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We explore the phase transitions at the onset of time-crystalline order in O(N) models driven
out-of-equilibrium. The spontaneous breaking of time-translation symmetry and its Goldstone mode
are captured by an effective description with O(N) × SO(2) symmetry, where the emergent exter-
nal SO(2) results from a transmutation of the internal symmetry of time translations. Using the
renormalization group and the ϵ = 4−d expansion in a leading two-loop analysis, we identify a new
nonequilibrium universality class. Strikingly, it controls the long-distance physics no matter how
small the microscopic breaking of equilibrium conditions is. The O(N = 2)×SO(2) symmetry group
is realized for magnon condensation in pumped yttrium iron garnet films and in exciton-polariton
systems with a polarization degree of freedom.

Introduction – Temporal pattern formation, associ-
ated with instabilities at a finite frequency such as waves,
fronts, or oscillatory behaviors in classical systems [1],
represents a class of genuine nonequilibrium phenom-
ena. In a many-body setting, these patterns can become
robust against fluctuations and synchronize over large
time and spacescales. The ensuing long-range order is
then associated with the spontaneous breaking of time-
translation symmetry. When the system retains a peri-
odic motion, the order parameter describes a limit cycle.
In other words, it corresponds to a time crystal [2] for
which a quantum version was proposed [3], and rapidly
shown to exist only out of equilibrium [4, 5]. Because
they provide a generic way of breaking equilibrium con-
ditions at microscopic scales, driven open systems turned
out to be a prolific arena to study and realize finite fre-
quency instabilities [6], limit cycles [7–10] and discrete
time crystals [11, 12], characterized by a subharmonic
response at a multiple of the period of an external pe-
riodic drive [13–18]. These systems also opened up the
search for dissipative continuous time crystals [10, 19, 20],
which were experimentally realized [21]. At the same
time, active matter systems [22] have become platforms
to describe many-body temporal instabilities, as they
share the generic breaking of equilibrium conditions with
driven systems.

The phase transition into a time crystal, concomitant
with the spontaneous breaking of time-translation sym-
metry, must be expected to display phenomena that fall
beyond equilibrium classifications, by the very nature
of the adjacent nonequilibrium phase. In this Letter,
we study these for paradigmatic O(N) symmetric mod-
els in the absence of conservation laws. Once suitably
brought out of equilibrium, they develop instabilities to-
ward time-crystalline long-range orders, which emerge in
nonreciprocal active matter [23, 24] as well as in more
generic driven quantum and solid-state platforms [24, 25].
Time translation symmetry breaking occurs in two dis-
tinct scenarios, one generalizing Van der Pol oscillations
and another one describing an order parameter rotat-
ing in the O(N) manifold. A key insight of our ap-

proach lies in a fruitful mapping to an effective theory
with an O(N) × SO(2) symmetry, where the emergent
SO(2) arises from time-translations combined with the
finite frequency scale set by the periodicity of the limit
cycles [1]. This setup provides us with a complete under-
standing of the Goldstone modes and their dynamics, in-
cluding the one associated with broken time-translation
symmetry [26]. The interplay of the latter with those
stemming from the broken O(N) symmetry [24] materi-
alizes differently in the Van der Pol oscillating and the
rotating phases. By performing a perturbative renor-
malization group (RG) analysis of the effective theory,
we obtain the full phase diagram beyond mean field by
including fluctuation effects. It leads us to our main re-
sults: The onset of the Van der Pol oscillations is gov-
erned by fluctuation-induced first-order transitions for
N > 1. Conversely, the transition to the rotating phase
resides in a fundamentally new nonequilibrium universal-
ity class, not smoothly connected to any known equilib-
rium class. We also exhibit realization of the symmetry
group O(N = 2) × SO(2) in exciton-polariton systems
with a polarization degree of freedom and in magnon con-
densation in pumped yttrium iron garnet (YIG) films.

Time-crystalline orders– Our starting point is the
following Langevin equation describing the dynamics of
an O(N) symmetric order parameter ϕ(x, t) ∈ RN in d
spatial dimensions,

∂2tϕ+ (2γ + uρ− Z1∇2)∂tϕ+
u′

2
∂tρϕ

+ (r + λρ− Z2∇2)ϕ+ ξ = 0,

(1)

where ρ = ϕ·ϕ and ξ(x, t) is a Gaussian white noise with
zero mean and variance ⟨ξi(x, t)ξj(x′, t′)⟩ = 2Dδi,jδ(x−
x′). This constitutes a generalization of the Van der Pol
oscillator [27], often advocated to describe both classical
and quantum limit cycles [28–32], with an N -component
field, an extensive number of spatial degrees of freedom,
and noise. We consider the most relevant operators com-
patible with the O(N) symmetry – they are generated
upon coarse-graining. In addition to the potential r+λρ,
there are nonlinear dampings u and u′, a spatially depen-
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dent damping Z1, and diffusion Z2. The noise encodes
random fast fluctuations coming from the environment
(e.g., drive, bath). While these fluctuations are typically
counteracted by a finite gap r or a finite damping γ, they
strongly affect the dynamics near a phase transition.

For negative values of r in Eq. (1), the usual static
equilibrium O(N) order parameter ϕS = ⟨ϕ(x, t)⟩ builds
up, |ϕS | =

√
−r/λ. The O(N) symmetry is sponta-

neously broken to O(N − 1) via the equilibrium model
A transition [33]. Here, we follow a different route to
generate order, and tune the damping γ to negative val-
ues while keeping r strictly positive, r > 0. In a driven
setting, such an antidamping, γ < 0, lends itself to the
intuition for a nonequilibrium situation, where losses are
superseded by pumping.

For γ < 0, there are two time-periodic solutions
of the noise-averaged version of Eq. (1), stabilized by
the additional nonlinearities u and u′ [24]. The first
one exists only for N > 1, and is a rotating phase
where the order parameter traces out a circle on the N -
sphere whose orbit is spontaneously chosen, see Fig. 1,
ϕS(t) =

√
−2γ/u(cos(ω0t),− sin(ω0t), 0, . . . , 0)

T with

ω0 =
√
r − 2γλ

u . The second phase is characterized

by an oscillation of the order parameter along one di-
rection, and exists for any N . We refer to it as the
Van der Pol phase since the order parameter reads as
ϕS(t) = ϕ0(t)(1, 0, . . . , 0)

T , where ϕ0(t) is the limit cy-
cle of the Van der Pol equation [34]. At lowest order in

|γ| ≪ √
r [35], the solution is ϕ0(t) ≈ 2

√
−2γ

(u+u′) cos(ω0t),

with ω0 =
√
r. For γ < 0, only one of the phases is stable

for a given set of parameters. A stability analysis reveals
that the rotating phase is stable for sufficiently large val-
ues of u′ [24]. For γ → 0 and r > 0, the rotating phase
is stable for u′ > u. This leads to the phase diagram in
Fig. 1.

Symmetry breaking patterns and Goldstone modes –
The Van der Pol phase spontaneously breaks the O(N)
symmetry to O(N−1), leading toN−1 Goldstone modes,
while the rotating phase breaks O(N) to O(N −2), lead-
ing to 2N−3 Goldstone modes [24]. In both phases, time-
translation symmetry is spontaneously broken to discrete
time-translation symmetry. Indeed, the solutions are pe-
riodic, and a time translation t → t + 2πn/ω0, n ∈ Z
leaves them invariant. They are, therefore, nonequilib-
rium time-crystal phases. This is striking for N = 1,
where a continuous symmetry is broken rather than the
discrete O(N = 1) ≃ Z2 symmetry [36].

Time translation is a continuous symmetry, and a
Goldstone mode arises from its spontaneous breaking.
We show in the Supplemental Materials (SM) [37] that
the Goldstone theorem gives an additional Goldstone
mode in the Van der Pol phase, which therefore has a N
Goldstone modes. In the rotating phase, a distinct sce-
nario occurs: a rotation along the orbit is fully equivalent
to a time translation. The rotating phase has a remaining

γ

u′ − u

O(N) symmetric ϕs = 0

Van der Pol phase

O(N) → O(N − 1)

Rotating phase

O(N) → O(N − 2)

A A’

B

FIG. 1. Mean-field phase diagram for r > 0. Tuning the
damping to negative values stabilizes two time-crystal phases,
depending on the sign of u′ − u. The symmetric and limit-
cycle phases are separated by the transition lines A and A’,
which are second-order transitions at mean field. The line
B separates the ordered phases and is a first-order transition,
since the order parameter jumps from one configuration to the
other. It is well described within mean-field approximation,
unlike the other two transitions. Analysis of the latter is the
main focus of this Letter.

SO(2) symmetry that acts via ϕ→ R(α)ϕ, t→ t− α
ω0

,
with α ∈ R, R ∈ SO(2), and no independent Goldstone
mode arises: The Goldstone mode of time-translation
symmetry is redundant and reflects the activation of a
rotational Goldstone mode.
Gaussian fluctuations phase transitions – The tran-

sitions from the disordered regime into the limit-cycle
phases are reached as the damping γ goes to zero, see
Fig. 1. The amplitudes of the order parameters are con-
tinuous at the transitions, but the oscillations immedi-
ately start with a frequency ω0 ∼ √

r, which acts as a
finite and fast timescale close to the transition, where
|γ| ≪ √

r. We first neglect the effects of the nonlineari-
ties. It is a valid assumption for d > dc, the upper critical
dimension, which we determine to be equal to four below.

The transition is characterized by the retarded re-

sponse to an external field h, χR(x, t) = δ⟨ϕi(x,t)⟩
δhi(0,0)

and

the correlation function

⟨ϕi(q, t)ϕi(−q, 0)⟩ ∼ D
e−(

Z1
2 q

2+γ)|t|

Z1

2 q
2 + γ

cos(
√
rt+

Z2

2
√
r
q2t),

(2)

with q = |q|. The correlation function displays an al-
gebraic divergence as q → 0, characteristic of a second-
order phase transition, at γ = 0. The diverging cor-
relation length, ξc ∼ γ−1/2/Z1, leads to the mean-field
critical exponent ν = 1/2. There are, however, oscil-
lations with frequency ω0 ∼ √

r, and the divergence
occurs at finite frequencies ω ∼ ±ω0. This hinders a
direct RG analysis of the transition [38], and we first
need to distill the slow degrees of freedom, eliminat-
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ing the fast scale ω0[1]. To do this, we first pass to a
system of first order differential equations by introduc-
ing Π = ∂tϕ/ω0. We then define new O(N) variables
(χ1,χ2) via a rotation by an angle ω0t of the original
variables (ϕ,Π)T = R(ω0t)(χ1,χ2)

T , or explicitly

ϕ(x, t) = χ1(x, t) cos(ω0t) + χ2(x, t) sin(ω0t),

Π(x, t) = −χ1(x, t) sin(ω0t) + χ2(x, t) cos(ω0t),
(3)

where χ1,2 vary slowly compared to the scale ω0, with
their main fluctuations concentrated around zero mo-
mentum and frequency. Subsequently, since the critical
behavior occurs on timescales tc ∼ γ−1 ≫ ω−1

0 , we treat
the fast oscillating terms that appear by averaging over
time in a rotating wave approximation (RWA) [35]. The
resulting near-critical Langevin equations for χ1 and χ2

are then no longer explicitly time dependent.
Effective O(N) × SO(2) model – Remarkably, the

dynamics obtained after the RWA display an emergent
SO(2) symmetry on top of the O(N) symmetry,(

χ1

χ2

)
→ R(α)

(
χ1

χ2

)
, where R(α) ∈ SO(2) (4)

is a rotation by an angle α. It roots in the fact that a
constant arbitrary shift ω0t→ ω0t+α in the rotation (3)
defining χ1 and χ2 does not change the final equations
of motion. We observe a transmutation of the external
time-translation symmetry to an internal SO(2) [1] act-
ing in the space of fields χ1,χ2. This is rationalized by
the fact that time translations can be identified modulo
2π/ω0 upon approaching a limit cycle: The group of time
translations is isomorphic to R, while the discrete group
that leaves the limit cycles invariant has a Z structure.
It follows that the relevant subpart of time translations
that gets broken is R/Z ≃ SO(2).

The equations of motion are

∂tχa +
δHd

δχa
+ ϵab

δHc

δχb
+ ξa = 0, (a, b) ∈ {1, 2} (5)

Hl =

∫
ddx

Zl
2

[
(∇χ1)

2
+ (∇χ2)

2
]
+
γl
2
ρ+

gl
8
ρ2 +

κl
2
τ,

with l ∈ {c, d}, ξa two independent noises, and the
two O(N) × SO(2) invariants: ρ = χ2

1 + χ2
2 and τ =

1
4

(
χ2

1 − χ2
2

)2
+ (χ1 · χ2)

2
. From Eq. (1), one obtains

γc = 0, γd = γ, Zc = Z2/2ω0, Zd = Z1/2, gd = u/2,
κd = (u′ − u)/4, gc = λ/2ω0 and κc = λ/4ω0. The fast
scale is implicit, confirming that we have isolated the slow
degrees of freedom.

We note here a parallel to frustrated magnets and heli-
magnets [39] at equilibrium, for which the order parame-
ters take a similar form as (3), with space playing the role
of time. These systems have an emergent O(N) × O(2)
symmetry, and Hamiltonian Hd. This suggests that the
difference with an equilibrium situation is linked to Hc

in Eq. (5), which describes coherent effects rather than

FIG. 2. Flow diagram at criticality (γ = 0) projected on
the (gd, κd, gc) manifold, for N = 24 and ϵ = 0.1. Similar
flows are obtained for all N > 1. In addition to the Gaussian
fixed point, there are three equilibrium fixed points [39, 43,
44], labeled Wilson-Fisher (WF), chiral (C+), and antichiral
(C−). They lie in the gc = 0 gray plane. C+ is attractive
at equilibrium, and the equilibrium black-dashed trajectory is
attracted toward it. However, a small breaking of equilibrium
grows at larger scale, and the gray solid trajectories go to the
new nonequilibrium complex conjugated fixed points N±.

dissipation. Indeed, it is this term that explicitly breaks
O(2) to SO(2). Its presence is closely, but not exactly,
related to the breaking of equilibrium conditions: The
system is in thermal equilibrium if and only if Hc is pro-
portional to Hd [37, 40–42].
We can obtain an equivalent complex representation

of Eq. (5), which makes contact with the semiclassical
dynamics of driven open quantum systems [45, 46]. In
terms of the complex vector field ψ = χ1 + iχ2 ∈ CN ,
and noise ξ ∈ CN , Eq. (5) becomes

(i∂t − Z∇2 + iγ)ψ +
g

2
(ψ ·ψ∗)ψ +

κ

2
(ψ ·ψ)ψ∗ + ξ = 0,

(6)

with Z = iZd + Zc, g = igd + gc and κ = iκd + κc.
Eq. (6) is a generalized noisy Gross-Pitaevskii equation,
where the imaginary parts encode the effect of drive and
dissipation on top of the coherent Hamiltonian dynamics.
The N = 1 case, with U(1) ≃ SO(2) symmetry [47], de-
scribes the dynamics of driven-dissipative Bose-Einstein
condensates [40, 41, 48], and those of collections of clas-
sical oscillators [49, 50].
We therefore obtain a first nontrivial result. The tran-

sition to the Van der Pol phase for N = 1 coincides with
the transition in those systems: It has an emergent ther-
mal equilibrium and falls into the O(2) model A univer-
sality class, albeit with an additional exponent describing
the fade out of coherent dynamics [40, 41, 48]. TheN > 1
case, however, differs notably as we will see.
Phase diagram revisited – The mean-field analysis is

fully recovered from the effective Langevin equation (5)
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N ν−1 − 2 η = ηc 103(z − 2) 102η′

22 −0.942ϵ −0.142ϵ2 5.5ϵ2 (0.030 + 1.8i)ϵ2

3 −1.27ϵ −1.49ϵ2 −1.7ϵ2 (−3.5 + 6.7i)ϵ2

2 −0.853ϵ −0.353ϵ2 7.2ϵ2 (1.0 + 0.70i)ϵ2

TABLE I. Critical exponents of the attractive fixed points N±
controlling the transition to the rotating phase for different
values of N to lowest order in ϵ.

or (6). The limit cycles are described by finite expecta-
tion values of χ1 and χ2, see Eq. (3). They are found by
solving δHd/δϕa = 0, while the nonzero remaining part
coming from Hc can always be canceled by a redefinition
of ω0, see SM [37]. There are two ways of minimizing
Hd for γ < 0, depending on the value of κd: If it is posi-
tive, the rotating phase is favored with τ = 0 i.e., χ1, χ2

nonzero and orthogonal. When κd < 0, the stable state
has τ ̸= 0 i.e, χ1 and χ2 parallel, which corresponds to
the Van der Pol phase.

The correlation functions agree as well,

C(q, t) = ⟨ψiψ∗
i ⟩(q, t) ∝

D e−(Zdq
2+γ−iZcq

2)|t|

Zdq2 + γ
, (7)

and Eq. (2) is reproduced up to the, now implicit, fast
scale. This allows us to make a scaling ansatz [37, 41, 51],

χR(q, t) ∼ q−2+η′+zχ̃R(tqz, iqη−ηc , qγ−ν), (8)

C(q, t) ∼ q−2+ηC̃(tqz, iqη−ηc , qγ−ν), (9)

with critical exponents ν = 1/2, z = 2, η = η′ = ηc =
0 at mean field. ηc encodes the competition between
coherent and dissipative effects [48], while η′ ̸= η entails a
violation of fluctuation-dissipation relations, which relate
responses and correlations in equilibrium. Below, we will
compute the fluctuation corrections.

Besides recovering the number of Goldstone modes, we
obtain their explicit dynamics and dispersion relations
ω(q), see SM [37]. They are dissipative in the Van der
Pol phase, ω(q) = −iZdq2. In the rotating phase, the
Goldstone mode associated with time-translation break-
ing is also dissipative, while the others display both dissi-
pative and coherent parts, ω(q) = −iZdq2 ±Zcq

2. These
dispersions imply divergent fluctuations in d ≤ 2, which
destroy the ordered phases at long distances, even for
N = 1.

Phase transition in d < 4 – We now use dynamical
RG to treat the effects of interactions and fluctuations. It
allows us to identify nontrivial scaling regimes as well as
fluctuation-induced first-order phase transitions, which
are found whenever no fixed point can be reached within
the RG flow [52]. We compute the flow equations in
the ϵ = 4 − d perturbative expansion. The parameter
rK = Zc/Zd enters the RG equations, and a two-loop
analysis of the self-energies is needed to fully characterize
the fixed points. The flow equations are derived in the

SM [37]. Interactions are irrelevant above dc = 4, but
nontrivial fixed points emerge below it. A flow diagram
is displayed in Fig. 2.

First, equilibrium fixed points, associated with the
O(N) × O(2) symmetry [39, 43, 44], are still solutions
with gc = κc = rK = 0. Now, if the initial conditions
correspond to equilibrium, i.e., gc/gd = κc/κd = rK , the
system remains at equilibrium at all scales. However,
one key finding is that the equilibrium fixed points are
unstable against any, even infinitesimal, nonequilibrium
perturbations. Indeed, these equilibrium fixed points
acquire a relevant direction, associated with the micro-
scopic breaking of equilibrium conditions, and none of
them controls the transition. This highly unusual behav-
ior at a second-order phase transition can be rationalized
by the fact that we describe the onset of genuine nonequi-
librium phases.

Instead, the flow is attracted toward a pair of new fixed
points N±, not present in the O(N) × O(2) case, that
govern the transition. Since the couplings do not have a
fixed ratio between imaginary and real parts e.g., gc/gd ̸=
rK , thermal conditions are violated at the fixed points.
They thus define a new nonequilibrium universality class,
uniquely associated with the O(N) × SO(2) symmetry.
They exist for any value of N , in sharp contrast with the
equilibrium ones [39, 43, 44]. They are complex conju-
gates, i.e., they describe mutually time-reversed coherent
dynamics in Eq. (6) [53–55]. We find that the attractive
fixed points have κd > 0 for N > Nc ∼ 1.6 + O(ϵ) and
κd < 0 otherwise. It means that the transition to the Van
der Pol phase is fluctuation-induced first-order for every
N > 1 (and described by the equilibrium O(2) transition
for N = 1), while the transition to the rotating phase is
second-order and described by the uncovered universal-
ity class for all N , at least close to four dimensions. The
critical exponents to leading order in ϵ of this universality
class, distinguishing it from any known class, are given
in Tab. I. Its nonequilibrium nature is reflected in η′ ̸= η.

Conclusion – Our results can be applied to a wide
range of physical situations. In addition to the O(N)
symmetric systems described by Eq. (1), one can start
directly from Eq. (6). For N = 2, one needs two driven-
dissipative complex bosonic degrees of freedom ψ± con-
nected by an exchange symmetry ψ+ ↔ ψ−. Together,
this forms the group O(2)×SO(2), see SM [37]. Remark-
ably, this symmetry is obtained in existing platforms,
known to exhibit driven Bose-Einstein condensation de-
scribed by noisy Gross-Pitaevskii equations. A point in
case are exciton-polaritons, where ψ± are the polariza-
tion degrees of freedom [56] with spin exchange sym-
metry. Another experimental realization is the magnon
condensation observed in microwave-pumped YIG films
[57, 58], where the two modes arise from two minima in
the band structure linked by inversion symmetry. Both
these cases realize our model (6) for N = 2 without fine-
tuning, see SM [37]. Observable hallmarks are a first-
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order transition into the Van der Pol phase, and a uni-
versally divergent effective temperature, experimentally
accessible through measuring the non-thermal mode oc-
cupation [37], with an exponent η−Re(η′) [48, 55] at the
second-order transition.

A striking aspect of our findings is that equilibrium
fixed points can be unstable against any nonequilibrium
perturbation. The only parallel example in the absence
of conservation law that we are aware of is the Kardar-
Parisi-Zhang equation in dimensions d ≤ 2 [59], char-
acterizing a gapless nonequilibrium phase instead of a
critical point. Identifying the general principles behind
destabilizing equilibrium fixed points in favor of nonequi-
librium ones is an intriguing direction for future re-
search – such a mechanism would enable strong universal
nonequilibrium effects under near equilibrium conditions.
In turn, this can pave the way to genuine nonequilib-
rium scenarios in solid state, where usually nonequilib-
rium perturbations are leveled out by the opposite phe-
nomenon, rapid thermalization.
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monte, and R. Fazio, Boundary time crystals, Physical
Review Letters 121, 035301 (2018).

[20] H. Keßler, J. G. Cosme, M. Hemmerling, L. Mathey, and
A. Hemmerich, Emergent limit cycles and time crystal
dynamics in an atom-cavity system, Physical Review A
99, 053605 (2019).

[21] P. Kongkhambut, J. Skulte, L. Mathey, J. G. Cosme,
A. Hemmerich, and H. Keßler, Observation of a continu-
ous time crystal, Science 377, 670 (2022).

[22] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B.
Liverpool, J. Prost, M. Rao, and R. A. Simha, Hydrody-
namics of soft active matter, Reviews of Modern Physics
85, 1143 (2013).

[23] M. Fruchart, R. Hanai, P. B. Littlewood, and V. Vitelli,
Non-reciprocal phase transitions, Nature 592, 363
(2021).

[24] C. P. Zelle, R. Daviet, A. Rosch, and S. Diehl, Universal
phenomenology at critical exceptional points of nonequi-
librium O(N) models, arXiv:2304.09207 [cond-mat.stat-
mech] (2023).

[25] R. Hanai, A. Edelman, Y. Ohashi, and P. B. Littlewood,
Non-hermitian phase transition from a polariton bose-
einstein condensate to a photon laser, Physical Review
Letters 122, 185301 (2019).

[26] T. Hayata and Y. Hidaka, Diffusive nambu-goldstone
modes in quantum time-crystals, arXiv:1808.07636 [hep-
th] (2018).

[27] B. van der Pol, A theory of the amplitude of free and
forced triode vibrations, Radio Review 1, 701 (1920).

[28] S. Walter, A. Nunnenkamp, and C. Bruder, Quan-
tum synchronization of a driven self-sustained oscillator,
Physical Review Letters 112, 094102 (2014).

[29] S. Walter, A. Nunnenkamp, and C. Bruder, Quantum
synchronization of two van der pol oscillators, Annalen
der Physik 527, 131 (2014).

[30] T. E. Lee and H. R. Sadeghpour, Quantum synchroniza-

https://doi.org/10.1103/revmodphys.65.851
https://doi.org/10.1103/revmodphys.65.851
https://doi.org/10.1103/physrevlett.109.160402
https://doi.org/10.1103/physrevlett.109.160402
https://doi.org/10.1103/physrevlett.109.160401
https://doi.org/10.1103/physrevlett.109.160401
https://doi.org/10.1103/physrevlett.111.070402
https://doi.org/10.1103/physrevlett.111.070402
https://doi.org/10.1103/physrevlett.114.251603
https://doi.org/10.1103/physrevlett.114.251603
https://doi.org/10.1103/physrevb.99.064511
https://doi.org/10.1103/physrevlett.115.163601
https://doi.org/10.1126/science.aaw4465
https://doi.org/10.1126/science.aaw4465
https://doi.org/10.21468/scipostphys.12.3.097
https://doi.org/10.1103/physrevlett.123.260401
https://doi.org/10.1103/physrevlett.123.260401
https://doi.org/10.1103/physrevlett.120.040404
https://doi.org/10.1103/physrevlett.127.043602
https://doi.org/10.1103/physrevlett.127.043602
https://doi.org/10.1103/physrevlett.116.250401
https://doi.org/10.1103/physrevlett.116.250401
https://doi.org/10.1103/physrevlett.117.090402
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/s41567-019-0782-3
https://doi.org/10.1038/s41567-019-0782-3
https://doi.org/10.1103/revmodphys.95.031001
https://doi.org/10.1103/revmodphys.95.031001
https://doi.org/10.1103/physrevlett.121.035301
https://doi.org/10.1103/physrevlett.121.035301
https://doi.org/10.1103/physreva.99.053605
https://doi.org/10.1103/physreva.99.053605
https://doi.org/10.1126/science.abo3382
https://doi.org/10.1103/revmodphys.85.1143
https://doi.org/10.1103/revmodphys.85.1143
https://doi.org/10.1038/s41586-021-03375-9
https://doi.org/10.1038/s41586-021-03375-9
https://arxiv.org/abs/2304.09207
https://arxiv.org/abs/2304.09207
https://doi.org/10.1103/physrevlett.122.185301
https://doi.org/10.1103/physrevlett.122.185301
https://arxiv.org/abs/1808.07636
https://arxiv.org/abs/1808.07636
https://doi.org/10.1103/physrevlett.112.094102
https://doi.org/10.1002/andp.201400144
https://doi.org/10.1002/andp.201400144


6

tion of quantum van der pol oscillators with trapped ions,
Physical Review Letters 111, 234101 (2013).

[31] S. Dutta and N. R. Cooper, Critical response of a quan-
tum van der pol oscillator, Physical Review Letters 123,
250401 (2019).

[32] L. Ben Arosh, M. C. Cross, and R. Lifshitz, Quantum
limit cycles and the rayleigh and van der pol oscillators,
Physical Review Research 3, 013130 (2021).

[33] P. C. Hohenberg and B. I. Halperin, Theory of dynamic
critical phenomena, Reviews of Modern Physics 49, 435
(1977).

[34] This is formally true only when λ = 0, but this term does
not impact the mean-field picture.

[35] F. Verhulst, Nonlinear Differential Equations and Dy-
namical Systems (Springer Berlin Heidelberg, 1996).

[36] A O(1) = Z2 transformation ϕS → −ϕS can always be
compensated by a time translation by half the period.
The Z2 symmetry is therefore unbroken.

[37] See Supplemental Material at [URL], which includes
Refs. [60–77], for a detailed discussion of the field the-
oretical treatment of the Langevin equations discussed
in the text.

[38] We explicitly checked that the two frequencies spoil the
generic structure of RG study based on series expansion
around a given momentum and frequency. This leads to
nonphysical divergences, technically reminiscent of what
was found in [24].

[39] H. Kawamura, Universality of phase transitions of frus-
trated antiferromagnets, Journal of Physics: Condensed
Matter 10, 4707 (1998).

[40] L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl,
Dynamical critical phenomena in driven-dissipative sys-
tems, Physical Review Letters 110, 195301 (2013).
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Supplemental Material: Nonequilibrium criticality at the onset of
time-crystalline order

In this Supplemental material, we present details about the field theoretical techniques used to study the stochastic
Langevin equations. We concentrate on the complex Langevin equation

(∂t − Z∇2 + γ)ψ +
g

2
(ψ ·ψ∗)ψ + κ(ψ ·ψ)ψ∗ + ξ = 0, (S1)

with Z = Zd + iZc, g = igd + igc and κ′ = κd + iκc, i.e., Eq. (6) up to the change i → −i that we perform for
convenience. ξ ∈ CN is a Gaussian noise with zero mean, variance ⟨ξi(x, t)ξ∗j (x, t)⟩ = Dδi,jδ(x − x′)δ(t − t′), and
⟨ξi(x, t)ξj(x, t)⟩ = 0. The Langevin equation (5) is fully equivalent to it and gives the dynamics of the real and
imaginary parts of the fields, ψ = χ1 + iχ2. This equation can be equivalently recast as

∂tψ +
δHd

δψ∗ + i
δHc

δψ∗ + ξ = 0, with Ha = ψ∗ · (−Za∇2 + γa)ψ +
ga
4
(ψ ·ψ∗)2 +

κa
2
(ψ ·ψ)(ψ∗ ·ψ∗), a ∈ {c, d},

(S2)

and γc = 0, γd = γ. To make the link with the main text, one can also use ρ = ψ ·ψ∗ and τ = (ψ ·ψ)(ψ∗ ·ψ∗)/4.
In the absence of noise, this equation of motion is solved for configurations that verify δHd/δψ = 0 i.e., by

configurations that minimize Hd, while the nonzero remaining part coming from Hc can always be canceled by
an oscillation of the form exp(i∆ωt) (for spatially homogeneous field configurations) [S41, S45]. This oscillation
corresponds to a redefinition of the original finite frequency scale, ω0 → ω0 + ∆ω, see Eq. (3). Indeed, ψ(x, t) →
exp(i∆ωt)ψ(x, t) translates to (χ1,χ2)

T → R(∆ωt)(χ1,χ2)
T = R((ω0 + ∆ω)t)(ϕ,Π)T . The stable states can thus

be found as in an equilibrium problem, despite the nonequilibrium nature.
Explicitly, for γ > 0, the stable state is ψS = ⟨ψ⟩ = 0, while for γ < 0, it has ρ ̸= 0. For κd > 0, the stable state has

ρ ̸= 0, τ = 0, i.e., ψ ·ψ = 0 or equivalently χ1 ⊥ χ2. This corresponds to the rotating phase. The equation of motion
is, for example, solved by ψS(t) = exp(i∆ωt)

√
−γ/gd(1, i, 0, . . . , 0)T with ∆ω = −γgc/gd. For κd < 0, the stable

configurations have τ ̸= 0, e.g., ψS(t) = exp(i∆ωt)
√
−2γ/(gd + κd)(1, 0, . . . , 0)

T with ∆ω = −γ(gc + κc)/(gd + κd).
This corresponds to the Van der Pol phase.

1. FUNCTIONAL INTEGRAL FORMALISM

a. MSRJD construction

Using the Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) construction [S70–S72], Eq. (S1) corresponds to the
following functional integral [S51]:

Z[j, j̃] =

∫
DψDψ̃e−S[ψ,ψ̃]+

∫
x,t
j̃
†
ψ+j†ψ̃, (S3)

where the action is given by, using
∫
x,t

=
∫
ddx dt,

S =

∫
x,t

ψ̃
∗ · (∂tψ − (1 + irK,B)∇2ψ + γBψ) + c.c.− 2ψ̃

∗ · ψ̃ +
gB
2
(ψ̃

∗ ·ψ)(ψ∗ ·ψ) + κB
2

(ψ̃
∗ ·ψ∗)(ψ ·ψ) + c.c.

(S4)

In comparison with Eq. (S1), we set Zd = D = 1 , and thus rK,B = Zc/Zd = Zc, since these coefficients can be
absorbed into a redefinition of the fields. We include a B index to all parameters of the action here, to indicate that
they are bare microscopic quantities. The MSRJD procedure can be applied to the original Langevin equation (1) of
the main text that involve real fields similarly, see [S24].

The functional integral lnZ[j, j̃] can be used to generate all noise-averaged connected correlation and response
functions of the problem. In particular, absent symmetry breaking, the two-point (retarded) response function and
correlation functions are

χRij(q, ω) =
δ2 lnZ

δj̃i(q, ω)δj∗j (q, ω)

∣∣∣
j=j̃=0

≡ GR(q, ω)δij , Cij(q, ω) =
δ2 lnZ

δj̃i(q, ω)δj̃∗j (q, ω)

∣∣∣
j=j̃=0

≡ GK(q, ω)δij . (S5)
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We used time and space translation invariance to obtain diagonal propagators in Fourier space. The time-crystal
phases break time translation invariance, but it is recovered in the effective O(N) × SO(2) theory, where the finite
oscillating scale is implicit. The two-point functions can be collected into a matrix in Fourier space G(q, ω), which
absent symmetry breaking, is a 2× 2 matrix in Keldysh space (ψ, ψ̃),

G(q, ω) =
(
GK(q, ω) GR(q, ω)
GA(q, ω) 0

)
, (S6)

where GA = (GR)∗, GK = 2D|GR|2. At the Gaussian level, we have, from the action (S4),

GR(q, ω) =
1

−iω + q2(1 + irK,B) + γB
. (S7)

To ease the analysis, it is convenient to work with the effective action Γ[Ψ, Ψ̃], with Ψ = ⟨ψ⟩ and Ψ̃ = ⟨ψ̃⟩, defined
as the Legendre transform of lnZ[j, j̃] [S51, S60],

Γ[Ψ, Ψ̃] = − lnZ[j, j̃] +

∫
x,t

j̃
†
Ψ+ j†Ψ̃, where j =

δΓ

δΨ̃
∗ , j̃ =

δΓ

δΨ∗ . (S8)

The effective action is beneficial conceptually since it can be seen as a renormalized version of the action upon
including the effect of interactions. It is also technically convenient because it is the generating functional of one-
particle irreducible vertices, for which the perturbative computations done below are efficiently performed [S51, S60].

b. Thermal symmetry

The MSRJD representation is also well suited to detect whether the system is in thermal equilibrium or not. In
thermal equilibrium, all n-point correlation and response functions obey fluctuation-dissipation relations (FDR). In
the field theoretical formalism, the presence of the FDR are equivalent to the existence of a symmetry of the MSRJD
action and effective action [S45, S63–S67, S71].

For a complex field, the thermal symmetry is given by [S45]

Ψ(x, t) → Ψ(x,−t)∗, Ψ̃(x, t) → Ψ̃(x,−t)∗ + 1

2T
∂tΨ(x,−t)∗, (S9)

where T denotes the equilibrium temperature. Evidently, the thermal symmetry of the original fields is broken in the
limit-cycle phases [S24]. This propagates to the effective theory, and Eq. (S9) is not a symmetry of the action (S4)
either. However, one can allow for a more general thermal symmetry in the presence of coherent and dissipative
dynamics [S48],

Ψ(x, t) → Ψ(x,−t)∗, Ψ̃m(x, t) → Ψ̃m(x,−t)∗ + 1

2T
∂tΨ(x,−t)∗, where Ψ̃m(x, t) = (1 + ib)Ψ̃(x, t), (S10)

with b an additional parameter. The action Eq. (S4) is now symmetric under Eq. (S10) if and only if Hc = bHd (which
fixes the parameter b) with temperature T = D/2 = 1/2 in our units. This implies a fixed ratio between the real and
imaginary parts of the couplings, rK = gc/gd = κc/κd. There is no condition between the real and imaginary parts of
γ = iγd + γc because we can always shift the value of γc → γc +∆ω via ψ(t) → exp(i∆ωt)ψ(t), i.e., a redefinition of
the finite frequency parameter ω0 as discussed above. (This means that the corresponding effective thermal behavior
is found in a rotating frame.)

The presence of this symmetry can be rationalized by noting that, if Hc = bHd, we can rewrite the Langevin
equation (6) as

∂tψ

1− ib
+
δHd

δψ∗ +
ξ

1− ib
= 0, (S11)

and we in fact recover a purely conservative Hamiltonian dynamics that describe thermal equilibrium with a noise
(i.e., ψ̃) rescaled by (1− ib), in agreement with Eq. (S10).

Limit cycles are nonequilibrium phases. But this does not preclude the possibility of an effective equilibrium (in a
rotating frame) at the transition, even if the starting microscopic model breaks equilibrium conditions. In particular,
this happens in the N = 1 case of the model we are considering here.
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I. GOLDSTONE THEOREM AND DISPERSIONS

a. Spontaneous breaking of time-translation symmetry and Goldstone theorem

In this section, we analyze the original equation (1), and discuss the Goldstone modes associated with time-
translation breaking. A continuous symmetry with generators Tij , in its infinitesimal version, acts on the field, ϕ, as
ϕi → (1 + ϵTij)ϕj . The Goldstone theorem reads as, for a space independent order parameter ϕS(t) = ⟨ϕ(x, t)⟩,

∑
i,j

∫
t′
(GR

−1
)ki(q = 0, t, t′)TijϕS,j(t

′) = 0. (S12)

For a broken generator,
∑
j TijϕS,j(t

′) is nonzero, and GR necessarily has a (eigen-)mode with a vanishing dispersion
at q = 0, i.e., a Goldstone mode.

It is shown in [S24] that the Goldstone theorem leads to 2N − 3 Goldstone modes associated with the breaking of
the O(N) symmetry in the rotating phase. The breaking of the O(N) symmetry in the Van der Pol phase gives N −1
Goldstone modes, as in the usual static phase of O(N) models.

The MSRJD functional integral equivalent to the initial Langevin equation Eq. (1) of the main text is invariant
under infinitesimal time translations t → t+ ϵ, ϕ′ → ϕ+ ϵ∂tϕ whose only generator is Tij = δij∂t. We therefore get
one Goldstone mode from its breaking whenever the order parameter is time-dependent,∑

i

∫
t′
(GR

−1
)ki(q = 0, t, t′)∂′tϕS,i(t

′) = 0. (S13)

In the Van der Pol phase, this gives one Goldstone mode that arises solely from this spontaneous breaking of
time-translation symmetry. On the contrary, in the rotating phase the associated Goldstone mode is equivalent to
the one arising from the rotation along the limit cycle [S24] since the Goldstone theorem applied for the associated
broken generator of O(N) leads to the same expression as the one obtained from (S13).

All the Goldstone modes can be also obtained from the O(N)×SO(2) theory in a close manner to the equilibrium
case. In particular, the Van der Pol phase corresponds to the breaking pattern O(N) × SO(2) → O(N − 1). There
are again N − 1 Goldstones arising from the breaking of O(N), and one Goldstone from the breaking of the SO(2)
symmetry. In the rotating phases, the breaking pattern is O(N) × SO(2) → O(N − 2) × SO(2)d (the additional
index in SO(2)d underlines that it differs from the original one [S44]). There are 2N − 3 Goldstones coming from the
breaking of O(N) to O(N − 2), while again the Goldstone of the broken SO(2) is not an independent one.

b. Dispersions of the Goldstone modes

The effective O(N)×SO(2) theory allows us to recover effective time-independent dynamics for the Goldstone modes
because we can now expand around time-independent solutions. In turn, we can get explicit dispersion relations ω(q)
for the Goldstone modes. This is rationalized by the Floquet theorem, which tell us that there exist periodic functions
P (t) such that the linearized solutions of the equation of motion are of the form

δϕ(q, t) = P (t) exp(−iω(q)t). (S14)

This confirms that we were able to work in the “rotating frames” around the two limit-cycle phases. We now derive
the dispersion relations by specifying explicit forms for the real and imaginary parts of ψ = χ1 + iχ2 in the broken
phase.

Rotating phase – One of the possible choices is to parameterize the fields by introducing amplitude δρi(x, t) and
angular fluctuations θi,j(x, t) (with i ∈ {1, 2} and j ∈ {3 . . . N}):

χ1(x, t) =
√
ρ0 + δρ1 exp[θ1,1T1,2 +

N∑
i=3

θ1,iT1,N ]ê1, χ2(x, t) =
√
ρ0 + δρ2 exp[θ2,1T2,1 +

N∑
i=3

θ2,iT1,N ]ê2. (S15)

The amplitude modes are gapped in the broken phases and can be safely integrated out. In addition, because χ1

and χ2 are orthogonal, only rotations that keep their relative angle fixed lead to a soft mode. Therefore, the relative
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angle mode θ1,2 + θ2,1 is also gapped, while θ− = 1/
√
2(θ1,2 − θ2,1) is gapless. Its linearized dynamics and dispersion

relation are given by

∂tθ− − Zd∇2θ− + ξ = 0 =⇒ ω(q) = −iZdq2. (S16)

All the other θ modes are also gapless and coupled by pairs at the linear level:

∂tθ1,i − Zd∇2θ1,i + Zc∇2θ2,i + ξ = 0, ∂tθ2,i − Zd∇2θ2,i − Zc∇2θ2,i + ξ = 0, ∀i ∈ [3 . . . N ]. (S17)

Instead of purely overdamped motion, this leads to two modes, ω±(q) = −iZdq2 ± Zcq
2.

These modes were found in [S24] with an additional finite gap equal to the frequency of the order parameter ω0,
whose absence here is due to the rotation (3). This can again be rationalized in the Floquet language. Indeed, from
Eq. (S14), we can write

δϕ(q, t) = P (t) exp(−iω(q)t) = P 2(t) exp(−iω(q)t− iω0t), (S18)

where P 2(t) is still periodic with frequency ω0. Therefore, if a mode oscillates at ±ω0 as the Goldstone modes in [S24],
it is possible to transfer the oscillation into P (t), and get a non-oscillating mode instead.
Van der Pol phase – The effective dynamics for the Goldstone modes are obtained by writing the fields as

χ1(x, t) = (χ0 + σ1(x, t), θ2(x, t), . . . , θN (x, t)), χ2(x, t) = (θ1(x, t), σ2(x, t), . . . σN (x, t)). (S19)

All the σ modes have a finite mass at the Gaussian level, while the θ modes are gapless with

∂tθi − Zd∇2θi + ξ = 0. (S20)

From the point of view of the original equation of motion (1), the effective O(N) × SO(2) theory describes the
Van der Pol phase only to the lowest order in γ. In principle, the Van der Pol limit cycle can be obtained to any
order in perturbation theory [S35], around which the Floquet exponents, or equivalently stated, the dispersion of the
Goldstone modes can be extracted. We can expect the linearized Langevin equations to still be of the form (S20)
based on symmetry breaking pattern considerations.

The Gaussian fluctuations of these Goldstone modes, ⟨θ(x, t)2⟩ ∼
∫
q,ω

GKθ (q, ω) ∼
∫
ddq/q2, diverge in d ≤ 2. They

thus destroy any order in two dimensions, and the Mermin-Wagner theorem applies. This is true even for N = 1,
where this is due solely to the Goldstone mode associated with the continuous time-translation symmetry.

II. DETAILS ABOUT THE RG PROCEDURE

1. Scaling hypothesis and dimensionless action

To take into account interaction effects in perturbation theory, it is sufficient to parameterize the effective action
as Γ = Γ0 + Γint with

Γ0 =

∫
x,t

ψ̃
∗ · (Z−1

t ∂t − Z−1
x ∇2 + γ)ψ + c.c.− 2Z−1

D ψ̃
∗ · ψ̃, (S21)

Γint =

∫
x,t

g

2
(ψ̃

∗ ·ψ)(ψ∗ ·ψ) + κ

2
(ψ̃

∗ ·ψ∗)(ψ ·ψ) + c.c., (S22)

where all parameters, except the real valued ZD, are complex numbers. This form involves only relevant and marginal
operators in four dimensions, following power counting arguments. We will determine the renormalization group
equations, which describe how the effective couplings entering the effective action change upon variation of the
momentum scale µ at which we define them.

The prefactor of the time derivative does not remain real upon coarse-graining, even if initialized as such on the
microscopic scale. In order to restore the form of the bare action, it is therefore convenient to first rescale the response

field to eliminate the Zt factor by introducing ψ̃
′
= (Z−1

t )∗ψ̃,

Γ0 =

∫
x,t

ψ̃
′∗ · (∂t −

Z−1
x

Z−1
t

∇2 +
r

Z−1
t

)ψ + c.c.− 2
Z−1
D

|Zt|−2
ψ̃

′∗ · ψ̃′
. (S23)
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We define Z−1
x /Z−1

t ≡ K ≡ Kd + iKc. The γ parameter does not either remain real, but its imaginary part can
always be eliminated by a redefinition of the finite frequency, ω0, of the order parameter, see above.
To make the scale invariance of the fixed points explicit, the action has to be put in a dimensionless form by

rescaling the fields, space, and time to absorb bare and anomalous dimensions,

xR = µx, tR = µ2X−1t, ψ̃R = µ− d+2
2

√
Z−1

ψ̃
ψ̃

′
, ψR = µ− d−2

2

√
Z−1
ψ ψ. (S24)

The effective action is then dimensionless upon choosing

X =
1

Kd
, Zψ̃ =

ZD
|Zt|2X

, Zψ = Z−1

ψ̃
, (S25)

and reads as

Γ =

∫
xR,tR

ψ̃
∗
R · (∂tψR − (1 + irK)∇2ψR + γψ̃R) + c.c.− 2ψ̃

∗
R · ψ̃R +

g̃

2
(ψ̃

∗
R ·ψR)(ψ∗

R ·ψR) +
κ̃

2
(ψ̃

∗
R ·ψ∗

R)(ψR ·ψR) + c.c.,

(S26)

where

γ̃ = γXZt/µ
2, g̃ = µd−4gZψZtX, κ̃ = µd−4κZψZtX. (S27)

The additional parameter rK = Kc/Kd, which cannot be eliminated by the rescaling, describes the relative strength
of coherent couplings vs. dissipative couplings in the two-point functions.

All critical exponents can then be defined in the standard way from the dynamical scaling hypothesis [S41, S51],

GK(q, t) = q−2+ηG̃K(tqz(1 + iqη−ηc), γq−1/ν) = q−2+ηG̃K(tqz, iqη−ηc , γq−1/ν), (S28)

GR(q, t) = q−2+η′+zG̃R(tqz, iqη−ηc , γq−1/ν), (S29)

where the additional independent exponent ηc allows for a possibly different scaling between coherent and dissipative
couplings [S41]. It is associated with the scaling behavior of the parameter rK ∼ µη−ηc . At equilibrium, the FDR
imply η = η′, and there is one less independent critical exponent. This ansatz encompasses the Gaussian case Eq. (S7),
for which ν = 1/2, z = 2 and η = η′ = ηc = 0.

Beyond mean field, we can use the dimensionless effective action (S26) to write

GK(q, t) = ⟨ψ∗
i (q, t)ψi(q, 0)⟩ = µ−2Zψ⟨ψ∗

R,i(q, t)ψR,i(q, 0)⟩ = µ−2ZψG̃
K(qR = q/µ, tR = tµ2X−1, irK , γ̃), (S30)

GR(q, t) = ⟨ψ̃∗
i (q, t)ψi(q, 0)⟩ = Zt⟨ψ̃∗

R,i(q, t)ψR,i(q, 0)⟩ = ZtG̃
R(qR, tR, irK , γ̃). (S31)

In these expressions, the RG parameter µ plays a similar role as q since it is also a momentum scale. Based on the
scaling hypothesis, we can then use the standard RG matching procedure, q ∼ µ, to read off scaling from the RG
flow. We therefore have

ν−1 = −µ∂µ ln(γ̃), η = µ∂µ lnZψ, z = 2− µ∂µ lnX, η′ = µ∂µ ln(Zt) + µ∂µ lnX, ηc = η − µ∂µ ln(rK). (S32)

In equilibrium, the FDR for the two-point response and correlation functions reads as

GR(q, t)−GA(q, t) = − 1

2T
∂tG

K(q, t). (S33)

This can be taken as the definition of the temperature via T = −∂tGK(q, t)/2GR(q, t) for t > 0. Out-of-equilibrium,
this FDR does not hold anymore. If one insists on the definition (S33), this formally shows up as a scale dependent
temperature Tµ . Specifically, we find from (S30) and (S31) that, in the scaling regime where q ≲ µ and t ≲ µ−z,

Tµ =

∣∣∣∣∂tGK(q, t)

2GR(q, t)

∣∣∣∣ ∼ |ZψZ−1
t µ−2+z| ∼ µRe(η−η′). (S34)

At equilibrium η = η′ and a true (scale free) temperature is found. Reciprocally, we see that a nonequilibrium
situation can possibly be detected by measuring the ratio between response and correlation functions, or equivalently
the distribution of excitations, in a time or space resolved way.
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GR(q, ω) =

(a) Retarded propagator

GA(q, ω) =

(b) Advanced
propagator

GK(q, ω) =

(c) Keldysh propagator

g
2
(δa,cδb,d + δa,dδb,c) + κδabδcd =

(d) Four-point vertex

FIG. S1. Diagrammatic representation of the elements entering perturbation theory. The propagators are defined in Eq. (S6).
The complex conjugated vertex, obtained by reverting the direction of the arrows in (d), is not shown.

2. Perturbation theory

In the spirit of renormalized perturbation theory, it is convenient to work directly in renormalized dimensionless
variables by first performing the transformation (S24), and then to define the renormalized quantities by introducing
multiplicative Z factors via

γB = Z ′
γ γ̃, rK,B = ZrKrK , gB = Z ′

g g̃, κB = Z ′
κκ̃. (S35)

In terms of these variables, the action reads

S =

∫
x,t

ψ̃
∗ · (Zt∂t − ZtX(1 + iZKrK)∇2 + Zγ γ̃)ψ + c.c.− 2ZDψ̃

∗ · ψ̃, (S36)

where we additionally define Zγ = µ−2ZtXZ
′
γ , Zg = µd−4Z ′

gZtZ
2
ψ using Eqs. (S27). We dropped all R indices for

simplicity. All counterterms are of the form Za = 1 + δa, where the δa, defined through these relations, have an
expansion in terms of the coupling constants that starts at least at order one.

Defining Zx = ZtX(1+ iZrKrK) = Zd+ iZcrK , we can alternatively use the counterterms Zd = 1+ δd, Zc = 1+ δc.
We will need the following relation

δrK =
δc
rK

− δd − Im(δt)
1 + r2K
rK

, (S37)

valid at second-order in the interactions. The action can then be written as S = S0 + SP with

S0 =

∫
x,t

ψ̃
∗ · (∂t − (1 + irK)∇2 + γ̃)ψ + c.c.− 2ψ̃

∗ · ψ̃ (S38)

SP =

∫
x,t

ψ̃
∗ · (δt − δx∇2 + δγ γ̃)ψ − 2δDψ̃

∗ · ψ̃

+
g̃(1 + δg)

2
(ψ̃

∗ ·ψ)(ψ∗ ·ψ) + κ̃(1 + δκ)

2
(ψ̃

∗ ·ψ∗)(ψ ·ψ) + c.c., (S39)

and the loop corrections can be computed by treating SP as a perturbation. We use dimensional regularization with
ϵ = 4 − d and the minimal subtraction scheme where only the poles in 1/ϵ are incorporated into the Z factors, see
e.g., [S51, S60, S61]. The elements entering perturbation theory are displayed in Fig. S1.

a. One-loop

We use the following notation to denote functional derivatives δ2Γ/δψ̃∗
a(p, ω)ψb(p, ω) = Γ

(2)

ψ̃∗
aψb

(p, ω) and its gener-

alizations to higher order. The only one-loop contribution to the self-energy is the tadpole diagram Fig. S2a, which
gives

Γ
(2)

ψ̃∗
aψa

(p, ω) = −iω + p2 + γ̃ + δγ γ̃ + (g̃
N + 1

2
+ κ̃)

∫
q,ω

GK(q, ω) +O(I2), (S40)
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(a) (b) (c)

(d)

FIG. S2. Loop diagrams considered in the text. The first three graphs renormalize the self-energies. (a) and (b) correct

the retarded part of the action Γ
(2)

ψ̃∗
aψa

, while (c) corrects the noise part Γ
(2)

ψ̃∗
aψ̃a

. The one-loop diagrams (d) renormalize the

interaction. The red arrows indicate that diagrams with both arrow directions have to be considered.

where O(I2) ≡ O(g2, κ2, gκ) and
∫
q,ω

=
∫
ddqdω/(2π)d+1. The frequency integrals can be performed in all loops

without generating any divergence, while the divergent parts of the remaining momentum integrals are obtained in
the standard way. All the poles of the integrals that we will need can also be found in [S41, S50]. The divergences
are the same as in the N = 1 case, but the additional structure of the interactions for N > 1 induces more complex
flow equations as well as different prefactors of the loops. This rationalizes why we can get novel fixed points, and a
novel universality class. The pole in Eq. (S40) is given by

∫
q,ω

GK(q, ω) =

∫
q

1

q2 + γ̃
=

2

(4π)2ϵ
γ̃ +O(ϵ0). (S41)

The renormalization of the four-point functions is given by the diagrams in Fig. S2d evaluated at zero momenta
and frequencies. We obtain

Γ
(4)

ψ̃∗
aψ

∗
bψcψd

=

(
g̃ + δg g̃ −

1

(4π)2ϵ

[
(N + 3)g̃

2
(g̃ + g̃∗) + 2κ̃κ̃∗ + 2g̃κ̃+ g∗κ̃+ g̃κ̃∗ +

1

1 + irK
g̃2
])

1

2
(δa,cδb,d + δa,dδb,c)

+

(
κ̃+ δκκ̃− 1

(4π)2ϵ

[
2g̃κ̃+ g̃∗κ̃+ g̃κ̃∗ +

1

1 + irK
(Nκ̃2 + 2κ̃g)

])
δabδcd +O(I2, ϵ0).

(S42)

By absorbing the poles in ϵ in the countertems, we have at one-loop order,

Zγ = 1 +
2

ϵ
(g̃
N + 1

2
+ κ̃)γ̃ +O(I2), (S43)

Zg = 1 +
1

ϵ

[
(N + 3)

2
(g̃2 + g̃g̃∗) + 2κ̃κ̃∗ + 2g̃κ̃+ g̃∗κ̃+ g̃κ̃∗ +

1

1 + irK
g̃2
]
+O(I2), (S44)

Zκ = 1 +
1

ϵ

[
2g̃κ̃+ g̃∗κ̃+ g̃κ̃∗ +

1

1 + irK
(Nκ̃2 + 2κ̃g̃)

]
+O(I2). (S45)

We redefine the couplings from now on via g → g(4π)2 and κ→ κ(4π)2 to absorb all factors of 4π. The RG equations
are then obtained by using the fact that the bare quantities are independent of the RG scale µ. For example, using
Zg g̃µ

ϵ = gB at one-loop (where Zg = Z ′
g), we get µ∂µg̃ = −ϵ − µ∂µZg/Zg. Taking real and imaginary part of the
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ensuing equations, we finally obtain

µ∂µγ̃ = −2γ̃ +
g̃(N + 1) + 2κ̃

2
γ̃, (S46)

µ∂µg̃d = −ϵg̃d +
(
rK g̃cg̃d +

1
2

(
g̃2d − g̃2c

)
r2K + 1

+ 2g̃dκ̃d +
1

2
(N + 3)g̃2d + 2κ̃2d

)
, (S47)

µ∂µg̃c = −ϵg̃c +
(
κ̃cg̃d + g̃cκ̃d +

1

2
(N + 3)g̃cg̃d +

1
2rK

(
g̃2c − g̃2d

)
+ g̃cg̃d

r2K + 1
+ 2κ̃cκ̃d

)
, (S48)

µ∂µκ̃d = −ϵκ̃d +
(
rK (κ̃cg̃d + g̃cκ̃d +Nκ̃cκ̃d) +

1
2N

(
κ̃2d − κ̃2c

)
− g̃cκ̃c + g̃dκ̃d

r2K + 1
+ 2g̃dκ̃d

)
, (S49)

µ∂µκ̃c = −ϵκ̃c +
(
κ̃cg̃d + g̃cκ̃d +

κ̃cg̃d + g̃cκ̃d + rK
(
1
2N

(
κ̃2c − κ̃2d

)
+ g̃cκ̃c − g̃dκ̃d

)
+Nκ̃cκ̃d

r2K + 1

)
. (S50)

The one-loop fixed points are obtained by solving these flow equations. We have γ̃ = 0 at all fixed points. The
equilibrium fixed points found from the O(N)×O(2) RG equations [S39] solve our equations with g∗c/g

∗
d = κ∗c/κ

∗
d = rK .

These equilibrium fixed points all acquire an additional relevant direction, as discussed in the main text, and the fixed
point that describes the phase transition at equilibrium becomes multicritical. This relevant direction is associated
with the microscopic breaking of equilibrium conditions, which thus grows at large distances with a universal exponent.
There are two new additional nonequilibrium fixed points toward which the flow is attracted, see Fig. S4, and which
therefore control the phase transition. At these fixed points, the ratios g∗c/g

∗
d, κ

∗
c/κ

∗
d and rK are not equal, and

equilibrium conditions are violated. They exist for every N > 1, which is not the case for the equilibrium ones [S39].

However, there is no running of rK at one-loop order, and the values of the couplings at the fixed points all depend
on the bare value rK,B . There is therefore a (spurious) line of fixed points, which is a shortcoming of the one-loop
equations. It is necessary to perform a two-loop analysis of the self-energies in order to obtain values of rK at the
fixed points, and to fully characterize the latter even at first-order in ϵ. This will also allow us to get the lowest-order
expression of all critical exponents.

b. Two-loop

We now only consider the renormalization of Zt, Zx, ZD to get nontrivial renormalization of all parameters to
lowest-order, which in turn allows us to get the running of rK via µ-differentiation of (S37). We thus only have to

compute the contributions coming from the sunset diagrams, Fig. S2b and S2c. The first one contributes to Γ
(2)

ψ̃∗ψ
(p, ω)

a term

δΓS(p, ω) = −(g̃2
N + 1

2
+Nκ̃2 + 2g̃κ̃)I1(p, ω)−

1

2
(g̃g̃∗

N + 1

2
+ κ̃κ̃∗ + g̃κ̃∗ + g̃∗κ̃)I2(p, ω), (S51)

with

I1(p, ω) =

∫
Q1,Q2

GR(−Q1 −Q2 + P )GK(Q1)G
K(−Q2) (S52)

=

∫
q1,q2

1

q21 + γ̃

1

q22 + γ̃

1

−iω + 3γ̃ + (1 + irK)(q22 + (q1 + q2 − p)2) + (1− irK)q21
, (S53)

I2(p, ω) =

∫
Q1,Q2

GR(Q1 +Q2 − P )GK(Q1)G
K(Q2) (S54)

=

∫
q1,q2

1

q21 + γ̃

1

q22 + γ̃

1

−iω + 3γ̃ + (1 + irK)(q21 + q22) + (1− irK)(q1 + q2 − p)2
, (S55)

where Qi = (qi, ωi) and P = (p, ω). We only need the divergent parts at linear order in frequency and second order
in p that arise from the momentum integrations. They can be extracted using Feynman’s parametrization and read
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FIG. S3. β∗(rK) = βrK (rK , g̃∗(rK), κ̃∗(rK)), plotted for different fixed points, i.e., different values of g̃∗(rK) and κ̃∗(rK))
(N = 24). The values of rK at the different fixed points are given by the zero of this function. The solid black line corresponds
to any of the equilibrium fixed points up to a prefactor. Its zero is always found at r∗K = 0. The gray dashed and dashed-dotted
lines correspond to the two nonequilibrium fixed points, for which r∗K ̸= 0. The fact that r∗K assumes opposite values at the
two fixed points ensures that they are complex conjugates of each other.

as

∂−iωI1 = − 1

(4π)4ϵ

1

(1 + irK)2
ln(

4

3− irK
), ∂−iωI2 = − 1

(4π)4ϵ

1

(1− irK)2
ln(

4

(3− irK)(1 + irK)
), (S56)

∂p2I1 = − 1

(4π)4ϵ

2− irK
4(3− irK)

, ∂p2I2 = − 1

(4π)4ϵ

1− irK
6− 2irK

. (S57)

From ∂p2Γ
(2)

ψ̃∗ψ
(p, ω) = 1 + δx − ∂p2 δΓs|sing. and ∂−iωΓ

(2)

ψ̃∗ψ
(p, ω) = 1 + δt − ∂−iω δΓs|sing., we obtain

Zx = 1− 1

ϵ

[
(g̃2

N + 1

2
+Nκ̃2 + 2g̃κ̃)

2− irK
4(3− irK)

− 1

2
(g̃g̃∗

N + 1

2
+ κ̃κ̃∗ + g̃κ̃∗ + g̃∗κ̃)

1− irK
6− 2irK

]
, (S58)

Zt =1−
log
(

4
(3−irK)(1+irK)

) (
κ̃g̃∗ + g̃κ̃∗ + 1

2 |g̃|2(N + 1) +N |κ̃|2
)

2(1− irK)2ϵ
−

log
(

4
3−irK

) (
1
2 g̃

2(N + 1) + 2g̃κ̃+ κ̃2N
)

(1 + irK)2ϵ
.

(S59)

Similarly, evaluating the second sunset Fig. S2c, we find

Γ
(2)

ψ̃∗
aψ̃a

(0, 0) =− 2(1 + δD) +

(
g̃g̃∗

(N + 1)

2
+ κ̃κ̃∗N + g̃κ̃∗ + κ̃g∗

)
×

Re

(∫
q1,q2

1

q21 + γ̃

1

q22 + γ̃

1

(q1 + q2)2 + γ̃

1

3γ̃ + (1 + irK)(q21 + q22) + (1− irK)(q1 + q2)
2

)
.

(S60)

The poles of this integral can be found in [S50] and in [S41] together with a detailed calculation (the function L(rK)
which appears in (A16) of [S41] is obtained for rK > 0 and is in fact zero; its analytic continuation to negative rK is
also zero). We finally obtain

ZD = 1−
(
1
2 g̃g̃

∗(N + 1) + κ̃κ̃∗N + g̃κ̃∗ + κ̃g∗
)

4ϵ (1 + r2K)

(
3 log

(
16

(9 + r2K)(1 + r2K)

)
+ 2rK

(
arctan(rK) + arctan

(rK
3

)))
.

(S61)

We are now in position to get ZrK using Eq. (S37), from which we determine the β−function of rK , βrK = ∂µrK =
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(a) (b)

FIG. S4. Flow diagram on the critical surface (γ̃∗ = 0) projected on the (a) (g̃d, κ̃d) plane and (b) (g̃d, g̃c) plane for N = 24
and ϵ = 0.1. In addition to the Gaussian fixed point, there are three equilibrium fixed points (with r∗K = g∗c = g∗d = 0),
labelled Wilson-Fisher (WF), chiral (C+), and anti-chiral (C−). The chiral one is attractive precisely at equilibrium, and
the corresponding black dashed trajectory is attracted toward it. However, a small breaking of equilibrium conditions grows
at larger scale, and the gray solid flow trajectories are attracted toward the new nonequilibrium fixed points N±. They are
complex conjugates of each other, see (b).

−rKµ∂µZrK/ZrK ,

βrK =
rK

2 (r2K + 1)

{(
− log

(
r2K + 1

)) (
2
(
κ̃2c + κ̃2d

)
+ 4g̃cκ̃c + 2g̃2c + 4g̃dκ̃d + 2g̃2d

)
+ log

(
r2K + 9

) (
2g̃c
(
−6κ̃crK + 2g̃d

(
r2K − 1

)
− 2κ̃d + 2κ̃dr

2
K

)
+ 4g̃d

(
κ̃c
(
r2K − 1

)
+ κ̃drK

)
+ 2

(
−2κ̃cκ̃d + 2κ̃cκ̃dr

2
K + rK

(
κ̃2d − 3κ̃2c

))
− 6g̃2crK + 2g̃2drK

)
− 2 log(4)

(
2g̃c
(
−6κ̃crK + 2g̃d

(
r2K − 1

)
− 2κ̃d + 2κ̃dr

2
K

)
+ 4g̃d

(
κ̃c
(
r2K − 1

)
+ κ̃drK

)
+ 2

(
−2κ̃cκ̃d + 2κ̃cκ̃dr

2
K + rK

(
κ̃2d − 3κ̃2c

))
− 6g̃2crK + 2g̃2drK

)
+

1

r2K + 9

( (
r2K + 1

) (
− 2g̃c (2κ̃crK + 6g̃d + 6κ̃d) + 4g̃d

(
κ̃drK

(
r2K + 6

)
− 3κ̃c

)
+ 2

(
−6κ̃cκ̃d − κ̃2crK + κ̃2dr

3
K + 6κ̃2drK

)
− 2g̃2crK + 2g̃2drK

(
r2K + 6

) )
+
(
r4K + 8r2K − 9

)
arctan (rK)

(
2
(
κ̃2c + κ̃2d

)
+ 4g̃cκ̃c + 2g̃2c + 4g̃dκ̃d + 2g̃2d

)
+
(
r2K + 9

)
arctan

(rK
3

) (
4g̃c
(
κ̃c
(
r2K − 1

)
+ 4g̃drK + 4κ̃drK

)
− 4g̃d

(
−4κ̃crK − 3κ̃d + 3κ̃dr

2
K

)
+ 2

(
8κ̃cκ̃drK + κ̃2c

(
r2K − 1

)
− 3κ̃2d

(
r2K − 1

))
+ 2g̃2c

(
r2K − 1

)
− 6g̃2d

(
r2K − 1

) ))}
.

(S62)

The full fixed points can now be obtained by using the following procedure: (i) The one-loop flow equations
are solved as a function of rK , e.g., g̃∗(rK). Note that these solutions are not fully fixed, since they still depend
on rK . (ii) The solutions can be directly fed into Eq. (S62) because only the one-loop corrections to interactions
contribute to β at two-loop order (i.e., at second order in ϵ). (iii) The fixed point value r∗K is then obtained by solving
β∗(rK) = βrK (rK , g̃

∗(rK), κ̃∗(rK)) = 0. This can finally be injected back into the one-loop results to fully fix the
solutions. We finally get the values of the coupling constants at the fixed point to order O(ϵ), e.g., g̃∗(r∗K) = O(ϵ),
and anomalous dimensions to order O(ϵ2). We emphasize that we obtain r∗K = r∗K,2l +O(ϵ) at two-loop order.
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N Phase ν−1 − 2 η z − 2 η′ ηc

22, eq. Rot. −27/50ϵ 0.0207ϵ2 0.0207cϵ2 η −0.0207c′ϵ2

22, neq. Rot. −0.942ϵ −0.142ϵ2 0.0055ϵ2 (0.00030 + 0.018i)ϵ2 η

3, eq. None X X X X X

3, neq. Rot. −1.27ϵ −1.49ϵ2 −0.017ϵ2 (−0.035 + 0.067i)ϵ2 η

2, eq. vdP −ϵ/2 ϵ2/48 cϵ2/48 η −c′ϵ2/48

2, neq. Rot. −0.853ϵ −0.353ϵ2 0.0072ϵ2 (0.010 + 0.0070i)ϵ2 η

TABLE S1. Critical exponents for different values of N in- and out-of-equilibrium to lowest nontrivial order in ϵ. The
equilibrium static results are reproduced, see [S73]. The column “Phase” indicates the transition into which phase (rotating or
Van der Pol (vdP)) is second order, while the other one is fluctuations induced first-order. For the N = 3 equilibrium case, no
attractive fixed point exists, and both phase transitions are first-order. We use c = (6 log(4/3)− 1) and c′ = (4 log(4/3)− 1).

For all equilibrium fixed points, i.e., for g̃∗c/g̃
∗
d = κ̃∗c/κ̃

∗
d = rK , we find

β∗(rK) =
1

2

(
4g̃∗dκ̃

∗
d + (N + 1)g̃∗2d + 2Nκ̃∗2d

)
f(rK), (S63)

f(rK) =

(
rK log(

16

(r2K + 1)(r2K + 9)
) +

(
r2K − 1

)
arctan (rK) +

(
r2K + 3

)
arctan

(rK
3

))
, (S64)

which agrees with Eq. (89) of [S41] when we set N = 1. Since the only zero of f(rK) is rK = 0 and dβ∗(rK = 0)/drK >
0, we find that r∗K = 0 for all equilibrium fixed points, no matter N . This reflects the fact that the equilibrium fixed
points all have a purely dissipative dynamics. The fact that all imaginary parts are zero at the equilibrium fixed
points, gc∗ = κ∗c = r∗K = 0, also means that these fixed points display an O(N) × O(2) symmetry, even if flow is
initiated at equilibrium with O(N)× SO(2) symmetric initial conditions.

Away from equilibrium, the zero of β∗(rK) moves away of the origin, and rK reaches nonzero fixed-point values at
the nonequilibrium fixed points, see Fig. S3. This implies that ηc = η, which means that coherent and dissipative
parts have the same scaling. We get opposite nonzero values of rK for the two nonequilibrium fixed points that
control the phase transition, ensuring that they are complex conjugates of each other. They thus describe mutually
time-reversed coherent parts of the dynamics (e.g., Zc → −Zc). The structure of the flow diagram is plotted in
Fig S4. Since the imaginary couplings do not vanish at these fixed points, they do not have an emergent O(N)×O(2)
symmetry contrary to the equilibrium ones. They therefore describe a new universality class uniquely associated
with the O(N) × SO(2) symmetry that controls the phase transition. The nonequilibrium fixed points have κd > 0
for N > Nc ∼ 1.6 + O(ϵ) and κd < 0 otherwise. Since the Van der Pol phase exists only for κd < 0, there is no
fixed point associated with its onset. In perturbation theory, this is characteristic of a fluctuation-induced first-order
transition [S52]. The transition to the Van der Pol phase is therefore first-order for every N > 1. Conversely, the
transition to the rotating phase is second-order for all N , at least close to four dimensions, and described by the new
universality class we find.

Our calculation allows us to obtain all critical exponents to lowest order in ϵ, see Tab. I in the main text, and Tab. S1.
The equilibrium exponents are obtained from analytical expressions, while the nonequilibrium ones are derived from
numerical evaluation of the zeros of (S62). In the equilibrium case where gc = gd = rK = 0, our equations reduce
to the known two-loop O(N) × O(2) equations [S73], and the critical exponents agree as well. We obtain the ηc
exponents linked to the fade out of coherent dynamics, which was not known at equilibrium. The critical exponents
of the new fixed points differ from the equilibrium case, as well as any other known universality class, confirming
that we get a new universality class. We find that η′ ̸= η, which is only possible outside of equilibrium. Interestingly,
η′ is complex and r∗K does not vanish. This gives rise to intriguing physical phenomena, such as renormalization
group (RG) limit-cycle oscillations and absence of asymptotic decoherence [S53–S55]. This also implies a divergent
temperature Tµ ∼ µη−Re(η′), which can measured through correlation and response functions as shown above.

III. N = 2 REALIZATIONS

Starting directly from the noisy Gross-Pitaevksii equation (S1), one can identify additional realizations. Indeed,
as its equilibrium counterpart, the N = 1 version is known to give a Landau-type and widely applicable description
of Bose-Einstein condensate with U(1) symmetry in driven open dissipative systems [S45]. In these systems, the
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drive pumps excitations, while the coupling with the environment opens the possibility for losses. In a semiclassical
description, this two effects show up as noise and dissipation, the latter being associated with the imaginary part
of the couplings. Since the number of excitation is not conserved, the dynamics is then given by a Gross-Pitaevksii
equation of the form (S1) with additive noise. When pumping exceeds loss, a bosonic mode condenses at a finite
energy ω0, leading to a condensate that spontaneously breaks time-translation invariance, ⟨Ψ⟩ ∝ e−iω0t.
As far as the universal behavior is concerned, the correct effective field theory can thereby be identified by analyzing

the symmetries of the system, and the construction is therefore robust. We thus generically expect condensation
mechanisms in driven dissipative bosons with an O(N) × U(1) ≃ O(N) × SO(2) symmetry to be described by the
new universality class discussed above.

A general scenario to get the noisy Gross-Pitaevskii equation (S1) with an O(N = 2)×SO(2) symmetry is provided
by driving two complex bosonic degrees of freedom ψ± connected by an exchange symmetry ψ+ ↔ ψ−, as we now
discuss in details in the light of two cases.

1. Driven open exciton-polariton systems

Exciton-polaritons are quasi-particles arising from light-matter interactions in a quantum-well placed inside a cavity.
Using a laser field, the exciton-polaritons can be pumped into the system. They are also subject to loss processes such
as photon leakage outside the cavity. They have a polarization degree of freedom [S56] that gives a two component
complex bosonic field: ψ = (ψ+, ψ−). Depending on the experimental settings, there are situations where one
only consider one of the polarization, and some cases where the two polarizations are used, see e.g., [S68] where a
ferromagnetic transition is induced in polarization space. The former case corresponds to N = 1 and has a U(1)
symmetry. The incoherent pumping and losses can be taken into account using a description in terms of a Lindblad
equation [S45, S56]. This equation can then be recast as a path integral using the Keldysh formalism. The U(1) case
is discussed in details in [S45]. At large scale, the description becomes effectively semiclassical, and one recovers (S1)
with N = 1. This approach can be directly generalized in the presence of the polarization degree of freedom. In this
case, the generic interacting Hamiltonian takes the form, for a contact interaction [S56],

Hint =

∫
ddx

∑
σ,σ′

ψ∗
σ(x)ψσ(x)Vσ,σ′ψ∗

σ′(x)ψσ′(x), V =

(
Vt Vs
Vs Vt

)
, (S65)

where Vs and Vt respectively describe scattering in the singlet and triplet polarization channel, and are generically
different [S56]. The procedure discussed above leads to an action of the form

S =

∫
x,t

∑
σ

ψ̃∗
σ(i∂t −∇2 + γc + iγd)ψσ + c.c− 2Dψ̃σψ̃

∗
σ +

∑
σ,σ′

ψ∗
σψσVσ,σ′ψ∗

σ′ψσ′ , (S66)

where all parameters (but D) now have an imaginary part arising from the drive and the dissipation, which respect
the symmetry of the Hamiltonian. The single particle loss γl and pumping γp are related to the gap γd = γl− γp, and
noise level D = γl + γp [S45]. The transition is therefore reached when pumping exceed losses, i.e., when γd < 0.

Let us now analyze the symmetry class of this model. For Vt ̸= Vs, there are two U(1) symmetries, U(1)±, and a
Z2 symmetry:

U(1)+ : ψ+ → exp(iθ+)ψ+, U(1)− : ψ− → exp(iθ−)ψ−, Z2 :

{
ψ+ → ψ−
ψ− → ψ+

, θ± ∈]− π, π]. (S67)

One can alternatively write the U(1) symmetries as

U(1)s : ψ± → exp(iθs)ψ±, U(1)a : ψ± → exp(±iθa)ψ±, Z2 :

{
ψ+ → ψ−
ψ− → ψ+

, θ± ∈]− π, π]. (S68)

We can now use the fact that U(1)s ≃ SO(2) and U(1)a⋊Z2 ≃ O(2). The semi-direct product, ⋊, reflects that the
Z2 and U(1)a transformations do not commute (while they commute with U(1)s), exactly as rotations and reflections
in O(2). This additional O(2) symmetry arises from the polarization degree of freedom. The model therefore has
O(2)× SO(2) symmetry. The driven Bose-Einstein condensation of polarized exciton polariton must therefore be in
the universality class found in the main text for N = 2. To make this fully explicit, we now show that Eq. (S66) can
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be mapped to Eq. (S4). Guided by equation (S68), we introduce symmetric and antisymmetric combinations of the
fields [S69],

ψ+ → 1√
2
(ψ+ + iψ−), ψ− → 1√

2
(ψ− − iψ+), (S69)

and the same relation for response fields. This directly transforms (S67) into (S4) with g = Vs, and κ = (Vt−Vs)/2 (or
equivalently the Hamiltonian (S65) into (S2)). These systems therefore realize our symmetry class for N = 2 without
any fine-tuning. Following this construction, driven-dissipative bosonic condensates with spins are good candidates to
obtain O(N) × SO(2) symmetric complex Gross-Pitaevksii equations, much like spin one equilibrium bosons realize
the O(3)×O(2) case, see e.g., [S74–S76].

2. Magnon condensation in YIG

Yttrium iron garnet (YIG) is a ferromagnetic insulator with an exceptional long magnon lifetime. In µm thick
YIG films pumped by microwaves, a variant of the driven Bose-Einstein condensation of magnons has been observed
[S57] at room temperature. Its mechanism is closely related to the one describing exciton-polariton systems, and
has been described by complex Gross-Pitaevskii equations [S57, S77]. Due to the interplay of spin-orbit interactions
and an in-plane magnetic field, the magnons in the system obtain a minimum in the band-structure at momenta
±k0 [S77]. The two minima are equivalent by inversion symmetry. When microwaves pump the system, the magnon
density is increased, leading to a condensation at the momenta ±k0. The magnons can be represented via bosonic
excitations [S77], thus two complex fields ψ = (ψ+, ψ−) describe the system.

Both momentum (and energy) conservation [S77] and the rotating wave approximation restrict the possible inter-
action processes of the magnons in the infrared limit. Thus, the only allowed local interactions have the form∑

σ,σ′=±

∫
Vσ σ′ψ†

σψσψ
†
σ′ψσ′ (S70)

with V++ = V−− and V+− = V−+ by inversion symmetry, which corresponds to the Hamiltonian (S65). Because of
the drive and decays of excited magnons, noise and dissipation are again generated. This leads then exactly to the
field theory of Eq. (S66). Therefore, this magnon condensation provides a realization of our effective field theory.

Experiments of Nowik-Boltky et al. [S58] show that the ordered state is inhomogeneous in space and therefore
obtained from a superposition of the ψ+ and ψ− condensate. We can use the mapping of Eq. (S68) to show that
this state maps to the Van der Pol phase. Due to the finite gap ω0 and wavevector k0, the condensate ⟨ψ⟩ oscillates
in space and time, thus spontaneously breaking time-translational and space-translational invariances. These two
symmetries have a SO(2) ≃ U(1) structure in the presence of a finite scale, as discussed in the main text. This
rationalizes the presence of the two U(1) symmetries in the effective picture developed here.

3. Experimental signatures

Besides the direct quantitative comparison of critical exponents, two of our qualitative predictions are best suited
to be compared to experiments. First, for the Van der Pol phase we predict a first-order transition, which can be
detected by searching for hysteresis. Here, one can compare the behavior of the system when the pumping power
is increased and reduced, respectively. Second, the most significant qualitative prediction for the phase transition
into the rotating phase is a diverging effective temperature, see Eq. (S34). Experimentally, the effective temperature
can be measured by comparing energy-gain and energy-loss of a system. In the language of Raman scattering, these
processes are called Stokes and anti-Stokes lines. In equilibrium, their ratio is determined by detailed balance and
given by e−ℏω/kBT , where ω is the frequency which is probed. Out-of-equilibrium, one can use this relation as a way
to define an effective temperature. Choosing for ω the rotation frequency of the rotating phase (or, equivalently, the
energy of the condensing bosons), allows one to measure the effective temperature discussed in Eq. (S34), which is
predicted to diverge at criticality.
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