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Abstract

In this paper, we prove strict Fréchet differentiability of the metric projection operator onto closed balls in
Hilbert spaces and onto positive cones in Euclidean spaces. We find the exact expressions for Fréchet
derivatives. Since Fréchet differentiability implies Gateaux directional differentiability, the results
obtained in this paper strengthen the results obtained in [8] and [10] about the directional differentiability
of the metric projection operator onto closed balls in Hilbert spaces and positive cones in Euclidean
spaces and in the real Hilbert space ..
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1. Introduction

Throughout this paper, let (H, ||-||) be a real Hilbert space with inner product (-, -) and with the
origin 6. Let C be a nonempty closed and convex subset of H. Let P.: H — C denote the
(standard) metric projection operator satisfying

lx — Pc ()|l < |lx — z||, forall z € C.

It is well-known that P is a well-defined single-valued mapping. In operator theory in Hilbert
spaces, one of the most important and most useful operators is the metric projection operator. It
has many useful properties, such as continuity, monotonicity, and non-expensiveness. These
properties have been studied by many authors and have been applied to many fields in analysis in
Hilbert spaces (see 1, 5, 9, 17).

In addition to continuity, the smoothness of mappings in Hilbert spaces has been studied with
respect to several types of differentiability (see [2—4, 6—7, 10, 14—16]), which have been
applied to approximation theory, optimization theory, and variational inequalities in Hilbert
spaces. For details, see [11—13].

In particular, the Gateaux directional differentiability of the metric projection operator P , at a
given point and along a certain direction, has been introduced; this has been defined in uniformly
convex and uniformly smooth Banach spaces in [8] (we recall this definition in section 2). In [8]
and [10], some properties of Gateaux directional derivatives of P in both Banach spaces and
Hilbert spaces have been proved. In particular, when C is a closed ball, or a closed and convex



cone, or a closed and convex cylinder, the exact Gateaux directional derivatives of P, are
provided in [8] and [10].

Compared to the Gateaux directional differentiability of P, a stricter differentiability of P, is
Fréchet differentiability. A more restrictive concept of Fréchet differentiability is strict Fréchet
differentiability of the metric projection P.. The two concepts of Fréchet differentiability will be
recalled in section 2.

In general, let f: H — H be a single-valued mapping. In Proposition 2.1 in section 2 of this paper,
we prove that all these three concepts of differentiability of a single-valued mapping f satisfy
that, for any given point x € H, one has

fis strictly Fréchet differentiable at x
= f is Fréchet differentiable at x
= f is Gateaux directionally differentiable at x.

However, the converse statements may not hold, which will be demonstrated by the metric
projection operator as follows. Both part (iii) of Theorem 3.3 in section 3, part (iv) of Theorem
4.4 in section 4, Theorem 5.3 of this paper independently show that, for some point X, we have

The metric projection is Gateaux directionally differentiable at x
# The metric projection is Fréchet differentiable at this point x.

In this paper, we focus on the differentiability of the metric projection operator onto closed balls
in Hilbert spaces, the positive cones in Euclidean spaces and in the real Hilbert space I>. By
adapting the concepts of Fréchet differentiability and strict Fréchet differentiability of the metric
projection used in [13], we strengthen the results from Gateaux directional differentiability of the
metric projection operator obtained in [8] and [10] to strict Fréchet differentiability and Fréchet
differentiability of the metric projection operator.

In [13], Mordukhovich introduced the concept of generalized differentiation and provide many
useful properties, such as differential calculus in Banach spaces. The theory of generalized
differentiation of mappings in Banach spaces has been widely applied to nonlinear analysis
presented in this book. Furthermore, some applications of the Gateaux directional
differentiability of P, has been applied to approximation problems, convex programming,
optimal control, and so forth (see [3, 7, 14, 15]).

In section 2, we recall some concepts and properties of differentiability of mappings in Hilbert
spaces. In section 3 (Theorem 3.3), we prove the strict Fréchet differentiability of the metric
projection operator onto closed balls in Hilbert spaces. We also find the precise solutions of the
Fréchet derivatives of the projection operator, where it is strictly Fréchet differentiable.
Following Theorem 3.3, we provide some examples to demonstrate this theorem. In section 4,
we prove the strict Fréchet differentiability of the metric projection operator onto positive cones
in Euclidean spaces and we find the exact representations of the Fréchet derivatives. In section 5,
we consider the real Hilbert space I». In this section, we study the Fréchet differentiability of the
metric projection operator onto the positive cone in I, which is very different from the Fréchet
differentiability in Euclidean spaces.



2. Preliminaries

2.1. The metric projection operator in Hilbert spaces

Since every Hilbert space H is a uniformly convex and uniformly smooth Banach space, the
norm ||-|| of H has the following properties.

mw - % for any (x,v) € H{6} xH\{6}.
In particular,
o xevll = lxll :
ltllr(r}f = (x, v), uniformly for (x,v) € $ X S. 1.3)

For any y €C, the inverse image of y by the metric projection Pcin H is defined by

Pc' () = {x eH: Pc(x) =y}.

We provide some properties of the projection operator below listed as a proposition without
proof. See [1, 5, 11] for more details and proofs.

Proposition 2.1. Let C be a nonempty closed and convex subset of a Hilbert space H. The metric
projection Pc: X — C has the following properties

Q) C is a Chebyshev set in H. That is, for any x € H, there is a unique point P;x < C;
(i) The basic variational principle: for any x eH and ueC,
U=Px & X—u,u-2=0,forallzeC;
(i)  Foranyx eH and ueC,
U=Px & X—u,x-2)=|x—ul? forallze C;
(iv) P is (strongly) monotone, that is

(ch - Pcy, x—y> = ”ch - Pcyllz, for all X,y e H,

(V) Non-expansiveness:
IPcx — Peyll < llx — yll, forany x, y € H;
(vi) Letc e Handr>0. Then we have
_ T
Pg(cry(x)=Cc+ m(x —¢), for any x € H\B(c, r).
In particular, we have

Pg(x) = ”"7” , forany x € H with ||x]| > 1.

2.2. Differentiability of the metric projection operator onto closed and convex subsets

We first recall the concepts of the differentiability of single-valued mappings from H to H.



Definition 3.1 in [8]. (Gateaux directional differentiability of single-valued mappings in Hilbert

spaces). Let f: H — H be a single-valued mapping. For x € H and w € H with w # 0, if the
following limit exists, which is a point in H,

£(w) = lim L0 @)

then, f is said to be (Gateaux) directionally differentiable at point x along the direction w. f'(x)(w)
is called the (Gateaux) directional derivative of f at point x along direction w. Let A be a subset in

H. If f is (Gateaux) directionally differentiable at every point x € A, then f is said to be (Gateaux)
directionally differentiable on A <€ H.

Definition 1.13 in [17]. (Fréchet differentiability of single-valued mappings in Hilbert spaces).
Let f: H — H be a single-valued mapping. For any given x € H, if there is a linear continuous
mapping Vf(x): H — H such that

(i) lim FOO-fE)- V() (x=%) _ 9.

xX—X [lxx—x]|

(2.2)

then f is said to be Fréchet differentiable at x and V£ (x) is called the Fréchet
derivative of f at x;

(i) More strictly, if
lim fW-fW)-Vf@®w-—v) _ lim _f(u)—f(V)— Vi@ w-v) _ 0, (2.3)
(u,v)=(%,%) [lu—v| U—X,V-E lu—vl|

then f is said to be strictly Fréchet differentiable at x.

Proposition 2.1. Let H be a Hilbert space and let f: H — H be a single-valued mapping. Then,
for any given point X € H, one has

@ f is strictly Fréchet differentiable at x
= f is Fréchet differentiable at x
= f is Gateaux directionally differentiable at x along every direction satisfying

f'()(w) =Vf(x)(w), forany w e Hwithw # 6. (2.4)

(b) f is Gateaux directionally differentiable at x along every direction
# fis Fréchet differentiable at the given point x.

Proof. Proof of (a). For any given X € H, suppose that f is Fréchet differentiable at x with
Vf (x) being the Fréchet derivative of f at x, which is a linear continuous mapping Vf(x): H —
H such that

lim fO-fE)- V(D)%) _ 9.

X—X [l2c—2]|

Then, for any given w € H with w # 6, in the limit (2.2), we take a special direction approaching
to x: x +tw, for t | 0. By the linearity of Vf(x), we have



0= lim LEFWFEO- V@G +w)-D)

X+ tw >% ICx + tw)—x||

= lim f(x + tw)—f(X)— tVf(X)(w)
tlo tllwl|

o L fER W@ W)
wll £10 t wl

This implies

V(@ W) = lim L2 = (@) w),

Proof of (b). For any given r > 0, let P.3: H — rB be the metric projection operator, which is a
well-defined single-valued mapping from H onto rB. Then part (b) could be shown by taking
this special mapping f = P,.g. From the results of part (iii) of Theorem 5.2 in [8], for any given
point x e rS, we have that P/g(x)(v) exists, for any v e H\{6}. However, from the results in part
(iii) of Theorem 3.3 in section 3 of this paper, we see that VP,z(x) does not exist, for any point
xersS. ]

Let C be a nonempty closed and convex subset of H. We consider some properties of the
differentiability of Pc, which will be used in the proof of Theorems 3.3 and 4.3.

Proposition 2.2. Let C be a nonempty closed and convex subset of H. Let y € C. Suppose
(PZ1())° # @. Then, Pc is strictly Fréchet differentiable on (Pz(y))° such that,

VP.(x) =8, for any x € (P71 (v))°.
That is, for any x € (P;*(y))°, one has
VP:(x)(w) = 0, for every w € H with w # 0.
Proof. For any x € (P;*(y))°, there is a positive number p such that
B(%,p) < (Pc* ()"
This implies that

Pc(w)—Pc(v)- 6

lim
U-X,v->%X lu—vl|
_ Pc(w)—Pc(v)
UDX, VX [lu—v||
u,v EB(x,p)
. y—y
= lim _ = 0. O
u-x,v-x |lu-vll
u,v EB(x,p)

Proposition 2.3. Let C be a nonempty closed and convex subset of H. Suppose C° # @. Then Pc
is strictly Fréchet differentiable on C° satisfying



VP.(x) = Iy, for any x € C°.
That is, for any ¥ € C°, one has
VP (x)(w) =w, for every w € H withw =+ 6.
Proof. For any x € C°, there is a positive number p such that
B(%,p) < C°.
This implies that

Pc(w)—Pc(w)—Ig(u-v)

Lim
U—X,V—X [lu—vl|
. Pc(w)—-Pc(v)—(u—-v
— lim _ c c (u-v)
UDX, VX [lu—vl|
u,v EB(x,p)
. u—v—(u-v
= im @M _g 0
UDX, VX Jlu=v||
u,v EB(x,p)

3. Strict Fréchet differentiability of the metric projection operator onto balls

Let B denotes the unit closed ball in a Hilbert space H. For any r > 0, rB denotes the closed ball
with radius r and centered at 8. Let S be the unit sphere in H. Then, rS is the sphere in H with
radius r and centered at 6. Forany ¢ € H and r > 0, let B(c, r) denote the closed ball in H with
radius r and centered at c. In this notation, B(6,1) = B and B(8,r) = rB. S(c, r) denotes the
sphere in H with center ¢ and with radius r. Let In denote the identity mapping in H.

3.1 Review Gateaux directional differentiability of the metric projection operator

In [8, 10], Gateaux directional differentiability of Py, Was studied in both Banach spaces and
Hilbert spaces. Before we state the results obtained in [10], we review some related notations.

For any x €S(c, ), two subsets x(TC’r) and x(lc_r) of H\{6} are defined by: for ve H with v # 6,

(@ Ve x(,,, < thereis§ >0 suchthat ||(x + tv) — c|| =, forall t (0, 5);
(b) ve x(lc,r) & thereis § >0such that ||(x + tv) —c|| <r, forall t €(0, 8).

In particular, we write

) x, = x(Te,r): Ve x; & thereis & >0 such that ||x + tv|| >, forall t (0, 8);
(d) x} = x(le,r): Ve x} < thereis § >0 such that ||x + tv|| <r, forall t (0, &).

Theorem 4.2 in [10] or Theorem 5.2 in [8]. Let C = B(c, r) be a closed ball in Hilbert space H.
Then, Pc is directionally differentiable on H such that, for every w eH with w # 8, Pc has the
following Gateaux directional differentiability properties.



Q) For any x e B(c,r)°, we have

(a) PeO(w) = w,
(b) P.(X)(x) = x, for x = 6;

(i) For any x e H\B(c, ), we have

(a) Pe)W) = = (llx = cllPw = (x = ¢, w)(x = ©)),
(b) Pe(x)(x = ) = 6;

(ili) For any x €S(c,r), we have

(@  POW)=w—{x—cw)(x—c), ifwex],;
(b)  Pc¥)(x—c)=6;
©  PeXw)=w, ifwexi,,.

3.2 Strict Fréchet differentiability of metric projection onto balls in Hilbert spaces

For any x, X € H, as usual, we write x L x if and only if (x, X) = 0. For any x € H\{6}, let S(X)
denote the one-dimensional subspace of H generated by x. Let O(x) denote the orthogonal
subspace of x (or S(x)) in H. H has the following orthogonal decomposition

H=S(x) @ 0(x).

More precisely speaking, for this given x € H\{6} and for any x € H, x enjoys the following
orthogonal representation

_ {xx) ~ (@)
X=ZpXt (x EE x), forall x € H. (3.1)
By using the above orthogonal representations of elements in H, for this given fixed x € H\{6},
we define a real valued function a(x; -): H — R by

{x,%)
[I12’

for all x € H.

a(x; x) =

And a mapping o(x; -): H — 0(x) by
(x,%)

ll112

o(x; x) =x — x, forall x € H.

The following lemma provides some properties of a(x; -) and o(x; -). These properties will play
important roles and will be repeatedly used in the proof of Theorem 3.3.

Lemma 3.1. For any given fixed x € H\{6}, the real valued function a(x; -) and the mapping
o(x; -) have the following properties.

0] a(x; -): H— Ris a real valued linear and continuous function;



@ii)  o(x;-): H— 0(x) is a linear and continuous mapping;
(i) a(x; -)x and o(x; -) are orthogonal of each other and for any u, v € H, we have

@) (u,v) =a(x; wa(x; v)||x]|* + (o(x; w),o(x; v));

(b) (a(x; w)x, 0(x; v)) = 0;

© lla(® wx + o(x; v)II? = (a(® w)?Ix|* + llo(x; v)IIZ;

(@) [lull® = (a(x w)?lIz]* + llo(x; W%

@) llu+v|* = (a(x; w) + alx; w)?|Ix]1* + llo(x; w) + o(x; v)||>.

(iv) u-x < a(x;u)—1 and o(x;u)—6, forueH. (3.2)
Proof. This lemma can be straightforwardly checked and the proof is omitted here. i

Remarks 3.2. Both a(x; -) and o(x; -) depend on x. However, since the proof of Theorem 3.3 is
considered to be long and both a(x; -) and o(x; -) are repeatedly used in the proof, for the sake of
simplicity, a(x; -) and o(x; -) are abbreviated as a(-) and o(:), respectively.

The following theorem is to prove the strict Fréchet differentiability of the metric projection onto
closed balls in Hilbert spaces.

Theorem 3.3. Let H be a Hilbert space. For any r > 0, the metric projection P,5: H — rB has
the following differentiability properties.

Q) P, is strictly Fréchet differentiable on rB° satisfying
VP,5(x) = In, for every x € rB°.
That is,

Xx€rB® = VPp(x)(x) =X foreveryx € H.

(i) P, is strictly Fréchet differentiable on H\rB such that, for every x € H\rB,

_ (7 _
VP, (%) (x) = ”;—” (x — ||9;|}|62 x), for every x €H.

In particular, we have

(a) VP, (%) (x) = mx if x L x, for x €H;
(b) VP (%) (%) = 6.
(iii) On the subset S, we have

() P.p is Gateaux directionally differentiable on S satisfying that, for every point
X € rS, the following representations are satisfied

(a) B(E)W) =w — (Zw)x, ifweE,



(b) Plg(x)(x) =0,
(c) Plg(@®)(w) =w, ifwe x:.

(1)  P.g is not Fréchet differentiable at any point x € rS. That is,

VP, (x) does not exist, for any x € rS.

Proof. Proof of (i). By (2.3), for any given x € rB°, we calculate

Prg(w)—Prg(v)— Iy(u—v)

lim
U-XxX,v-X [lu—vl
. Prg(uw)—Prg(v)— (u—v)
= ll_m . B B
USX, VX [lu—vl|
u,vEB(X,p)
_ u—v— (u—v)
u-x,v-x  lu-v||
u,veB(X,p)

=6.
Hence, P, is strictly Fréchet differentiable at x, with VP,.5(x) = In, for X € rB°.

Proof of (ii). Let X € H\rB be arbitrarily given and fixed with [|x|| > r. By the definition of o(-),
we actually have

VP, (%) (x) = L (x — &X) f) = ﬁo(x), forevery x € H.

Il ll112

To prove part (ii) of this theorem, we only need to verify that the above formula satisfies the
following equations.

Prp(W)~Pr(v)~ [0 (u-v)

0 = lim
U—DX, VX [[u—vl|
Prp(@(u)E + 0(W)~Prp(a(v)x + 0(v)) - fro(u—v)
= lim
U-X, VoK [[u—vl|
. Prpla@)x + o(w)—Prg(a)x + o(v))- ﬁo(u) + ”?T”o(v)
Y vl

Since x ¢ rB with ||x|| > r, there is p > 0 such that

B(x,p) NrB = @.
This implies

Prpla()x + o(w)-Prp(a@)x+ o(v))- ﬁo(u—v)

lim
U-X, VT [[u—vl|



Prp(a)x + o(w)—Pr(a(@)®+ 0(v)) - —o(w) + —o(v)

— lim [El (Kl
UDX, VX [lu—v||
u,vEB(X,p)
r _ r _ r T
sy E@ET@I At OW) o AR o)) ~ o o)
USX, VX llu—vll
u,vEB(X,p)
awx+ow) a@wx+o®) o) o)
=r lim _ lax + o)l lla@x+omIl Il lixll
U—X, VX [[u—vl|
u,vEB(X,p)
a(u)x o(u) _ M _ a(v)x _ o(v)
— : lawx + ol lla@)x+o@)ll__1Ixll_lla@x+ oWl lla@)x + o@)ll
=r lim _
U—-X,v-Xx lu—v|
u,vEB(X,p)
a(w)x _ a(v)x o(w) _ow o
= r ll_m i lawx+o@)| llawx+o®)| = llax+o@)| x|l la()x + o)l
U—X, V% [lu—vl|
u,vEB(X,p)
awi  aw)x ( ow) _ M) _( v
_ . lawx + o) lla@)x + oW)|| llawx + oWl Il lla@x + oIl __lIxl|
=r lim _ +
UDX, VX [lu—v|| [lu—v||
u,vEB(X,p)

By (3.2) in Lemma 3.1, we have

u-x < alu)—-1 and o(u) — 0.
and vox & alv)—-1 and o(v) = 6.

At first, we estimate the first part in the limit (3.3).

a(w)x _ a(v)x
la)x + o)l lla@)x + o)l

lu—vl|

” a(uw)x _ a(v)x ”
— Mla@x +o@ll llaw)x + o)l

[lu—vl|

[t 2|
— la@x +oWll__lla@®x + oIl

[lu—v||

a@)la@)x + oW)|| — a@)|la(W)x + o(W)||

_ W s TaGre v ol
llu—vl|
Izl (@Wla@x + o) D% ~ (aW)lla% + ow|)?
— lla@)x + o)l lla@)X + oWl (a@)lla@)X + o W)l + aW)lla(w)X + o))
lu—vl|
112l a?@@?IZ 2 +lo@)1%) - a@)?(@@? |1 12 +lloII?)
— ' lla@3 + 0@l la®x + o)l (aW[a@)x + oW)Il + a®)la@Wx + oW

l(a)x + o(w))-(a@)x + o)l

)>. (3.3)

(3.4)



“f“| a@W?[lo®)|1? - aw)?[lo(w)||?
— lla@)x + oWl la(@)x + o)l Ca) lla(®)x + o) + a@)lla(w)X + o(W)Il)

[(a(w)-a@))x +(ow) — o@))||

1%l a@?llo@I*?—a@)? o>+ a@)?llo)I?= a@)?llo@w)I?
law)x + o(w)|| [la()x + o(W)|| (a(w)lla@)X + o(W)|| + a()|la(w)Xx + o(wW)|])

(@ -a@) 1212 +low) - o)1

a@?lo@)I+llo@)INUlo@)lI- llo@)ID+ llolI?(a(w)+a®))(aw)-a®))
la@)X + o)l lla)X + o W)l (a(w)lla(®)X + oW)|| + a()|la(w)X + o(wW)ll)

J(@-a@)* 121 +loGw) - ow)I?

[l

”f”| a@?2(lo@lI+llo@INUlo@II- llo@)I)
lla@)x + oWl lla@)x + o)l (a)lla@)Xx + o) || + a)lla(w)X + o))

J(@t-a@) 1212 +low) - o)l

”f”| lowI? (a(w) +a®))(a(w)-a®))
lla@)x + oWl lla@)x + o)l (a()lla@)X + o)l + a(W)lla(w)X + oW

J(@@-a@) 1212 +0@) - o)1

a@?dlo@lI+lo@ID | lo@lI- lo@)Il |

< llll la@Z + oWl la@)X + oWl (aW)[laWX + o W)l + aW) la(WX + o (W)
- llo(w) —o)|
Il low)I?(a(w)+a(®)) law)-a®)|
+ la@x + o)l lla)X + o)l (a@) lla)X + oW) || + aW)lla(w)X + o (W)
la(w)—a)]|Ix]|
_ a@)?(loW)l+llo()I)
< [Ix]|

[la)x + o)l la(w)x + o)l (a(W)lla(@)x + o (W)l + a(W)|la(w)x + o(W)|])

lowl?(a(w)+a(®))
la@)x + o)l la(@)x + o)l (a()lla(@)X + o (W)l + a(W)la(w)x + oWl

0

2 e - O U xandv > x. (3.5)

Where, when we take the limit, we applied (3.4). Then, we estimate the second part in (3.3).

| e s n ~ T~ (e o~ o)
la@x + o)l |Ix|l la@)x + oIl lIxll

lu—v||

” o) (Ixll-lla)x + o) _ ( o (Ixll-lla@)x + o)) )”
— x|l la(w)x + o)l Ix|llla@)x + o)l

llu—vl|
1 || __o(llamx +o@l* —lIxI?) om(la@x + o)l -IIxI1%)
— Izl 2@ + o@)lI(la@X + oWII+IIZD a3 + oWl (la@)X + o) +IXID)
lu—vll
1 || o (@w??-vIEI*+ lowl?)  _ o@(@®?-vIxlI*+ llom)?)
— =l Tla@x + 0@l lla@X + oI+ __la@Z + 0@ I(la@)X + 0@)II+1IZID

[lu—vl|



1

|| o (@@= nlxlI*+ llo@w)I?) o) ((@@)*-DIIZI*+ llo@)1I?) |
< I

lla@)x + owl(la@x + o @I +IXI) __lla@)x + o)l (la@)x + o @)+

J@-a@)* 11 +loGw) - 0w)I?

é” oW(@@?-DIFIZ+ lo@)I?) __ o@((@®2-DIIZI*+ llo@)I?) ”
E IIa(u)x+O(u)ll(lla(u)x+O(u)llzllxll) 2@ + oWl + 0@ I+IFD|| (3.6)
J@w-a@) 1212 +loa) - o)l
We estimate the first part in (3.6).
|| __o@(@m?-nIEI*+llo@l?) o) ((a@?*-n)lIxl2+ lo®)II?) |
| Ta@% + oG ([a@% + 0@+ __la@Z + o@lila(@Z + 0 GOI+I*ID
J(@-a@)* 1 +loGw) - o)l
= e T smndamErearerEnl 0@ (@2 =DITIZ+ lo@)lI2) o) (@@~ DI+ lo@)1?)| (37)
J(@-a@)* 21 +loGw) - 0)I?
For the simplicity, we write
b(w,v) = [xlllla@@x + o(ll(lla(w)x + o)l + lIxI).
Taking limit, we have
w L, D7)
u,vEB(X,p)
= lim _(lIzllla@z + o@ll(la@)x + o)l + lI%ID)
u,vEB(X,p)
= 2||x]°.
Then, (3. 7) can be rewritten as
1 _ _
et T oGTatw T o(u)||+||f||)” o) ((a@)?-DIIEN%+ llow)I1?)—o () ((a(@)2-1)lIxlI2+ llo(@)[|?) ||
(@@-a@)* 21 +loGw - o)l
_ sl 0 (@2 =D+ lloW1?) o) (@)~ DIIxI+ lo@)1?)] )

J(@@-a@) 1212 +l0w) - o)l
We calculate the terms inside the norm in the numerator of (3.7).
o) ((a)? = DIIxII* + Nlo@)II*) — o(@)((a(w)? = DIxII* + llo(W)II*)
= (o (aw)? — 1) — o) (a()? = H)IIxII* + o()llo@W)II* = o (@) lloW)II?
= (o) (a(w)® - 1) —o(w)(a(»)? = 1) + o) (a(v)? — 1) — o(¥)(a(v)? — 1)) lIx||?



+ollo@I?> — o llo@II* + oW)llo)I? — o (W) llo(W)II?
=(o((a)? - 1) = (a()? = 1)) + (o) — o(¥)) (a(v)? — 1) Ix||?

+ (o) —o(Nllo@) I + o) (llo)l = llo)IDUlo @l + llo(W)1I)
= (o) (a()? — a(@)?) + (o(w) — o)) (a()? — NIIII?

+ (o) —o(Nllo@) I + o) (llo)l = llo)IDUlo @l + llo(W)1I)
= (o) (a() — a(@)(a() + a()) + (o(w) — o)) (a(w)? — D) |Ix|I*

+ (o) — o) llo@II? + o @) (oIl = o) N oIl + llo(W)1I)
Then, (3.7) is estimated by the following 4 parts.

1 o) ((@@)*-DIxl*+ llo@)lI*) =0 ) ((a@)*=DIIEI*+ llo@) 1) ||

p@) J(@-a@)* 11 +loGw) - o)l
1 [ot@@-awn@@+a@)liF?| | 1 [ (G -0@)) (a@)?-1)lI%II%]|
PED(a@-a@)* 171 +lo@w) - 0@z ") J(aw-a@)* R +low) - o)1
1 | 0a-ownlloaI?] 41 [o®)oi-lo@hdloaii+lewi]
P00 Ja-a@) 1z o —owl?  "*? [(aaw-aw))I#12 +loaw - ow)I?
_ llo@lllxl> l(aw)-a@))(a(w)+a®))| 12112 la@)*-D[llo(w)—oM)|
PED (a-a@)? 191 +low - 0@z " [(aw-aw) 152 +lotw - o)l

llo(w)lI? [lo(w)—o@)I| lo)Il o) I=llo@)III (loCII+lo()II)
b(u,v) 2, b(u,v) 2,
J(a(u)—a(v)) %112 +llo(w) — o(@) |2 J(a(u)—a(V)) 12112 +llo(w) — o(w)II2

< lo@IllIxl? |(a(w)—a@))(a(w)+a®))| n Ixl12  |a@)2-D)|llo(w)—o@)I|
~ b(uw) [(a(w)—a@)|l|x]l b(u,v) lo(w) — o)l

lo@II* llo-o)I| lo)Il [lo@)lI—-llo@)Il Ilo I +llo)1D)

b(u,v) llo(w) - o)l b(u,v) [lo(w) — o)l
< llo)lla()+a@)!lIx]| n lI2]12|a(v)?-1)| llo(w)lI? lo)II(lo)I+llo()l
- b(u,v) b(u,v) b(u,v) b(u,v)
— 0,asu—»xandv - Xx. (3.8)

Where, we applied again (3.4) and b(u, v) — 2||%||3,asu » x and v > *.

Next, we estimate the second term in (3.6).



o (@W*-DIXIP+llo@I?) 0@ ((@®?*-DIXI*+ llo@)II?)
la@x + o@lldla)x + o) +11xD __lla®@x + 0@ (la®@)x + o @I +IXI)

(@ -a@) 1212 +low) - o)l

IW”

lo)I(|(a)®—1]lIZlI%+ lo@)I|?) | 1 _ 1
[E] la@z + oW (la@)x + oW +IIZI) __ lla@)Z + o) (la@) + o @) [I+[Z[D)!

(@@-a@)* 21 +loGw) - o)l

lom)lI(Ja@)®=1[IIZlI*+ llo)I1?) |||a(u)7 +oWIUla@Z + o II+IIZI) = lla@)X + o) (la@)X + o (@) I +I1ZI])
1 la@wx + oW ([aWx + oW +IZDa@)X + oMl (lla@)X + oW +IIEID)

J(@-a@)* 11 +loaw) - 012

2 _
lo@)llo@I(|(a(w)*~ 1|12+ lo()12) (la@z + oI (la@)% + oW I+IZI) ~ | + oW lilla®w)% + o) I +IIxl)
— lla@x + o)ll(la()x + oW +I[xDIla)x + oW)I(la®@)x + o) I +IZIDII | 1

J(@@-a) 1212 +10@w) - 012

(a(v)2—1|n7cu2+ oI

HO(U)\I(
|la@x + o)l (la@)x + o)l +1I)? — lla@w)x + oW)II2 (la®) + o) I+IZI)?
—lla@z + o@lidla@)x + oI +IXDlla@)x + o@)lIlla@)x + oW II+IXID X | lla@z + o@)llla@)x + o)+ + lla@)x + o) lI(la@)x + o) I +IIxI) (3.9)

J(@@-a@)? 1 40w - @)1

For simplicity, we write

c(u,v) = llo@)I(I(a()? — 1llIxI1* + llo@)II*).
Taking limit gets

im ey = lim llo@)(a@)? ~ 1IFI? + llo@)I)=0.  (3.10)
u,veEB(X,p) u,vEB(X,p)

And, we writ

dw,v) = [[la@x + o@|(lla@x + o)l + [IXIDlla()x + o) ||(lla(w)x + o)l + IXIDIx]l]
. [lla)x + o)||(lla)x + o) + [IX]) + lla(w)x + oW)||(lla(w)x + o)l + [|lx[D].
It satisfies

lim d(u v) = 4||x||° x 4||x]|? = 16]|x]|”. (3.11)

U-x,v->
u,vEB(X, p)

Then, the second term of (3.6), which is (3.9), is rewritten as

cwv) [la@z + oI (la@zx + o@II+IZID* = la(@)x + o W)II*(la(@)x + o) lI+IIxID? |

Auw) J(@-a@)* 121 +loGw) - ow)l?

(3.9)

We estimate the crucial factor in (3.9), which is the second factor.

[lla)x + oW I2(la@)x + oW [I+xID? = la@)x + oW)II2(lla(¥)x + o) [|+]Ix])? |

J(a(u)—a(V))ZIIfIIZ +llo(w) — o2




_ |(a@?1z 1P +llo@) 1) (Ila@)x + o2 +2lla()% + o) [[IZ]|+]1%11?)

J(@-a@)* 171 +low) - o)l

__(a@21x 12 +lo@IF) (lla@)x + o) +2]la(@)x + o) [IIZl+1%]1%) |

J(@-a@)* 121 +loGw) - ow)I?

_ [(a@?1% 12 +ll0@)11?) (a@)?l1% 112 +llo )| +2lla()x + o) 11| +1%(1%)

J(@-a@)* 11 o) - 0w)I?

_ (a1 +lo)I*) (a@)®IE I*+llo 1> +2lla(w)x + o)l lIZII+]12117)

J@@-a@)* 21 +loGw) - o)l

(a@)2lIz 112+lo)N1?) (a()?11% 12 +1lo(W)l12+2lla(w)x + o(w)|llIx[l+II%]1?)

+
(@@ -a@)1#12 +low) - o)l

__(a@21zlI>+llo@)II*) (a@)?I1% 11>+l 0@)I*+2lla@)E + oIl ZII+11211?) |

J(@@-a@) 1212 +l0@w) - o)1

_ (a1 +10@112) —(a@)? 1% 1Z+1l0@)I12) ) (a@)? 1% I2-+llo(w) > +2lla(w)% + o w17l +]1£]?)
J(@@-a@) 1212 +l0w) - ow)I?

(a(V)ZIIfII2+|IO(v)II2)((a(u)2Ilf IZ+llo@II*+2lla@)x + o@)llIZll+11211*) = (a@)? %1 +llo(@)]I* +2]la(w)x + O(V)IIIIJ?II+II9?II2))

merumeW+mwrmwm2

_ |((@?-a@£ I2+ll0@I=lo®)I12)) (a1 2 +IloG) 2 +2lla(w)z + oG 2]l +1112)
J(@@-a@)? 1212 +0@w) - 0wl

+ (a@)I2IZ+o@)I12)((a@ 2122 +oII2+2lla@)z + o@)IIZI) - (a() 121>+ o) 1> +2llaw)E + o)1)
(@t -a@) 1212 +l0w) - o)l

_ |((a-a®)(a@+a@) 112+ Qo I=lo@D oG+ o@D ) (@@? 11+ lo@wIP+2lla@: + oGl +11)
(@@ -a@)) 1217 +loGw) - oI

(a(V) (b3 ||2+II0(V)II2)(((a(u) a®)(a@+a@)IIZ 1>+ (Ulo@lI-llo@)IDUlo @I +llo(@) D +2(lla(w)x + oWl -lla(@)x + O(V)II)IIxII))|

J(a(u) a®))* 1212 +llo(w) - o(v)|I12

I(a(u) a®))(a)+a@))II% 1> (a@)® 1% 1> +llo)I* +2[la@)x + o) lIIE]+1%1I%)]|
J(a(u) a(®))”|I%I12 +llo(u) - o()|2

|(||0(u)|| lo)IDUlo@)lI+llo(@)ID(a(w)?|I% |12 +]lo W2 +2]la(w)x + o |lIIx]I+]1%]1?)]|
\[(a(u) a@))2zl1Z +llo(w) — o()|I1?




n [(a@)21x 17+ llo)]1?) (a(w)—a(®))(alw) +a@))||x ||?|
J(@t-a@) 1212 +0w) - o)l

|(a@)?11% 12+ 1o @) AloG@) I=lo @)D Alo G 1 +lo@)ID]
+
J(@@-a@)* 12 +low) -~ oI

" [2(a@)?||x [I2+]lo@)II?)||(a(w)% + o(w))—(a()x + o@))||II%Il|
J(@@-a@))121 +low) ~ o)1

< law)-a@)lla@)+a@)|iI* I?(a@)?1% 1> +llo @I +2lla)® + o) lll1%]|+11211*)
- la@)—a@)|lx |

n llo@lI=llo@)IIl Ulo@)lI+llo@)ID (a(w)? (1% |I* +llow)II* +2]la@)x + o @) IIIIX] +11%11*)
llo(w) — o@)|

i (a@2Z 12 +loW)II1?)|a(w)—a@)|la(w)+a(@)|]|% ||
la@)—a@)llIx ||

+ (a@2)1z 112 +lo@)12)llo @l —-llo )l (o) ll+llo(@)I)
lo(w) — o)l

+ 2(a@)?1% 1P +llo)1?)||(aw)® + o(w)—(aw)x + o(w)) |||l
\/(a(u)—a(v))zllfllz +llo(w) — o)1

< la@+a®IZ II?(a@)?[I% |12 +llo@)I* +2[la)x + oIl +1€11%)

% 1l

n llo@w) — o)l Ulo@)lI+llo@) D (a)?[1% 1> +lloWII* +2llaw)x + o) |lII€l+|x11*)
llo(w) — o)l

+ (@@)?l1x I + llo)I)la) + a)lIx |

+ (a@)?lIx 112 +llo@)I1*)llo(w) — o)l UloG) Il +llo@)ID)
llo(w) — o)l

4 2(@@?lIx 2 +Hlo@)1*) da@) —a@)III lI+llo(w) — o@)ID ll2]1]
J(a(u)—a(V))zllfllz +llo(w) — o()II?

< la@+awliix 12 (a@)?I% 12 +llo(w)|I?+2]la(w)x + o(w)|[|Ix]|+I|%]1?)

Il 1l

+(lo@II + llo@)ID (@@l II* + llo@)II? + 2lla)x + o@IllIx]l + [I1211%)
+ (@@)?lIx I + llo)I)la) + a)lIx |
+ (@@)?lIx 1? + llo@)II*) Ulo@)II + llo@)ID

+ 2(a@)II% I +llo@)II*)|a(w)— a@)|IIx|*
J(a(u)—a(V))ZIIfIIZ +lo@) - oI




+ 2@@2IZI +Hlo@)I)loG) — o@) I 1]
J(@-a@)* 11 +loaw) - o)l

< la@)+a@)III%I1* (a@)?[1€]* +llo@)I* +2[la@)x + o)l lI%|| +]1%1I*)
- Il

+(llo@)Il + llo@)ID(a@)? 1% I + llo@)II* + 2lla@)x + o@)IIIZIl + lI%]1*)

+ (@@?Z 112 + lloI*)a@) + a@)llIx |l

+(@a@)?lIZ I + llo)11?) Ulo@Il + llo)II)

+2(a@)?IZ 117 + llo@) 1) 11|

+2(a@)?IZ 117 + llo)II*) llxll

— 8|IxlI> + 0 + 2(I%]1 + 0 + 2Ix]1* + 2/|%|13

= 14||x|]3,asu » x and v - X. (3.12)

By (3.10), (3.11) and (3.12), taking limit for (3.9), we get the limit of the second term in (3.6).

|| __o@((@m?-nlxlI*+llomII?) o) ((aw)?*-nIxI*+ llow)II?) ”
lim [Ellawz + o@i(at? + o@I+IFD) _a@Z + owlidla®)x + o)I-+IXI)
UDX, VX 2,
woeB(zp) J(a(u)—a(v)) 1%112 +llo(w) — o(@)II2

cwy) [lazx + oWI2(la()x + oW I+1I1xIN? - [la@)x + oI (la(¥)% + o) +]1%[)? |

J(@t-a@) 1212 +l0@w) - 0wl

T usxvox duw)
u,veEB(X,p)

0 —
= 14|x|1°

RO

_o. (3.13)

By (3.5), (3.8) and (3.13), we obtain the limit of (3.3) as below.

'
li Prg(uW)—Prg(v)— mo(u—v)
im = lim
U-X, VX lu—vl| UDX, VT [lu—vl|

Prpla@)x + o(w)—Prg(a@)x+ o(v))- ”?T”o(u—v) B

This proves part (ii) of this theorem.

Proof of (iii). Part (1) of (iii) follows from part (iii) in Theorem 4.2 in [10] or Theorem 5.2 in [8].
So, we only prove part (1) of (iii). For an arbitrary given x € rS, assume, by the way of
contradiction, that P, is Fréchet differentiable at x. Then, there is a linear continuous mapping
A(x): H— H, such that

lim Pr]B;(x)—Prlm(f)_— A (x-%) _ 9.
XX [[oc—zx]|




In particular, in the above limit, we take a directional line segment (1 + &)x, for § | 0. Since
A(X) is assumed to be linear and continuous, we have

9 =lim Prma((1+5)>?)—PrIB(f)_— f{(f)((1+5)f—f)
510 l(1+8)x—x||

(1+8)x —x— SA(%)(%)

T
— lip G225
slo x|l

I (L% —% — SA® ()
= 1l1im

5l0 Slixll

. X—x A(x)(x
_ jim EE _AO®
slo sl Il

limi A ()
§lo or T

_AD®
=,

This implies
A(x)(x) =86. (3.14)

Next, we take an opposite directional line segment x = (1 — §)x, for § { 0 with 0 < § < 1. Since

||| = r, it follows that (1 — 6)x € rB, for any § with 0 < § < 1. By (2.2) and by the assumed
linearity of A(x), we have

g = lim Prg(x)—Prp(X)— A(X)(x—%)

X—X [[oc—2x]|

(1-8)% —% — A(®)((1-8)% —%)

~ 5103%1 IG-0)% —=I
_ —5%+ 8A(X) (%)
= lim T —
§l0,6<1 Sllxll
_ R AD®E
—
This implies
A(x)(x) = x.
This contradicts to (3.14), which proves that P, is not Fréchet differentiable at any point
X € rS. This theorem is proved. m|

Next, we consider some Hilbert spaces with orthonormal bases. Let N denote the set of all
positive integers. Suppose that the considered Hilbert space H has an orthonormal basis
{en: n € N}, in which N is a nonempty subset of N such that, for any m, n € N, one has



. (1, ifm=n,
) (em, en) = {O, ifm = n.

(i) x=Ynen{x, enden, and [lx||? = X enlx, ey)?, forevery x € H;

(“I) (x, }’) = ZnEN(x! en)(y' en)! for any X, y € H

Here, the purpose for us to take a nonempty subset N of N for the considered Hilbert space is to
include all standard Euclidean spaces in the results of Theorem 3.3 and Corollary 3.4.

Let M be an arbitrary nonempty subset of N. Let S(M) denote the subspace of H generated by the
set{em: m € M}. Then H has the following orthogonal decomposition

H=S(M) @ S(N\M).
Now we have the following corollary of Theorem 3.3.

Corollary 3.4. Let H be a Hilbert space with an orthonormal basis {en: n € N}. Let r > 0. Then,
P, has the following properties.

Q) P, is strictly Fréchet differentiable on rB°. For any x € rB°,
VP,5(x)(x) =X, for every x € H.
(i) P, is strictly Fréchet differentiable at every x € H\rB and for any x €H,

= — 271 ( ’ Tl)<_l n) =
VPrlB (X) (X) - \/ﬁ (ZneN(x; en>en - MZnEN@Q en)en)'

Yneni{¥.en)?

(iii) P, is not Fréchet differentiable at any x € rS. That is,

VP, (x) does not exist, for any x € rS.

We give some examples below to demonstrate the results of Theorem 3.3 (or Corollary 3.4), in
which the considered Hilbert spaces are just one-, two- or three-dimensional Euclidean spaces.

Example 3.5. LetH=R. Forany r >0, rB = [—r, r] and rS = {—r, r}. For any real number x +
0, we have

s, if x € (—r,7),
VP,(x)(s) =10, if ¥ ¢ [-r,r], foranyseR.
does not exist, if |x| =71,

Example 3.6. Let H = R>={(s, t): s, t € R}. For any r > 0, rB is the closed disk in R? with
radius r and center 8 := (0, 0). Take any point ¥ € R? with ¥ # 8. We consider the following
two cases:



M % = (a, 0) with a # 0. Then, for any (s, t) € R?, we have

(S) t), lf a e (—r, T'),
VP (®)(5,) = {77 (0.0), if a ¢ [-7,7],
does notexist, if |a] = .

(I  x=(a,b)witha #0and b # 0. Then,

(i) If a® + b? <12, one has

VP () ((s,t)) = (s,t), forany (s, t) € R

(i) If a® + b% > r2, we have

as+bt

VP (X)((s, 1)) = ﬁ ((S, -— ;@ b)), for any (s, t) € R?;

(iii) Ifa® + b% =12, one has

VP, (%) does not exist;

Example 3.7. Let H = R3={(s, t, w): s, t, w € R}. For any r > 0, rB is the closed ball in R® with
radius r and center 8 := (0, 0, 0). Take any point x € R® with ¥ = 6. We consider the following
three cases:

M X =(a, 0, 0) with a # 0. we have
(s, t,w), if a € (-rr),
VP.(X)((s, t,w)) = ltTl(O. t,w), if a&[-r7], forany (s, t,w) € R®

does not exist, if|a| =1,
(I x=(a, b,0)witha # 0and b # 0. Then,
0) If a® + b? <12, one has
VP(X)((s,t,w)) = (s,t,w), forany (s, t, w) € R,

(i) If a® + b% > r2, we have

as+bt

VP g(X)((s, t,w)) = ﬁ ((s, t,w) ———;(ab, 0)), forany (s, t, w) € R®,

(iii) Ifa® + b% =12, one has

VP, (%) does not exist;

(mny  x=(,b,cywitha#0,b+0andc +# 0. Then



(i) If a? + b? + ¢ < r?, one has
VP(X)((s,t,w)) = (s,t,w), forany (s, t, w) € R,

(i) If a® + b?% + ¢ > r?, we have

) _ as+bt+cw

VP (X)) ((s, 1)) = m ((s,t Tz (@b, c)) for any (s, t, w) € R3;
(iii) Ifa®+ b? +c% =r?, one has
VP, (%) does not exist.

4. Strict Fréchet differentiability of the metric projection onto the positive cone in R"

As usual, let R™ denote the n-dimensional Euclidean space with the origin 8 = (0, 0, ..., 0). We
define

AR™ = {X = (X1, X2, ... , Xn) € R™: xx = 0, for at least one k €{1, 2, ..., n}}.
Let K denote the positive cone of R™, which is defined by
K={x=(X, X2, ..., %) ER":xi=>0,i=1,2,...,n}

K is a pointed closed and convex cone in R™. The interior of K is denoted by K°, which is a
nonempty subset of K satisfying

KO={x=(Xy, X2, ... ,Xn) ER™: xi > 0,i=1,2,...,n}
The boundary of K is denoted by dK such that
0K ={x=(X1, X2, ... , Xn) € K: Xj = 0, for at least one j € {1, 2, ..., n}}.
Define

K={x=(x1, %z, ..., %) € R |x;| > 0, foralli € {1,2,...,n}
and there are at least one pair j, k € {1, 2, ..., n} with x;x; <0}.

Then, we see that 0K € AR™. The negative cone of K is —K satisfying K n (=K) = {6}. —=Kis
also a pointed closed and convex cone in R™. We can similarly define the interior (—K)°. The
boundary of —K is denoted by d(—K). For any x = (X, X2, ... , Xn) € R", we define three subsets
of the set{1, 2, ..., n} with respect to the given x by

x'={ie{1,2,..,n} x; >0}
x~={ie{1,2,..,n} x; <0},
and x={ie{l,2,..,n} x; =0}



Then, for any x = (X1, Xo, ... , Xn) € R™, we have

(@ xfux-ux={1,2,..,n}
() xeK & x™ =0;

(c) xeEK® & x~  =@andx = @;

(d x€edK <& x~ =0andx + 0;

() xEK & x'#0,x" #@andx = @;
(f) xEAR" & x + 0.

Lemma 4.1. Let K be the positive cone of R™ with negative cone —K.

(@ Foranyx € R™, Px(x) has the following representation

i . . +
Yo MLEXT coii 12 n, (4.1)

Pe()i= {0 ifi ¢ x*

In particular, we have

Q) Py (x) =x, for any x € K

(i)  Pg(x)=86, foranyx € — K;
(iif)  Pyx(x) € 0K, for any x € R™\K;
(iv)  Pg(x) € 9K\{0}, forany x € K.

(b) Py is positive homogeneous. For any x € R",
Py (Ax) = APg(x), forany A > 0.

Proof. We write Px(x) =y = (Y1, Y2, ... , ¥n) € K with

x;, ifiext,_ .
o= fori=1,2,..,n.
Y {o, ifi ¢ x*, n

Forany z = (z1, 22, ... , Zn) € K, we calculate
(x=—y,y—12)
= ((x1, X2, %) = V1, V2 s V) V1, V2o oo s V) — (21,22, o, Z0))
= Xie1 (i = y) i — z)
= Diex+ (i =YD i — 2) + Ligwr (i — y) i — 2)
= Diex+ 0(yi — 2)) + Xigx+ xi(—2;)
= Zigx+ Xi(—2) = 0.

By the basic variational principle of Py, this proves y = Py (x). We see those parts (i), (ii) and
(iii) follow from (4.1) immediately. We only show (iv). For any x € K, by (4.1), we have that



x~ # @ and X" # @. By the representation of P (x) in (4.1), it follows that P, (x) € dK\{6}. O

For any given fixed x € K, we define a mapping b(x; -): R* —» R", for any w € R, by

w;, ifiext, .
(b(x; w)); = {O,L —— fori=1,2,..,n. (4.2)

Lemma 4.2. For any fixed x € K, as defined in (4.1), b(x; -) satisfies

(@) b(x;-): R™ - R™ is a linear and continuous mapping;
(b) b(x; w) € AR", for any w € R™\K.

Proof. The proof of this lemma is trivial and it is omitted here. O
For any given x € AR"™, we define a mapping d(x; -): R® - R", for any w € R", by

(d(x; w));=w;, foriex™,

(d(x; w)); =0, forie x™,

L ifw; .
and (d(x; w))i:{‘a’“ ifvvzzzg for i € %. (4.3)

Lemma 4.3. For any fixed x € AR™, as defined in (4.2), d(x; ) satisfies

(@) d(x; -) is a non-liner mapping from R™ to R™;
(b) d(8; w) = Px(w), for any w € R™.

Proof. The proof of this lemma is straight forward and it is omitted here. i

By using the results of Lemma 4.1, we study the strict Fréchet differentiability of the metric
projection operator Py.

Theorem 4.4. Let K be the positive cone of R™ with negative cone —K. Then, the metric
projection operator Py has the following Fréchet differentiability properties.

Q) Py is strict Fréchet differentiable on K° satisfying VPg (x) = Ixn, for any x € K°, so

VPg(x)(y) =y, foranyy € R";

(i) Py is strict Fréchet differentiable on (—K)° satisfying VPx (x) = 0, for any x € (—K)°,
VPx(x)(y) =6, foranyy € R";

(iii) Py is strictly Fréchet differentiable on K such that, for any x € K, so
VPx(x)(y) = b(x; y), foranyy € R,
(iv)  For subset AR™, we have

(a) Py is Gateaux directionally differentiable on AR™ such that, for any x € AR™,



P (x)(w) =d(x; w), foranyw e R™\{6}.
(b) Pg is not Fréchet differentiable at any point in AR", that is,
VP (x) does not exist, for any x € AR™.
Proof. Part (i) follows from Proposition 2.3 and Part (ii) follows from Proposition 2.2.

Proof of (a) in part (iii). For any x € K, by the definition of Fréchet differentiability of the metric
projection operator Py, we consider the following limit.

Pr(u)—Pg(x)— b(x; u—x)

lim
u-x [[u—x||

(4.4)

For x € K, by definition, x* # @, x~# @ and x™ U x~= {1, 2, ..., n}}, which implies that x = @.
Let s, = imin{lxil: i=1,2,..,n}. Then §, >0 such that, forany u, v e R", if ||lu — x|| < &,
and ||lv — x|| < &,, we have

(@ ut=xTandu™ = x~;

(b) vf=x*tand v™ = x".

By Lemma 4.1, this implies that for any u € R", if ||lu — x|| < §, and ||v — x|| < &, then, for
i=1,2,..,n,we have

u;, ifi€x? v;, ifi ex?t
P ="  and P -:{ v ’ 4.5
(W {0, ifi ¢ x*; kWI=0 i g xt. (45)
By the definition of b(x; -), we have
_\uy; — v, ifi€x+,
S U — V)= 4,
bx; u = v) {0, ifi @ x*. (4.6)

Substituting (4.5) and (4.6) into (4.4), we obtain

Pg(u)—Pg(v)— b(x; u—v)

(u,v)-(x,x) [lu—v||

Pr(uw)—Pg()— b(x; u—v)

wv)—(xx) lu—vl|
[lu—xll<8y,llv—x|<Sx

. 0
lim
W)= (x,x) lu—vll
lu—x|<8xllv—x]|<dx

=6.
This proves part (iii).

Proof of (iv). We prove (a) of part (iv). For any given x € AR"™, we prove that Py is Gateaux
directionally differentiable at point x such that



Pg (x)(w) =d(x; w), forany w € R™\{6}.

For this arbitrarily given x € AR™ with x # @, for any fixed w e R™ with w # 6, we consider the
following limit.

lim PEGHW)—Pr(¥) 4.7)
tlo t

By (4.2) and (4.1), we have
d(8; w) = Px(w), forany w € R™\{6}.
This implies that, if x = 8, then, by the property that P (tw) = tPx(w), for t > 0, we have
Py (6 + tw) — Pg(0) = tPx(w) — 6 =td(6; w). (4.8)

Substituting (4.8) into (4.7), we obtain

td(6; w)

PL(6)(w) = IEH)’M = lim = d(6; w).
This proves (a) of (iv) for x = 8. Next, we suppose that x # 6. Let
8= Zmin{lx;|: x; # 0,i=1,2, .., n},
and Ay,=max{|w;|:i=1,2,..,n}, forw e R*\{6}.
In the limit (4.7), if 0 <t < ;TW then, fori = 1,2, ..., n, we have
x; >0 =  x;+tw; >0,
and x <0 = x+tw; <O0.
This implies that, if 0 < t < Z‘Z—W then,
Py(x + tw)i=x; + tw;, foriex™*
Py(x +tw)i=0, foriex™,
and Py(x + tw); = {SWL iixi ; g fori € x.

This implies that, fori=1, 2, ...,n, we have
Py (x + tw)i — Pg(x)i = x; + tw; — x; = tw;, fori e xt,
Py(x + tw)i — Pg(x)i =0—-0=0, fori e x™,

tWi, lle > 0,

0, ifw; <0, fori € x.

and Py (x + tw); — Pg(x)i = {



By the definition (4.2) of d(x; -), this implies
Py (x + tw) — Pg(x) = d(x; tw) =td(x; w). 4.9
Substituting (4.9) into (4.7), we obtain

P . Pg(x+tw)—Pg(x) . td(gw)
P =1 =1 = cw).
KGOW) = S = R = dls w)

This proves (a) of part (iv).

Then, we prove (b) of part (iv). We prove that Px is not Fréchet differentiable at any point in
AR™. For an arbitrarily given x € AR™, there isk € {1, 2, ..., n} such that xx = 0. Assume, by the
way of contradiction, that Py is Fréchet differentiable at x € AR™. Then, there is a linear and
continuous mapping A(x): R™ — R™ such that

lim Pg(u)—Pg(x)— A(x)(u—x) =0. (410)

Uu-x [lu—x]|

Let
z2=(21,22, ... ,2n) € R® withzi =0, for i # k and zx = 1.

In the limit (4.10), we take a special directional line segment for u approaching to x by u = (u,
Uz, ..., Un) satisfying

ui=xfori#k and ux=-t fort>0.
By the formula (4.1), we have
u—x=-—tz and  Py(u) — Px(x) = 6. (4.12)
Substituting (4.11) into (4.10), we have

0 = lim Pg(u)—Pg(x)— A(x)(u—x)
u-x llu—x]|

— lim 06— A(x)(—tz)
tlo -tz

=A%) (2).
This implies
Ax)(z) = 6. (4.12)

In the limit (4.10), we similarly take another special directional line segment for v approaching to
X by v =(vi, vz, ..., Vn) satisfying

vi=xi fori #k and wvk=t, fort>0.

By the formula (4.1), we calculate



v—x=1z and  Px(v) — Pg(x) = tz. (4.13)
Substituting (4.13) into (4.10), we have

9 — llm PK(U)—PK(X)—A(X)(U—X)

VX lv—x|
_ Jim ZoA®)
tlo  ll-twll
=z—-Ax)(2).
This implies
A(x)(2) = z.
Since z # 6, this contradicts to (4.12). This proves that Py is not Fréchet differentiable at this
arbitrarily given point x € AR™, this proves (b) of part (iv). i

5. The Fréchet non-differentiability and Gateaux directional differentiability of the
metric projection onto the positive cone in |2

In this section, we consider the real Hilbert space I2 with norm ||-||, with inner product (-, -) and
with the origin 6. Let N denote the set of all positive integers. Let N be a nonempty subset of N
with complement N. We define some subsets in l2:

K={x=(x1,x2,...) El2:xi = 0, forall i € N},
K* = {x=(x1, X2, ...) € K: x; > 0, forall i € N},
K™ =—K*={x=(xy, X, ...) EK: xi < 0, forall i € N},

K={x=(x1, %z, ...) € ly:|x;] >0, forall i € N and
there are at least one pair j, k € N with x;x; < 0}.

K is a pointed closed and convex cone that is called the positive cone in 2. In contrast with
Euclidean spaces studied in the previous section, the interior of positive cone K in Iz is empty.
We prove it by the following lemma.

Lemma 5.1. The interior of the positive cone KK (the negative cone IK™) in Iz is empty.

Proof. Let x = (X1, X2, ...) € K. For any € > 0, there is a positive integer m such that
. 1
Znxi < €% foranyn>m.

Lety = (y1, Y2, ...) € l2 satisfying



X, ifi <m,
yi={—ze ifi=m+1,
0, ifi>m+1.

One can check that ||x — y|| < e and y € K. o

Let Pk be the metric projection operator from Iz onto K. Similar, to Lemma 4.1, Pk has the
following representation properties.

Lemma 5.2. Let K be the positive cone of l2. Pk has the following properties.

(@ Forany x € Iz, Pg(x) is represented as follows

x;, ifx; >0, .
Px(x)i= {Ol ifx: <0, fori=1,2,... (5.1)

(b) Pk is positive homogeneous. For any X € Iz,
Px(Ax) = APg(x), forany A > 0. (5.2)

Proof. The proof of part (a) is similar to the proof of part (a) in Theorem 4.3, which is proved by
using the basic variational principle of P. Part (b) follows from part (a). m

Similarly, to (4.2) in section 4, for any given fixed x € K, we define a mapping B(x; -): I2 - Iz,
forany w € Iz, by

. _{wy, ifxi > 0, .
(B(x; w)); = {0, ifx, <0, foralli € N.

In contrast with Theorem 4.4 in the previous section, in the next theorem, we prove that Pkis not
Fréchet differentiable on both K* and K~.

Theorem 5.3. Let K be the positive cone of l2. Then, Pk has the following properties.
(i) In K*, we have
(@) Py is not Fréchet differentiable at any point in K*. that is,
VP (x) does not exist, for any x € K*.
(b) Pk is Gateaux directionally differentiable on IK*such that, for any x € K™,
Pr(x)(w) =w, foranyw € I2\{6}.
(i) In K~, we have
(@  Pg is not Fréchet differentiable at any point in IK™. that is,

VPg(x) does not exist, for any x € K.



(b) Pk is Gateaux directionally differentiable on IK™such that, for any x € K~,

Px(x)(w) =6, foranyw e R™"\{6}.
(i)  InK, we have
(@) Py is not Fréchet differentiable on K, that is,

VP (x) does not exist, for any x € K.

(b) Py is Gateaux directionally differentiable on K such that, for any x € K,

Pg(x)(w) =B(x; w), foranyw € I2\{6}.

Proof. Since the proofs of (a)’s of (i), (ii) and (iii) are similar and the proofs of (b)’s of (i), (ii)

and (i) are similar, so, we first prove (a)’s in (i), (ii) and (iii). Then, we prove (b)’s.

Proof of (a) of part (i). For arbitrarily given x € IK*, assume, by the way of contradiction, that
Pxis Fréchet differentiability at x. Then there is a linear and continuous mapping A(x): I2 — Iz,

such that

lim Pg(w)—Pg(x)—- A)(u-x) _ 9
u-x [lu—x]|

For any n € N, we write w(n) € I2 by

w(n)i = {(i’ liffll, zrrll’ , forieN.

We define u(n), v(n) € |2 by

(x,  ifi#Emn, ]
u(n)i = {—xn,ifizn’ fori € N,
0 if i #n, .
and v(n)i = {x—IZx 11fll =Z, fori e N.
n»

It is clear that
u(n) — x = —2x,w(n) - B, as n - oo,
Pg(u(n)) — Pg(x) = —x,W(n),
v(n) —x = —3x,w(n) = #,asn — oo.

Pg(v(n)) — Px(x) = —x,w(n).

(5.3)

(5.4)
(5.5)
(5.7)
(5.8)

In the limit (5.3), we take a directional line segment u = u(n), for n - . By (5.1), (5.2), (5.4)

and (5.5), and by the linearity and continuity of the mapping A(x), we have



Pg(u(n))—Pg(x)— A(x)(u(n)—x)
n—oo [le(m)—xIl

—xpw(n) — A(x)(-2x,w(n))
n—oo [|—2x,w®)|l

—xXpW(n)+2xpA(x)(W(n))

= lim
n—oo 2Xn

—w(n)+ 24(x)(w(n))

= lim

n—oo 2

This implies
7{1_{210 (—w(n) + ZA(x)(W(n))) =6. (5.9)

In the limit (5.3), we take another directional line segment v = v(n), for n —» oo. By (5.1), (5.2),
(5.7) and (5.8), and by the linearity and continuity of the mapping A(x), we have

Pg(v(n))—Pg(x)— A(x)(v(n)—x)

6 = lim o —=I
= lim —xpw(n) — A(x)(=3x,w(n))
n—-oo [[=3xpw@)l
— lim —xpwW(n)+3xnA(x)(w(n))
n—-oo 3xXn
— lim -w(n)+ 3A(x)(w(n)).
n—oo 3
This implies
lim (—w(n) + 3A(x)(w(n))) = 6. (5.10)
n—>co

2x%(5.10) minus 3x(5.9), we get
lim w(n) = 6. (5.11)
n—-oo

(5.11) is a contradiction, which proves (a) of part (i).
Proof of (a) in (ii). The proof of (a) in part (ii) is similar to the proof of (a) in part (i).

For arbitrarily giveny € K™, assume, by the way of contradiction, that Pk is Fréchet
differentiability at y. Then there is a linear and continuous mapping B(y): I — I2, such that

lim Pg(u)-Pg(y)— B(y)(u-y) -9 (5.3)

u—x [lu=yll

Similarly, to the proof of (i), for any n € N, we write w(n) € |2 by



w(n)i = {(i llfflli?l , fori € N.
We define u(n), v(n) € I2 by
u(n)i = {y—i'yn, g ; j Z fori € N,
and v(n); = {y_"’zyn’iif.i 7™ forie.
It is clear that
u(n) —y =-2y,w(n) = 6,asn - oo, (5.12)
Px(u(n)) — Px(y) = —y,w(n), (5.13)
v(n) —y = —=3y,w(n) = 6,asn - oo, (5.14)
Px(v(n)) — Px(y) = =2y, W(n). (5.15)

In the limit (5.3), we take a sequential approaching u = u(n), for n - . By (5.1), (5.2), (5.12)
and (5.13), and by the linearity and continuity of the mapping B(y), we have

9 = lim Px(u(n))-Pg(y)— B(y)(u(n)-y)
n-co lu(m)—yll

— lim =yaw(n) — B(y)(—2yp,w(n))

n—-oo I=2ynw@)||
— lim —yaw(m)+2ynB(y)(w(n))
n—-oo —2yn

— lim w(n)- 2B(y)(w(n))

n—oo 2

This implies

lim (W(n) — 2B(y)(w(m)) = 6. (5.16)

In the limit (5.3), we take a sequence approaching v = v(n), for n - o. By (5.1), (5.2), (5.14) and
(5.15), and by the linearity and continuity of the mapping B(y), we have

0 = lim Pg(v(n))-Pg(y)— B(y)(v(n)—y)
n—-oo lu(m)—-yll

— lim —2ypw(n) — B(y)(=3yp,w(n))
n—-oo [I=3ynw(m)||

— lim =2y,w(n)+3y,B(y)(w(n))
n—-oo —3¥n




— lim 2w(n)—3B(y)(w(n)).

n—-oo 3

This implies
7111—{?0 (ZW(n) - BB(y)(W(n))) =6. (5.17)
2%(5.17) minus 3x(5.16), we get
lim w(n) = 6. (5.11)
(5.11) is a contradiction, which proves (a) of part (ii).
Proof (a) in part (iii). For any given x € K, by the definition of K, we have
{ie N:xi>0}u{i € N: xi<0}=N.

This implies that, at least one of {i € N: x; >0} and {i € N: x; < 0} is infinite. If {i € N: x; > 0} is
infinite, then, then proof of (a) in part (iii) is very similar to the proof of (a) in part (i). If {i € N:
xi < 0} is infinite, then, then proof of (a) in part (iii) is very similar to the proof of (a) in part (ii).
So, the proof of (a) in part (iii) is omitted here.

Next, we prove (b) in part (i). For an arbitrarily given x € K*, we prove
Px(x)(w) =w, forany w € I2\{6}.
This is equivalent to prove

lim Pr(x+tw)—Pg(x)

im = w, forany w € I2\{6}.

For any fixed w € 12\{6}, we have ||w]|| > 0. It is clear to see that ||w|| = |w;]|, for all i € N. For
any given ¢ > 0, for this arbitrarily given w € 12\{6}, there is a positive integer n such that

1
- &
Sisnwh)z <&

For this givenn, let § =min{xi:i=1,2, ...,n}. Then, if0<t<— 2” T then

x; +tw; >0, foralli=1,2,...,n

This implies that, if 0 <t < — ” i then

Px(x +tw)i=x; + tw;, foralli=1,2,...,n

Then, for0<t<—— ” T we estimate

2
P (x+tw)—Pg(x)
[ - w



|Pk (x+tw)—P(x)—tw||?
t2

YR (P (x+tw)—Pg(x)—tw)?
= =

Y PG+ tw)—Pr () —tw)? + X521 (PR (x+tw) — Py (x)—tw)?
= =

Y04+ 32 (PR tw)—Pg(x)—tw)?
t2

2 2
_ Zisnxj+tw>0(PR(XHEW)—PR(X)—tW)} + Yisn x;+tw;<0(PK (X +Ew) —Pg (x)—tw);
= =

2
_ Zi>n,xi+twi>0 0+ Zi>n,xi+twiso(PlK(x+tW)_P]K(x)_tw)i
= 2

2
_ 2i>n,xl-+twiso(O_Pl]((x)_tw)i
= o

2
_ 2i>n,xi+twiso(P]K(x) +tw)j
= 2

2
_ 2i>n,xi+twiso(x+tw)i
= v

2,22
2 Yisnxj+twi<o(X] +E*W])

t2

2,24 42,2
22i>n,xi+twiso(t Wi +t Wi)

t2

2
< 4'Zi>n wi
< g2,

This implies that, if 0 <t < L, then
2|lwll

||P]K(x+tV\;)_P]K(x) _ W” <
This proves (b) in part (i) that

‘Eﬁ}w = w, forw € I2\{6}.

Next, we prove (b) in part (ii). For an arbitrarily given x € K™, we prove
Pg(x)(w) =0, for any w € I2\{6}.

This is equivalent to prove



hm P]K(X‘H','W)—P]K(X)
tlo

= 6, forany w € I2\{6}.

For any fixed w € 12\{6}, we have ||w]|| > 0. It is clear to see that ||w|| = |w;]|, for all i € N. For
any given ¢ > 0, for this arbitrarily given w € 12\{6}, there is a positive integer n such that

1
= &
Qisn Wiz)z < >

For thisgivenn, let § = min{—x;:i=1,2,...,n}. Then, if0<t<— ” i then

x; +tw; <0, foralli=1,2,...,n

This implies that, if 0 <t <— 2” ” then

Pg(x +tw)i=0,foralli=1,2,...,n

Then, for0<t<—— ” T we estimate

||P]K(x+tw)—P]K(x) _0 ” 2
t

_ 1Pg(x+tw)—Pg ()2
t2

_ IPg(x+tw)||?
=

_ IR (PrO+tw))}
N B

L (PROHEW)?Z + 32 (Pr(x+tw))?
t2

_ Z?:l 0+ 2§n+1(P]K(x+tW))i2
t2

2 2
_ Zi>n,xi+twi>0(PlK(x+tW))i + 2i>n,xl-+twl-50(P]K(x+tW))i
= v

2
Zi>n,xi+twi>0(x+tw)i + 2i>n,xi+twi50 0
t2

2
_ Zisnxj+tw>o(X+IW);
= =

2,,2 2
2Yisnx+tw;>0(X{ +EEW)

t2

2002, 42,2
2Yisnx+tw;>o (L Wi+t W)

t2




2
< 4Yisn Wi
< g2,

This implies that, if0 <t <— ” i then

” Py (x+tw)—Pg(x) <s

t

This proves (b) in part (ii) that

lim Pr(x+tw)—Pg(x)
tlo

= 0, forw € I2\{6}.
Next, we prove (b) in part (iii). For an arbitrarily given x € K, we prove

Px(x)(w) =B(x; w), foranyw € I2\{6}.
This is equivalent to prove

lim Pr(x+tw)—Pg(x)

tl0 t = B(X, W), for any w € IZ\{B}

For any fixed w € 12\{6}, we have ||w|| > 0. It is clear to see that ||w|| = |w;|, forall i € N. For
any given ¢ > 0, for this arbitrarily given w € 12\{6}, there is a positive integer n such that

1
1 ¢
(Zi>n Wiz)z < >

For this given n, let § = min{|x;|: i = ., N}. Then if0<t<——— ” i then, fori=1,2, .

xi+twi>0, ifxi>0,

and xX; +tw; < 0, if x; < 0.

This implies that, |fO<t<2|| 0 then, fori=1, 2, ..., n, we have

Pr(x +tw)i=x; + tw;, if x; >0,

Px(x +tw)i=0,ifx; <0.

Then, for0<t<—— ” T we estimate

JFec=r - s |

_ IPg(x+tw)—Pg (x)—tB(x; w)||*
= 5




YR (Pr(x+tw)—Pg(x)—tB(x; w))?
= =

T (PR Oc+EW) =P (x)—tB(x; W))§ + Tie 41 (Pr(X+tw) =Py (x)—tB(x; w))?
tZ

_ Iy 0+ 32 (PO w)—Py (X)—tB(x; w))f
tZ

_ Zisna+tw>oPROHW)=PR(O)—EBOG W) + Tisnxp+tw;<o(Pr(+HW) =Py (x)—tB(x; W)}
= =

_ Tisnatrtw;>0, x50 PrOHW)=PR(X)=tB(G W)} + isnx;+tw;>0, x;0(PKOHIW)=Py(0)~tB(x; w))}
= =

2i>n,xi+twiso, xi>0(PlK(x+tW)_P]K(x)_tB(xi W))iz"‘ Zi>n,xi+twi50, xl-<0(PlK(x+tW)_P]K(x)_tB(xi W))?
t2

_.|_

2 2
_ Disnxj+tw>0, x>0(Xit W —X; —tW)® + Yisn x;+tw;>0, x;<0(Xi+tW;—0—t0)
= =

2 2
Zi>n,xi+twiso, xi>0(0 —x; —twy) +Zi>n,xi+twiso, xi<0(0_0_t0)
t2

2 2
_ Zisnxj+tw;>0, x>0 0+ Lisnx;+tw;>0, x;so(Xittwy) n Lisnax;+twi=o, x;>0(=Xi =tW)“+ Yisn x; +tw;<0, x;<00
- t2 t2

2 2
2i>n,xi+twi>0, xiso(xi"'tWi) +2i>n,xi+twiso, xi>0(xi+twi)
t2

2,4.2.2 2,.2,2
2 Zi>n,xi+twi>0, xiso(xi +tew) +22i>n,xi+twiso, xi>0(xi +tewi)

t2

202 4 422 20024 42,2
2Yisnx+tw;>0, x;<0(E W HE W) +2 Visn x4 tw;<o, x>0(E“ Wi+t W)

t2

2 2
2Xisn(t*wi+t*wi)
tZ

=4 Zi>n Wi2

< g2,

IA

This implies that, if 0 <t < ——, then

2llwll’
”—PK(xHV:)_P"‘(x) — B(x; W)” <e.
This proves that
. PK(x+tw)—PM(x)
lim—————= = B(x; w), forw € [2\{6}. O

tlo t



6. Conclusion and remarks

In section 3 of this paper, we study the strict Fréchet differentiability of the metric projection
operator P, onto closed balls rB centered at the origin in Hilbert spaces. In [6, 7], the
directional differentiability of the metric projection onto closed balls is studied in uniformly
convex and uniformly smooth Banach spaces and Hilbert spaces, in which the considered balls
have center at arbitrarily given point ¢ in the spaces. We believe that the results about the strict
Fréchet differentiability of P, proved in Theorem 3.3 in this paper can be extended to metric
projection Py, Which is onto closed balls with center at an arbitrarily given point c in the
spaces.
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