for robustness and generalization of quan-
tum models, providing both a theoretical anal-
ysis as well as a simple regularization strategy
which allows to systematically adapt robustness
and generalization during training (see Figure 1
for an overview). More precisely, we first derive a
Lipschitz bound of a given quantum model which
explicitly involves the parameters of the data en-
coding. Based on this result, we propose a reg-
ularized training strategy penalizing the norm of
the encoding parameters, which are considered
trainable, in order to improve (adversarial) ro-
bustness of the model. Further, we derive a gen-
eralization bound which explicitly depends on the
parameters of the quantum model and therefore
does not share the limitations of existing uni-
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form generalization bounds [49]. With numer-
ical results, we demonstrate that the proposed
Lipschitz bound regularization can indeed lead
to substantial improvements in robustness and
generalization of quantum models. Finally, given
that the derived Lipschitz bound mainly depends
on the norm of the data encoding, our results
reveal the importance and benefits of trainable
encodings over quantum circuits with a priori
fixed encoding as frequently used in variational
QML [20, 21, 22, 23, 24, 27].

Outline
The paper is structured as follows. In Section 2,
we introduce the considered class of quantum
models with trainable encodings and we state
their Lipschitz bound. Next, in Section 3, we
use the Lipschitz bound to study robustness of
quantum models and to derive a regularization
strategy for robust training whose benefits are
demonstrated with numerical simulations. We
then derive a generalization bound which depends
explicitly on the data encoding parameters and
we confirm this insight numerically by showing
improved generalization under the proposed reg-
ularization strategy (Section 4). Further, in Sec-
tion 5, we discuss an important implication of
our results on the benefits of trainable encodings
for robustness and generalization. Finally, Sec-
tion 6 concludes the paper. In the appendix, we
provide technical proofs, details on the numerical
simulations, as well as additional theoretical and
numerical results.

2 Quantum models and their Lipschitz
bounds
We consider parametrized unitary operators of
the form

Uj,Θj (x) = e−i(w⊤
j x+θj)Hj , j =, 1 . . . , N (2)

with input data x ∈ Rd, trainable parameters
Θj = {wj , θj}, wj ∈ Rd, θj ∈ R and Hermitian
generators Hj .

Depending on the choice of Hj , the opera-
tor Uj,Θj acts on either one or multiple qubits.
The operators Uj,Θj give rise to the parametrized
quantum circuit

UΘ(x) = UN,ΘN
(x) · · · U1,Θ1(x), (3)

where Θ = {Θj}N
j=1 comprises the set of trainable

parameters. The quantum model considered in
this paper consists of UΘ(x) applied to |0⟩ and
followed by a measurement w.r.t. the observable
M, i.e.,

fΘ(x) = ⟨0|UΘ(x)†MUΘ(x)|0⟩ . (4)

Note that each of the unitary operators Uj,Θj (x)
involves the full data vector x, i.e., the data
are loaded repeatedly into the circuit, a strat-
egy that is commonly referred to as data re-
uploading [26]. The encoding of the data x into
each Uj,Θj (x) is realized via an affine function
w⊤

j x + θj , where both wj and θj are trainable
parameters. Hence, we refer to (4) as a quantum
model with trainable encoding. Such trainable
encodings are a generalization of common quan-
tum models [20, 21, 22, 23, 24, 27], for which the
wj ’s are fixed (typically unit vectors) and only
the θj ’s are trained.

Our results rely on Lipschitz bounds (1). A
Lipschitz bound quantifies the maximum pertur-
bation of f that can be caused by input varia-
tions. For the quantum model fΘ, we can state
the following Lipschitz bound

LΘ = 2∥M∥
N∑

j=1
∥wj∥∥Hj∥. (5)

The formal derivation can be found in Ap-
pendix A. For a given set of parameters wj , (5) al-
lows to compute the Lipschitz bound of the corre-
sponding quantum model. Note that LΘ depends
only on wj but it is independent of θj . This fact
plays an important role for potential benefits of
trainable encodings since the parameters wj are
not optimized during training for fixed-encoding
circuits. We note that all results in this paper
hold for arbitrary p-norms as long as the same p
is used for both vector and induced matrix norms.

3 Robustness of quantum models
Suppose we want to evaluate the quantum model
fΘ at x, i.e., we are interested in the value fΘ(x),
but we can only access fΘ at some perturbed input
x′ = x + ε with an unknown ε. Such a setup can
arise due to various reasons, e.g., x may be the
output of some physical process which can only
be accessed via noisy sensors. The perturbation
ε may also be the result of an adversarial attack,
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i.e., a perturbation aiming to cause a misclassifi-
cation by choosing ε such that

∥fΘ(x + ε) − fΘ(x)∥ (6)

is maximized. In either case, to correctly clas-
sify x despite the perturbation, we require that
fΘ(x + ε) is close to fΘ(x), meaning that (6)
is small. According to (1), a Lipschitz bound L
of fΘ quantifies exactly this difference, implying
that the maximum possible deviation of fΘ(x+ε)
from fΘ(x) is bounded as

∥fΘ(x + ε) − fΘ(x)∥ ≤ L∥ε∥. (7)

This shows that smaller Lipschitz bounds imply
better (worst-case) robustness of models against
data perturbations. Thus, using (5), the robust-
ness of the quantum model fΘ is mainly influ-
enced by the parameters of the data encoding
wj , Hj , and by the observable M. In particu-
lar, smaller values of

∑N
j=1∥wj∥∥Hj∥ and ∥M∥

lead to a more robust model.
We now apply this theoretical insight to train

robust quantum models using regularization. We
consider a supervised learning setup with loss ℓ
and training data set (xk, yk) ∈ X × Y of size n.
The following optimization problem can be used
to train the quantum model fΘ

min
Θ

1
n

n∑
k=1

ℓ(fΘ(xk), yk). (8)

In order to ensure that fΘ not only admits a small
training loss but is also robust and generalizes
well, we add a regularization, leading to

min
Θ

1
n

n∑
k=1

ℓ(fΘ(xk), yk) + λ
N∑

j=1
∥wj∥2∥Hj∥2.

(9)

Regularizing the parameters wj encourages small
norms of the data encoding and, thereby, small
values of the Lipschitz bound LΘ. The hyper-
parameter λ > 0 allows for a trade off between
the two objectives of a small training loss and
robustness/generalization in the cost function.
Note that the regularization does not involve the
θj ’s since they do not influence the Lipschitz
bound (5), an issue we discuss in more detail
in Section 5. Moreover, we do not introduce an
explicit dependence of the regularization on M
since we do not optimize over the observable in
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Figure 2: We compare robustness of quantum models
trained via (9) for λ ∈ {0, 0.2, 0.5} and a quantum
model with fixed encoding (14). As training and test
set, we draw n = 200 and 1000 points xi ∈ X , respec-
tively, uniformly at random. To study robustness, we
perturb each of the 1, 000 test data points by random
noise drawn uniformly from [−ε̄, +ε̄]d (d = 2). The test
accuracy in the plot is the worst case over 200 noise
samples per data point.

this paper. We note that penalty terms similar
to the proposed regularization can be used for
handling hard constraints in binary optimization
via the quantum approximate optimization algo-
rithm [50, 51]. Indeed, the above regularization
can be interpreted as a penalty-based relaxation
of the corresponding constrained training prob-
lem, i.e., of training a quantum model with Lip-
schitz bound below a specific value.

We now evaluate our theoretical findings based
on the circle classification problem from [52]:
within a domain of X = [−1, +1] × [−1, +1], a
circle with radius

√
2/π is drawn, and all data

points inside the circle are labeled with y = +1,
whereas points outside are labeled with y = −1,
see Appendix C (Figure 5). For the quantum
model with trainable encoding, we use general
SU(2) operators and encode w⊤

j x + θj into the
first two rotation angles. We repeat this encod-
ing for each of the considered 3 qubits, followed
by nearest neighbour entangling gates based on
CNOTs. Such a layer is then repeated 3 times.
As observable, we use M = Z⊗Z⊗Z. The result-
ing circuit is illustrated in Appendix C (Figure 7).
As norms in the regularized training problem (9),
we employ 2-norms, but we note that exploring
different choices is an interesting future direction.
For example, a 1-norm regularization may enforce
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sparsity and, thereby, simplify implementations
on NISQ hardware.

The numerical results for the robustness sim-
ulations are shown in Figure 2, where we com-
pare the worst-case test accuracy and Lipschitz
bound of three trained models with different reg-
ularization parameter λ ∈ {0, 0.2, 0.5}. Addi-
tionally, the plot shows the accuracy of a quan-
tum model with fixed encoding for the same
numbers of qubits and layers (see (14) and Ap-
pendix C for details). The worst-case test accu-
racy of all models is obtained by sampling differ-
ent noise samples ε from [−ε̄, +ε̄] and, thereby,
it approximates the accuracy resulting from an
adversarial attack norm-bounded by ε̄. As ex-
pected, all four models deteriorate with increas-
ing noise level. For zero noise level ε̄ = 0, the
model with the largest regularization parameter
λ = 0.5 (and, hence, the smallest Lipschitz bound
LΘ = 3.67) has a smaller test accuracy than the
non-regularized model with λ = 0. This can be
explained by a decrease in the training accuracy
that is caused by the additional regularization in
the cost. For increasing noise levels, however, the
enhanced robustness outweighs the loss of train-
ing performance and, therefore, the model with
λ = 0.5 outperforms the model with λ = 0. The
fixed-encoding model achieves comparable per-
formance to the trainable-encoding model with
λ = 0.5 for small noise and the worst perfor-
mance among all models for high noise. These
observations can be explained by the reduced ex-
pressivity but high Lipschitz bound of the fixed-
encoding model. Finally, the model with λ = 0.2
almost always outperforms the model with λ = 0
and, in particular, it yields a higher test accuracy
for small noise levels. This can be explained by
the improved generalization performance caused
by the regularization, an effect we discuss in more
detail in the following.

4 Generalization of quantum models

The Lipschitz bound (5) not only influences ro-
bustness but also has a crucial impact on gen-
eralization properties of the quantum model fΘ.
Intuitively, a smaller Lipschitz bound implies a
smaller variability of fΘ and, therefore, reduces
the risk of overfitting. This intuition is made for-
mal via the following generalization bound.
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Figure 3: Results for the generalization simulations. The
training setup is identical to the robustness simulations
as described in Figure 2. As test set, we draw 10.000
points uniformly at random and evaluate the trained
models with different regularization parameter λ.

Theorem 4.1. (informal version) Consider a
supervised learning setup with loss ℓ and data
set (xk, yk) ∈ X × Y of size n drawn according
to the probability distribution P . For the quan-
tum model fΘ from (4), define the expected risk
R(fΘ) =

∫
X ×Y ℓ(y, fΘ(x))dP (x, y) and the em-

pirical risk Rn(fΘ) = 1
n

∑n
k=1 ℓ(yk, fΘ(xk)). The

generalization error of fΘ is bounded as∣∣∣R(fΘ) − Rn(fΘ)
∣∣∣ (10)

≤ C1∥M∥
N∑

j=1
∥wj∥∥Hj∥ + C2√

n

for some C1, C2 > 0.

The detailed version and proof of Theorem 4.1
are provided in Appendix B. Generalization
bounds as in (10) quantify the ability of fΘ
to generalize beyond the available data. The
bound (10) depends on the data encoding via∑N

j=1∥wj∥∥Hj∥ and on the observable via ∥M∥.
In particular, fΘ achieves a small generalization
error if its Lipschitz bound LΘ is small and the
size n of the data set is large. Note, however,
the following fundamental trade-off: A too small
Lipschitz bound LΘ may limit the expressivity
of fΘ and, therefore, lead to a high empirical
risk Rn(fΘ), in which case the generalization
bound (10) is meaningless. In conclusion, The-
orem 4.1 implies a small expected risk R(fΘ) if n
is large, LΘ is small, and fΘ has a small empirical
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risk Rn(fΘ). In contrast to existing generaliza-
tion bounds [24, 45, 46, 47, 48], the bound (10)
is not uniform and explicitly involves the Lips-
chitz bound (5), i.e., the parameters of the data
encoding. Hence, Theorem 4.1 does not share
the limitations of uniform QML generalization
bounds [49].

We evaluate the generalization performance of
the trainable encoding again on the circle classi-
fication problem. The training setup is identical
to the robustness simulations and the numerical
results are shown in Figure 3. Increasing the reg-
ularization parameter λ decreases the Lipschitz
bound LΘ of the trained model. In accordance
with the generalization bound (10), this reduc-
tion of LΘ improves generalization performance
with the maximum test accuracy at λ = 0.15.
Beyond this value, the regularization causes a too
small Lipschitz bound, limiting expressivity and,
therefore, decreasing the training accuracy. As a
result, the test accuracy decreases as well. This
illustrates the role of λ as a hyperparameter: Reg-
ularization does not always improve performance,
but there is a sweet spot for λ at which both su-
perior generalization and robustness over the un-
regularized setup (i.e., λ = 0) can be obtained.
In practice, the hyperparameter λ can be tuned,
e.g., via cross-validation.

5 Benefits of trainable encodings

A popular class of quantum models is obtained
by constructing circuits which alternate between
data- and parameter-dependent gates, i.e., re-
placing UΘ(x) in (3) by

U f
ϕ(x) = W (ϕL)V (x) · · · W (ϕ1)V (x), (11)

compare [20, 21, 22, 23, 24, 27]. The unitary op-
erators V, W are given by

V (x) = e−ixDGD · · · e−ix1G1 , (12)
W (ϕj) = e−iϕj,pSp · · · e−iϕj,1S1 (13)

for trainable parameters ϕj and generators Gi =
G†

i , Si = S†
i . The corresponding quantum model

is given by

f f
ϕ(x) = ⟨0|U f

ϕ(x)†MU f
ϕ(x)|0⟩ , (14)

see Figure 4.

. . .

. . .

. . .

|0⟩

V (x) W (ϕ1) V (x) W (ϕL)
|0⟩
...

...
...

...

|0⟩

M

Figure 4: Circuit representation of the quantum
model (14) with fixed encoding.

It is not hard to show that the parametrized
quantum circuit UΘ(x) in (3) generalizes the one
in (11). Indeed, Uj,Θj (x) in (2) reduces to either

e−ixjGj or e−iϕjSj (15)

for suitable choices of wj , θj , and Hj . Note that
the data encoding of the quantum model f f

ϕ(x)
is fixed a priori via the choice of wj and, in
particular, it cannot be influenced during train-
ing. Therefore, we refer to f f

ϕ(x) as a quantum
model with fixed encoding, in contrast to fΘ(x)
in (4) which contains trainable parameters wj

and, therefore, a trainable encoding.
Benefits of trainable encodings for the ex-

pressivity of quantum models have been demon-
strated numerically in [53, 54, 55] and theoret-
ically in [26, 27]. In the following, we discuss
the importance of trainable encodings for robust-
ness and generalization. Recall that the Lipschitz
bound (5), which we showed to be a crucial quan-
tifier of robustness and generalization of quantum
models, only depends on the observable M and
on the data encoding wj , Hj , but is independent
of the parameters θj . Hence, in the quantum
model f f

ϕ(x) with fixed encoding, the Lipschitz
bound (5) cannot be influenced during training
and, instead, is fixed a priori via the choice of
the Hermitian generators Gj . As a result, train-
ing has a limited effect on robustness and gen-
eralization properties of fixed-encoding quantum
models.

The distinction between trainable and fixed
data encodings becomes even more apparent
when expressing quantum models as Fourier se-
ries [27]. In this case, fixed-encoding quantum
models choose the frequencies of the Fourier basis
functions before the training and only optimize
over their coefficients. On the contrary, trainable-
encoding quantum models simultaneously opti-
mize over the frequencies and the coefficients [55]
which, according to the Lipschitz bound (5), is
key for influencing robustness and generalization
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properties.
These insights confirm the observation by [56,

57] that fixed-encoding quantum models are nei-
ther sensitive to data perturbations nor to over-
fitting. On the one hand, resilience against these
two phenomena is a desirable property. However,
the above discussion also implies that Lipschitz
bound regularization, which is a systematic and
effective tool for influencing robustness and gen-
eralization [2, 6, 16, 18], cannot be implemented
for fixed-encoding quantum models to improve
robustness and generalization. Indeed, our ro-
bustness simulations in Figure 2 show that the
fixed-encoding model has a considerably higher
Lipschitz bound than all the considered trainable-
encoding models. This implies a significantly
worse robustness w.r.t. data perturbations and,
therefore, leads to a rapidly decreasing test ac-
curacy for larger noise levels. Further, regulariz-
ing the parameters ϕ as suggested, e.g., by [58],
does not affect the Lipschitz bound and, there-
fore, cannot be used to improve the robustness.
In Appendix C, we study the effect of regular-
izing the ϕj ’s on generalization. We find that
the influence of regularizing the ϕj ’s on the test
accuracy is limited and likely dependent on the
specific ground-truth distribution generating the
data and the chosen circuit ansatz.

To conclude, our results show that training the
encoding in quantum models not only increases
the expressivity but also leads to superior robust-
ness and generalization properties.

6 Conclusion

In this paper, we studied robustness and gen-
eralization properties of quantum models based
on Lipschitz bounds. Lipschitz bounds are a
well-established tool in the classical ML litera-
ture which not only quantify adversarial robust-
ness but are also closely connected to generaliza-
tion performance. We derived Lipschitz bounds
based on the size of the data encoding which we
then used to study robustness and generalization
of quantum models. Given that our generaliza-
tion bound explicitly involves the parameters of
the data encoding, it does not face the limita-
tions of uniform generalization bounds [49]. Fur-
ther, our theoretical results highlight the role of
trainable encodings combined with regularization
techniques for obtaining robust and generalizable

quantum models. The numerical results confirm
our theoretical findings, showing the existence of
a sweet spot for the regularization parameter for
which our training scheme improves both robust-
ness as well as generalization compared to a non-
regularized training scheme. It is important to
emphasize that these numerical results with spe-
cific choices of rotation and entangling gates are
mainly used for illustration, but our theoretical
framework applies to all quantum models that
can be written as (4) and, therefore, also allow
for different rotation gates, entangling layers, or
even parametrized multi-qubit gates.

While our results indicate the potential of using
Lipschitz bounds and regularization techniques in
QML, it opens up various promising directions for
future research. First and foremost, transferring
existing research on Lipschitz bounds in classi-
cal ML to the QML setting provides a system-
atic framework for handling robustness and gen-
eralization, beyond the first results presented in
this paper. For example, while we only consider
quantum models with affine encodings w⊤

j x + θj ,
it would be interesting to extend our results to
more general, nonlinear encodings. Classical neu-
ral networks are ideal candidates for realizing a
nonlinear encoding since their Lipschitz proper-
ties are well-studied [2, 6, 9, 10, 11, 12, 13, 14, 15],
which would allow to train hybrid quantum-
classical models which are not only expressive
but also admit desirable robustness and gener-
alization properties. Finally, although we focus
on variational quantum models, the basic prin-
ciples of our results are transferrable to differ-
ent quantum models, including quantum kernel
methods [22, 23] or linear quantum models [25].

Code Availability
The source code for the numerical case studies is
publicly accessible on GitHub via
https://github.com/daniel-fink-de/
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A Lipschitz bounds of quantum mod-
els

In this section, we study Lipschitz bounds of
quantum models as in (4). We first derive a Lips-
chitz bound which is less tight than the one in (5)
but can be shown using a simple concatenation
argument (Section A.1). Next, in Section A.2,
we prove that (5) is indeed a Lipschitz bound.

A.1 Simple Lipschitz bound based on concate-
nation

Before stating the result, we introduce the nota-
tion

W =

w⊤
1
...

w⊤
N

 , Ω =

 θ1
...

θN

 . (16)

Theorem A.1. The following is a Lipschitz
bound of fΘ:

L = 2∥M∥∥W∥
N∑

j=1
∥Hj∥. (17)

Proof. Our proof relies on the fact that a Lip-
schitz bound of a concatenated function can be
obtained based on the product of the individual
Lipschitz bounds. To be precise, suppose f can
be written as f = f1 ◦ f2 ◦ · · · ◦ fh, where ◦ de-
notes concatenation and each fi admits a Lips-
chitz bound Li, i = 1, . . . , h. Then, for arbitrary
input arguments x, y of f , we obtain

∥f(x) − f(y)∥ (18)
≤L1∥f2 ◦ · · · ◦ fh(x) − f2 ◦ · · · ◦ fh(y)∥
≤ · · · ≤ L1L2 · · · Lh∥x − y∥.

We now prove that (17) is a Lipschitz bound by
representing fΘ as a concatenation of the three
functions

gmeas(zm) = ⟨zm|M|zm⟩ , (19)
gunitary(zu) = e−izu,N HN · · · e−izu,1H1 |0⟩ , (20)

gaffine(za) = Wza + Ω. (21)

More precisely, it holds that

fΘ(x) = gmeas ◦ gunitary ◦ gaffine(x). (22)

Hence, any set of Lipschitz bounds Lmeas,
Lunitary, Laffine for the three functions gmeas,
gunitary, gaffine gives rise to a Lipschitz bound of
fΘ as their product:

L = LmeasLunitaryLaffine. (23)

Therefore, in the following, we will derive individ-
ual Lipschitz bounds Lmeas, Lunitary, and Laffine.
Lipschitz bound of gmeas: Note that

dgmeas(zm)
dzm

= 2 ⟨zm| M. (24)

Using ∥zm∥ = 1, we infer∥∥∥dgmeas(zm)
dzm

∥∥∥ ≤ 2∥M∥. (25)

Thus, Lmeas = 2∥M∥ is a Lipschitz bound of
gmeas.
Lipschitz bound of gunitary: It follows from [31,
Theorem 2.2] that Lunitary =

∑N
j=1∥Hj∥ is a Lip-

schitz bound of gunitary.
Lipschitz bound of gaffine: Given the linear
form of gaffine, we directly obtain that Laffine =
∥W∥ is a Lipschitz bound.
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A.2 Proof that (5) is a Lipschitz bound
We first derive a Lipschitz bound on the
parametrized unitary UΘ(x). To this end, we
compute its differential

dUΘ(x) (26)
=(dUN,ΘN

(x))UN−1,ΘN−1(x) · · · U1,Θ1(x)
+ · · · + UN,ΘN

(x) · · · U2,Θ2(x)(dU1,Θ1(x))

Note that each term Uj,Θj (x) can be written as
the concatenation of the two maps gj and hj de-
fined by

gj(x) = w⊤
j x + θj (27)

hj(zj) = e−izjHj . (28)

To be precise, it holds that Uj,Θj (x) = hj ◦ gj(x).
The differentials of the two maps gj and hj are
given by

dhj(zj)(u) = −iHje−izjHj u, (29)
dgj(x)(v) = w⊤

j v,

where hj(zj)(u) denotes the differential of hj at
zj applied to u ∈ R, and similarly for gj(x)(v).
Thus, we have

dUj,Θj (x)(v) = (dhj(gj(x))) ◦ (dgj(x)(v)) (30)

= −iHje−i(w⊤
j x+θj)Hj w⊤

j v

= −iHjUj,Θj (x)w⊤
j v.

Inserting this into (26), we obtain

dUΘ(x)(v) (31)

= − i
(
HN UΘ(x)w⊤

N v + · · · + UΘ(x)H1w⊤
1 v
)

.

We have thus shown that the Jacobian JΘ(x) of
the map UΘ(x) |0⟩ is given by

JΘ(x) (32)

= − i
(
HN UΘ(x) |0⟩ w⊤

N + · · · + UΘ(x)H1 |0⟩ w⊤
1

)
.

Using that |0⟩ has unit norm, that the Uj,Θj ’s
are unitary, as well as the triangle inequality, the
norm of JΘ(x) is bounded as

∥JΘ(x)∥ ≤
N∑

j=1
∥wj∥∥Hj∥. (33)

Thus,
∑N

j=1∥wj∥∥Hj∥ is a Lipschitz bound of
UΘ(x) |0⟩ [59, p. 356].

Finally, fΘ(x) is a concatenation of UΘ(x) |0⟩
and the function z 7→ ⟨z|M|z⟩, which admits the
Lipschitz bound 2∥M∥, compare (25). Hence,
a Lipschitz bound of fΘ can be obtained as the
product of these two individual bounds, i.e., as
in (5).

B Full version and proof of Theo-
rem 4.1
We first state the main result in a general
supervised learning setup, before applying it to
the quantum model (4) considered in the paper.
Consider a supervised learning setup with data
samples {xk, yk}n

k=1 drawn independently and
identically distributed from Z := X ×Y ⊆ Rd ×R
according to some probability distribution P .
We define the ϵ-covering number of Z as follows.

Definition B.1. (adapted from [7, Definition 1])
We say that Ẑ is an ϵ-cover of Z, if, for all z ∈
Z, there exists ẑ ∈ Ẑ such that ∥z − ẑ∥ ≤ ϵ. The
ϵ-covering number of Z is

N (ϵ, Z) = min{|Ẑ| | Ẑ is an ϵ-cover of Z}.
(34)

For a generic model f : X → Y, a loss function
ℓ : Y ×Y → R, and the training data {xk, yk}n

k=1,
we define the expected loss and the empirical loss
by

R(f) =
∫

X ×Y
ℓ(y, f(x))dP (x, y) (35)

and

Rn(f) = 1
n

n∑
k=1

ℓ(yk, f(xk)), (36)

respectively. The following result states a gener-
alization bound of f .

Lemma B.1. Suppose

1. the loss ℓ is nonnegative and admits a Lips-
chitz bound Lℓ > 0,

2. Z is compact such that the value M :=
supy,y′∈Y ℓ(y, y′) is finite, and

3. Lf > 0 is a Lipschitz bound of f .
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Then, for any γ, δ > 0, with probability at least
1 − δ the generalization error of f is bounded as

|R(f) − Rn(f)| (37)

≤γLℓ max{1, Lf } + M

√
2N (γ

2 , Z) ln 2 + 2 ln(1
δ )

n
.

Proof. For the following proof, we invoke the con-
cept of (K, ϵ)-robustness (adapted from [7, Def-
inition 2]): The classifier f is (K, ϵ)-robust for
K ∈ N and ϵ ∈ R, if Z can be partitioned into K
disjoint sets, denoted by {Ci}K

i=1, such that the
following holds: For all k = 1, . . . , n, (x, y) ∈ Z,
i = 1, . . . , K, if (xk, yk), (x, y) ∈ Ci, then

|ℓ(yk, f(xk)) − ℓ(y, f(x))| ≤ ϵ. (38)

This property quantifies robustness of f in the
following sense: The set Z can be partitioned into
a number of subsets such that, if a newly drawn
sample (x, y) lies in the same subset as a testing
sample (xk, yk), then their associated loss values
are close. Let us now proceed by noting that,
for any (xk, yk), k = 1, . . . , n, and (x, y) ∈ Z, it
holds that

|ℓ(yk, f(xk)) − ℓ(y, f(x))| (39)
≤Lℓ∥(yk, f(xk)) − (y, f(x))∥2

≤Lℓ (∥yk − y∥ + ∥f(xk) − f(x)∥)
≤Lℓ max{1, Lf }∥(xk, yk) − (x, y)∥,

where we use the Lipschitz bound Lℓ of ℓ, the tri-
angle inequality, and the Lipschitz bound Lf of
f , respectively. Using [7, Theorem 6], we infer
that f is (N (γ

2 , Z), Lℓ max{1, Lf }γ)-robust for
all γ > 0. It now follows from [7, Theorem 1]
that, for any δ > 0, with probability at least
1 − δ inequality (37) holds.

Let us now combine the Lipschitz bound (5)
and Lemma B.1 to state a tailored generalization
bound for the considered class of quantum models
fΘ, thus proving Theorem 4.1.

Theorem B.1. Suppose

1. the loss ℓ is nonnegative and admits a Lips-
chitz bound Lℓ > 0 and

2. Z is compact such that the value M :=
supy,y′∈Y ℓ(y, y′) is finite.

Then, for any γ, δ > 0, with probability at least
1 − δ the generalization error of fΘ is bounded as

|R(f) − Rn(f)| (40)

≤γLℓ max
{

1, 2∥M∥
N∑

j=1
∥wj∥∥Hj∥

}

+ M

√
2N (γ

2 , Z) ln 2 + 2 ln(1
δ )

n
.

Theorem B.1 shows that the size of the data en-
coding and of the observable directly influences
the generalization performance of the quantum
model fΘ. In particular, for smaller values of∑N

j=1∥wj∥∥Hj∥ and ∥M∥, the expected loss is
closer to the empirical loss. The right-hand side
of (40) contains two terms: The first one depends
on the parameters of the quantum model fΘ and
characterizes its robustness via the derived Lips-
chitz bound, whereas the second term decays with
increasing data length n. While (37) holds for ar-
bitrary values of γ > 0, it is not immediate which
value of γ leads to the smallest possible bound:
Smaller values of γ decrease the first term but
increase N (γ

2 , Z) in the second term (and vice
versa).

In contrast to existing QML generalization
bounds [24, 45, 46, 47, 48], Theorem B.1 explic-
itly highlights the role of the model parameters
via the Lipschitz bound. Using the additional
flexibility of the parameter γ, it can be shown
that the generalization bound (40) converges to
zero when the data length n approaches infinity.
To this end, we use [60, Lemma 6.27] to upper
bound the covering number

N (γ

2 , Z) ≤
(6R

γ

)d+1
, (41)

where R is the radius of the smallest ball con-
taining Z. Inserting (41) into (40) and choosing
γ depending on n as γ = n− 1

2d+2 , we infer

|R(f) − Rn(f)| (42)

≤ 1
n

1
2d+2

Lℓ max
{

1, 2∥M∥
N∑

j=1
∥wj∥∥Hj∥

}

+ M

√√√√2 ln 2 (6R)d+1
√

n
+

2 ln(1
δ )

n
,

which indeed converges to zero for n → ∞.

13



Figure 5: From left to right, top to bottom: Illustration
of the ground truth of the circle classification problem,
the decision boundary for the fixed encoding model with
regularization parameter λf = 0.0, the trainable encod-
ing model with λt = 0.15 and with λt = 0.0. For the
plot, we took the models with the lowest cost over all
runs and epochs. Furthermore, the small circles denote
the 200 training points.

C Numerics: setup and further results

In the following, we provide details regarding the
setup of our numerical results (Section C.1) and
we present further numerical results regarding pa-
rameter regularization in quantum models with
fixed encoding (Section C.2).

C.1 Numerical setup

All numerical simulations within this work were
performed using the Python QML library Pen-
nyLane [61]. As device, we used the noiseless
simulator "lightning.qubit" together with the ad-
joint differentiation method, to enable fast and
memory efficient gradient computations. In or-
der to solve the optimization problem in (9), we
apply the ADAM optimizer using a learning rate
of η = 0.1 and the suggested values for all other
hyperparameters [62]. Furthermore, we run 200
epochs throughout and train 12 models based on
different initial parameters for varying regular-
ization parameters λ ≥ 0. Adding the regulariza-
tion does not introduce significant computational
overhead as the evaluation of the cost only in-
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Figure 6: Results for the generalization simulations for
the circle classification problem when using the fixed-
encoding quantum model (14) and regularization of the
parameters ϕ. The training and test setup are identi-
cal to simulations shown in Figures 2 and 3. We plot
the dependency of the test accuracy and the Lipschitz
bound on the hyperparameter λ entering the regularized
training problem (47). Further, we plot the test accu-
racy for the best solution of the unregularized training
problem.

volves a weighted sum of the terms ∥wj∥2. As
final model, we take the set of parameters for the
model with minimal cost over all runs and epochs.
Furthermore, the training as well as the robust-
ness and generalization analysis were parallelized
using Dask [63].

For the trainable encoding model, the classical
data is encoded into the quantum circuit with a
general URot ∈ SU(2) unitary parametrized by 3
Euler angles URot (αj , βj , γj) with

αj = w⊤
j,1x + θj,1 , (43)

βj = w⊤
j,2x + θj,2 , (44)

γj = w⊤
j,3x + θj,3 . (45)

URot in PennyLane is implemented by the follow-
ing decomposition

URot(α, β, γ) = RZ(γ)RY (β)RZ(α) , (46)

=
(

e− i
2 (γ+α) cos(β

2 ) −e
i
2 (γ−α) sin(β

2 )
e− i

2 (γ−α) sin(β
2 ) e

i
2 (γ+α) cos(β

2 )

)
.

In our numerical case study we set γj = 0
for all j since this 1) still allows to reach arbi-
trary points on the Bloch sphere and 2) enables
an easier comparison to fixed-encoding quantum
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|0⟩ URot(α0, β0, γ0) URot(α3, β3, γ3) URot(α6, β6, γ6)

|0⟩ URot(α1, β1, γ1) URot(α4, β4, γ4) URot(α7, β7, γ7)

|0⟩ URot(α2, β2, γ2) URot(α5, β5, γ5) URot(α8, β8, γ8)

M

Figure 7: The trainable encoding quantum model employed in our numerical case studies uses general URot ∈ SU(2)
unitaries parametrized by three Euler angles αi, βi, γi, that each have the form w⊤

i x + θi for trainable parameters
wi, θi. We set γj = 0, j = 0, . . . , 8, to enable a fair comparison to a quantum model with fixed encoding (since the
data are two-dimensional, only two angles are needed for encoding the data via the latter).

models. In order to introduce entanglement in a
hardware-efficient way, we use a ring of CNOTs.
The considered circuit is shown in Figure 7 and
involves three layers of rotations and entangle-
ment, which we observed to be a good trade-off
between expressivity and generalization. More
precisely, in our simulations, fewer layers were
not sufficient to accurately solve the classifica-
tion task, whereas more layers led to higher de-
grees of overfitting. For the fixed-encoding quan-
tum models as in (14), we use a similar 3-layer
ansatz, encoding the two entries of the 2D data
points into the first and second angle αj , βj of
the rotation gates, followed by a parametrized
SU(2) rotation with three free parameters. We
also perform a classical data pre processing, scal-
ing the input domain from [−1, +1] to [−π, +π],
such that the full possible range of the rotation
angles can be utilized.

In Figure 5, we plot the ground truth and the
decision boundaries for the two quantum models
corresponding to λ = 0.0 and λ = 0.15, as well
as the decision boundary for the fixed-encoding
model. As expected, the decision boundary
resulting from the regularized training is signif-
icantly smoother than the unregularized one,
explaining the superior robustness and general-
ization of the former. Further, the fixed-encoding
model does not accurately capture the ground
truth due to its limited expressivity and high
Lipschitz bound.

C.2 Regularization in quantum models with
fixed encoding

In the main text, we have seen that the Lipschitz
bound of the quantum model with fixed encod-
ing f f

ϕ(x) in (14) cannot be adapted by changing
the parameters ϕ. As a result, it is not possi-
ble to use Lipschitz bound regularization for im-

proving robustness and generalization. In the
following, we investigate whether regularization
of ϕ can instead be used to improve generaliza-
tion performance. More precisely, we consider
the same numerical setup as for our generaliza-
tion results with trainable encoding depicted in
Figure 3. The main difference is that we consider
a fixed-encoding quantum model f f

ϕ(x) (compare
Figure 4) which is trained via the following regu-
larized training problem

min
ϕ

1
n

n∑
k=1

ℓ(f f
ϕ(xk), yk) + λ

L∑
j=1

∥ϕj∥2. (47)

The regularization with hyperparameter λ > 0
aims at keeping the norms of the angles ϕj small.
Figure 6 depicts the test accuracy and Lipschitz
bound of the resulting quantum model for dif-
ferent regularization parameters λ. First, note
that the Lipschitz bound is indeed constant for all
choices of λ due to the fixed encoding. Compar-
ing Figures 3 and 6, we see that the trainable en-
coding yields a significantly higher test accuracy
in comparison to the fixed encoding. Moreover,
the influence of the regularization parameter on
the test accuracy is much less pronounced for the
fixed encoding than for the trainable encoding,
confirming our previous discussion on the bene-
fits of trainable encodings. The test accuracy is
not entirely independent of λ since 1) regulariza-
tion of the parameters ϕj influences the optimiza-
tion and can improve or deteriorate convergence
and 2) biasing ϕ towards zero may be beneficial if
the underlying ground-truth distribution is bet-
ter approximated by a quantum model with small
values ϕ. Whether 2) brings practical benefits is,
however, highly problem-specific as it depends on
the distribution generating the data and on the
circuit ansatz.
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