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Abstract

[Context and Motivation] Natural Language Processing (NLP) is now a cor-
nerstone of requirements automation. One compelling factor behind the growing
adoption of NLP in Requirements Engineering (RE) is the prevalent use of nat-
ural language (NL) for specifying requirements in industry. NLP techniques are
commonly used for automatically classifying requirements, extracting important
information, e.g., domain models and glossary terms, and performing quality
assurance tasks, such as ambiguity handling and completeness checking. With so
many different NLP solution strategies available and the possibility of applying
machine learning alongside, it can be challenging to choose the right strategy
for a specific RE task and to evaluate the resulting solution in an empirically
rigorous manner. [Content] In this chapter, we present guidelines for the selec-
tion of NLP techniques as well as for their evaluation in the context of RE. In
particular, we discuss how to choose among different strategies such as tradi-
tional NLP, feature-based machine learning, and language-model-based methods.
[Contribution] Our ultimate hope for this chapter is to serve as a stepping
stone, assisting newcomers to NLP4RE in quickly initiating themselves into the
NLP technologies most pertinent to the RE field.
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1 Introduction

NLP’s role in requirements automation is pivotal, due to the widespread use of natu-
ral language (NL) in industrial requirements specifications. Historically, NL has posed
challenges for requirements analysis because of its inherent proneness to defects such
as incompleteness and ambiguity. Recent breakthroughs in NLP, e.g., the emergence of
large language models, have nonetheless drastically enhanced our ability to automati-
cally analyze textual information. This development is poised to even further amplify
the adoption and influence of NL in requirements engineering.

Due to the rapid advancement of NLP, newcomers to NLP4RE may feel over-
whelmed by the numerous potentially applicable technologies. Another challenge is
the necessity to empirically assess a proposed automation solution, ensuring proper
optimization, and, where applicable, improve performance over existing solutions.

Over the past several years, we have studied various requirements automation
problems, including checking compliance with requirements templates [5], glossary
construction [7], model extraction [6], requirements demarcation [2], ambiguity han-
dling [19], and question answering [20]. With the benefit of hindsight, this chapter aims
to reflect on our research process and offer our collective insights into how we approach
NLP4RE problems. Before we start, we need to emphasize that our perspective is ret-
rospective. Given the fast pace of progress in NLP technologies, new considerations
may surface, and existing technologies could become outdated. Therefore, it is impor-
tant for readers to consider the time this chapter was written (2023) when dealing
with new technologies. This advice applies to most works in the fast-changing field of
Applied AI.

Structure. Section 2 outlines the steps for automating pre-processing, analysis, and
post-processing in NLP4RE. Section 3 describes various NLP techniques and discusses
their key considerations for automation in RE. Finally, Section 4 summarizes the
chapter and presents conclusions.

2 Automation Steps in NLP4RE

The automation process for NL requirements and related textual artifacts can be
structured into three sequential steps. These steps, shown in Figure 1 are: (1) Pre-
processing, (2) Analysis, and (3) Post-processing. We outline these steps next.

2.1 Pre-processing

The goal of pre-processing is to automatically examine the NL content of require-
ments or requirements-related artifacts (e.g., design documents and code) and generate
structured information for use by the Analysis step (Section 2.2).

The specific information targeted by pre-processing depends on the needs of
the subsequent Analysis step. Importantly, the information to obtain through pre-
processing relies on the selection of the units of analysis for the Analysis step. In the
context of NLP, “unit of analysis” refers to the particular textual components that are
intended for processing and interpretation. Some common units of analysis are: words,
phrases, sentences, and paragraphs. For instance, when the objective of Analysis is
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Fig. 1 NLP4RE Steps

identifying statements that contain requirements, sentences are frequently adopted as
the units of analysis [2]. We note that there is a composition relationship between dif-
ferent unit types in NLP. For example, a sentence is made up of phrases, and a phrase
is made up of words. Because of this characteristic, it is possible to use a combination
of units of analysis simultaneously, e.g., phrases alongside sentences.

Typically, during the pre-processing phase, a set of “features” are calculated for the
units of analysis (or the relationships between the units). A feature refers to a distinct
attribute or characteristic of a unit of analysis. Features can be numeric (e.g., the
number of tokens appearing in a sentence) or categorical (e.g., part-of-speech tags).

The most common enabling technologies for computing features are presented
in Figure 1 under the Pre-processing activity. These technologies include the NLP
Pipeline, Relevance Measures and Embeddings, which are discussed further in
Section 3.

2.2 Analysis

The core of the process shown in Figure 1 is the Analysis step. In NLP4RE, this step
typically manifests as one of the following three alternative activities: Classification,
Clustering, and Text Generation.

2.2.1 Analysis Activities

Classification involves the assignment of labels or categories to the units of analysis.
There are numerous NLP4RE use cases for classification. An example use case would
be differentiating between functional (F) and non-functional requirements (NF) [27].
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This task can be framed as the assignment of F and NF labels to the units of analysis,
which in this context, are typically sentences within a requirements document.

Classification further extends to encompass verbatim information extraction. Ver-
batim information extraction involves directly extracting exact segments from source
documents without abstraction, inference, or interpretation. This is done by marking
off the text segments of interest and assigning labels to them. A typical use case is iden-
tifying requirements-related text segments in legal documents and annotating them
with labels such as “permission”, “obligation”, “condition”, and “exception” [43].

Clustering leverages inherent similarities among the units of analysis to organize
them into groups or themes. Unlike classification, which requires predetermined labels,
clustering emphasizes the intrinsic structure and similarities within the content. The
goal is to bring together similar content based on shared features, thereby avoiding
the need for explicit predefined categories. This makes clustering particularly useful
when dealing with problems where the labels are not well-defined or when exploring
content where the underlying patterns might not be immediately evident. For instance,
clustering can be used to identify groups of closely related requirements phrases during
glossary construction [7]; here there is no predetermined set of classes for the groups
of related phrases that will emerge.

Text Generation involves the automated creation of human-readable text based on
either structured or unstructured inputs to aid the derivation, completion, understand-
ing and communication of requirements. NLP4RE solutions based on text generation
are a relatively recent development but are rapidly gaining momentum thanks to
advances in generative language models like GPT [9]. Example use cases for text gen-
eration include constructing requirements models based on prompts and early-stage
descriptions [16], summarizing requirements-related documents [26], and providing
predictive assistance for requirements completion [31].

2.2.2 Technique Selection

Selecting suitable enabling technique(s) for the Analysis step is crucial. To make this
selection easier, we have developed a decision process, shown in Figure 2. This simple
process, which is based on our past experience, aims to facilitate narrowing the options
for the Analysis step.

The first and most important criterion in this process is decision node (a), as
depicted in Figure 2. This decision concerns whether we have a well-established and
pre-existing set of conceptual categories relevant to automation. For instance, con-
sider the task of classifying functional and non-functional requirements. In this task,
the categories would be functional and non-functional, and this understanding exists
before classification. For another example, consider the task of domain model extrac-
tion. Here, all pertinent categories are identified and can be listed, such as class,
attribute, association, cardinality constraint, and so on. In contrast, consider a prob-
lem like identifying similar and potentially redundant requirements. When presented
with a requirements document, predicting the number of equivalence classes (clusters)
is impossible. As a result, there is no predefined set of conceptual categories for this
problem that can be known beforehand.
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Fig. 2 Identifying Suitable Enabling Technique(s) for a Specific Analysis Task

Without established conceptual categories, dataset size is the next crucial criterion
to consider. Historically, when predefined categories are not possible, clustering algo-
rithms have been the preferred enabling technique for analysis. Recent advances in
generative language models like ChatGPT and Llama nonetheless offer an alternative.
For instance, when dealing with data sources such as requirements documents, one
can use exploratory prompts like the following to uncover the main themes: “Cluster
the primary concepts in the following: [contents of the data source]”.

As of writing, using a generative language model as an alternative to clustering
algorithms is effective only for relatively small content volumes. Existing language
models set a limit on total input and output tokens during interactive dialogs, known
as “token limit” or “session size.” This limit defines how much context the model is
capable of taking into account for response generation. Currently, the largest token
limit we are aware of is 32,768 tokens (GPT-4-32k); this would be insufficient for
many NLP4RE problems, such as traceability retrieval, which can potentially involve
millions of tokens.

When an a-priori-known set of conceptual categories exists, the next question
is whether a labelled dataset is available. This is captured by decision node (c) in
Figure 2. When a labelled dataset is lacking, the most common enabling technique
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is query-based pattern matching. Although pattern matching does not require the
explicit creation of labelled data, formulating the queries often entails some form of
qualitative analysis, e.g., grounded theory [41]. Alternatively, language models can
be employed when labelled data is unavailable. In such a scenario, one has to rely
exclusively on the language model’s pre-training, without further specific training for
the task at hand. For example, a language model could be asked the following: “Is
this requirements statement functional or non-functional? [an individual requirements
statement]”.

If labelled data is available, the next factor to consider is the volume of such data,
as captured by decision node (d) in Figure 2. When a considerable amount of labelled
data is available, there are two options: applying feature-based learning or utilizing
the labelled data to “fine-tune” a language model. Fine-tuning involves adapting a
pre-trained model to a specific task through targeted training. In cases of limited
labelled data, achieving task adaptation for a language model with minimal examples
– a technique known as few-shot learning – is likely to yield better results.

It is important to note that there is no general rule as to what constitutes “con-
siderable” or “limited” labelled data. Several parameters such as the quality of labels,
the complexity of the relationships to be learned, the number of classes (in classifi-
cation) and the range of values (in regression), the amount of noise in the data, the
dimensionality of the feature space (in case of feature-based learning), and the desired
level of accuracy to achieve can influence data needs. As such, experimentation on a
case-by-case basis is crucial to determine whether the labelled data at hand should be
regarded as considerable or limited. In our experience, and for the sake of offering ball-
park figures, having fewer than 100 data points tends to constitute a limited amount.
A considerable amount of data, on the other hand, is likely to materialize within the
range of 500 to 5000 labelled data points.

We need to highlight three important aspects related to the process in Figure 2.
First, no individual decision model can encompass the full spectrum of techniques
employed in NLP4RE. Our model aims to offer a simplified representation of common
scenarios, rather than imposing constraints or promoting a lack of flexibility in tech-
nique selection. Second, the process is likely to evolve in the future to stay in step with
NLP4RE research. In particular, capitalizing on the interactive capabilities of large
language models, there is potential to further elaborate the process by considering
prompting strategies and providing additional guidelines. However, due to the scarcity
of NLP4RE approaches built on large language models, we have to defer doing so to
the future. Finally, when selecting enabling techniques for analysis, the cost and envi-
ronmental impact must be considered. Most notably, the resource-intensive nature of
large language models requires justification, especially when alternatives cannot be
dismissed due to compelling reasons such as lack of accuracy.

2.3 Post-processing

Post-processing – the third step in the process of Figure 1 – aims to enhance the results
of the Analysis step or to adapt these results for human analysts’ better understanding.
Post-processing is not needed in all NLP4RE solutions and is thus an optional step.
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To illustrate a simple scenario where post-processing is required, let us consider
the task of requirements identification. For this task, one may apply the following
heuristic as a post-processing step: if all but one sentence in a passage are categorized
as requirements (during the Analysis step), that lone sentence should be reclassified
from a non-requirement to a requirement. This adjustment will likely increase the
accuracy of requirements identification [2].

For a more advanced example of post-processing, let us consider requirements com-
pletion based on predictions by a language model. In this context, the language model
is likely to generate a non-negligible number of predictions that are not useful (false
positives) alongside the useful ones. To reduce the incidence of unuseful predictions in
the final results, the development of a post-processing filter becomes essential [31].

In its simplest form, post-processing can be light, e.g., in the case of the heuris-
tic mentioned earlier for requirements identification. In more complex scenarios, like
the one mentioned above where predictions need to be filtered, additional enabling
techniques might be needed to carry out post-processing.

3 Enabling Techniques: Overview and Guidelines

In this section, we outline the various enabling techniques shown in Figure 1 and
provide practical guidelines for applying and evaluating them.

3.1 NLP Pipeline

The NLP pipeline is a sequence of modules that incrementally add linguistic anno-
tations to an input text. The pipeline typically begins with tasks like tokenization
(breaking text into words or sub-words), sentence splitting (segmenting a passage
into sentences), and lemmatization (reducing words to their base forms). Next and
depending on the annotations required, the pipeline performs tasks such as part-of-
speech (POS) tagging (labelling words with their grammatical roles), named-entity
recognition (identifying entities like names, dates, and locations), and syntactic pars-
ing (analyzing sentence structure). Syntactic parsing includes two main techniques:
constituency parsing (deconstructing sentences into grammatical constituents) and
dependency parsing (determining grammatical relationships between words).

Figures 3 (a) and (b) respectively exemplify the annotations generated by the
constituency parsing and dependency parsing modules for the following requirements
sentence: R = “The flight simulator shall store log messages in the database.”. The
annotations generated by the constituency parser for this sentence are: NP (noun
phrase), VP (verb phrase), and PP (prepositional phrase). These annotations capture
the hierarchical constituents of the sentence. The relationships between the words in
the sentence are given by the pairwise links generated through dependency parsing.
For instance, from the dependency parse graph of Figure 3 (b), one can determine that
“simulator” functions as the subject (nsubj) for “store,” and that “messages” serves
as the object (obj) for this transitive verb. Crucially, both parsing methods require
sentence splitting and POS tagging. Figure 3(a) illustrates sentence annotation (S),
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Part-of-Speech:

The flight simulator shall store log messages in the database .
DT NN NN MD VB NN NNS IN DT NN .

1

Lemmas:

The flight simulator shall store log messages in the database .
the flight simulator shall store log message in the database .

1

Named Entity Recognition:
The flight simulator shall store log messages in the database .1
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The flight simulator shall store log messages in the database .
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Enhanced++ Dependencies:

The flight simulator shall store log messages in the database .
DT NN NN MD VB NN NNS IN DT NN .aux compound detcompound
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punct

1

CoreNLP Tools:

Enter a TokensRegex expression to run against the above sentence:

Visualisation provided using the brat visualisation/annotation software.
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The flight simulator shall store log messages in the database.

— Annotations —
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English Submit
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version 4.5.4

Constituency Parsing

Constituency parsing is the task of breaking a text into sub-phrases, or constituents. Non-terminals in the parse tree are types of phrases, the terminals are the words in the sentence.

Model

Constituency Parser with ELMo embeddings

This is an implementation of a minimal neural model for constituency parsing based on an independent scoring of labels and spans. This SpanConstituencyParser  simply encodes a sequence of text with a stacked Seq2SeqEncoder , extracts span representations using a SpanExtractor , and
then predicts a label for each span in the sequence. These labels are non-terminal nodes in a constituency parse tree, which we then greedily reconstruct. The model uses ELMo embeddings, which are completely character-based and improves single model performance from 92.6 F1 to 94.11 F1 on the
Penn Treebank, a 20% relative error reduction.

Model Output
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The flight simulator shall store log messages in the database .

(a) Constituency Parse Tree

(b) Dependency Parse Graph

Fig. 3 Illustration of (a) Constituency Parsing and (b) Dependency Parsing. Both Parsing Methods
Require Sentence Detection and POS Tagging.

while both figures include POS tags (DT: determiner, NN: noun, NNS: plural noun,
MD: modifier, VB: verb, IN: preposition).

When using the NLP pipeline, it is important to consider the specific natural lan-
guage(s) that require support. While most NLP modules have good performance over
well-written English, their effectiveness can vary significantly when dealing with other
languages or when processing text that deviates from grammatical norms, such as
user feedback (e.g., app reviews) or developer commit messages. Experimentation is
therefore typically necessary for constructing an accurate NLP pipeline. NLP work-
benches such as GATE [23] and DKPro [14] facilitate the integration of NLP modules
from different NLP libraries. For instance, these workbenches enable the use of the
POS tagger provided by one library, say, Apache OpenNLP [4], alongside the con-
stituency and dependency parsers from another library, say, Stanford CoreNLP [32].
This flexibility to combine NLP modules from different libraries enables systematic
experimentation with various pipeline configurations to determine the optimal config-
uration for the task at hand. An example of such experimentation can be found in our
work on checking conformance with requirements templates [5].

If systematic experimentation with alternative NLP modules is not feasible or if
there are constraints on using a single library, e.g., to minimize complexity, it would
be important to conduct an error analysis on the annotations generated by the NLP
pipeline. This analysis helps with ensuring the absence of systemic issues. Common
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systemic issues include recurring errors in sentence detection, repeated inaccuracies in
tokenization and POS tags, and incorrect parsing results.

� Takeaway: NLP Pipeline

Prioritize pipeline implementations that are known to work well for the lan-
guage(s) you need to support. Experimentation with different NLP modules
is often useful for improving accuracy. If extensive experimentation with the
NLP pipeline is not possible or you are limited to a single library, conduct an
error analysis on the annotations to identify and address any systemic issues
such as recurring errors in sentence detection, POS tags, and parsing.

3.2 Relevance Measures

In the context of RE, relevance denotes the extent to which various requirement
segments are related or how closely a specific requirements segment aligns with a
particular query, topic, or artifact (e.g., a design document or a portion thereof). The
concept of relevance is typically quantified using one or a combination of three distinct
categories of metrics: syntactic, semantic, and statistical.

• Syntactic Relevance is the string-based or structural relatedness between two
or more text segments. There are numerous syntactic relevance measures. For a
fairly comprehensive list of syntactic measures, consult [24]. An example metric
in the syntactic category is Levenshtein [24]. This metric calculates the minimum
number of single-character edits (insertions, deletions, or substitutions) required to
transform one string into another. Levenshtein distance is usually normalized (scaled
from 0 to 1) by dividing it by the maximum possible edit distance between the two
strings. For instance, the (normalized) Levenshtein distance between the phrases
“software system” and “software systems” is 0.9375, indicating that the two strings
have considerable lexical overlap.

• Semantic Relevance goes beyond string matching to measure similarity between
word meanings. Semantic relevance is typically quantified using metrics like PATH
within a semantic network such as WordNet [37]. WordNet captures various rela-
tionships, such as hypernymy and hyponymy, which denote an “is-a” connection,
and meronymy and holonymy, representing a “part-of” association. To illustrate,
consider the relationship between “vehicle” and “car”, where “vehicle” serves as
the hypernym of “car”, and the relationship between “wheel” and “car”, with
“wheel” acting as the meronym of “car”. PATH similarity calculates the shortest
path between two concepts on the “is-a” hierarchy. For instance, the PATH score
between the terms “cat” and “mammal” is higher than between “cat” and “vehicle”,
indicating that “cat” is semantically more related to “mammal” than “vehicle”.

• Statistical Relevance assesses relevance by analyzing the frequency and distribu-
tion of terms within a document, often employing algorithms such as TF-IDF and
BM25. These algorithms are frequently normalized on a scale from 0 to 1 [12]. Statis-
tical methods typically operate at the level of term frequency and do not necessitate
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a pre-constructed semantic network. For instance, TF-IDF evaluates a term’s impor-
tance within a document based on its frequency of occurrence in that document,
normalized by its frequency across the entire corpus. BM25, which extends TF-IDF,
takes into account further factors like term saturation and document length. To
illustrate, consider a corpus of requirements documents. A term like “user authen-
tication” might appear infrequently but could be highly significant. BM25 can rank
a document that extensively discusses this term higher than a document that only
mentions it in passing, thereby indicating its greater relevance in the context of secu-
rity requirements. Statistical measures are more commonly employed in information
retrieval (IR) problems within NLP4RE, such as querying requirements [3].

Applications and Other Considerations. Relevance measures serve two main use
cases in NLP4RE. The first is to calculate similarity either within a set of require-
ments or between requirements and textual segments found in other development
artifacts. The second use case is to assess the relative significance of terms in doc-
uments. Frequently, relevance measures are employed as features in both supervised
and unsupervised learning.

Different relevance measures can be combined to provide a more holistic charac-
terization of relevance. For example, when tasked with constructing a requirements
glossary, the combination of syntactic and semantic measures can help identify a wider
range of variations among related domain terms. To illustrate, if our objective is to
cluster terms related to a flight simulation system, we anticipate that “flight coordi-
nates”, “aircraft position”, and all concepts associated with “flight positioning” should
land in the same cluster [7]. Simultaneously applying both syntactic and semantic
measures facilitates the determination of these terms being highly similar.

In relation to syntactic measures, it is important to note that, because require-
ments frequently manifest variability in phrasing, vocabulary selection and syntactic
structure, techniques like lemmatization and tokenization are often required prior
to computing syntactic measures. This preprocessing helps mitigate variability and
enhances the accuracy of comparisons [7].

Finally, and in relation to semantic measures, we note that these measures are
quickly being replaced by more advanced techniques, notably embeddings. Embed-
dings not only capture semantic similarity but also contextual similarity, as we discuss
in Section 3.3. Furthermore, while lexical resources like WordNet offer the advantage
of establishing human-interpretable connections between words, techniques such as
embeddings provide a more nuanced characterization of meaning, although they may
not be entirely interpretable by humans. Consequently, when the primary goal is the
application of similarity metrics, rather than explaining relationships, there is often
limited justification for employing semantic measures like PATH in future research.
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� Takeaway: Relevance Measures

Combining different relevance measures often results in more accurate ana-
lytical outcomes. Relevance measures can be applied at different levels of
granularity, ranging from individual tokens (e.g., Levenshtein distance) to
entire documents (e.g., TF-IDF). Empirical evaluations of relevance measures
can centre around identifying the most effective combination of these measures
or benchmarking advanced solutions against relevance measures considered as
baseline methods.

3.3 Embeddings

Embeddings enable the conversion of words into numerical vectors. These vectors
encapsulate the semantic connections among words, in turn supporting a more mean-
ingful manipulation of language. Word embeddings are typically derived through
self-supervised approaches such as Word2Vec [34], GloVe [36], and the pre-training
of language models such as BERT [18] and GPT [38]. For example, using the 300-
dimensional variant of GloVe embedding vectors, the word “requirements” would be
represented as a 300-dimensional vector: [-1.3598e-01, -1.8174e-01, · · · , -6.2015e-02].

While the primary goal of embeddings is to represent individual words, methods
also exist for generating embeddings for phrases and sentences. For example, a simple
approach for obtaining sentence embeddings is to compute the weighted average of
the word embeddings in a given sentence [10].

There are two main use cases for embeddings in the existing NLP4RE literature:
(1) computing semantic similarity, typically through the cosine measure, and (2) using
embeddings as features for learning. To illustrate, suppose that we are interested in
identifying most similar requirements, e.g., as a way to find overlapping or redun-
dant requirements. Consider the following three statements: R1 = “The system shall
react to user input within one second.”; R2 = “The system shall respond within one
second.”; and R3 = “The system shall encrypt sensitive data.”. For a requirement
sentence R, let emb(R) denote the sentence’s embeddings. By utilizing the 300-
dimensional variant of GloVe and employing averaging to derive sentence embeddings
from word embeddings, we would obtain the following: cosine(emb(R1), emb(R2)) ≈
0.95 > cosine(emb(R1), emb(R3)) ≈ 0.83 > cosine(emb(R2), emb(R3)) ≈ 0.78. Now,
the requirements analyst can, for example, sort the requirements pairs in descending
order of similarity and inspect the most similar pairs to determine if there are over-
laps or redundancies. Alternatively, when it is feasible to create a labelled dataset for
training, the embeddings can be used as features – either on their own or alongside
other features – for building a feature-based classifier that distinguishes similar and
non-similar requirements pairs. In our illustrative example, and assuming that only
R1 and R2 are deemed similar, one could infer (among other labelled data points) the
following for training: emb(R1)|emb(R2)|SIMILAR and emb(R1)|emb(R3)|NOT-SIMILAR.
Here, “|” denotes vector concatenation, and “SIMILAR” and “NOT-SIMILAR” denote
labels for pairs of requirements.

There are some important considerations to note when working with embeddings:
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Dimensionality of Embeddings. The dimensionality of embeddings, which refers
to the number of dimensions (or features) used to represent each word as a vector,
determines the richness of information in word vectors. While some dimensions may
have clear interpretations, e.g., gender or sentiment, others can be complex, capturing
subtle and abstract aspects of word semantics that would be difficult for humans to
interpret directly. There is no universally suitable choice for the dimensionality of word
embeddings. Although a larger dimensionality can provide increased semantic nuance
and potentially improved accuracy, one must consider the curse of dimensionality [34]
– the inherent challenges that arise when dealing with high-dimensional data. We
recommend experimentation with alternative embedding methods and dimensionality
options to find an acceptable trade-off between accuracy for the analytical task at
hand and the challenges posed by high-dimensional data. Note that the techniques
discussed in Section 3.5 for feature selection and reduction can also be applied to
embeddings to reduce dimensionality.

Non-contextual vs. Contextual Embeddings. Embeddings can be either non-
contextual or contextual. Non-contextual embeddings, such as those produced by
GloVe, create fixed word vectors that remain the same regardless of context. In con-
trast, contextual word embeddings, as produced by models like BERT and GPT,
consider the surrounding words to generate word vectors that adapt to the context.
To illustrate, consider the following two sentences: S = “Meeting privacy requirements
is essential.”; and S′ = “The system shall meet all the privacy requirements stipulated
by the GDPR.” Using GloVe to obtain embeddings for the word “requirements” yields
the same vector for both sentences. In contrast, if one uses models such as BERT or
GPT, the embeddings obtained for the same word in different sentences would differ.
For instance, the bert-base-uncased variant of BERT yields the following vectors for
“requirements” in S and S′, respectively: [2.7466e-01, 4.8193e-01, · · · , 4.1681e-01] and
[-1.6852e-01, 3.5143e-01, · · · , 3.5699e-01]. This difference is due to the contextually dif-
ferent meaning of “requirements” in these two sentences, where the word conveys the
sense of a prerequisite condition in S and the sense of a specification in S′.

Contextual embeddings offer greater accuracy but come at a higher computational
cost. It is therefore important not to dismiss non-contextual embeddings outright but
to weigh their potential alongside contextual embeddings to determine whether the
added accuracy of contextual embeddings is worth the extra cost.

Domain-specific Embeddings. Domain-specific embeddings capture context-
specific word meanings that generic embeddings may miss. For instance, specialized
BERT variants, such as BioBERT [28] for biomedical texts and LegalBERT [15] for
legal documents, provide domain-specific embeddings for their respective domains.
When domain-specific embeddings exist, it is worthwhile to compare them with generic
embeddings for potential improvements. Further, in cases where domain-specific
embeddings are unavailable, but a suitable domain-specific corpus is accessible, one can
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attempt to construct domain-specific embeddings from scratch. Recent efforts in soft-
ware engineering, such as building Word2Vec and GloVe embeddings for model-driven
engineering [30], provide useful guidance in this regard.

� Takeaway: Embeddings

Experiment with different embedding technologies and dimensionality options
to strike a balance between accuracy and the challenges of high-dimensional
data. Assess whether the added accuracy of contextual embeddings justifies
their higher computational cost, or if non-contextual embeddings suffice for
your specific task. Explore domain-specific embeddings when available, as they
may be superior at capturing context-specific meanings.

3.4 Query-based Pattern Matching

The annotations produced by the NLP pipeline provide a rich basis for defining queries
that detect patterns of interest within an input text. Typically, pattern-matching
queries work with “spans”. Each span represents a distinct sequence of consecutive
words or tokens within the given text.

An important technical aspect in pattern matching is the choice of the query lan-
guage. In NLP, span information can be flat, focusing on individual words and their
properties (like POS tags), hierarchical, revealing how words combine into larger struc-
tures (as in constituency parsing), or graph-based, capturing relationships between
words (as in dependency parsing). Different NLP toolkits offer different query lan-
guages; CoreNLP [32], for instance, provides TokensRegex for token-based regular
expressions, Tregex for tree-based linguistic structures, and Semgrex for syntactic
dependency patterns. To illustrate, we exemplify these query languages:

(a) The TokensRegex query [{tag:/VB.*/}] extracts all spans tagged as verbs.
(b) The Tregex expression NP[<NN | <NNS] extracts all spans that are Noun Phrases

(NPs) and immediately dominate a singular noun (NN) or a plural noun (NNS).
(c) The Semgrex query {pos:/VB.*/} >nsubj {}=subject >obj {}=object extracts verbs

that both have a subject and an object, alongside the subject and the object.

Figure 4 shows the results of the above queries as applied to the annotations in
Fig. 3. All three queries serve a purpose in NLP4RE. Query (a) produces results that
can be used as a feature for identifying requirements, grounded in the hypothesis that a
higher verb count signifies a higher likelihood of requirements being present. Query (b)
identifies constituent noun phrases and verb phrases within a requirements statement.
This information is valuable for various purposes, one of which is to validate whether
the statement conforms to a specific template, such as EARS [33]. Query (c) is useful
for constructing a domain model [6]; the query extracts a probable association. In the
case of our example, the association would be “[flight] simulator stores [log] messages”.

Query-based pattern matching techniques often face criticism related to both the
scope of the study that informs query development and the applicability of the result-
ing queries beyond their initial purpose. To address these concerns, we recommend a
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Constituency Parsing

Constituency parsing is the task of breaking a text into sub-phrases, or constituents. Non-terminals in the parse tree are types of phrases, the terminals are the words in the sentence.

Model

Constituency Parser with ELMo embeddings

This is an implementation of a minimal neural model for constituency parsing based on an independent scoring of labels and spans. This SpanConstituencyParser  simply encodes a sequence of text with a stacked Seq2SeqEncoder , extracts span representations using a SpanExtractor , and
then predicts a label for each span in the sequence. These labels are non-terminal nodes in a constituency parse tree, which we then greedily reconstruct. The model uses ELMo embeddings, which are completely character-based and improves single model performance from 92.6 F1 to 94.11 F1 on the
Penn Treebank, a 20% relative error reduction.
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Fig. 4 Illustration of Query-based Pattern Matching over the Annotations of Fig. 3.

two-fold approach. First, it is important for query designers to carefully document the
query specification process, providing a clear explanation of the considered documents
and domains. The primary objective should be to enhance empirical reliability, ensur-
ing that the process is as reproducible as possible by others. Second and concerning
generalizability, one should avoid using all the text under analysis for query devel-
opment. This approach allows for the assessment of query generalizability on unseen
text, resulting in a more credible evaluation. An even more robust strategy involves
expanding the analysis beyond the immediate domain under study. For example, if the
focus is on regulatory documents, it is common to derive queries in one legal jurisdic-
tion, such as Europe, and subsequently evaluate query accuracy in texts from another
jurisdiction, like Canada [43]. By adhering to these basic principles — detailed docu-
mentation of the query derivation process and assessments of generalizability — one
can enhance the utility of query-based pattern matching techniques.

� Takeaway: Query-based Pattern Matching

(1) When working with NLP annotations, select query language(s) that align
with your specific analysis needs. (2) To ensure the reliability of query
derivation, carefully document the steps you take to create the queries. This
documentation should include the criteria, context, and content used for query
design, making it easier for others to reproduce your work. (3) Refrain from
using all the text you have for query development. To improve the applicabil-
ity of your queries, evaluate their performance on unseen (or withheld) text or
in different domains.
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3.5 Feature-based Machine Learning

Feature-based machine learning (ML) is concerned with using labelled data to train
algorithms to make predictions based on predefined features. Feature-based ML has
numerous applications in NLP4RE. For instance, it can be used for (1) categorizing
input requirements as either functional or non-functional [27], or (2) predicting the
number of story points for user stories based on historical data [17]. The former appli-
cation is a classification problem, entailing the assignment of discrete labels to data
points (“functional” or “non-functional”); whereas the latter scenario constitutes a
regression problem as it involves estimating numeric values (story points).

Building a feature-based ML model has five main steps. Below, we discuss these
steps and outline some important practical considerations related to each step.

1. Data collection involves gathering relevant and sufficient data, including the
labelling process. This phase can be very time- and effort-intensive, particularly
when manual labelling is required. To ensure consistency, it is crucial to define a
clear and agreed-upon labelling task with protocols that annotators can consis-
tently follow. To enhance internal validity, authors should avoid annotating their
test data. When feasible, it is further important to employ multiple annotators
with some overlap to enable the calculation of inter-annotator agreement. Detailed
documentation of the data-collection protocol is essential for reliability [2, 3].

2. Data wrangling is concerned with handling missing data, noise removal (e.g., stop
words or redundant information), deciding about how to manage structured and
unstructured data, and transforming results into the desired format. It is crucial to
thoroughly document all techniques and decisions made in this step, as even minor
changes can significantly impact the accuracy of the ML model [21].

3. Feature engineering is the process of defining relevant features for learning from the
input data. In NLP4RE, features are usually defined over the outputs of the pre-
processing techniques discussed in Sections 3.1–3.3. For instance, a feature based
on the NLP pipeline could be the number of verbs in a sentence. A feature using
relevance measures might be the highest TF-IDF rank of a specific term across all
articles in a corpus. Finally and in relation to embeddings, the components within
an embedding vector can be regarded as features, as elaborated in Section 3.3.

Features should be treated as hypotheses for addressing the problem at hand,
and their usefulness must be evaluated. Techniques for computing feature impor-
tance, e.g., information gain [11], and PCA analysis [1], may be used for eliminating
redundant or less significant features, thereby preventing overfitting. Feature engi-
neering must also prioritize computational efficiency, particularly in real-time tasks
such as live editing of requirements [2], where almost instant feature computa-
tion is necessary. In such scenarios, certain computationally expensive features may
need to be sacrificed, even if they offer marginal improvements. For example, the
resource-intensive process of constituent parsing, despite its potential value, may
prove impractical. Conducting a cost-effectiveness analysis, weighing the cost of
computing each feature against its impact on the resulting ML model’s accuracy is
therefore recommended.
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4. Model Selection, Tuning, and Training is concerned with choosing an appropriate
ML algorithm, fine-tuning its hyperparameters, and training it over feature-
engineered data [22]. Initially, the computed feature data should be split into three
sets: the training set (typically 70% of all the data), the validation set (usually
10% of the data) for model selection and hyperparameter optimization, and the
test set (typically 20% of the data) to evaluate the trained ML model [39]. During
dataset partitioning, it is paramount to avoid data leakage, which means avoiding
any exposure of test set data during training and validation [42]. If the dataset cov-
ers multiple projects, it is advisable to ensure that the test set includes data from
‘hold-out’ projects not involved in training or validation at all [39].

NLP4RE frequently encounters a scarcity of the kind of “abundant” data neces-
sary for training complex ML algorithms, such as deep learning. In such instances,
ML algorithms like Random Forest can provide scalable solutions, even when deal-
ing with smaller datasets, noting of course that this advantage comes at the cost
of requiring manual feature engineering.

Model tuning is another vital step in the process. While hyperparameter opti-
mization should theoretically be integrated with model selection, the number of
combinations to evaluate when combining model selection and hyperparameter
optimization can be exceedingly large [22]. For example, systematically exploring
discrete values across key hyperparameters in the Random Forest algorithm can
result in over 500 combinations. Given this challenge, a more practical approach
would be to initially select a suitable ML algorithm by experimenting with multiple
algorithms at their default settings, and then proceed to fine-tune the hyperpa-
rameters for the chosen algorithm. The choice of hyperparameter tuning strategy
depends on available resources, such as an extensive grid search or a lightweight
stochastic random search, for example.

5. Evaluation involves assessing a trained ML model’s performance on a test set using
metrics such as accuracy, precision, recall, F-score, and mean absolute error (MAE).
Depending on the context, one can opt for “hold-out” test sets or k-fold cross-
validation. The selection and prioritization of metrics require special attention. For
instance, in a binary classification task where 95% of samples belong to Class A and
only 5% to Class B, a classifier exclusively predicting Class A would achieve 95%
accuracy. Consequently, accuracy may not be a suitable metric when the dataset
is imbalanced. Another notable point related to metrics is that, in NLP4RE, recall
often outweighs precision in terms of importance, typically making recall a priority
in solution development [13]. In relation to reporting, care needs to be taken when
reporting aggregate metrics like F-score: such metrics should be reported alongside
the source metrics (in this case, precision and recall) rather than as substitutes.

Beyond reporting metrics, it is important to reflect on how these metrics trans-
late into either benefits or drawbacks for users. For example, it is always valuable
to contemplate the significance of various types of classification errors and deter-
mine their impact on users. When the cost of prediction errors is deemed too high,
e.g., when the ML model’s predictions serve as recommendations requiring metic-
ulous manual follow-up, one may consider implementing a human feedback loop to
continuously retrain the model and reduce errors [8].
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� Takeaway: Feature-based ML

Develop explicit procedures for manual data labelling during data collection
and document these procedures. Keep track of data-wrangling decisions, as
they can have a substantial impact on the outcomes. Approach features as
hypotheses and confirm their significance before incorporating them into the
final solution. Given the numerous combinations available for hyperparameter
tuning during model selection and tuning, you may want to begin with exper-
imentation using the default settings of machine learning algorithms. Ensure
there is no data leakage, which means avoiding the inadvertent exposure of
parts of test documents during the training and validation processes. The choice
of evaluation metrics is of great importance and should be aligned with the
specific NLP4RE task at hand.

3.6 Clustering Algorithms

Clustering algorithms group similar data points into subsets or clusters to reveal pat-
terns and structures within the data. This is achieved using a quantitative measure
of similarity and ensuring that points in the same cluster are more similar to each
other than to those in different clusters. In NLP4RE, relevance measures (Section 3.2)
and embeddings (Section 3.3) are commonly used to compute similarity for cluster-
ing purposes. For instance, using GloVe embeddings, requirements statements can be
transformed into vectors and then clustered using clustering algorithms such as K-
means, agglomerative clustring or expectation maximization (EM) [46]. To illustrate,
consider a system with six requirements: R1-R3 from Section 3.3 and R4-R6 defined
as follows: R4 = “The system shall allow users to customize the UI theme, avail-
able as ‘dark’ and ‘light’ versions.”; R5 = “The system shall allow users to sync data
across multiple devices.”; and R6 = “The system shall allow users to reset passwords
only after email authentication.”. Once sentence embeddings have been generated,
cosine similarity between requirements pairs can be used as the basis for clustering.
An illustrative clustering of these requirements, aimed at determining implementa-
tion responsibilities, might consist of [R1,R2] (system responsiveness), [R3,R6] (system
protection), [R4] (system UI customization), and [R5] (system data management).
Clustering has numerous applications in NLP4RE, including tasks such as traceability
link retrieval, identifying overlapping or redundant requirements, and categorizing app
reviews to pinpoint new feature requests. Below, we present some important practical
considerations for an efficient utilization of clustering algorithms in NLP4RE.

Determining the Number of Clusters (k). Choosing an appropriate number of
clusters (k) is an important prerequisite for effectively applying many common cluster-
ing algorithms such as K-means and EM. Techniques like the Elbow method, Silhouette
analysis, and Bayesian Information Criterion (BIC) can help estimate an appropriate
k [46]. Another alternative is a recent summarization metric proposed in clustering
app reviews [35]. Domain knowledge remains a key factor alongside these methods in
deciding the number of clusters. The appropriate value of k is influenced by the task
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at hand and how users plan to utilize the resulting clusters. For instance, when clus-
tering requirements terms, one may emphasize creating numerous small clusters, e.g.,
to simplify glossary construction [7]. On the other hand, when clustering core require-
ments within software product lines, it may be preferable to have a smaller number
of clusters, as this streamlines the reviewing of common functions [40].

Hierarchical vs. Partitional vs. Soft Clustering. In partitional clustering algo-
rithms, such as K-means, data is divided into non-overlapping clusters without any
inherent structure. In contrast, hierarchical clustering creates a tree-like structure.
Partitional methods are more suitable when the primary focus of the analysis is to
rapidly identify overarching themes. For instance, Di Sorbo et al. [44] adopt a par-
titional approach to categorize app reviews into pre-defined topics, determining the
necessary changes in the apps according to user feedback. Hierarchical clustering, on
the other hand, is better suited when there is a need to comprehend and visualize
the relationships and nested structures within the dataset. For instance, Reinhartz-
Berger and Kemelman [40] use hierarchical clustering to explore the relationships
between software product line requirements from different products by clustering the
core requirements. It is worth noting that hierarchical clustering algorithms also pro-
vide mechanisms to create partitions. In soft clustering (also know as fuzzy clustering),
each data point can belong to multiple clusters with varying degrees of membership.
Soft clustering is ideal for situations where the boundaries between clusters are not
rigidly defined, and instances may possess properties of multiple clusters. An example
of this approach is the EM algorithm. An RE-related use case is clustering of require-
ments terms. In this context, it is beneficial to allow each term to have membership in
different clusters [7]. For instance, the term “flight simulator” may find membership
in both the “flight”-related and “simulator”-related clusters within a requirements
document. Ultimately, the choice between partitional, hierarchical, or soft clustering
depends on the specific task and analysis objectives at hand. Analysts should therefore
understand the distinctions and potential applications of different types of clustering
algorithms to ensure that their chosen algorithm aligns with the goals of their analysis.

Evaluation. Cluster evaluation can be either internal or external. Internal evalua-
tion assesses the quality of clusters without relying on external labels, focusing on
the principles of cohesion and separation. Cohesion measures how closely related the
members of the same cluster are, reflecting the compactness of the clusters, while
separation assesses how distinct or well-separated a cluster is from others. A higher
separation implies that clustering can more effectively distinguish between clusters.
External evaluation, on the other hand, measures the quality of clusters by comparing
them to a ground truth. This comparison can involve evaluating the overlap or mutual
information between the original clusters and the generated ones. Developing a ground
truth in clustering is challenging due to the inherent subjectivity of this task and its
context dependence. Requirements and related artifacts can have multifaceted inter-
pretations, leading to multiple valid ways of clustering based on different perspectives
or objectives. Creating a good ground truth necessitates: (i) a clear understanding of
the concept of clustering as well as the end goal to achieve, (ii) substantial time and
effort, and (iii) vigilance against bias and inconsistency, as different experts may have
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contrasting opinions based on their experiences, potentially resulting in inconsistencies
and posing threats to both internal and construct validity.

� Takeaway: Clustering Algorithms

Important decisions in clustering include determining a suitable number of
clusters (e.g., the Elbow method or Silhouette analysis), and opting between
clustering types (partitional, hierarchical, or soft). The choice of clustering algo-
rithm depends on the goal of the analysis and requires domain understanding.
Evaluating the effectiveness of clustering is critical, which can be approached
internally by assessing the cohesion and separation of clusters or externally by
comparing against a ground truth. An external evaluation often poses chal-
lenges, as creating a ground truth for clustering is subjective and often requires
substantial effort.

3.7 Large Language Models

Language models (LMs) are statistical models that use neural networks to predict the
next word in a sequence based on preceding words. For example, given the text “Paris
is the capital of”, a langauge model may predict the next word as “France”. Language
models increasingly serve as the foundation for various downstream NLP tasks such
as text completion, translation, and summarization. Large language models (LLMs)
like GPT-4 and BERT are scaled-up versions of the LM concept, with billions and
sometimes even trillions of parameters. The descriptor “large” in LLM pertains to the
model’s size in terms of the number of parameters. These parameters represent the
neural network layers’ weights that the model acquires through training. Generally,
larger models tend to perform better at comprehending context, drawing inferences
and producing answers that resemble human responses.

Hyperparameters. LLMs have a range of hyperparameters that can be adjusted
during both training and fine-tuning. The hyperparameter profiles can vary among
different LLMs, and the extent to which individual LLMs allow end-users to mod-
ify these hyperparameters also varies. Some common LLM hyperparameters include:
(i) learning rate, determining how quickly the model adapts its weights during train-
ing; (ii) number of epochs, referring to how many times the model will go through
the entire training dataset; (iii) batch size, denoting the number of training examples
utilized in one iteration; (iv) sequence length, referring to the number of tokens that
the model reads in one go; (v) dropout rate, referring to the fraction of input units to
drop during training to mitigate overfitting; and (vi) temperature, a parameter that
modulates the probability distribution over the predicted words, making the outputs
more focused (lower values) or more random (higher values).

Extensive experimentation across a broad range of LLM hyperparameter combi-
nations currently presents challenges due to constraints in both time and budget.
Nevertheless, it remains essential to select a practical subset of hyperparameter com-
binations that can be explored within the available resources. This approach enables
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a more informed understanding of how hyperparameters influence the performance of
an LLM in conducting a specific task.

Prompting. Prompting refers to providing a specific input or query to guide a gener-
ative AI model in producing the desired output, such as text or images [25]. Prompts,
which are concise textual inputs given to generative AI models, including LLMs,
convey information about the specific task that the model is expected to execute.

Creating prompts that are effective in eliciting the desired output from an LLM
requires good prompt engineering. Prompt engineering involves the selection of appro-
priate prompt patterns and prompting techniques [45]. Prompt patterns encompass
various templates tailored for specific objectives. For example, the output customiza-
tion pattern focuses on refining the format or structure of LLM-generated output,
with the LLM often adopting a particular persona (role) while generating the output.
Prompting techniques, on the other hand, are strategies to extract the best possi-
ble output from LLMs. Example prompting techniques include zero-shot prompting,
few-shot prompting, chain-of-thought prompting, and tree-of-thought prompting [29].

When conducting empirical examinations of LLM-based solutions, it is impor-
tant to take into account the alternative choices that one can make during prompt
engineering. These alternatives should ideally be compared through empirical means.
Nonetheless, much like the challenges encountered when exploring hyperparameters,
the vast array of possible combinations of prompt patterns and prompting strategies
may be too numerous to thoroughly investigate. Another important aspect to con-
sider is that even minor alterations in prompts can lead to considerable variation in
the outputs generated by LLMs. In view of this, empirical studies should also assess
prompt robustness by examining multiple variants of the same prompt.

Fine-tuning. While LLMs come pre-trained on very large corpora, they often require
some level of fine-tuning to specialize them for particular tasks or domains. When the
requirements automation task at hand aligns closely with common knowledge, such
as ambiguity handling, one might achieve good results with little or no fine-tuning.
However, if the task is specialized and involves RE-specific semantics, such as require-
ments classifications, fine-tuning often becomes necessary to ensure accurate results.
When fine-tuning an LLM, one needs to be cognizant of the non-deterministic nature
of the process, which is influenced by factors such as random initialization and regu-
larization. Depending on the extent and diversity of the fine-tuning data, significant
variations may be observed in results across different fine-tuning attempts. To account
for this randomness, we recommend fine-tuning LLMs multiple times and reporting
average results rather than relying on the outcome of a single fine-tuned model.

� Takeaway: Large Language Models

When working with LLMs, explore hyperparameters within resource con-
straints. Invest in prompt engineering, using suitable prompt patterns and
techniques, and empirically compare different alternatives. Take note of the
non-deterministic nature of fine-tuning, and present results averaged over
multiple fine-tuning runs.
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4 Summary and Conclusion

The main goal of this chapter was to aid newcomers in the selection of appropriate
NLP4RE techniques and the application of some essential principles for their evalu-
ation. We acknowledge the wide array of NLP technologies employed in RE. Not all
NLP4RE approaches may neatly align with the general, and sometimes simplified,
framework we have outlined in this chapter.

This chapter was written during a transformative period in the NLP field, spurred
by the emergence of generative AI and large language models. We hope that this
chapter can serve as a stepping stone for quickly grasping the NLP technologies most
relevant to RE. With both the NLP and RE landscapes constantly evolving, our hope
is to maintain this chapter as a living document, continuously integrating emerging
trends and pertinent techniques for automated requirements analysis.
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