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Abstract

We consider the design of functional estimators, i.e., approaches to compute an estimate of a nonlinear function of the state of
a general nonlinear dynamical system subject to process noise based on noisy output measurements. To this end, we introduce
a novel functional detectability notion in the form of incremental input/output-to-output stability (δ-IOOS). We show that δ-
IOOS is a necessary condition for the existence of a functional estimator satisfying an input-to-output type stability property.
Additionally, we prove that a system is functional detectable if and only if it admits a corresponding δ-IOOS Lyapunov function.
Furthermore, δ-IOOS is shown to be a sufficient condition for the design of a stable functional estimator by introducing the
design of a full information estimation (FIE) approach for functional estimation. Together, we present a unified framework
to study functional estimation with a detectability condition, which is necessary and sufficient for the existence of a stable
functional estimator, and a corresponding functional estimator design. The practical need for and applicability of the proposed
functional estimator design is illustrated with a numerical example of a power system.

Key words: Functional estimation, nonlinear observer and filter design, full information estimation, incremental system
properties, robust estimation

1 Introduction

In many practical applications, information about a dy-
namical system can only be inferred through noisy out-
put measurements. State estimation is a common frame-
work to estimate the information (state) of a dynamical
system based on such noisy output measurements, see,
e.g., [16]. In recent years, necessary and sufficient condi-
tions for the design of a robustly stable state estimator
have been derived in the form of a suitable detectabil-
ity condition [2,4]. However, in many applications, the
full state of a nonlinear system is not detectable, and
hence no stable state estimator exists. Instead, often
only a part of the system state may be detectable. Such
problems can be approached using functional estima-
tion, where instead of an estimate of the full state only
an estimate of a (typically lower dimensional) function
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of the system state is obtained, employing a so-called
functional estimator. Applications of functional estima-
tion include, e.g., fault detection [10], average estima-
tors [20], partial state observers [28], and state-norm-
estimators [6,18], see Remark 1 below for more details.
In this paper, we study nonlinear functional estimation
as a general framework to address estimation problems
even if the full system state is not detectable.

1.1 Related Work

Functional estimators were introduced in [16, Sec. IV]
for linear systems to estimate a linear functional of the
state with a minimal order observer to reduce the com-
putational requirements compared to a full state ob-
server. This concept was extended to estimate a vector-
valued function of the systems state (see, e.g., [11,29]);
initially termed multi-functional estimators, but later
also referred to as functional estimators. In [7,8], neces-
sary and sufficient conditions for the design of a linear
functional estimator to compute an estimate of a linear
function of the state of a linear system with minimal or-
der, i.e., the same order as the dimension of the func-
tion to be estimated, were introduced. To consider the
case where a minimal order estimator does not exist, the
concept of functional observability and detectabilty for
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linear systems was introduced in [12], compare also [9]
and references therein. Thereby, functional detectabil-
ity is a direct generalization of the classical detectabil-
ity of the state of a linear system [13], i.e., all modes
are either asymptotically stable, observable, or orthog-
onal to the linear function to be estimated. Functional
observability notions for nonlinear systems were intro-
duced in [1,17]. In [12], a design of a reduced-order func-
tional observer for linear systems was introduced assum-
ing functional detectability, while in [9], general nec-
essary and sufficient conditions for the existence of a
reduced-order linear functional estimator for linear sys-
tems were presented. Applications of functional estima-
tion to special classes of nonlinear systems have been in-
vestigated in [28,30,31]. Overall, the design of functional
estimators for general nonlinear and time-varying sys-
tems subject to process and measurement noise is still
an open question. In particular, necessary and sufficient
conditions for the existence of such a general nonlinear
functional estimator have not been provided to date.

1.2 Contribution

In this paper, we provide a general analysis and de-
sign framework for nonlinear functional estimation. In
particular, we study general nonlinear time-varying sys-
tems subject to process and measurement noise with the
objective to estimate a nonlinear function of the sys-
tem state from output measurements (Section 2). On
a technical level, the derived theory extends recent de-
velopments from [2,4,14,23], where necessary and suf-
ficient conditions for the existence of a robustly stable
state estimator are developed. These works character-
ized detectability of the system state using an incremen-
tal input/output-to-state-stability (δ-IOSS) Lyapunov
function and designed a corresponding state estimator
using full information estimation (FIE). The analysis of
functional estimation poses additional challenges since
the resulting Lyapunov function is in general only posi-
tive semi-definite, and thus lacks (exponential) contrac-
tion.

In Section 3, we introduce incremental input/output-to-
output stability (δ-IOOS) as a notion of functional de-
tectability (Definition 4) and show that it is necessary
and sufficient for the existence of an incrementally input-
to-output stable (δ-IOS) functional estimator (Proposi-
tion 5). Additionally, we show that a system is δ-IOOS if
and only if a corresponding δ-IOOS Lyapunov function
exists (Proposition 7). Furthermore, we present an FIE
design for functional estimation (Section 4). Thereby,
the functional estimate at each time step is obtained as
the solution to a nonlinear optimization problem fitting
a sequence of estimates to all currently available output
measurements. Assuming the system is functional de-
tectable, the considered FIE formulation (Section 4.1) is
proven to be δ-IOS (Theorem 9). In combination, Corol-
lary 10 yields the key result of this paper: functional de-

tectability is necessary and sufficient for the existence of
a stable functional estimator. Given a stricter exponen-
tial detectability condition, we provide a simpler and
more intuitive FIE design using a quadratic objective
function (Section 4.3). In Section 5, we compare our re-
sult with existing results in the domain of functional es-
timation, state-norm estimation, and state estimation.
In particular, we show that the existing necessary and
sufficient conditions for linear functional estimation pre-
sented in [9] imply the existence of a simple quadratic
δ-IOOS Lyapunov function (Section 5.1). Finally, we
demonstrate the practical applicability of the presented
functional estimation design for an academic example,
where we estimate the total power load in a power sys-
tem which is not detectable (Section 6).

1.3 Notation

Let the non-negative real numbers be denoted by R≥0,
the set of integers by I, the set of all integers greater
than or equal to a for some a ∈ R by I≥a, and the set
of integers in the interval [a, b] for some a, b ∈ R with
a ≤ b by I[a,b]. Let ∥x∥ denote the Euclidean norm of
the vector x ∈ Rn. The quadratic norm with respect
to a positive definite matrix Q = Q⊤ is denoted by
∥x∥2Q = x⊤Qx, and the minimal and maximal eigenval-
ues of Q are denoted by λmin(Q) and λmax(Q), respec-
tively. The identity matrix is denoted by In ∈ Rn×n. A
function α : R≥0 → R≥0 is of class K if it is continu-
ous, strictly increasing, and satisfies α(0) = 0. If α is
additionally unbounded, it is of class K∞. We denote
the class of functions θ : I≥0 → R≥0 that are continu-
ous, non-increasing, and satisfy limt→∞ θ(t) = 0 by L.
By KL, we denote the functions β : R≥0 × I≥0 → R≥0

with β(·, t) ∈ K and β(r, ·) ∈ L for any fixed t ∈ I≥0,
r ∈ R≥0. The i-th element of a vector x ∈ Rn is denoted
as [x]i for i ∈ I[1,n].

2 Problem Setup

We consider a nonlinear time-varying discrete-time sys-
tem

xt+1 = f(xt, wt, t), (1a)
yt = h(xt, wt, t), (1b)
zt = ϕ(xt), (1c)

where t ∈ I≥0 is the discrete time step, xt ∈ Rnx is
the system state, wt ∈ Rnw the process and measure-
ment noise, yt ∈ Y = Rny a measured output, and
zt ∈ Z = Rnz a virtual output that we cannot measure,
but would like to estimate. The choice of time-varying
dynamics (1a) and measurements (1b) also allows us to
cover the important case of non-autonomous systems
driven by a control input. Note that wt appears in the
dynamics (1a) and measurement model (1b) and hence
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the setting includes separated process disturbance and
measurement noise as a special case.

Noisy measurements yt can be obtained from sensors,
while the virtual output zt can not be measured. Given
some estimate x̄t0 of the initial state xt0 of system (1) at
the initial time step t0 ∈ I≥0, the objective is to obtain
an estimate ẑt of the virtual output zt at each time step
t ∈ I≥t0 . Since the virtual output zt is a function of the
system state xt, this objective can be achieved by the use
of a functional estimator (see Section 3.1). Functional
estimation has a multitude of applications depending on
the choice of the function ϕ(xt) in (1c). Some examples
are highlighted in the following remark.

Remark 1 (Applications of functional estimation)
• Partial state estimation: In case the full system

state is not detectable, a functional estimator can be
employed to estimate a part of the state by choosing
ϕ(xt) = Lxt, where L is a linear mapping to a subspace
of the state. In [28], such a partial state estimation
approach for a class of nonlinear systems is introduced.
In [20], partial state estimation is applied to estimate
the average state within clusters in a networked system.
In Section 6, we apply our presented FIE approach for
partial state estimation in a power system.

• Combined state and parameter estimation: Of-
ten, the uncertain state xt can be decomposed as xt =
[s⊤t , θ

⊤]⊤, where θ is a constant unknown parameter.
Then, the design of a robustly stable state estimator
requires both, detectability of the partial state st and a
persistency of excitation condition [26]. In the absence
of persistency of excitation, it might still be possible to
employ a functional estimator with ϕ(xt) = st to get a
reliable estimate of the partial state st, cf., e.g., [19].

• Output-feedback: In case an appropriate state feed-
back ut = κ(xt) is available, but the system state xt is
not detectable from the available output measurements,
it might still be possible to apply a functional estima-
tor to directly estimate the control input to apply to
the sytem by choosing ϕ(xt) = κ(xt). This problem is
studied in [16] for a linear feedback ϕ(xt) = Kxt.

• Fault detection: Frequently, faults in a system are
detected by analyzing observer residuals, which can be
posed as a functional estimation problem with ϕ(xt) =
yt [10]. In particular, for linear time-invariant sys-
tems functional detectability is trivially satisfied in this
case [10, Lem. 3.1]. The general functional estimation
framework enables the application of fault detection
also based on virtual output signals ϕ(xt) which cannot
be measured directly, as, e.g., done in [27].

• State-norm estimation: Sometimes, it is sufficient
to obtain an estimate of the norm of the state to mon-
itor or control a system, which can be posed as esti-
mating ϕ(xt) = ∥xt∥, see, e.g., [6,18]. In Section 5.2,
we show that functional detectability (δ-IOOS) implies
the necessary and sufficient condition for the existence
of a classical state-norm estimator.

We consider the general case, where we might also have
system information in the form of constraints

xt ∈ X, wt ∈ W, ∀t ∈ I≥0, (2)

with X ⊆ Rnx and W ⊆ Rnw . Note that this is not
restrictive, since we can always choose X = Rnx and
W = Rnw in case no additional system knowledge is
available. Constraints of the form (2) can be used to in-
clude additional physical prior knowledge, such as, e.g.,
non-negativity of certain states or bounded noise, into
an estimator. In the following, we assume that the true
sequences of states and noises of system (1) always sat-
isfy the constraints (2).

We call any sequences x = {xt}tendt=t0 , w = {wt}tend−1
t=t0 ,

y = {yt}tend−1
t=t0 , and z = {zt}tendt=t0 satisfying (1)-(2) a

solution of system (1)-(2) starting at some time step
t0 ∈ I≥0 and ending at time step tend ∈ I≥t0 . The set of
such solutions is denoted by

{x,w,y, z} ∈ Σtend
t0 ⊆ XT+1 ×WT × YT × ZT+1, (3)

with length 1 T = tend − t0.

3 Functional Estimation and Detectability

In this section, we extend results from [2,3] to show that
functional detectability is necessary for the existence of
a stable functional estimator (Proposition 5) and that it
holds if and only if a corresponding Lyapunov function
exists (Proposition 7). In contrast to [2,3], we consider
positive semi-definite Lyapunov functions to generalize
state estimation to functional estimation.

3.1 Functional Estimator

A functional estimator computes an estimate of (1c) at
each time step t using available quantities, i.e., an esti-
mate of the initial state x̄t0 , and estimates of the process
and measurement noise {w̄j}t−1

j=t0
and output measure-

ments {ȳj}t−1
j=t0

obtained up to the current time step.

Definition 2 (Functional estimator) A functional
estimator is a sequence of functions Ψt : X × Wt−t0 ×
Yt−t0 × I≥0 → Rs to compute estimates of the virtual
output zt (1c) at each time step t ∈ I≥t0 as

ẑt = Ψt

(
x̄t0 , {w̄j}t−1

j=t0
, {ȳj}t−1

j=t0
, t0

)
, (4)

where w̄j and ȳj are estimates of the noise wj and mea-
surements yj at time step j, respectively.

1 Note that for tend = t0, i.e., T = 0, the solution consists
of one single element xt0 ∈ X and the corresponding virtual
output (1c).
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In a typical application, the noise estimates w̄t are cho-
sen to be zero and the output measurement ȳj equal to
the noisy output measurement yj according to (1b). The
more general definition provided here will be crucial to
provide a consistent stability definition, similar to [2].
In line with the nomenclature in related work (cf. Sec-
tion 1.1), we call this a functional estimator, even though
zt is in general vector-valued.

3.2 Input-to-Output Stability

For the functional estimator according to Definition 2,
we consider the following notion of stability.

Definition 3 (Input-to-output stability) The func-
tional estimator (4) is incrementally input-to-output sta-
ble (δ-IOS) with the noise wj and output measurements
yj as well as their estimates w̄j and ȳj as inputs and the
virtual outputs zt, ẑt as outputs if there exist β1, β2, β3 ∈
KL such that

∥zt − ẑt∥ ≤max

{
β1(∥xt0 − x̄t0∥, t− t0),

max
j∈I[t0,t−1]

β2(∥wj − w̄j∥, t− j − 1), (5)

max
j∈I[t0,t−1]

β3(∥yj − ȳj∥, t− j − 1)

}
,

for all t0 ∈ I≥0, t ∈ I≥t0 , {x,w,y, z} ∈ Σt
t0 , {w̄j}t−1

j=t0
∈

Wt−1, {ȳj}t−1
j=t0

∈ Yt−1, and ẑt according to (4). The
functional estimator (4) is exponentially incrementally
input-to-output stable if additionally β1(r, t) = C1λ

t
1r,

β2(r, t) = C2λ
t
2r, and β3(r, t) = C3λ

t
3r with λ1, λ2, λ3 ∈

[0, 1) and C1, C2, C3 > 0.

Definition 3 describes incremental input-to-output sta-
bility of a functional estimator according to Definition 2.
Thereby, the inputs are the estimated and actual noise
and the estimated and actual measured outputs, while
the outputs are the virtual output and the correspond-
ing functional estimate resulting from (4).

3.3 Functional Detectability

In the following, we present an appropriate definition of
functional detectability. Additionally, we show that the
presented notion of functional detectability is a neces-
sary condition for the existence of a stable functional
estimator according to Definition 3.

Definition 4 (Functional detectability) System (1)
is incrementally input/output-to-output-stable (δ-IOOS)

if there exist βx, βw, βy ∈ KL such that

∥zt − z̃t∥ ≤max

{
βx(∥xt0 − x̃t0∥, t− t0),

max
j∈I[t0,t−1]

βw(∥wj − w̃j∥, t− j − 1), (6)

max
j∈I[t0,t−1]

βy(∥yj − ỹj∥, t− j − 1)

}
,

for all t0 ∈ I≥0, t ∈ I≥t0 , and any sequences {x,w,y, z} ∈
Σt

t0 and {x̃, w̃, ỹ, z̃} ∈ Σt
t0 . The system (1) is ex-

ponentially δ-IOOS if additionally βx(r, t) = Cxλ
t
xr,

βw(r, t) = Cwλ
t
wr, and βy(r, t) = Cyλ

t
yr, with

λx, λw, λy ∈ [0, 1) and Cx, Cw, Cy > 0.

Equation (6) implies that if two sequences starting at
time step t0 are subject to the same noise w = w̃ and
result in the same output measurements y = ỹ, then
asymptotically their virtual outputs z, z̃ will converge
to the same value. This property is thus called functional
detectability.

The following proposition establishes that δ-IOOS is a
necessary condition for the existence of a functional es-
timator satisfying Definition 3.

Proposition 5 A system (1) admits an incrementally
input-to-output stable functional estimator Ψt as stated
in Definition 3 only if it is δ-IOOS according to Defini-
tion 4.

The proof can be found in Appendix A.1. It makes use of
two arbitrary sequences satisfying (3) and employs the
definition of δ-IOS (Definition 3) to show that (6) holds
and, consequently, δ-IOOS (Definition 4) is necessary.

3.4 δ-IOOS Lyapunov Function

In the following, we introduce a Lyapunov-type charac-
terization of the δ-IOOS property (Definition 4).

Definition 6 (δ-IOOS Lyapunov function) A func-
tion Wδ : Rnx × Rnx × I≥0 → R≥0 is an (exponential-
decrease) δ-IOOS Lyapunov function if there exist
α1, α2 ∈ K∞, σw, σy ∈ K, and η ∈ [0, 1) such that

α1(∥z − z̃∥) ≤ Wδ(x, x̃, t) ≤ α2(∥x− x̃∥), (7a)
Wδ (f(x,w, t), f(x̃, w̃, t), t+ 1) ≤ ηWδ(x, x̃, t) (7b)

+ σw(∥w − w̃∥) + σy(∥y − ỹ∥),

for all t ∈ I≥0, {x,w, y, z} ∈ X × W × Y × Z, and
{x̃, w̃, ỹ, z̃} ∈ X × W × Y × Z, where y = h(x,w, t),
ỹ = h(x̃, w̃, t), z = ϕ(x), and z̃ = ϕ(x̃). A function Wδ is
an exponential δ-IOOS Lyapunov function if additionally
α1, α2, σw, σy are quadratic functions.
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Note that using an exponential-decrease Lyapunov func-
tion is without loss of generality, since the existence
of a standard Lyapunov function implies the existence
of an exponential-decrease Lyapunov function [2]. The
Lyapunov function Wδ is time-varying due to the time-
varying setup (1). In the following, we show that the ex-
istence of a δ-IOOS Lyapunov function (Definition 6) is
a necessary and sufficient condition for system (1) to be
δ-IOOS (Definition 4).

Proposition 7 A system is δ-IOOS according to Def-
inition 4 if and only if it admits a δ-IOOS Lyapunov
function according to Definition 6.

The proof can be found in Appendix A.2. To prove the
sufficient direction, (7b) is first applied t−t0 times to two
arbitrary sequences satisfying (3), and then the upper
and lower bounds in (7a) are applied to obtain a bound
of the form (6). For the necessary direction, we define
a candidate Wδ Lyapunov function and show that (7)
holds for all x, x̃ ∈ X and t ∈ I≥0 if a system is δ-IOOS
according to Definition 4. Note that it is also possible
to show the existence of a continuous δ-IOOS Lyapunov
function by assuming continuity of the system dynam-
ics (1) and modifying the candidate Lyapunov function
in the proof, similar to [2, Thm. 3.5]. The following corol-
lary shows that the necessary and sufficient condition
also apply to the exponential special case.

Corollary 8 A system is exponentially δ-IOOS accord-
ing to Definition 4 if and only if it admits an exponential
δ-IOOS Lyapunov function according to Definition 6.

In summary, this section showed that functional de-
tectability according to Definition 4 is a necessary con-
dition for the existence of a stable functional estima-
tor (Proposition 5). Furthermore, a system admits a δ-
IOOS Lyapunov function if and only if it is functional
detectable according to Definition 4. In the next section,
we show that the presented detectability property is also
a sufficient condition for the existence of a δ-IOS func-
tional estimator.

4 Full Information Estimation

In this section, we present an FIE formulation for
systems admitting a δ-IOOS Lyapunov function (Sec-
tion 4.1) and prove that it is a δ-IOS functional estimator
according to Definition 3 (Section 4.2). This implies that
functional detectability is not only necessary, but also
sufficient for the existence of a δ-IOS functional estima-
tor (Corollary 10). In Section 4.3, we additionally show
how the corresponding FIE design simplifies in case of
exponential δ-IOOS by using a quadratic objective.

4.1 FIE Formulation

The presented FIE approach considers all available esti-
mates of past output measurements {ȳj}t−1

j=t0
and noise

{w̄j}t−1
j=t0

, and the initial estimate x̄t0 to obtain the
current functional estimate ẑt at time step t. Thereby,
the FIE optimizes over an initial estimate x̂t0|t and a
sequence of noise estimates ŵ·|t = {ŵj|t}t−1

j=t0
, which

uniquely define a corresponding sequence of states
x̂·|t = {x̂j|t}t−1

j=t0
and outputs ŷ·|t = {ŷj|t}t−1

j=t0
. The FIE

objective is given by

VFIE(x̂t0|t, ŵ·|t,ŷ·|t, t) := ηtα2

(
2∥x̂t0|t − x̄t0∥

)
+

t−t0∑
j=1

ηj−1σw(2∥ŵt−j|t − w̄t−j∥) (8)

+

t−t0∑
j=1

ηj−1σy(2∥ŷt−j|t − ȳt−j∥),

where η, α2, σw, σy are based on the δ-IOOS Lyapunov
function according to Definition 6. In Section 4.3, we
discuss how this requirement simplifies in case of an ex-
ponential detectability condition. The time-discounting
in the FIE objective (8) decreases the influence of old
measurements on the current estimate, and it allows us
to relate the FIE objective to the functional detectabil-
ity condition (6). A similar time discounting in the ob-
jective for FIE has been used, e.g., in [14,23] for state
estimation, compare [23, Sec. III.D] for a discussion of
the benefits of such a time discounting. The estimate at
each time step t ∈ I≥t0 is then obtained by solving the
following nonlinear program

inf
x̂t0|t,ŵ·|t

VFIE(x̂t0|t, ŵ·|t, ŷ·|t, t) (9a)

s.t. x̂j+1|t = f(x̂j|t, ŵj|t, j), j ∈ I[t0,t−1], (9b)
ŷj|t = h(x̂j|t, ŵj|t, j), j ∈ I[t0,t−1], (9c)
ŵj|t ∈ W, j ∈ I[t0,t−1], (9d)
x̂j|t ∈ X, j ∈ I[t0,t]. (9e)

A (non-unique) minimizer 2 to (9) is denoted as x̂∗
t0|t

and ŵ∗
·|t, with corresponding estimated state and output

sequences denoted as x̂∗
·|t and ŷ∗·|t, respectively. Finally,

the functional estimate at time step t is denoted as

ẑt = ϕ(x̂∗
t|t). (10)

Using an optimization-based FIE formulation (9) allows
us to use the full nonlinear model in (9b)-(9c), and to

2 We assume that a minimizer to (9) always exists. Existence
of such a minimizer can, e.g., be ensured if X and W are
compact sets and f and h are continuous functions (see,
e.g., [22, Prop. A.7]).
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consider additional information in the form (2) by en-
forcing (9d)-(9e). It follows that any minimizer to (9)
is a solution to (1)-(2) and the true sequence of system
states (with corresponding sequences of noise and mea-
surements) is a feasible solution to (9). In the following,
we investigate the theoretical properties of the presented
FIE (9) and the resulting functional estimate (10).

4.2 Theoretical Analysis

This section generalizes results from [14,23] to the case of
functional estimation with semi-definite Lyapunov func-
tions. The following theorem summarizes the stability
properties of the FIE approach (9).

Theorem 9 Let system (1) admit a δ-IOOS Lyapunov
function according to Definition 6. Then, the FIE (9) is
δ-IOS according to Definition 3.

The proof can be found in Appendix A.3. It relies on the
fact that the optimal objective (9a) is upper-bounded by
the objective (8) with the true, and hence feasible, se-
quences. Consequently, a relationship between the FIE
objective (8) and the δ-IOOS Lyapunov function accord-
ing to Definition 6 can be established, which allows us to
obtain a bound of the form (5). The following corollary
demonstrates that δ-IOOS is a necessary and sufficient
condition for the existence of a δ-IOS functional estima-
tor.

Corollary 10 A system (1) admits a δ-IOS functional
estimator Ψt as stated in Definition 3, if and only if it is
δ-IOOS according to Definition 4.

PROOF. Sufficiency: As a result of Proposition 7, the
system admits a δ-IOOS Lyapunov function according
to Definition 6, if it is δ-IOOS according to Definition 4.
Theorem 9 showed that the FIE (9) is a δ-IOS functional
estimator according to Definition 3, if η, α2, σw, σy are
based on a δ-IOOS Lyapunov function. In combination,
this shows that δ-IOOS is sufficient for the existence of
a δ-IOS functional estimator.
Necessity: It follows directly from Proposition 5 that δ-
IOOS is necessary for the existence of a δ-IOS functional
estimator, which concludes the proof. 2

We introduced an FIE design based on δ-IOOS, which
results in a δ-IOS functional estimator (Theorem 9) and
shows that δ-IOOS is a necessary and sufficient condi-
tion for the existence of a δ-IOS functional estimator
(Corollary 10). However, in general it is difficult to ex-
plicitly derive a corresponding δ-IOOS Lyapunov func-
tion Wδ to obtain η, α2, σw, and σy for the design of
the FIE objective (8). In the following, we thus present
a simplified design for the special case of exponentially
functional detectable systems according to Definition 4.

4.3 FIE with quadratic objective

For the case of exponentially functional detectable sys-
tems (Definition 4), we use an FIE formulation with gen-
eral quadratic objective and show that the resulting FIE
is exponentially δ-IOS. We consider the following FIE
objective

VFIE(x̂t0|t, ŵ·|t, ŷ·|t, t) := 2ηt∥x̂t0|t − x̄t0∥2P (11)

+ 2

t−t0∑
j=1

ηj−1
(
∥ŵt−j|t − w̄t−j∥2Q + ∥ŷt−j|t − ȳt−j∥2R

)
,

with η ∈ [0, 1), and arbitrary matrices P, Q, R ≻ 0.
The FIE is then applied in the same manner as the gen-
eral formulation introduced in Section 4.1. Specifically,
the FIE problem (9) with objective (11) is solved at each
time step t ∈ I≥t0 using all available noise estimates w̄
and measurement estimates ȳ, and the resulting func-
tional estimate is obtained using (10). The following
corollary establishes that we can use any positive defi-
nite weighting matrices in (11), provided that the decay
factor η < 1 is chosen sufficiently close to 1.

Corollary 11 Let system (1) be exponentially δ-IOOS
according to Definition 4. Suppose further that 1 > η ≥
max{λx, λw, λy} and P, Q, R ≻ 0 are arbitrary positive
definite matrices. Then, the FIE (9) with objective (11)
is exponentially δ-IOS according to Definition 3.

The proof can be found in Appendix A.4. This result
provides great flexibility requiring only minimal system
knowledge (η sufficiently close to 1) when designing the
FIE objective (11) for systems (1) that are exponentially
δ-IOOS according to Definition 4. Provided the decay
factor η is close enough to 1 (depending on functional
detectability of the system), any choice of positive def-
inite weighting matrices results in a δ-IOS FIE. Hence,
the weighting matrices can be freely chosen, e.g., based
on the inverse covariance matrices. In particular, in case
the discount factor η approaches one and neglecting the
constraints (2), the objective (11) can be interpreted as
a maximum a posteriori estimate under Gaussian distri-
butions, compare [21].

5 Discussion

In this section, we provide a discussion of the relation of
our results to existing work in the context of functional
estimation (Section 5.1), state-norm estimation (Sec-
tion 5.2), and standard state estimation (Section 5.3).

5.1 Relation to Existing Functional Estimation Results

In the following, we contrast the presented conditions to
existing results for functional estimation. Most existing
work on functional estimation considers linear systems,
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and we show that under the existing necessary and suffi-
cient conditions for such linear functional estimators, we
can construct a quadratic δ-IOOS Lyapunov function.

We consider the special case of linear time-invariant sys-
tems

xt+1 = Axt +Bwt, yt = Cxt +Dwt, zt = Lxt, (12)

which is similarly considered in [7,12,8,9] 3 . Therein, a
reduced-order functional estimator of the form 4

ξt+1 = Nξt + Jyt, ẑt = Pξξt, ξ0 ∈ Rnξ , (13)

with reduced order nξ ∈ I[nz,nx] is designed. In [9], the
following necessary and sufficient condition for the ex-
istence of an asymptotically stable functional estimator
of the form (13) for system (12) (assuming wt = 0 for
all t ∈ I≥0) was introduced: There exist matrices N ∈
Rnξ×nξ , J ∈ Rny×nξ , Pξ ∈ Rnξ×nz , and T ∈ Rnξ×nx

with N Schur such that

NT − TA+ JC = 0, (14a)
PξT = L. (14b)

In case Conditions (14) is satisfied, one can show that
system (12) admits a quadratic δ-IOOS Lyapunov func-
tion according to Definition 6 of the form

Wδ(x, x̃) = ∥T (x− x̃)∥2P , (15)

with P ≻ 0, P ∈ Rnξ×nξ , such that

N⊤PN ⪯ ρP (16)

and ρ < 1, see Appendix B for a detailed proof. Note
that the estimator (13) is of dimension nξ, which is in
general larger than the dimension of zt. From Proposi-
tion 7, it follows that the linear system (12) is δ-IOOS
according to Definition 4. Consequently, classical func-
tional detectability [12,9] is recovered as a special case
of δ-IOOS. A similar relation can be established for the
results presented in [28], where necessary and sufficient
conditions for the existence of a reduced order nonlinear
functional estimator for partial state estimation were in-
vestigated for the special case where the functions ϕ and

3 In [7,12,8,9], continuous-time systems are considered, but
the results naturally extend to discrete-time systems subject
to process and measurement noise. We conjecture that the
proof of the necessary and sufficient conditions presented
in [9] generalizes to the considered discrete-time setting.
4 In related work, the functional estimator (13) often in-
cludes the current output measurement yt, i.e., ẑt = Pξξt +
J1yt. Consequently, Condition (14b) reads PξT + J1C = L.
We choose J1 = 0 to ensure the functional estimator is
strictly causal (cf. Definition 2).

h in (1b)-(1c) are time-invariant and linear in xt, i.e.,
h(xt, wt, t) = Chxt and ϕ(xt) = Cϕxt.

In contrast, this paper presents necessary and sufficient
conditions for the existence of a more general class of
functional estimators applicable to a more general class
of nonlinear systems of the form (1). In turn, the pro-
vided FIE design for functional estimation is more com-
plex compared to reduced order observers as considered
in [7,12,8,9]. The design of a reduced order observers for
general nonlinear systems remains an interesting ques-
tion for future research.

5.2 Relation to State-Norm Estimation

A special case of functional estimation is state-norm es-
timation where ϕ(xt) = ∥xt∥, compare, [6,18]. A system
admits a state-norm estimator according to [6, Def. 3.11]
if it is input/output-to-state-stable (IOSS) [6, Def. 3.4].
In this case, a simple scalar state-norm estimator is given
by

ẑt+1 = ϵẑt + ρ1(∥ȳt∥) + ρ1(∥w̄t∥), (17)

where ϵ ∈ [0, 1), and ρ1, ρ2 ∈ K. It follows directly 5

from Definition 4, that a system is IOSS if it is δ-IOOS
with ϕ(xt) = ∥xt∥, allowing for the design of a state-
norm estimator of the form (17) (as a consequence of [6,
Thm. 3.13]). However, the definition of a state-norm es-
timator [6, Def. 3.11] is significantly weaker compared
to the stability properties considered in Definition 3. In
particular, the bounds in [6, Def. 3.11] do not ensure that
the estimate of the state-norm ẑt converges to the true
state-norm ∥xt∥ in the absence of noise. Therefore, IOSS
does in general not imply δ-IOOS with ϕ(xt) = ∥xt∥.

5.3 Special Case – State Estimation

In the special case with ϕ(xt) = xt, our theoretical anal-
ysis from Section 3 and 4 recovers important results from
classical state estimation, in particular [2, Prop. 2.6]
and [2, Thm. 3.2]. A general limitation of the FIE (9)
is the fact that the size of the optimization problem in-
creases over time. In the context of state estimation,
this limitation can be overcome by applying a moving
horizon estimation approach (see, e.g., [21,14,23]), where
only a finite horizon of past noise and output estimates
are considered to obtain a state estimate x̂t at each time
step t. However, depending on the choice of ϕ(xt), it
might still be possible to design an input-to-output sta-
ble functional estimator, even if it is not possible to de-
sign a robustly stable state estimator, see Section 6 for
a numerical example.

5 Assuming the origin is contained within X and W, and
w.l.o.g. that 0 = f(0, 0, t), 0 = h(0, 0, t) for all t ∈ I≥0.
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6 Numerical Example

In this section, we apply the FIE approach for functional
estimation as developed in Section 4 to estimate the to-
tal power load in a nonlinear power system example as
described in Section 6.1. For this example, we show that
the full system state is not detectable, while the total
power load is functional detectable, allowing us to de-
sign a δ-IOS functional estimator. The numerical exam-
ple was implemented in python using CasADi [5] and
the solver IPOPT [32]. The code 6 is available online.

6.1 Power System Model

We consider a nonlinear power system model adapted
from [33,15]. In particular, we consider a system with a
set of 4 buses N = {1, 2, 3, 4} and a set of 4 transmission
lines (i, j) ∈ E = {(1, 2), (2, 3), (3, 4), (4, 1)} connecting
the buses i and j. To monitor and control such a sys-
tem, it is important to have an estimate of the power
load within the system at each time step. While the me-
chanical power generated at each bus is set by the sys-
tem operator, and we thus assume to have measurements
thereof available, the power load is affected by external
factors and thus assumed not to be measured.

The nominal nonlinear system dynamics at each bus i ∈
N are described by

[θ̇]i = [ω]i, [Ṗ
L]i = 0, [ṖM ]i = 0, (18a)

[ω̇]i = − 1

Mi

(
Di[ω]i − [PM ]i + [PL]i + [∆P ]i

)
,

(18b)

[∆P ]i =
∑

k:(i,k)∈E

Pik −
∑

j:(j,i)∈E

Pji, (18c)

Pij =3
|Vi||Vj |
xij

sin (θi − θj) , ∀ (i, j) ∈ E , (18d)

where θ ∈ RN is the phase angle, ω ∈ RN the fre-
quency deviation from a nominal frequency, PL ∈ RN

the power load, PM ∈ RN the mechanical power, ∆P ∈
RN the power outflow, Pij the branch flow across each
line, nx = 4 · N = 16 the number of states, and x =

[θ⊤ ω⊤ PL⊤
PM⊤

]⊤ ∈ X = Rnx is the overall sys-
tem state. Additionally, Mi is the generator inertia, Di

the damping constant, and |Vi| the voltage magnitude
of each bus i ∈ N , and xij is the reactance of each line
(i, j) ∈ E . The derivation of the branch flow model (18d)
can be found in [33, App. VII.A] 7 . The numerical values
of the system parameters are chosen as in [15, Sec. VI.].
The system dynamics (18) are discretized using Euler

6 https://gitlab.ethz.ch/ics/nonlinear-functional-
estimation
7 This power flow model assumes zero line resistance and
constant voltage magnitudes.

forward with sampling time ∆t = 0.01, and the resulting
discrete-time model is subject to a uniformly distributed
additive process noise wx ∈ W = {wx ∈ Rnx |∥wx∥∞ ≤
5 · 10−3}. At each time step, we obtain noisy measure-
ments of the frequency ω and mechanical power PM , i.e.,

y =

[
ω

PM

]
+ wy ∈ Rny , ny = 2 ·N = 8, (19)

which are subject to uniformly distributed additive mea-
surement noise wy ∈ V = {wy ∈ Rny | ∥wy∥∞ ≤ 5 ·
10−2}. The overall process and measurement noise is de-
noted as w = [w⊤

x , w
⊤
y ]

⊤ ∈ Rnx+ny . The objective is to
estimate the total power load given by

z =
∑
i∈N

[PL]i. (20)

6.2 Functional Detectability

In this section, we establish that the state of system (18)
is not detectable from the available output measure-
ments (19), while the system is functional detectable
with the total load (20) as virtual output of interest.

To establish that the full system state is not detectable,
we consider the noise-free case, i.e., w = 0, and any
steady-state of system (18). Consequently, we have that
ω = 0 and PM = PL + ∆P . It follows that different
combinations of power loads PL and phase angles θ lead
to the same (measured) mechanical power PM . Since
both PL and θ are not asymptotically stable, it follows
that the full system state, and in particular the power
load [PL]i at each bus i ∈ N , is not detectable.

To establish functional detectability of the considered
example, note that

zt = Cy

[
yt−1

yt−2

]
+ Cw

[
wt−1

wt−2

]
, (21)

with appropriate choice of matrices Cy ∈ R1×2·ny and
Cw ∈ R1×2·(nx+ny), see Appendix C for a detailed deriva-
tion. Therefore, the system is functional observable [12],
and in the noise-free case (w = 0), the functional value
at time step t can be exactly reconstructed given the
past two measurements. It follows that the system is ex-
ponentially δ-IOOS with any decay factor η ∈ (0, 1).

6.3 Estimation Results

To estimate the total power load (20) we design an FIE
with quadratic objective (11) as outlined in Section 4.3.
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Fig. 1. Ground truth states at each bus and branch flow
across each line (solid lines) with corresponding measure-
ments (dots) and FIE estimates (dashed lines).
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Fig. 2. Functional value (solid green) and corresponding func-
tional estimate resulting from our FIE approach (dashed
blue) and from the simple linear estimator (21) (dashed red).

We chose the decay factor η = 0.9, and design the weight-
ing matrices based on the inverse covariance matrices of
process and measurements noise. The ground truth sys-
tem states (solid lines), and corresponding FIE state es-
timates (dashed lines) and measurements of ω and PM

(dots) can be found in Figure 1. In Figure 2 we show
the ground truth functional value and the functional es-
timate ẑFIE resulting from our FIE approach (blue). For
comparison, we also show the functional estimate ẑdb
resulting form a deadbeat estimator, i.e., using Equa-
tion (21) and neglecting the noise. It can be seen that
the FIE estimate quickly converges to a small neighbor-
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Fig. 3. Median computational time required to solve the FIE
problem depending on the time step for 10 different runs. The
shaded area shows the corresponding minimal and maximal
computational time.

hood around the true virtual output, while the deadbeat
estimate based on (21) is very noisy. When looking at
the state estimates resulting from the optimal FIE solu-
tion shown in Figure 1, we see that both the estimates of
the frequency deviation ω and the mechanical power PM

closely follow the ground truth states, while the phase
angle/branch flow θ/Pij , and especially the power load
PL, differ largely from the ground truth values. This can
be explained by the lack of detectability of the full sys-
tem state, compare our discussion in Section 6.2. In Fig-
ure 3, we additionally show the time 8 required to solve
the FIE problem depending on the time step, i.e., the
number of available measurements. The plot shows a lin-
ear relationship between computational time and num-
ber of measurements, with still a comparably small time
of below 80ms for t = 150. In summary, functional de-
tectability of the system and our FIE approach allow us
to obtain stable estimates of the desired virtual output
(here: total power load), while, with the given measure-
ments, it is not possible to obtain a stable overall state
estimate.

7 Conclusion

In many applications, the full state of a system is not
detectable, and thus no stable state estimator can be
designed. Such problems can be approached by employ-
ing a functional estimator to compute an estimate of
a (typically lower dimensional) function of the system
state. In this paper, we presented a general analysis and
design framework for nonlinear functional estimation in
the context of nonlinear time-varying systems subject to
process and measurement noise. We introduced a suit-
able characterization of nonlinear functional detectabil-
ity, and showed that it is a necessary and sufficient condi-
tion for the existence of an input-to-output stable func-
tional estimator. Thereby, the proposed functional esti-
mator takes the form of a full information estimator. We
discussed the relation of the derived theory to existing re-
sults from functional estimation, state-norm estimation,
and state estimation. We showed practical applicability

8 The time was taken on a laptop with 12-core Intel i7 pro-
cessor and 32 GB of memory.
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using the example of estimating the total power load of
a power network, where the state is not detectable. The
design of computationally efficient nonlinear functional
estimators for this general system class remains an in-
teresting topic for future research. First steps in this di-
rection are recently obtained in [19], by introducing a
moving horizon estimation approach for the special case
of state and parameter estimation.
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A Proofs of Sections 3 and 4

This appendix contains the proof of Proposition 5
(Appendix A.1), Proposition 7 and Corollary 8 (Ap-
pendix A.2), Theorem 9 (Appendix A.3), and Corol-
lary 11 (Appendix A.4).

A.1 Proof of Proposition 5

This proof extends the proof idea in [2, Prop. 2.6], where
the special case with ϕ(xt) = xt was considered. Con-
sider an arbitrary initial time t0 ∈ I≥0, time step t ∈
I≥t0 and two arbitrary sequences {x,w,y, z} ∈ Σt

t0 and
{x̃, w̃, ỹ, z̃} ∈ Σt

t0 . Applying the functional estimator (4)
with x̄t0 = x̃t0 , w̄j = w̃j , ȳj = ỹj , j ∈ I[t0,t−1], results in

ẑt = Ψt

(
x̃t0 , {w̃j}t−1

j=t0
, {ỹj}tj=t0 , t0

)
. (A.1)

Stability of the functional estimates (Definition 3) im-
plies that ẑt = z̃t, t ∈ I≥t0 . Hence, applying the stability
definition (5) to the two sequences z, ẑ, yields

∥zt − z̃t∥ ≤max{β1(∥xt0 − x̃t0∥, t0),
max

j∈I[t0,t−1]

β2(∥wj − w̃j∥, t− j − 1),

max
j∈I[t0,t−1]

β3(∥yj − ỹj∥, t− j − 1)},

which is equivalent to (6). Consequently, since the ini-
tial time step t0, the time step t, and both sequences
{x,w,y, z} and {x̃, w̃, ỹ, z̃} were arbitrary, the system
is δ-IOOS according to Definition 4.

2

A.2 Proof of Proposition 7 and Corollary 8

This proof extends the results in [2,3], where the special
case with ϕ(x) = x was considered. The proof is split in
two parts: In Part I, we show the sufficient direction fol-
lowing similar steps as in [3, Proposition 5]. In Part II,
we show the necessary direction following similar steps
as in [2, Theorem 3.2]. Corollary 8 follows directly by
considering exponential δ-IOOS.
Part I: For all initial times t0 ∈ I≥0 and time steps
t ∈ I≥t0 , consider two arbitrary sequences both satis-
fying the system dynamics (1) and the constraints (2),
i.e., {x,w,y, z} ∈ Σt

t0 and {x̃, w̃, ỹ, z̃} ∈ Σt
t0 . Starting

with the initial conditions xt0 and x̃t0 at time t0, and

applying (7b) t− t0 times, we obtain

Wδ(xt, x̃t, t) ≤ ηt−t0Wδ(xt0 , x̃t0 , t0)

+

t−1∑
j=t0

ηt−j−1 (σw(∥wj − w̃j∥) + σy(∥yj − ỹj∥))

(A.2)
(7a)
≤ ηt−t0α2(∥xt0 − x̃t0∥)

+

t−1∑
j=t0

ηt−j−1 (σw(∥wj − w̃j∥) + σy(∥yj − ỹj∥)) .

This sum-based bound also implies the following bound
involving maximization (cf., e.g., [23, Cor. 1]):

Wδ(xt,x̃t, t) ≤ max

{
3ηt−t0α2(∥xt0 − x̃t0∥),

max
j∈I[0,t−t0−1]

3

1−√
η

√
η
j
σw(∥wt−j−1 − w̃t−j−1∥),

max
j∈I[0,t−t0−1]

3

1−√
η

√
η
j
σy(∥yt−j−1 − ỹt−j−1∥)

}
.

Finally, applying the lower bound in (7a) and substitut-
ing i = t− j − 1 results in

∥zt − z̃t∥ ≤ max

{
α−1
1

(
3ηt−t0α2(∥xt0 − x̃t0∥)

)
,

max
i∈I[t0,t−1]

α−1
1

(
3

1−√
η

√
η
t−i−1

σw(∥wi − w̃i∥)
)
,

max
i∈I[t0,t−1]

α−1
1

(
3

1−√
η

√
η
t−i−1

σy(∥yi − ỹi∥)
)}

,

which corresponds to Equation (6).
Part II: Using [25, Prop. 7], there exist functions
α, αx, αw, αy ∈ K∞, such that for all k ∈ I≥0, s ≥ 0, we
have

α(βx(s, k)) ≤λkαx(s), (A.3)
α(βw(s, k)) ≤λkαw(s), (A.4)
α(βy(s, k)) ≤λkαy(s). (A.5)

with λ := e−1 < 1 and βx, βw, βy ∈ KL from Def-
inition 4. Applying α(·) to both sides of the δ-IOOS
Condition (6) and using the fact that α(max{a, b}) =
max{α(a), α(b)}, we have

α(∥zt − z̃t∥) ≤max

{
α (βx(∥xt0 − x̃t0∥, t− t0)) ,

max
j∈I[t0,t−1]

α (βw(∥wj − w̃j∥, t− j − 1)) ,

max
j∈I[t0,t−1]

α (βy(∥yj − ỹj∥, t− j − 1))

}
,

11



for all t0 ∈ I≥0, t ∈ I≥t0 , and any sequences {x,w,y, z} ∈
Σt

t0 and {x̃, w̃, ỹ, z̃} ∈ Σt
t0 . Additionally, using

max{a, b} ≤ a + b for a, b ≥ 0 and applying the
bounds (A.3)-(A.5), we have

α(∥zt − z̃t∥) ≤ λt−t0αx(∥xt0 − x̃t0∥) (A.6)

+

t−1∑
j=t0

λt−j−1 (αw(∥wj − w̃j∥) + αy(∥yj − ỹj∥)) .

We now define a candidate δ-IOOS Lyapunov function
for two arbitrary states x, x̃ ∈ Rnx . For (x, x̃) /∈ X × X
and any t ∈ I≥0, we define Wδ(x, x̃, t) = 0. For (x, x̃) ∈
X× X and any t ∈ I≥0, we define

Wδ(x, x̃, t)

:= sup
t′∈I≥t,{x,w,y,z}∈Σt′

t ,{x̃,w̃,ỹ,z̃}∈Σt′
t ,xt=x,x̃t=x̃

√
λ
−(t′−t)

α (∥zt′ − z̃t′∥) (A.7)

−
t′−1∑
j=t

λt′−j−1 (αw(∥wj − w̃j∥) + αy(∥yj − ỹj∥))

 .

In the following, we show that the candidate Wδ(x, x̃, t)
in (A.7) satisfies (7a) and (7b) for any (x, x̃) ∈ X×X and
t ∈ I≥0. Using the bound (A.6) in the candidate δ-IOOS
Lyapunov function (A.7) and for simplicity omitting the
arguments below the supremum operation, we obtain

Wδ(x, x̃, t) ≤ sup
√
λ
(t′−t)

αx (∥xt − x̃t∥) ,
=αx (∥x− x̃∥) ,

where we used the property that
√
λ
(t′−t) ≤ 1 for all t′ ∈

I≥t. This shows the upper bound in (7a) with α2 := αx.
Furthermore, we lower bound the supremum in (A.7)
using the feasible solution t′ = t, resulting in

Wδ(x, x̃, t) ≥ λ0α (∥zt − z̃t∥) = α (∥z − z̃∥) ,

which shows the lower bound in (7a) with α1 := α. Fi-
nally, to show the decrease condition (7b), consider an
arbitrary time step t ∈ I≥0 and arbitrary {x,w, y, z} ∈
X×W×Y×Z, {x̃, w̃, ỹ, z̃} ∈ X×W×Y×Z, where y =
h(x,w, t), ỹ = h(x̃, w̃, t), z = ϕ(x), and z̃ = ϕ(x̃), with
x+ = f(x,w, t) and x̃+ = f(x̃, w̃, t). In case (x+, x̃+) /∈
X × X, it follows by definition that Wδ(x

+, x̃+) = 0
and consequently (7b) is satisfied. In the following, we
show that the candidate Lyapunov function (A.7) also
satisfies (7b) for (x+, x̃+) ∈ X × X. We note that for
every ϵ > 0 there exist t∗ ∈ I≥t+1, {x∗,w∗,y∗, z∗} ∈
Σt∗

t+1, {x̃∗, w̃∗, ỹ∗, z̃∗} ∈ Σt∗

t+1 with x∗
t+1 = x+ and

x̃∗
t+1 = x̃+, such that

Wδ(x
+, x̃+, t+ 1)

(A.7)
≤ ϵ+

√
λ
−(t∗−t−1)

α (∥ϕ(x∗
t∗)− ϕ(x̃∗

t∗)∥)

−
t∗−1∑
j=t+1

λt∗−j−1
(
αw

(
∥w∗

j − w̃∗
j ∥
)
+ αy

(
∥y∗j − ỹ∗j ∥

))
= ϵ+

√
λ

√
λ
−(t∗−t)

α (∥ϕ(x′
t∗)− ϕ(x̃′

t∗)∥)

−
t∗−1∑
j=t

λt∗−j−1
(
αw

(
∥w′

j − w̃′
j∥
)
+ αy

(
∥y′j − ỹ′j∥

))
+λt∗−t−1αw (∥w′

t − w̃′
t∥) + λt∗−t−1αy (∥y′t − ỹ′t∥)

 ,

where we introduced x′
j = x∗

j , x̃
′
j = x̃∗

j , w′
j = w∗

j , w̃
′
j =

w̃∗
j , y′j = y∗j , ỹ

′
j = ỹ∗j , z′j = z∗j , z̃′j = z̃′j for all j ∈ I[t+1,t∗],

x′
t = x, x̃′

t = x̃, z′t = z, z̃′t = z̃, and added and sub-
tracted the terms depending on w′

t = w, w̃′
t = w̃, y′t =

y, ỹ′t = ỹ. Since the sequences {x′,w′,y′, z′} ∈ Σt∗

t and
{x̃′, w̃′, ỹ′, z̃′} ∈ Σt∗

t are a feasible candidate solution for
the optimization problem to obtain Wδ(x, x̃, t) in (A.7),
they result in a lower bound of the supremum. It follows
that

Wδ(x
+, x̃+, t+ 1)

(A.7)
≤ ϵ+

√
λWδ(x, x̃, t)

+
√
λ
(t∗−t−1)

(αw (∥w − w̃∥) + αy (∥y − ỹ∥))
≤ϵ+

√
λWδ(x, x̃, t)

+ αw (∥w − w̃∥) + αy (∥y − ỹ∥) .

Because all terms depending on t∗, {x∗,w∗,y∗, z∗}, and
{x̃∗, w̃∗, ỹ∗, z̃∗} were removed, ϵ is arbitrary and we can
choose ϵ → 0 to obtain

Wδ(x
+, x̃+, t+ 1) ≤

√
λWδ(x, x̃, t)

+ αw (∥w − w̃∥) + αy (∥y − ỹ∥) ,

which shows (7b) for all t ∈ I≥0 with σw = αw, σy = αy,
and η =

√
λ, which concludes the proof. 2

A.3 Proof of Theorem 9

This proof extends the results in [23, Prop. 2, Cor. 2],[14],
which consider FIE in the special case ϕ(x) = x. First,
note that the initial time step t0 and corresponding ini-
tial estimate x̄t0 can be chosen arbitrary in the FIE, as
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required for Definition 3. Given optimality of the solu-
tion of (9), we have that the optimal objective (9a) is
upper-bounded by the objective (8) with the true, and
hence feasible, sequences, i.e.,

VFIE(x̂
∗
t0|t, ŵ

∗
·|t, ŷ

∗
·|t, t) ≤ ηtα2 (2∥xt0 − x̄t0∥) (A.8)

+

t−t0∑
j=1

ηj−1 (σw(2∥wt−j − w̄t−j∥) + σy(2∥yt−j − ȳt−j∥)) ,

for all t ∈ I≥t0 . Applying the bound (7b) on Wδ(x̂t, xt, t)
for t− t0 times, as in Part I of the proof of Proposition 7,
we have

Wδ(x̂t, xt, t)
(7a),(A.2)

≤ ηt−t0α2(∥x̂∗
t0|t − xt0∥) (A.9)

+

t−t0∑
j=1

ηj−1
(
σw(∥ŵ∗

t−j|t − wt−j∥) + σy(∥ŷ∗t−j|t − yt−j∥)
)
.

Using the weak triangular inequality of K-functions [24],
we have that

α2(∥x̂∗
t0|t − xt0∥) ≤ α2(∥x̂∗

t0|t − x̄t0∥+ ∥xt0 − x̄t0∥)
≤ α2(2∥x̂∗

t0|t − x̄t0∥) + α2(2∥xt0 − x̄t0∥).

Similarly, we have that

σw(∥ŵ∗
t−j|t − wt−j∥) ≤σw(2∥ŵ∗

t−j|t − w̄t−j∥)
+ σw(2∥wt−j − w̄t−j∥),

σy(∥ŷ∗t−j|t − yt−j∥) ≤σy(2∥ŷ∗t−j|t − ȳt−j∥)
+ σy(2∥yt−j − ȳt−j∥).

Inserting the above three inequalities in (A.9), we arrive
at

Wδ(x̂t, xt, t) ≤ ηtα2(2∥xt0 − x̄t0∥) + VFIE(x̂
∗
t0|t, ŵ

∗
·|t, ŷ

∗
·|t, t)

+

t−t0∑
j=1

ηj−1 (σw(2∥wt−j − w̄t−j∥) + σy(2∥yt−j − ȳt−j∥))

(A.8)
≤ 2ηtα2(2∥xt0 − x̄t0∥)

+ 2

t−t0∑
j=1

ηj−1 (σw(2∥wt−j − w̄t−j∥) + σy(2∥yt−j − ȳt−j∥)) .

Applying the lower bound in (7a) and transforming the
above sum-based bound into a maximum-based formu-
lation, as similarly done in the proof of Proposition 7,

results in

∥ẑt − zt∥ ≤ max

{
α−1
1

(
6ηtα2(2∥xt0 − x̄t0∥)

)
,

max
j∈I[t0,t−1]

α−1
1

(
6

1−√
η

√
η
t−j−1

σw(2∥wj − w̄j∥)
)
,

max
j∈I[t0,t−1]

α−1
1

(
6

1−√
η

√
η
t−j−1

σy(2∥yj − ȳj∥)
)}

.

The above bound shows that the FIE is incrementally
input-to-output stable according to Definition 3. 2

A.4 Proof of Corollary 11

As in the proof of Theorem 9, note that the initial time
step t0 and corresponding initial estimate x̄t0 can be cho-
sen arbitrary in the FIE. Due to the enforced constraints
in (9), the resulting optimal sequence of estimates sat-
isfies the system dynamics (1) and constraints (2). We
can therefore apply the definition of exponential func-
tional detectability (6) to both, the true and estimated
sequences. Squaring both sides results in

∥zt − ẑt∥2 ≤max

{
C2

xλ
2(t−t0)
x ∥xt0 − x̂∗

t0|t∥
2,

max
j∈I[t0,t−1]

C2
wλ

2(t−j−1)
w ∥wj − ŵ∗

j|t∥2,

max
j∈I[t0,t−1]

C2
yλ

2(t−j−1)
y ∥yj − ŷ∗j|t∥2

}
≤C2

xη
2(t−t0)∥xt0 − x̂∗

t0|t∥
2

+

t−1∑
j=t0

C2
wη

2(t−j−1)∥wj − ŵ∗
j|t∥2

+

t−1∑
j=t0

C2
yη

2(t−j−1)∥yj − ŷ∗j|t∥2,

where we used η2 ≥ max{λ2
x, λ

2
w, λ

2
y}. For any matrix

P ≻ 0 we have that

λmin(P )∥x∥2 ≤ ∥x∥2P ≤ λmax(P )∥x∥2. (A.10)

For any P, Q, R ≻ 0 it follows that

∥zt − ẑt∥2 ≤C2η2(t−t0)∥xt0 − x̂∗
t0|t∥

2
P

+

t−1∑
j=t0

C2η2(t−j−1)∥wj − ŵ∗
j|t∥2Q (A.11)

+

t−1∑
j=t0

C2η2(t−j−1)∥yj − ŷ∗j|t∥2R,

where we introduced

C2 := max
{
C2

x/λmin(P ), C2
w/λmin(Q), C2

y/λmin(R)
}
.
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By Cauchy-Schwarz and Young’s inequality we have that

∥xt0 − x̂∗
t0|t∥

2
P ≤ 2∥xt0 − x̄t0∥2P + 2∥x̄t0 − x̂∗

t0|t∥
2
P2
,

∥wj − ŵ∗
j|t∥2Q ≤ 2∥wj − w̄j∥2Q + 2∥w̄j − ŵ∗

j|t∥2Q,
∥yj − ŷ∗j|t∥2Q ≤ 2∥yj − ȳj∥2Q + 2∥ȳj − ŷ∗j|t∥2R.

Inserting those three inequalities in (A.11), as similarly
done in the proof of Theorem 9, we have that

∥zt − ẑt∥2 ≤

C2

2η2(t−t0)
(
∥xt0 − x̄t0∥2P + ∥x̄t0 − x̂∗

t0|t∥
2
P

)

+ 2

t−1∑
j=t0

η2(t−j−1)
(
∥wj − w̄j∥2Q + ∥w̄j − ŵ∗

j|t∥2Q
)

+ 2

t−1∑
j=t0

η2(t−j−1)
(
∥yj − ȳj∥2R + ∥ȳj − ŷ∗j|t∥2R

)
(A.8)
≤ C2

4η2(t−t0)∥xt0 − x̄t0∥2P

+4

t−1∑
j=t0

η2(t−j−1)
(
∥w̄j − wj∥2Q + ∥ȳj − yj∥2R

)
(A.10)
≤ 4C2λmax(P )η2(t−t0)∥xt0 − x̄t0∥2

+ 4C2λmax(Q)

t−1∑
j=t0

η2(t−j−1)∥wj − w̄j∥2

+ 4C2λmax(R)

t−1∑
j=t0

η2(t−j−1)∥yj − ȳj∥2.

Taking the square root on both sides and using that√
a+ b ≤ √

a+
√
b for a, b ≥ 0 results in

∥zt − ẑt∥ ≤2C
√
λmax(P )ηt−t0∥xt0 − x̄t0∥

+ 2C
√

λmax(Q)

t−1∑
j=t0

η(t−j−1)∥wj − w̄j∥

+ 2C
√

λmax(R)

t−1∑
j=t0

η(t−j−1)∥yj − ȳj∥.

Finally, transforming the above sum-based bound into
a formulation involving maximization, as similarly done

in the proof of Proposition 7, results in

∥ẑt − zt∥ ≤ 6Cmax

{√
λmax(P )

√
η
t−t0∥xt0 − x̄t0∥,

max
j∈I[t0,t−1]

√
λmax(Q)

1−√
η

√
η
t−j−1

2∥wj − w̄j∥,

max
j∈I[t0,t−1]

√
λmax(R)

1−√
η

√
η
t−j−1∥yj − ȳj∥

}
,

which shows that Definition 3 is satisfied. 2

B Derivation of δ-IOOS Lyapunov Function for
Linear Systems

In this section, we show that Wδ(x, x̃) in (15) is a δ-
IOOS Lyapunov function according to Definition 6 for
the linear system (12), assuming Condition (14) holds.
For this purpose, we show in the following that (15)
satisfies (7).

The upper bound in (7a) is trivially satisfied since
Wδ(x, x̃) in (15) is quadratic in x − x̃. Additionally, we
have that

∥z − z̃∥2 (12)
= ∥L(x− x̃)∥2 (14b)

= ∥PξT (x− x̃)∥2

≤
λmax(P

⊤
ξ Pξ)

λmin(P )
∥T (x− x̃)∥2P︸ ︷︷ ︸

=Wδ(x,x̃)

,

which implies the lower bound (7a). Note that this lower
bound shows that, in fact, the δ-IOOS Lyapunov func-
tion is naturally only a positive semi-definite function,
and not a positive definite function as in the case of state
estimation.

To show that (15) satisfies the decrease condition in (7b),
consider tuples {x,w, y, z} ∈ X × W × Y × Z, and
{x̃, w̃, ỹ, z̃} ∈ X × W × Y × Z, where y = Cx + Dw,
ỹ = Cx̃+Dw̃, z = Lx, and z̃ = Lx̃. Using (12) and (14a),
we have that

T (x+ − x̃+) =NT (x− x̃) (B.1)
+ (TB − JD)(w − w̃) + J(y − ỹ).

Using Cauchy-Schwarz and Young’s inequality with a
sufficiently small ϵ > 0 yields

Wδ(x
+, x̃+)

(15)
= ∥T (x+ − x̃+)∥2P

(B.1),(16)
≤ (1 + ϵ)ρ︸ ︷︷ ︸

:=η

Wδ(x, x̃)

+ C1∥y − ỹ∥2 + C2∥w − w̃∥2,
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with η < 1 and

C1 =
2(1 + ϵ)

ϵ
λmax(J

⊤PJ),

C2 =
2(1 + ϵ)

ϵ
λmax((TB − JD)⊤P (TB − JD)),

which shows that (15) is a δ-IOOS Lyapunov function
for system (12). In case the current measurement is used
in the functional estimator (21) (as noted in Footnote 4),
the δ-IOOS Lyapunov function changes to

Wδ(x, x̃) = ∥T (x− x̃)∥2P + ∥C(x− x̃)∥2.

C Functional Detectability of Power System

In this section, we derive Equation (21). We start by
summing the discretized and noisy form of the frequency
dynamics (18b) for all buses i ∈ N , obtaining

∑
i∈N

Mi

∆t
([ωt+1]i − [ωt]i − [wt]N+i)

= −
∑
i∈N

(
Di[ωt]i − [PM

t ]i + [PL
t ]i + [∆Pt]i

)
.

From the definition of [∆Pt]i in (18c), we have that∑
i∈N

[∆Pt]i = 0,

because each term Pij appears twice, once with posi-
tive and once with negative sign. From the measurement
function (19) we have that [ωt]i = [yt]i − [wt]4N+i and
[PM

t ]i = [yt]i+N − [wt]5N+i for all i ∈ N . Reordering
the terms and using (20) we obtain

zt =
∑
i∈N

(
Mi

∆t
[wt]N+i + [yt]N+i − [wt]5N+i

−Di([yt]i − [wt]4N+i)

−Mi

∆t
([yt+1]i − [wt+1]4N+i − [yt]i + [wt]4N+i)

)
,

where the right-hand side only depends linearly on pro-
cess and measurement noise, and output measurements.
Using the discretized version of the power load dynamics
in (18) subject to process noise we have

zt = zt−2 +
∑
i∈N

([wt−1]i+2N + [wt−2]i+2N ) .

Combining the two equations above results in (21).
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