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In the development of quantum technologies, a reliable means for characterizing quantum devices, be it a mea-
surement device, a state-preparation device, or a transformation device, is crucial. However, the conventional
approach based on, for example, quantum state tomography or process tomography relies on assumptions that
are often not necessarily justifiable in a realistic experimental setting. While the device-independent approach
to this problem bypasses the shortcomings above by making only minimal, justifiable assumptions, most of the
theoretical proposals to date only work in the idealized setting where independent and identically distributed
(i.i.d.) trials are assumed. Here, we provide a versatile solution for rigorous device-independent certification
that does not rely on the i.i.d. assumption. Specifically, we describe how the prediction-based-ratio (PBR)
protocol and martingale-based protocol developed for hypothesis testing can be applied in the present context
to achieve a device-independent certification of desirable properties with confidence interval. To illustrate the
versatility of these methods, we demonstrate how we can use them to certify—with finite data—the underlying
negativity, Hilbert space dimension, entanglement depth, and fidelity to some target pure state. In particular, we
give examples showing how the amount of certifiable negativity and fidelity scales with the number of trials, and
how many experimental trials one needs to certify a qutrit state space, or the presence of genuine tripartite en-
tanglement. Overall, we have found that the PBR protocol and the martingale-based protocol often offer similar
performance, even though the former does have to presuppose any witness (Bell-like inequality). In contrast,
our findings also show that the performance of the martingale-based protocol may be severely affected by one’s
choice of the Bell-like inequality. Intriguingly, a Bell function useful for self-testing does not necessarily give
the optimal confidence-gain rate for certifying the fidelity to the corresponding target state.

I. INTRODUCTION

The proper analysis of quantum experiments is an indis-
pensable part in the development of quantum technologies.
However, it is not trivial to reliably characterize a quantum
setup, which may include, e.g., measurement devices and
state-preparation devices. Moreover, imperfections in the ex-
perimental setup can easily result in a mismatch [1–3] be-
tween the characterization tools developed for an idealized sit-
uation and an actual experimental situation. However, we can
circumvent this problem by the so-called “device-independent
approach” [4, 5]. In quantum information, the term “device-
independent” (DI) was first coined [6] in the task of quantum
key distribution [7–9], even though the idea was already con-
ceived independently, but implicitly in [10, 11].

In a nutshell, the DI approach is a framework for ana-
lyzing physical systems without relying on any assumption
about the degrees of freedom measured. Its basis is Bell-
nonlocality [5, 12], which shows that no local-hidden-variable
theory (LHV) can reproduce all quantum predictions, even
though no further assumption is made about the details of
such a theory. For example, it is known that the viola-
tion of Bell inequalities [12] obtained by locally measuring
a shared state implies [13] shared entanglement [14], which
is a powerful resource in many quantum information process-
ing tasks. More generally, many other desirable properties
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of the underlying state [15–23], measurements [22–28], and
channel [21, 29, 30] may be derived directly from the obser-
vation of a Bell-inequality-violating correlation between mea-
surement outcomes. Recently, the DI approach has been also
been incorporated into the security analysis of quantum secure
direct communication, see, e.g., [31] and references therein.

However, due to statistical fluctuations, even when the ex-
perimental trials are independent and identically distributed
(i.i.d), relative frequencies of the measurement outcomes ob-
tained from a Bell experiment do not faithfully represent the
underlying distribution. In particular, such raw distributions
estimated from the experimental results typically [32–34] lead
to a violation of the nonsignaling conditions [35, 36], which
is a prerequisite for the analysis in [16–30]. In other words,
statistical fluctuations render the many theoretical tools devel-
oped for such a purpose inapplicable. To address this issue,
some ad hoc methods [32–34] have been proposed to regular-
ize the relative frequencies obtained to ensure that the result-
ing distribution satisfy the nonsignaling conditions. In [37],
a more in-depth discussion was provided and two better-
motivated regularization methods were proposed.

While these more recent attempts do provide a point esti-
mator that fits within the framework of the usual DI analysis,
they are still problematic in two aspects. Firstly, they do not
provide any confidence region associated with the estimate.
However, any real experiment necessarily involves only a fi-
nite number of experimental trials. Therefore a useful analysis
should provide not only an estimate but also an indication of
the reliability of such an estimate. In many of the Bell ex-
periments reported [38–41], this is achieved by reporting the
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standard deviations of Bell violations. However, for finite, es-
pecially a relatively small number of trials, the central limit
theorem is not warranted, so the usual interpretation of stan-
dard deviations may become dubious. Secondly, these usual
approaches and those that provide a DI point estimator [32–
34, 37] implicitly assumes that the experimental trials are i.i.d,
and hence free of the memory effect [42, 43] (see more discus-
sions in [5, 44–46]). Again, in a realistic experimental setting,
the i.i.d assumption may be difficult to justify.

For the tasks of DI randomness expansion [47, 48] and DI
quantum key distribution [49, 50], specific tools [51–59] have
been developed to overcome the above problems. Here, we
are interested in providing a general solution to other device-
independent certification tasks1 that (1) can provide a confi-
dence region and (2) does not a priori require the i.i.d as-
sumption. Our approach is inspired by the prediction-based
ratio (PBR) protocol developed in [61] and the martingale-
based method proposed by Gill [43, 62] for performing a hy-
pothesis testing against the assumption of Bell-locality. Fol-
lowing [63], we further adapt these earlier methods and illus-
trate how they can be used for the device-independent certi-
fication of various properties of interest, including the under-
lying amount of entanglement and its fidelity with respect to
some target quantum state.

To this end, we structure the rest of this paper as follows.
In Section II, we explain the basic concepts relevant to the un-
derstanding of DI certification in the ideal setting. After that,
we introduce in Section III our adapted statistical tools for per-
forming a rigorous device-independent certification. Results
obtained from these tools are then presented in Section IV. Fi-
nally, we give some concluding remarks and future directions
in Section V.

II. PRELIMINARIES

A. Correlations and Bell inequalities

The starting point of the DI approach is a Bell test. To
this end, consider a bipartite Bell scenario, where two ob-
servers, Alice and Bob, can choose, respectively, their mea-
surements labeled by x, y ∈ {0, 1, ...} and register outcomes
a, b ∈ {0, 1, ...}.2 In the i.i.d. setting, one can estimate the
underlying correlation between measurement outcomes, i.e.,
P⃗ = {P (ab|xy)} from the registered empirical frequencies.
Interestingly, as Bell first showed in [12], highly nontrivial
conclusions can be drawn by inspecting P⃗ alone.

For example, correlations that can be produced in an LHV
theory have to satisfy a Bell inequality:∑

x,y,a,b

βabxyP (ab|xy)
L
≤ BL(β⃗) (1)

1 Note that the same task is called device-independent verification in [60].
2 If a third party is involved in the Bell test, as in the case of Sections II B 2

and IV B, we denote by z and c, respectively, its label for the measurement
setting and outcome. All other notations generalize accordingly.

where the Bell coefficients βabxy ∈ R, β⃗ := {βabxy}, and
BL({β⃗}) is the so-called local (upper) bound. Here, we use L
to signify that the inequality holds under the assumption that
P⃗ is compatible with an LHV theory. Explicitly, the nature
of such a theory demands that P⃗ is factorizable in the form
of [5, 12]

P (ab|xy) L
=

∑
λ

qλPA(a|xλ)PB(b|yλ) (2)

where qλ ≥ 0 for all λ,
∑
λ qλ = 1, and

PA(a|xλ), PB(b|yλ) ∈ [0, 1] are local response functions.
In an actual Bell test, the measurement settings ought to be

chosen randomly according to some predetermined distribu-
tion Pxy . To manifest this fact, one may write Eq. (1) using
the unconditional joint distribution P (abxy) = P (ab|xy)Pxy
such that Pxy =

∑
a,b P (abxy). In turn, we can then write a

Bell inequality as a bound on the expectation value of a Bell
function I(v), defined in terms of β⃗ and Pxy , i.e.,

⟨I(v)⟩ := ⟨βab
xy⟩
Pxy

L
≤ BL(β⃗) (3)

where v = (a, b, x, y) is the quadruple of random variables for
the measurement outcomes (a, b) and settings (x, y). As an
example, the famous Clauser-Horne-Shimony-Holt (CHSH)
Bell inequality [64] may be specified via:

ICHSH : βabxy = (−1)xy+a+b and BL = 2, (4)

or equivalently, in terms of the correlator Exy :=∑
a,b=0,1(−1)a+bP (ab|xy), as:

SCHSH =
∑

x,y=0,1

(−1)xyExy
L
≤ 2, (5)

where SCHSH = ⟨ICHSH(v)⟩.
In contrast, quantum theory allows correlations that cannot

be cast in the form of Eq. (2). In fact, in a bipartite Bell test,
general quantum correlations read as:

P (ab|xy) Q
= tr(ρM

(A)
a|x ⊗M

(B)
b|y ) (6)

where {M (A)
a|x } and {M (B)

b|y } are, respectively, the local
positive-operator-valued measure (POVM) describing Alice
and Bob’s local measurements. For the benefits of subsequent
discussions, it is also worth noting that both LHV and quan-
tum correlations satisfy the nonsignaling conditions [35, 36]:∑

a

P (ab|xy) =
∑
a

P (ab|x′y) ∀ x, x′,∑
b

P (ab|xy) =
∑
b

P (ab|xy′) ∀ y, y′.
(7)

For the CHSH Bell function, cf. Eq. (4), quantum theory
dictates the upper bound

⟨ICHSH(v)⟩
Q
≤ BQ = 2

√
2, (8)

which can be seen as a Bell-like inequality. Other Bell and
Bell-like inequalities relevant to this work will be presented
in the corresponding sections below.
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B. Examples of properties to be certified

1. Negativity and dimension

As mentioned above, with local measurements on a quan-
tum system, a Bell-inequality-violating correlation P⃗ ̸∈ L
necessarily originates [13] from an entangled state ρ. Interest-
ingly, the entanglement of the underlying ρ can also be lower
bounded [17, 18, 20, 23] directly from the observed correla-
tion P⃗ . In this work, we focus on negativity [65] but it is
worth noting that DI entanglement quantification can be also
achieved, e.g., for the linear entropy of entanglement [18],
generalized robustness of entanglement [23], and one-shot
distillable entanglement [20].

For a bipartite density operator ρ, let ρTA be its partial trans-
position [66] with respect to subsystem A. Then, the neg-
ativity for a bipartite density operator ρ is defined as [65]
N (ρ) :=

∑
λi<0 |λi(ρTA)|, i.e., the sum of the absolute value

of all negative eigenvalues λi < 0 of ρTA . Using a variational
characterization of negativity provided in [65], it was shown
in [17] that N (ρ) is lower bounded by the optimum value of
the following semidefinite program (SDP):

min χℓ[σ−]tr (9a)
s.t. χℓ[ρ] = χℓ[σ+]− χℓ[σ−], χℓ[σ±]

TĀ ⪰ 0, (9b)
χℓ[ρ] ⪰ 0, χℓ[ρ]tr = 1, (9c)

where χℓ[ρ] is a moment matrix that can be obtained by ap-
plying a particular local map on ρ (see [17] for details), Ā is
the output Hilbert space of the local map on A, χℓ[σ]tr = tr[σ]
represents the trace of the underlying operator σ. It is worth
noting that for every integer ℓ ≥ 1, the constraints of Eq. (9c)
provide a superset characterization of the quantum set Q of
correlations, analogous to those considered in [67–69]. In-
deed, all entries from P⃗ appear somewhere in the moment
matrix χℓ[ρ], see [17].

As an explicit example, note that an observed violation of
the CHSH Bell inequality of Eq. (5) gives the following non-
trivial negativity lower bound of the underlying state ρ:

N (ρ) ≥ SCHSH − 2

4(
√
2− 1)

. (10)

Also worth noting is that if ρ acts on CdA ⊗ CdB with
d = min{dA, dB}, then the maximal possible negativity
N (ρ) is upper bounded by N d

max := d−1
2 . Consequently, the

observation of a large enough negativity also provides a non-
trivial lower bound on the local Hilbert space dimension of
the underlying system. More precisely, if the lower bound on
N (ρ) obtained from Eq. (9) exceeds N d

max, one immediately
deduces that ρ must act on a local Hilbert space of dimension
≥ d+ 1, thereby giving a dimension witness [15].

From Eqs. (5), (8) and (10), nonetheless, we see that a vi-
olation of the CHSH Bell inequality can never witness a lo-
cal Hilbert space dimension > 2. Instead, witnessing a local
Hilbert space beyond qubits can be achieved by observing a
reasonably strong violation of the 3-outcome Collins-Gisin-
Linden-Massar-Popescu (CGLMP) Bell inequality [70] (see

also [71]), defined by

ICGLMP3 : β
ab
xy =(−1)x(y−1){δ(2)a−b − [1− δ(2)x δ

(2)
y−1]δ

(3)
b−a−1}

− δ(2)x δ
(2)
y−1δ

(3)
b−a+1 and BL(β⃗) = 2, (11)

where δ(d)f = 1 if mod(f, d) = 0 and vanishes otherwise.
Denoting the corresponding expectation value by SCGLMP3 =
⟨ICGLMP3(v)⟩, the results from [17, 72, 73] suggest a negativity
lower bound that increases linearly with SCGLMP3 from 1

2 when-
ever SCGLMP3 ≥ 3√

2
+ 1

2 .

2. Entanglement depth

In a many-body system, entanglement can come in various
forms or structures [74]. In particular, an n-partite quantum
state that is not fully separable is not necessarily genuinely n-
partite entangled either. To witness the latter, one could rely
on the demonstration of so-called genuine multipartite non-
locality [75]. However, as remarked in [16], it is possible to
witness genuine multipartite entanglement without relying on
this strong form of multipartite nonlocality. In fact, using the
SDP introduced in [17], one can even systematically construct
DI witnesses of this kind, starting from a given multipartite
Bell function, say β⃗ = {βabcxyz}. Later, it was further shown
in [19] (see also [76]) that the extent to which a multipar-
tite Bell inequality is violated can be used to witness (lower-
bound) the underlying entanglement depth [77, 78], i.e., the
extent to which a many-body entanglement is needed to pre-
pare the given multipartite state.

For illustration, consider the expectation value of the Mer-
min Bell function [79] IMermin(v) with v = (a, b, c, x, y, z):

SMermin = ⟨IMermin(v)⟩ =
〈
βabcxyz

〉
Pxyz

=
∑
x,y,z

′
(−1)xyzExyz (12)

where Exyz :=
∑1
a,b,c=0(−1)a+b+cP (abc|xyz) is the tripar-

tite correlator, the restricted sum
∑′ is over all combinations

of x, y, z ∈ {0, 1} such that mod(x+y+z, 2) = 1, Pxyz = 1
4

for the same combinations of x, y, z, and the Bell coefficients
are

βabcxyz = (−1)xyz+a+b+cδ
(2)
x+y+z−1. (13)

Then, it is known that the following Bell-like inequalities
hold, respectively, for fully-separable states, 2-producible [77]
tripartite quantum states (i.e., quantum states that can be gen-
erated using only 2-body entanglement), and general tripartite
quantum states:

SMermin

L
≤ 2, SMermin

2-prod.
≤ 2

√
2, SMermin

Q
≤ 4. (14)

3. State fidelity

The strongest form of device certification one can hope for
within a DI paradigm is called self-testing [80], first proposed
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in [10]. The key observation behind this feat is that the quan-
tum strategy compatible with certain extremal quantum corre-
lations P⃗Q is essentially unique. Hence, with the observation
of P⃗Q in a Bell test, we can conclude, unambiguously that
some degree of freedom (DOF) of the measured system must
match a specific target state |ψ⟩. Often, one can also self-test
the underlying measurements alongside the state (see, how-
ever, [81, 82] for some examples of exceptions).

For instance, it is long known [83–86] that the maximal
CHSH Bell-inequality violation of SCHSH = 2

√
2 can only ob-

tained (up to local isometry) by measuring the following ob-
servables on a shared maximally entangled state (MES):

|ψMES⟩ =
1√
2
(|00⟩+ |11⟩), (15a)

A0 = σz, A1 = σx, (15b)

By =
1√
2
[σz + (−1)yσx], (15c)

where the respective POVM elements (with x, y = 0, 1) are

M
(A)
a|x =

1 + (−1)aAx
2

, M
(B)
b|y =

1 + (−1)bBy
2

. (16)

Moreover, to obtain the maximal CHSH Bell-inequality vi-
olation for a partially entangled two-qubit state,

|ψ(θ)⟩ = cos θ |00⟩+ sin θ |11⟩ , θ ∈
(
0,
π

4

]
(17a)

it suffices [73] to consider Ax of Eq. (15c) but generalize By
to [87]:

By = cosµσz + (−1)y sinµσx, tanµ = sin(2θ), (17b)

thereby giving

SCHSH = 2
√
1 + sin2 2θ. (18)

Interestingly, the resulting correlation also self-tests [87, 88]
the corresponding quantum strategy of Eq. (17) and maxi-
mally violate the family of tilted CHSH Bell inequalities for

α = 2
√

cos2 2θ
1+sin2 2θ

:

STilted
CHSH(α) = SCHSH + α

1∑
a,b=0

(−1)aP (ab|0y)
L
≤ 2 + α, (19)

giving STilted
CHSH(α) =

√
8 + 2α2. Note that in Eq. (19), thanks

to the nonsignaling [35, 36] property of P⃗ , the expression for
STilted

CHSH(α) is in fact independent of whether y = 0 or 1.
In practice, however, due to various imperfections, one can,

at best attain a correlation close to the ideal one P⃗Q. In other
words, in a realistic experimental setting, one can only hope
to lower bound the similarity of the measured state ρ with re-
spect to the target state |ψ⟩ via a fidelity measure. To this end,
a powerful numerical technique known as the SWAP method
has been introduced in [89] (see also [87]) for exactly this pur-
pose. More precisely, for any observed quantum correlation
P⃗ , the method allows one to lower bound the fidelity:

F = ⟨ψ| ρSWAP |ψ⟩ (20)

with the help of an SDP outer approximation of the quantum
set Q (e.g., due to [17, 67, 68]). Here, ρSWAP is the “swapped”
state:

ρSWAP = trAB [Φ ρAB ⊗ (|00⟩⟨00|)A′B′ Φ+] (21)

extracted from the underlying quantum state ρ via some local
extraction map Φ, which is a function of the actual POVM
elements. Consequently, F is a function of the entries of the
moment matrix χℓ[ρ], discussed below Eq. (9). For details of
the method, we refer the readers to [87].

C. Some general remarks

At this point, it is worth noting that for all the three prop-
erties P discussed above—negativity (and hence dimension),
entanglement depth, and reference-state fidelity—their DI cer-
tification can be achieved via the characterization of some
convex set CP in the space of correlation vectors {P⃗}. More
precisely, for negativity, by turning the objective function of
Eq. (9) into the constraint [17]

χℓ[σ−]tr ≤ N0, (22)

we obtain an SDP that characterizes of the set of correla-
tions attainable by quantum states having a negativity upper-
bounded by N0. Then, Eq. (10) can be understood as a sep-
arating hyperplane relevant for witnessing a negativity larger
than N0.

On the other hand, if we drop the constraint in Eq. (9) but
imposes additional positive-partial-transposition constraints,
then we get an SDP characterization of the set CP having a
bounded amount of entanglement depth [19] [see constraints
of Eq. (44) below]. In this case, the first two inequalities of
Eq. (14) serve as the corresponding witness for entanglement
depth. Finally, by demanding ⟨ψ| ρSWAP |ψ⟩ ≤ F0 together
with Eq. (9c), we obtain an SDP characterization of the set CP
associated with a swapped state [87] with a |ψ⟩-fidelity upper
bounded by F0. In fact, an SDP characterization can also be
obtained for a number of other properties, including genuine
negativity [17], steering robustness [22], entanglement robust-
ness [23], (measurement) incompatibility robustness [22, 28],
and so on.

III. METHODOLOGIES FOR HYPOTHESIS TESTING

Having understood how DI certification can be achieved
from a given correlation P⃗ , we now proceed to discuss the
more realistic setting involving only a finite number of exper-
imental trials. For concreteness, the following presentation
assumes an analysis based on the data collected from N tri-
als in a Bell test. Below, we explain our approaches to the
problem based on hypothesis testing. Our first step is to for-
mulate a null hypothesis H based on the desired property to
be certified. For example, to certify that the underlying state
has a negativity larger than N0, we formula the (converse) null
hypothesis:
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Null Hypothesis 1. HN (ρ)≤N0
: In every experimental trial,

the underlying state has a negativity less than or equal to N0.

Since such a hypothesis involves a set of (rather than a sin-
gle) compatible distribution P⃗ , it is called a composite hypoth-
esis [90].

Then, we apply appropriate methods for this kind of hy-
pothesis testing on the collected data to determine an upper
bound p on the p-value associated with the hypothesis H.
Since a p-value quantifies the plausibility of observing the
given data when H holds, a small value of p, say, less than
5% provides a strong indication that H is falsified. It then fol-
lows that the desired feature corresponding to the negation of
H is certified with a confidence γ of at least 1− p.

Of course, one may also be interested to understand how
quickly statistical evidence (against a hypothesis H) can be
gathered when we increase the number of trials. To this end,
we also consider the so-called (asymptotic) confidence-gain
rate [61], defined by

G(prot) := − lim
Ntot→∞

log2 p
(prot)
Ntot

Ntot
, (23)

where p(prot) is the p-value (upper bound) deduced from some
protocol (abbreviated as “prot”). From the definition, it is evi-
dent that asymptotically, and in the i.i.d. setting, a fewer num-
ber of trials is required to achieve the same level of statistical
confidence if the corresponding G(prot) is higher. Next, let us
elaborate on the two hypothesis-testing protocols considered
in this work.

A. Martingale-based protocol

We shall start with the martingale-based protocol, pio-
neered by Gill in [43, 62] for testing against LHV theories,
and further developed in [61, 91]. The protocol relies on the
observation of the (super)martingale structure in some random
variable of interest. To employ the martingale-based protocol,
one has to fix a Bell function I(v) in advance. Ideally, I(v)
should be chosen such that the Bell-like inequality

⟨I(v)⟩ := ⟨βab
xy⟩
Pxy

=
∑
a,b,x,y

βabxyP (ab|xy)
H
≤ BH(β⃗) (24)

may be violated by some quantum correlation P⃗ = P⃗Q
[cf. Eq. (6)] to be prepared in an experiment.

Let vj = (aj , bj , xj , yj) be the value realized for the
random variables of the measurement outcomes and settings
at the j-th experimental trial, and I(vj) the corresponding
value of Bell function for that trial. Moreover, let v =
{v1, ..., vi, ..., vN}. Then, from the observed average value
of I(v) over N trials, i.e., Î(v) =

∑N
j=1

I(vj)
N , the following

p-value upper bound is known [91] to hold whenever Î ≥ BH:

p(mart) ≤

(b+ −BH

b+ − Î

) b+−Î

b+−b−
(
BH − b−

Î − b−

) Î−b−
b+−b−

N ,
(25)

where, for simplicity, we have suppressed the dependency of
BH on β⃗ (and Î on v), while the minimum and maximum
value of I(v) over all possible values of v = (a, b, x, y) are

b− := inf
v
I(v) < BH ≤ Î < b+ := sup

v
I(v). (26)

It is worth noting that the martingale-based p-value upper
bound of Eq. (25) improves over the one given in [48, 61, 62].

Let IQ be the expectation value of I(v) when we replace
P⃗ by some P⃗Q capable of violating the Bell-like inequality in
Eq. (24). Then, in the i.i.d. setting where the experimental
data follows the distributions given by P⃗Q, the corresponding
asymptotic confidence-gain rate can be deduced from Eq. (23)
and Eq. (25) as:

G(mart) =
b+ − IQ
b+ − b−

log2
b+ − IQ
b+ −BH

+
IQ − b−
b+ − b−

log2
IQ − b−
BH − b−

.

(27)

B. The prediction-based-ratio (PBR) protocol

The other hypothesis-testing protocol that we consider in
this work is based on the so-called PBR protocol proposed
in [61] (see also [91]). In contrast with a martingale-based
protocol, the PBR protocol does not need to presuppose any
Bell-like inequality for determining a p-value bound. Instead,
for the data v collected in N trials, one may start by using the
first Nest < N trials from i = 1, 2, · · · , Nest to estimate the
relative frequency

f(ab|xy) = Nest(a, b, x, y)

Nest(x, y)
, (28)

where Nest(x, y) =
∑
a,bNest(a, b, x, y) and Nest(a, b, x, y)

counts among these Nest trials the total number of times the
specific combination of measurement settings and outcomes
(x, y, a, b) occurs.

The key idea of the PBR protocol is to use this relative fre-
quency f⃗ = {f(ab|xy)} to obtain an optimized Bell-like in-
equality3 and apply that to vi from i = {Nest + 1, Nest +
2, · · · , Nest +Ntest}. To this end, we minimize the Kullback-
Leibler (KL) divergence [92] from a regularized relative fre-
quency f⃗reg (explained below) to the set SH of correlations
compatible with H:

DKL(f⃗reg||SH) :=

inf
P⃗∈SH

∑
a,b,x,y

Pxyfreg(ab|xy) log
freg(ab|xy)
P (ab|xy)

. (29)

An important point to note now is that if the composite null
hypothesis SH is associated with a convex set that admits an

3 Here, the inequality is optimized in the sense that it provides the largest
possible asymptotic confidence-gain rate, cf. Eq. (23).
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SDP characterization (as discussed in Section II C) like the
kind proposed in [17, 22, 67–69], then Eq. (29) is a conic
program (see [37]), and thus efficiently solvable using a solver
like MOSEK [93].

The unique [37] minimizer P⃗⋆ ∈ SH can then be used to
define the non-negative prediction-based-ratio (PBR)

R(a, b, x, y) :=
freg(ab|xy)
P⋆(ab|xy)

, (30)

which gives the optimized Bell-like inequality ⟨R(v)⟩
H
≤ 1.

Next, we compute the test statistic

t(v) =
∏
j

R(aj , bj , xj , yj) (31)

where the product is only carried out over the remaining Ntest
trials. Using arguments completely analogous to those given
in [61] for H = L, it can then be shown that the following
upper bound on the p-value holds:

p(pbr) ≤ min
{

1

t(v)
, 1

}
. (32)

Several remarks are now in order. Firstly, if none of the
entries in f⃗ vanishes, one could also use f⃗ directly in the op-
timization problem of Eq. (29). However, for a small Nest, a
vanishing entry in f⃗ is almost bound to happen, we thus fol-
low [61] and mix f⃗ with the uniform distribution P⃗1 to obtain:

f⃗ → f⃗ ′ :=
Nest

Nest + 1
f⃗ +

1

Nest + 1
P⃗1. (33)

Next, notice that f⃗ ′ typically cannot be cast in the form of
Eq. (6). Consequently, we observe empirically that the R ob-
tained by solving Eq. (29) with f⃗ ′ in place of f⃗reg gives evi-
dently suboptimal performance (see, e.g., Figs. 10, 13 and 15
in Appendix A for some explicit examples). As such, we
shall first regularize [37] f⃗ ′ to some outer approximation of
the quantum set Qℓ by solving Eq. (29) with SH replaced by
Qℓ. In our work, Qℓ is the level-ℓ outer approximation of the
quantum set Q introduced in [17]. However, one may also
consider other approximations [22, 67]. Since all these outer
approximations admit an SDP characterization, this regular-
ization process is a conic program (see also [37]). The re-
sulting minimizer, which we call the regularized relative fre-
quency f⃗reg is then fed into Eq. (29) to obtain the desired PBR.

Another important feature of the PBR protocol is that the
optimized inequality characterized by R⃗ = {R(a, b, x, y)}
can be updated as more data is incorporated into the analysis.
In principle, one can update R⃗ as frequently as one desires.
However, this is neither necessary nor efficient. As such, we
work with blocks of Nblk trials. The first block of data is
used exclusively for producing the first regularized relative
frequency, the first PBR R⃗1, and by applying to the second
block of v, we get the first test statistic

t1 = Π
N

(1)
est +N

(1)
test

i=N
(1)
est +1

R1(ai, bi, xi, yi), (34)

where N (k)
test = Nblk for all k. In the next iteration, we deter-

mine the PBR R⃗2 by solving Eq. (29) using v from the first
two blocks, and apply this updated PBR to the third block of
v to get, for k = 2,

tk = tk−1 ×Π
N

(k)
est +N

(k)
test

i=N
(k)
est +1

Rk(ai, bi, xi, yi) (35)

where N (k)
est = kNblk. These steps may then repeated itera-

tively until all the data v has been consumed in one way or
another in the computation of tk for k = 3, . . . , Ntot

Nblk
− 1.

For a schematic illustration of this procedure, see Fig. 1. Im-
portantly, once the test statistic tk for each iteration is deter-
mined, we can obtain the corresponding p-value bound us-
ing Eq. (32).

t1 = ΠN(1)est +N(1)test
i=N(1)est +1 R1(ai, bi, xi, yi)

Ntot1st

2nd

kth

N(1)
est N(1)

test

N(2)
est N(2)

test

N(k)
testN(k)

est

Ntot

Ntot

N

t2 = t1 × ΠN(2)est +N(2)test
i=N(2)est +1 R2(ai, bi, xi, yi)

tk = tk−1 × ΠN(k)est+N(k)test
i=N(k)est+1 Rk(ai, bi, xi, yi)

N

N

FIG. 1: Instruction for the PBR method.

Finally, note that for an ideal Bell test giving the correlation
P⃗Q and a composite hypothesis associated with H, the PBR
protocol has the asymptotic confidence-gain rate:

G(pbr) = DKL(P⃗Q||SH), (36)

which may be obtained by solving Eq. (29) with f⃗reg replaced
by P⃗Q. The proof is again completely analogous to that given
for H = L in [61] and is thus omitted.

IV. DEVICE-INDEPENDENT CERTIFICATION WITH A
CONFIDENCE INTERVAL

We are now ready to present our simulations results involv-
ing a finite number of trials. Throughout this section, the re-
sults presented for finite trials consist of an average over 30
complete Bell tests, each involving Ntot = 105 trials, with
the trials partitioned into blocks of size Nblk = 500. More-
over, we always consider a uniform distribution for (possibly
a restricted set of) measurement settings. In each Bell test,
we then simulate the raw data v = {vi = (ai, bi, xi, yi)}Ntot

i=1
using the function sample hist from the Lightspeed Matlab
toolbox [94]. For the certification with finite data, we set a
confidence level of γ = 0.99. We also present some related
confidence-gain rates in the respective subsections.
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A. Negativity and dimension certification

1. Negativity certification

Our first example consists of a Bell test based on the quan-
tum strategy presented in Eq. (15), which leads to a CHSH
Bell value of SCHSH = 2

√
2. Using Eq. (10), we know that the

resulting quantum correlation P⃗CHSH gives a tight negativity
lower bound of 1

2 for a Bell state. From the numerically sim-
ulated data, we then perform composite hypothesis testing for
Null Hypothesis 1 with N0 ∈ {0, 0.01, · · · , 0.50}.

Specifically, for the martingale-based protocol, we use
Eq. (25) with the CHSH Bell expression of Eq. (4). In this
case, b± = ±4 for the chosen Pxy while it follows from
Eqs. (4), (10) and (24) that

∑
a,b,x,y

(−1)xy+a+b4P (abxy)
N≤N0

≤ 2+4N0(
√
2−1). (37)

On the other hand, for the PBR protocol, the optimizing dis-
tribution P (k)

⋆ (a, b|x, y) for the k-iteration can be obtained by
solving [cf. Eq. (29)]

argmin
P⃗

−
∑
a,b,x,y

Pxyf
(k)
reg (ab|xy) logP (ab|xy), (38a)

s.t. χℓ[ρ] = χℓ[σ+]− χℓ[σ−] ⪰ 0, χℓ[σ±]
TĀ ⪰ 0, (38b)

χℓ[ρ]tr = 1, χℓ[σ−]tr ≤ N0 (38c)

where argminP⃗ seeks for the argument minimizing the expres-
sion in Eq. (38a), f⃗ (k)

reg is the regularized frequency obtained
for the same iteration, and each P (ab|xy) also appears as an
optimization variable in the moment matrix χℓ[ρ]. Then, the
PBR used in the computation of tk can be evaluated by re-
placing freg(ab|xy) and P⋆(ab|xy) in Eq. (30), respectively,
by f (k)reg (ab|xy) and P (k)

⋆ (ab|xy).
In Fig. 2, we show the average amount of certifiable nega-

tivity from these two methods as a function of the number of
trials N employed. From the figure, it is clear that for cer-
tifying the underlying negativity using the data arising from
P⃗CHSH, the performance of the two protocols are similar. In
fact, even though the martingale-based protocol appears to
have a slight advantage over the PBR protocol for this certifi-
cation task for small N ’s, our computations of the asymptotic
gain-rates G(pbr) and G(mart) show that they in fact agree (for
all these values of N0 that we have considered), up to a nu-
merical precision of 10−7. Also, in both cases, we see that
with about 5 × 103 and 2 × 104 trials, we can already cer-
tify, respectively, more than 80% and 90% of the underlying
negativity with a confidence γ ≥ 0.99. In Appendix A 1, we
provide some additional plots showing how the p-value bound
changes with N for several values of N0.
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10
4
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0.5

FIG. 2: Negativity certifiable from the data observed in a
Bell test generating P⃗CHSH. For the martingale-based protocol
and any given N0 among N0 = {0, 0.01, · · · , 0.49}, we use
Eq. (37) in Eq. (25) to upper-bound p(mart) after every block of
Nblk = 500 trials, thereby generating 200× 50 upper bounds
on p(mart) for a complete Bell test. For the PBR protocol and
a given N0 from N0, we solve Eq. (38) by considering the
same block size and the level-3 outer approximation of Q in-
troduced in [17]. Then, we obtain 199 × 50 upper bounds on
p(pbr) from Eqs. (32), (34) and (35). To determine the lower
bound on the underlying N (ρ) with the desired confidence
of γ ≥ 99%, we look for the largest N0 in N0 such that
HN (ρ)≤N0

is rejected with a p-value bound being less than
or equal to 0.01. Each data point shown in the plot is an av-
erage over 30 such lower bounds, and the error bar (standard
deviation) gives an indication of the spread of the certifiable
negativity. To avoid cluttering the plots, in each line, we show
only a small number of markers.

These results clearly suggest that the CHSH Bell function
of Eq. (4) is optimal for certifying the underlying negativity of
|ψMES⟩ using the martingale-based protocol. Indeed, a separate
computation of Eq. (29) and Eq. (30) using P⃗CHSH in place
of f⃗reg show that, within a precision of 10−4, the optimized
Bell-like inequality for N0 = 0, 0.05, · · · , 1 is equivalent to
Eq. (10). How would things change if we perform a DI nega-
tivity certification using the data generated from the partially
entangled state |ψ(θ)⟩, Eq. (17a)? To this end, consider the
quantum strategy of Eq. (17), whose resulting correlation P⃗θ
gives the maximal Bell CHSH violation for |ψ(θ)⟩, as well
as the maximal violation of the tilted CHSH Bell inequality
of Eq. (19). Then, instead of repeating the same analysis, we
show in Fig. 3 the confidence-gain rates due to both proto-
cols for certifying several given fractions of the underlying
negativity. From the plots shown, it is evident that asymp-
totically, the martingale-based protocol employing the CHSH
Bell function is far from optimal for certifying the underlying
negativity of |ψ(θ)⟩. Indeed, the PBR protocol could iden-
tify some other Bell-like inequality that gives a much bet-
ter confidence-gain rate, especially for the correlations arising
from |ψ(θ)⟩ that is weakly entangled (small θ). To a large ex-
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tent, this can be understood by noting that the negativity lower
bound of Eq. (10) due to its CHSH Bell violation is generally
far from tight for these states, see Fig. 12 in Appendix A.

0 0.05 0.1 0.15 0.2 0.25
0
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10

-3

FIG. 3: Asymptotic confidence-gain rate G(prot) based on the
family of quantum correlations P⃗θ derived from Eq. (17),
where θ = kπ

180 rad, k = {1, 2, · · · , 45}, parametrizes the two-
qubit entangled state |ψ(θ)⟩ = cos θ |00⟩ + sin θ |11⟩. Here,
we again consider the composite hypothesis 1, with N0 =
{0.8Nψ(θ), 0.85Nψ(θ), 0.9Nψ(θ), 0.95Nψ(θ)} and Nψ(θ) be-
ing the negativity of ψ(θ), see Fig. 12. The gain rate for the
martingale-based protocol is computed from Eq. (27) using
the CHSH Bell-like inequality of Eq. (37) whereas that for
the PBR protocol is evaluated from Eq. (36) using the corre-
lation derived from Eq. (17).

2. Dimension certification via negativity certification

As mentioned in Section II B 1, the correlation P⃗CHSH is in-
sufficient to demonstrate any nontrivial dimension bound. Let
us consider, instead, a correlation P⃗CGLMP derived by local
measuring the partially entangled two-qutrit state

|Ψ⟩ = 1√
2 + ζ2

(|00⟩+ ζ |11⟩+ |22⟩), ζ =
1

2
(
√
11−

√
3),

(39a)
with the local measurements

M
(A)
a|x = |a⟩A,x ⟨a| , M

(B)
b|y = |b⟩B,y ⟨b| , (39b)

|a⟩A,x =

2∑
j=0

ωj(φ
A
x +a)

√
3

|j⟩ , |b⟩B,y =

2∑
j=0

ωj(φ
B
y −b)

√
3

|j⟩ ,

where φAx = x
2 , φBy = (−1)y 1

4 , and {|j⟩} is the set of com-
putational basis states. It is known [68, 72] that this strat-
egy gives the maximal CGLMP Bell-inequality violation of

SCGLMP3 = 1 +
√

11
3

∼= 2.91485. Moreover, the negativity of
|Ψ⟩ can be easily evaluated to give ∼= 0.98358.

Next, we use the numerically data simulated from P⃗CGLMP
to perform a hypothesis testing for Null Hypothesis 1, but

now with N0 ∈ N0 = {0.5, 0.51, · · · , 0.98}. For the PBR
protocol, the computation proceeds in exactly the same way
as described above [see the paragraph containing Eq. (38)].
However, for the martingale-based protocol, since we do not
have an explicit expression like that shown in Eq. (37) for the
CGLMP Bell expression, we compute an upper bound on BH
for each given value of N0 ∈ N0 according to:

max
∑
a,b,x,y

βabxyP (ab|xy) (40a)

s.t. χℓ[ρ] = χℓ[σ+]− χℓ[σ−], χℓ[σ±]
TĀ ⪰ 0, (40b)

χℓ[ρ] ⪰ 0, χℓ[ρ]tr = 1, χℓ[σ−]tr ≤ N0, (40c)

where the CGLMP Bell coefficients βabxy are defined in
Eq. (11). Meanwhile, since Pxy = 1

4 and βabxy ∈ {−1, 0, 1},
we again have b± = ±4 for ICGLMP3.
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FIG. 4: Negativity certifiable from the data observed in a Bell
test generating P⃗CGLMP. For details on how the plot is gen-
erated, see the caption of Fig. 2, but bearing in mind that for
the martingale-based protocol, we now use in Eq. (25) theBH
determined from Eq. (40).

From Fig. 4, we see that with about 6 × 104 trials we can
already certify a negativity lower bound of 0.9. On the other
hand, if we want to certify that we need at least a two-qutrit
state to produce the observed data (arising from P⃗CGLMP),
it suffices to certify that the underlying negativity is strictly
larger than 0.50, which happens already with approximately
1500 trials. Could other two-qutrit states provide a more fa-
vorable correlation in this regard? To gain insight into the
prolem, we consider the following one-parameter family of
two-qutrit states

|Ψ(ζ̃)⟩ = 1√
2 + ζ̃2

(|00⟩+ ζ̃ |11⟩+ |22⟩) (41)

and numerically maximize their CGLMP Bell-inequality vio-
lation using the heuristic algorithm given in [95]. We denote
the corresponding correlation by P⃗ζ̃ , compute the correspond-
ing asymptotic confidence-gain rate for both protocols, and
plot the results in Fig. 5.
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FIG. 5: Asymptotic confidence-gain rate G(prot) based on
the quantum correlation P⃗ζ̃ derived from maximizing the
CGLMP Bell-inequality-violation of |Ψ(ζ̃)⟩, Eq. (41). Here,
we consider ζ̃ = {0, 0.02, ..., 1} and the composite hypothe-
sis 1, with N0 = 0.5. The gain rate for the martingale-based
protocol is computed from Eq. (27) using the CGLMP Bell
function and the bound BH determined in Eq. (40) whereas
that for the PBR protocol is evaluated from Eq. (36) and set-
ting P⃗Q to P⃗ζ̃ . The dashed blue line corresponds to the value
ζ̃ = ζ, cf. Eq. (39a).

Interestingly, even though Fig. 4 suggests that the CGLMP
Bell function is very effective in providing a good p-value
bound against hypothesis 1, Fig. 5 clearly show that, asymp-
totically, it is not optimal. The results shown in Fig. 5 fur-
ther suggest that among the family of two-qutrit states given
in Eq. (41), the qutrit signature of |Ψ(ζ)⟩, cf. Eq. (39a), could
even be the most prominent, when it comes to its DI certifica-
tion using these hypothesis-testing techniques.

B. Entanglement depth certification

Next, we consider the tripartite correlation P⃗GHZ that results
from locally measuring the ±1-eigenvalue observables

A0 = B0 = C0 = σy, A1 = B1 = C1 = −σx (42a)

on the Greenberger-Horne-Zeilinger (GHZ) state [96, 97]:

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩). (42b)

It is easy to verify that P⃗GHZ leads to a violation of the Mer-
min Bell inequality, Eqs. (12) and (14), giving the algebraic
maximum of SMermin = 4. For our simulations, we assume a
uniform distribution Pxyz = 1

4 over all measurement settings
x, y, z ∈ {0, 1} that satisfy mod(x+ y + z, 2) = 1. Then, we
test the data against the following composite hypotheses.

Null Hypothesis 2. HSep: In every experimental trial, the un-
derlying state is separable (having an entanglement depth of
1).

Null Hypothesis 3. H2-prod: In every experimental trial, the
underlying state is 2-producible, i.e., having an entanglement
depth of 2 or less.

For the martingale-based method, we use Eq. (25) with the
Mermin Bell expression of Eq. (12) and the bounds given in
Eq. (14), i.e., BH = 2 for hypothesis 2 and BH = 2

√
2 for

hypothesis 3. Since βabcxyz ∈ {−1, 0, 1}, we again have b± =
±4. Note that separable states can only generate Bell-local
correlations [5], cf. Eq. (2). Thus, for the PBR protocol with
hypothesis 2, the optimizing distribution P

(k)
⋆ (abc|xyz) for

the k-iteration can be obtained by solving [cf. Eq. (29)]

argmin
P⃗

−
∑

a,b,c,x,y,z

Pxyzf
(k)
reg (abc|xyz) logP (abc|xyz), (43a)

s.t. P⃗ =
∑
i

qiD⃗i, qi ≥ 0,
∑
i

qi = 1 (43b)

where D⃗i is the i-th (local deterministic) extreme points of the
set of tripartite Bell-local distributions.

On the other hand, notice that 2-producibility [77] is equiv-
alent to biseparability [14] in the tripartite scenario. Hence,
for hypothesis 3, we obtain the corresponding optimizing dis-
tribution by solving

argmin
P⃗

−
∑

a,b,c,x,y,z

Pxyzf
(k)
reg (abc|xyz) logP (abc|xyz), (44a)

s.t. χℓ[ρ] = χℓ[ρ1] + χℓ[ρ2] + χℓ[ρ3], χℓ[ρ] ⪰ 0, (44b)
χℓ[ρ]tr = 1, χℓ[ρi] ⪰ 0, ∀ i ∈ {1, 2, 3}, (44c)
χℓ[ρ1]

TĀ ⪰ 0, χℓ[ρ2]
TB̄ ⪰ 0, χℓ[ρ3]

TC̄ ⪰ 0, (44d)

where ρi, with i = {1, 2, 3} are meant to represent, respec-
tively, the constituent of ρ that is separable with respect to the
A|BC,B|AC, andC|AB bipartitions. In evaluating Eq. (44),
we use level ℓ = 1 of the hierarchy introduced in [17]. For
both hypotheses, we then evaluate

R(a, b, c, x, y, z) =
f
(k)
reg (abc|xyz)
P⋆(abc|xyz)

(45)

for the computation of the test statistic tk.
For P⃗GHZ and hypothesis 2, the confidence-gain rate G(pbr)

is already known (see Table I of [90]) to be approximately
0.415037; our computation reproduces this and further shows
that for hypothesis 3, this is approximately 0.228446. More-
over, to six decimal places, G(pbr) and G(mart) agree for both
hypotheses. What about finite data? Based on the average re-
sults from 30 simulations, we find that the p-value bounds, or
more precisely, P = − log2 p

(prot)can be very well fitted into
the following straight lines:4

P(pbr)
HSep

= 0.414958N − 204.978, N ∈ [103, 105], (46)

P(mart)
HSep

= 0.415037N, N ∈ [0, 105] (47)

4 In all these fits, the coefficient of determination R2 is 1 even if we keep up
to 7 significant digits.
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for the separable hypothesis HSep of 2, and

P(pbr)
H2-prod.

= 0.22838N − 115.22, N ∈ [103, 105], (48)

P(mart)
H2-prod.

= 0.228447N, N ∈ [0, 105] (49)

for the 2-producible hypothesis H2-prod. of 3. Consequently,
based on this interpolation, even if we only run the Bell test
using the strategy of Eq. (42) for 100 trials, there is already
sufficient data to certify genuine tripartite-entanglement with
a confidence of at least 1− 10−6.

C. Fidelity certification

Our last examples concern the DI certification of a lower
bound on the fidelity of the swapped state ρSWAP with respect
the target state |ψ(θ)⟩ of Eq. (17a). To this end, we use the
same set of data generated for the analysis in Section IV A 1
and consider the following null hypothesis.

Null Hypothesis 4. HFθ(ρSWAP)≤F0
: In every experimental

trial, the swapped state ρSWAP extractable from the underlying
state ρ has a |ψ(θ)⟩-fidelity upper bounded by F0, i.e.,

Fθ(ρSWAP) := ⟨ψ(θ)| ρSWAP |ψ(θ)⟩ ≤ F0. (50)

Then, for any given θ and F0 ≥ cos θ, to apply the PBR
protocol, we solve the optimizing distribution P (k)

⋆ (ab|xy) for
the k-iteration [cf. Eq. (29)] via:

argmin
P⃗

−
∑
a,b,x,y

Pxyf
(k)
reg (ab|xy) logP (ab|xy), (51a)

s.t. χℓ[ρ] ⪰ 0, χℓ[ρ]tr = 1, Fθ(ρSWAP) ≤ F0, (51b)

where the left-hand side of the last inequality in Eq. (51b) con-
sists of some specific linear combination of entries of χℓ[ρ],
see [87] for details. Then, as with negativity certification, we
can evaluate the PBR used in the computation of tk by replac-
ing freg(ab|xy) and P⋆(ab|xy), respectively, by f (k)reg (ab|xy)
and P (k)

⋆ (ab|xy) in Eq. (30). As for the martingale-based pro-
tocol, we first solve

max
∑
a,b,x,y

βabxyP (ab|xy) (52a)

s.t. χℓ[ρ] ⪰ 0, χℓ[ρ]tr = 1, Fθ(ρSWAP) ≤ F0 (52b)

to determine BH for hypothesis 4 and then apply Eq. (25) to
determine the corresponding p-value upper bound.

Let us start with the self-testing of a Bell state, correspond-
ing to θ = π

4 in Eq. (17a). In this case, we use the CHSH
Bell function specified in Eq. (4) and consider F0 ∈ F0 =
{0.5, 0.51, · · · , 0.99}. For both protocols, by systematically
evaluating the p-value bounds from the data for each of these
F0’s, we determine a lower bound on Fθ=π

4
(ρSWAP) with the

desired confidence of at least 99%. The results obtained from
both hypothesis-testing protocols are shown in Fig. 6.
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FIG. 6: Certifiable fidelity Fθ=π
4
(ρSWAP) from the data

observed in a Bell test generating P⃗CHSH. For the
martingale-based protocol and any given F0 among
F0 = {0.5, 0.51, · · · , 0.99}, we use the BH determined
from Eq. (52) in Eq. (25) to upper-bound p(mart) after every
block of Nblk = 500 trials, thereby generating 200 × 50
upper bounds on p(mart) for a complete Bell test. For the
PBR protocol and a given F0 from F0, we solve Eq. (51)
by considering the same block size and the level-2 outer
approximation of Q introduced in [17]. Then, we obtain
199×50 upper bounds on p(pbr) from Eqs. (32), (34) and (35).
To determine the lower bound on the underlying Fθ=π

4
(ρSWAP)

with the desired confidence of γ ≥ 99%, we look for the
largest F0 in F0 such that HFθ(ρSWAP)≤F0

is rejected with a
p-value upper bound less than or equal to 0.01.

Interestingly, our results show that the martingale-based
protocol with the CHSH Bell function of Eq. (4) again per-
forms very well for the self-testing of a Bell state with finite
statistics, even though our computation of the corresponding
asymptotic confidence-gain rate for F0 = 0.5 clearly shows
that it is suboptimal even for the Bell state, see Fig. 7. What
about other partially entangled states? To answer this ques-
tion, we evaluate the confidence-gain rate derived from both
protocols for5 F0 = cos2 θ with θ = {0◦, 1◦, 2◦, ..., 45◦}.
This time around, for the martingale-based protocol, we
switch to the Bell function of the tilted CHSH Bell inequal-
ity of Eq. (19), which is known to facilitate the self-testing
of all entangled |ψ(θ)⟩. The corresponding results are shown
in Fig. 7.

5 For |ψ(θ)⟩ defined in Eq. (17a), a fidelity of cos2 θ is always achievable
even if Alice and Bob does not share any entanglement; they merely have
to prepare |00⟩ using local operations and classical communication before
the Bell test.
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FIG. 7: Asymptotic confidence-gain rate G(prot) based on the
family of quantum correlations P⃗θ derived from Eq. (17),
where θ = kπ

180 rad, k = {1, 2, · · · , 45}. Here, we consider
Null Hypothesis 4, with Fθ(ρSWAP) = cos2 θ, the trivial fidelity
achievable without shared entanglement. The gain rate for
the martingale-based protocol is computed from Eq. (27) us-
ing the CHSH Bell function of Eq. (4) (dashed line, black)
and the tilted CHSH Bell function of Eq. (19) (dashed-dotted
line, blue) whereas that for the PBR protocol is evaluated from
Eq. (36).

D. Properties certification via Bell-value certification

The advantage of a fidelity certification based on the SWAP
method [87, 89] is that the technique is applicable to a general
Bell scenario. However, in the simplest CHSH Bell scenario,
it is known that a much tighter lower bound on the Bell-state
fidelity can be obtained by considering a more general extrac-
tion map. Specifically, Kaniewski showed in [98] that

max
ΛA,ΛB

min
ρAB

F [(ΛA ⊗ ΛB)(ρAB), |ψMES⟩⟨ψMES|]) ≥

1

2
+

1

2

SCHSH − β∗

2
√
2− β∗

,

(53)
where ΛA, ΛB are local extraction maps acting, respectively,
on Alice’s and Bob’s subsystem, while β∗ := 16+14

√
2

17 ≈
2.1058 is the threshold CHSH value for which the fidelity
bound becomes trivial.

To take advantage of Eq. (53), we can first perform a hy-
pothesis testing based on the following null hypothesis.

Null Hypothesis 5. HSCHSH(ρ)≤S0
: In every experimental

trial, the underlying state and measurements give a CHSH
value SCHSH less than or equal to S0.

Specifically, using the same set of data generated for the
analysis in Section IV A 1 and Section IV C, we perform com-
posite hypothesis testing for Null Hypothesis 5 with S0 ∈
{2, 2+∆S, 2+2∆S, · · · , 2

√
2−∆S}, where ∆S = 2(

√
2−1)
50 .

In particular, for the martingale-based protocol, we can
simply use Eq. (25) with b± = ±4 and BH = S0. Could
one also employ the PBR protocol, which does not usually
presuppose any Bell-like inequality, for the current hypothe-
sis testing? This is indeed possible. To this end, one may solve
the optimizing distribution P (k)

⋆ (ab|xy) for the k-iteration [cf.
Eq. (29)] of the PBR protocol via:

argmin
P⃗

−
∑
a,b,x,y

Pxyf
(k)
reg (ab|xy) logP (ab|xy), (54a)

s.t.
∑
a,b,x,y

(−1)xy+a+bP (ab|xy) ≤ S0, (54b)

with or without imposing the SDP constraints of Eq. (9c). The
results obtained from these tests are shown in Fig. 8.
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FIG. 8: Certifiable Bell-CHSH violation SCHSH from the data
observed in a Bell test generating P⃗CHSH. For the martingale-
based protocol and any given S0 among S0 = {2+k∆S}49k=0,
we use Eq. (54b) in Eq. (25) to upper-bound p(mart) after ev-
ery block of Nblk = 500 trials, thereby generating 200 × 50
upper bounds on p(mart) for a complete Bell test. For the PBR
protocol and a given S0 from S0, we solve Eq. (54) by con-
sidering the same block size. Then, we obtain 199× 50 upper
bounds on p(pbr) from Eqs. (32), (34) and (35). To determine
the lower bound on the underlying SCHSH with the desired con-
fidence of γ ≥ 99%, we look for the largest S0 in S0 such that
HSCHSH≤S0

is rejected with a p-value bound being less than or
equal to 0.01. A separate calculation shows that if we impose
Eq. (9c) in addition to Eq. (54b), one may find a visually indis-
tinguishable difference (< 5× 10−4) in the certifiable SCHSH.

Using each lower bound on SCHSH certified from the data,
Eq. (53) immediately translates to a lower bound on the Bell-
state fidelity with the desired confidence. For a direct compar-
ison with the efficacy of the SWAP-based approach adopted
in Section IV C, we plot in Fig. 9 the Bell-state fidelity certifi-
able using the two approaches. As expected, the tighter Bell-
state fidelity lower bound provided by Eq. (53) also facilitates
a considerably tighter lower bound when one has access to
only a finite amount of data.
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FIG. 9: Comparison of the Bell-state fidelity certifiable via the
SWAP-based approach presented in Section IV C and that via
Eq. (54) and SCHSH-value certification.

It is also worth noting that in computing these PBR bounds,
the computation may be further simplified by regularizing the
relative frequency f⃗reg using only the nonsignaling constraint
of Eq. (7), instead of the quantum approximation via Eq. (9c).
For the lower bounds on SCHSH presented in Fig. 8, this fur-
ther simplification was found to give, unsurprisingly, a worse
lower bound, but with a deviation bounded by 8 × 10−3. Of
course, the lower bounds on SCHSH can also be used to bound
other desired properties. For example, Fig. 2 can equivalently
be obtained by combining Eq. (10) with the results shown
in Fig. 8.

V. DISCUSSION

Tomography and witnesses are two commonly employed
toolkits for certifying the desirable properties of quantum
devices [99]. In recent years, the device-independent (DI)
paradigm has offered an appealing alternative to these conven-
tional means as it involves only a minimal set of assumptions.
Nonetheless, many DI certification schemes, e.g., [16–19, 21–
27, 29, 30], implicitly assumes that the underlying quantum
correlation P⃗Q (or the actual Bell-inequality violation due to
P⃗Q) is known. In practice, this is unrealistic for two reasons:
(1) we always have access to only a finite amount of exper-
imental data, and (2) actual experimental trials are typically
not independent and identically distributed (i.i.d.).

To this end, very specialized tools have been developed for
the task of randomness generation, quantum key distributions,
and the self-testing [87, 100, 101] of quantum states. Among
them, the possibility of using hypothesis testing (based on the
PBR protocol [61]) for self-testing with finite data was first
discussed in [87] (see also [100] for a different approach).
Meanwhile, it is long known [43, 62, 91] that hypothesis test-
ing in a Bell test can also be carried out using a martingale-
based protocol. Here, we demonstrate the viability and versa-
tility of such hypothesis-testing-based approaches for the gen-
eral problem of DI certification.

Central to our finding is the observation that many desirable
quantum properties P that one wishes to certify can be char-
acterized by (the complement of) some convex set CP in the
space of correlation vectors {P⃗}. In other words, if a given
P⃗Q lies outside CP , a Bell-like inequality can be provided to
witness this fact. This separating hyperplane then provides the
basis for our martingale-based protocol for DI certification.
On the other hand, if CP itself admits a semidefinite program-
ming characterization like the kind proposed in [17, 22, 67–
69], then the problem of minimizing the statistical distance
to CP can be cast as a conic program, which can be readily
solved using existing solvers, such as MOSEK [93]. In turn,
the PBR protocol provides an optimized Bell-like inequality
that facilitates the corresponding hypothesis testing.

In this paper, we explain in details how the two aforemen-
tioned hypothesis-testing protocols can be adapted for DI cer-
tification of desirable properties. Specifically, we illustrate
how we can use them to perform DI certification of the un-
derlying negativity [65], local Hilbert space dimension [15],
entanglement depth [77, 78], and fidelity to some target two-
qubit entangled pure state |ψ(θ)⟩. In each of these examples,
we further demonstrate how the certifiable property (with a
confidence of 99%) varies with the number of experimental
trials involved, see Fig. 2, Fig. 4, Fig. 6. Even though we have
focused on certifying desirable properties of quantum states,
as explained above, it should be clear that the protocols can
also be applied to certify desirable properties of the measure-
ment devices [22, 23, 28], etc.

In the i.i.d. setting, the PBR protocol is known to be asymp-
totically optimal (in terms of its confidence-gain rate). How-
ever, we see from Figs. 2, 4 and 6 that for a relatively small
number of trials and with the right choice of the Bell function,
the martingale-based protocol performs equally well, if not
better. A similar observation was also noted in [102] where the
authors therein compare the PBR method with the Chernoff-
Hoeffding bound in determining the success probability of
Bernoulli trials. In our case, this is not surprising as the PBR
method does not presuppose a Bell-like inequality but rather
sacrifices some of the data to determine one. Indeed, if we
equip the PBR protocol with the optimized Bell-like inequal-
ity right from the beginning, its performance is, as expected,
no worse than the martingale-based protocol. See Figs. 10, 11
and 13 to 16 in Appendix A for some explicit examples.

Meanwhile, we also see from Figs. 3, 5 and 7 that for sev-
eral cases that we have investigated, one’s intuitive choice of
the Bell function for the martingale-based method can lead
to a relatively poor confidence-gain rate, and hence impairs
its efficiency to produce a good p-value bound, see Figs. 14
and 16. For example, even though the titled CHSH Bell in-
equality of Eq. (19) is known to self-test all entangled two-
qubit pure states |ψ(θ)⟩, this choice of the Bell function in
the martingale-based method leads to a worse performance
(for bounding the target-state-fidelity) compared with using
the CHSH Bell function, which, in turn, gives a suboptimal
performance compared with that derived from the PBR proto-
col, see Fig. 7. At this point, it is worth reiterating that both
protocols do not require the assumption that the experimental
trials are i.i.d, even though we have only given, for simplicity,
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examples with i.i.d. trials.
Several research directions naturally follow from the

present work. Firstly, even though our hypothesis-testing-
based approaches enable rigorous DI certification with a con-
fidence interval, by virtue of the techniques involved, one can
only make a rather weak certification: out of the many experi-
mental trials, we can be sure that at least one involves a setup
that exhibits the desired property (say, with 99% confidence).
This is evidently far from satisfactory. A preferable certifi-
cation scheme should allow one to comment on the general
or average behavior of all the measured samples, as has been
achieved in [60, 101] for self-testing.

Given that self-testing with a high fidelity is technically
challenging, it is still of interest to devise a general recipe for
certifying the average behavior of other more specific prop-
erties (such as entanglement, steerability, etc.), which may al-
ready be sufficient for the specific information processing task
at hand. However, note that the rejection of a null hypothesis
on the average behavior (e.g., average negativity N (ρ) ≤ N0)
necessarily entails the rejection of the corresponding null hy-
pothesis for all trials (e.g., N (ρ) ≤ N0 in every trial). Thus,
we may expect a tradeoff when switching from the current
kind of hypothesis testing to that for an average behavior.

Also worth noting that if the i.i.d. assumption is somehow
granted, then our protocols also certify the quality of the setup
for every single runs, including those that have not been mea-
sured. In this case, once a sufficiently small p-value bound
is obtained, one can stop measuring the rest of the systems
and use them, instead, for the information processing tasks of
interest. Of course, since the i.i.d. assumption is generally
not warranted, a protocol that achieves certification for some
fraction of the copies while leaving the rest useful for subse-
quent tasks will be desirable. This has been considered for
one-shot distillable entanglement in [20] and the self-testing
fidelity in [60]. Again, a general treatment will be more than
welcome (see, e.g. [103]).
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Appendix A: Miscellaneous results

In this Appendix, we provide some supplemental results to
further illustrate the relative strength of the two hypothesis-
testing protocols. For that matter, we extend some of the Fig-
ures shown in the main text to include two other plots in each
of them. The first of this, dubbed “PBR-simplified” consists
of the simplified implementation of the PBR protocol, where

we use in Eq. (29) and Eq. (30) the relative frequency f⃗ com-
puted from the raw data, instead of the regularized frequency
f⃗reg .

On the other hand, to see the best possible performance that
one could hope for via any kind of implementation of the PBR
protocol, we also replace f⃗reg in Eq. (29) and Eq. (30) by the
ideal quantum correlation P⃗Q used in the generation of the
data. This gets rid of the statistical fluctuations involved in the
estimation of P⃗Q right from the beginning. We call this “PBR-
ideal” as it amounts to using the optimal Bell-like inequality
right from the beginning.

1. Negativity

a. Certification based on the data generated from P⃗CHSH

We start with Fig. 10, which extends Fig. 2 by including the
two plots mentioned above.
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FIG. 10: Extended plot from Fig. 2 where we also include the
results from the simplified implementation of the PBR proto-
col “PBR-simplified” and the best that one could hope for in
implementing the PBR protocol “PBR-ideal”.

Clearly, as we can see in Fig. 10, the performance of the
PBR-simplified protocol is far worse than the PBR protocol.
For example, after N = 105 trials, the certifiable negativity is
only about the same as that achieved with the PBR protocol
with N = 2×104 trials. Similarly, we see in Fig. 11 that with
this protocol, the rate at which the p-value bound for Null Hy-
pothesis 1 with N0 = 0.3 and 0.4 decreases at a rate that is far
slower than the other protocols. On the other hand, we also
see from these figures that the performance of PBR-ideal is
essentially the same as the one given by the martingale-based
protocol, an observation consistent with what one would ex-
pect from Fig. 3 (for θ = π

4 ).
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FIG. 11: Plot of -log 2p(prot) vs N for Null Hypothesis 1 with
N0 = 0.3 and 0.4. The parameters are the same as those
described in Fig. 2.

b. Certification based on the data generated from P⃗θ

In the main text, we mention, in relation to Fig. 3, a pos-
sible cause of the noticeable discrepancy in the confidence-
gain rates obtained between the two protocols. In Fig. 12, we
see that, indeed, for any partially entangled two-qubit state
|ψ(θ)⟩, the negativity lower bound obtained directly from the
CHSH Bell violation, cf. Eq. (10), is far from tight com-
pared to that obtained by solving Eq. (9) for, say, level-3 of
the hierarchy introduced in [17]. Interestingly, we also see
from Fig. 12 that negativity lower bound continues to improve
even at level-12 of the hierarchy. See [104] for closely related
studies on the convergence of this and other SDP hierarchies.
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FIG. 12: Comparison of the actual negativity (top) of ψ(θ),
Eq. (17a), and their various device-independent lower bounds.
The computation for the negativity lower bound based on the
underlying correlation P⃗θ, derived from Eq. (17), is obtained
by solving Eq. (9) whereas the bottom (dashed) line follows
directly from the CHSH Bell inequality violation of these
states, as given in Eqs. (10) and (18).

c. Certification based on the data generated from P⃗CGLMP

The results analogous to Fig. 10 for the extension from
Fig. 4 can be found in Fig. 13.
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FIG. 13: Extended plot from Fig. 4 where we also include the
results from the simplified implementation of the PBR proto-
col “PBR-simplified” and the ideal protocol “PBR-ideal”.
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FIG. 14: Plot of -log2 p
(prot) vs N for hypothesis 1 with N0 =

0.6, 0.7, 0.8, and 0.9. The parameters are the same as those
described in Fig. 4.
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In this case, interestingly, we see that for N0 = 0.6, 0.7
and sufficiently large N , even the PBR-simplified protocol
could overtake the martingale-based protocol in its p-value
upper bound. As N0 increases, we also see that the differ-
ence in the performance between the PBR protocol and the
PBR-ideal protocol becomes more pronounced. Still, for suf-
ficiently large N , the PBR protocol eventually surpasses the
martingale-based protocol in its p-value bound. This last ob-
servation is consistent with our observation in Fig. 13 and the
confidence gain rate shown in Fig. 5.

2. Fidelity

Next, let us include also the plots for PBR-ideal and PBR-
simplified in Fig. 6, as shown in Fig. 15.
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FIG. 15: Extended plot from Fig. 6 where we also include the
results from the simplified implementation of the PBR proto-
col “PBR-simplified” and the best that one could hope for in
implementing the PBR protocol “PBR-ideal”.

Again, we see that the performance of PBR is considerably
impaired if we switch to PBR-simplified. Meanwhile, even
though the difference between PBR-ideal and PBR is rela-
tively insignificant for F0 = 0.6, 0.7, and 0.8 in Fig. 16, we
see that the difference is significant enough to be manifested
in Fig. 15.
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FIG. 16: Plot of -log2 p
(prot) vs N for hypothesis 4 with F0 =

0.6, 0.7, 0.8, and 0.9. The parameters are the same as those
described in Fig. 6.
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[89] T. H. Yang, T. Vértesi, J.-D. Bancal, V. Scarani, and
M. Navascués, Robust and versatile black-box certification of
quantum devices, Phys. Rev. Lett. 113, 040401 (2014).

[90] W. van Dam, R. Gill, and P. Grunwald, The statistical strength
of nonlocality proofs, IEEE Trans. Inf. Theory 51, 2812
(2005).

[91] Y. Zhang, S. Glancy, and E. Knill, Efficient quantification of
experimental evidence against local realism, Phys. Rev. A 88,
052119 (2013).

[92] S. Kullback and R. A. Leibler, On Information and Suffi-
ciency, Ann. Math. Stat. 22, 79 (1951).

[93] Mosek conic optimization, MOSEK Modeling Cookbook .
[94] T. Minka, The Lightspeed Matlab toolbox,

https://github.com/tminka/lightspeed.
[95] Y.-C. Liang and A. C. Doherty, Bounds on quantum correla-

tions in Bell-inequality experiments, Phys. Rev. A 75, 042103

https://doi.org/10.1088/1367-2630/11/4/045021
https://doi.org/10.1088/1367-2630/11/4/045021
https://doi.org/10.1103/PhysRevA.87.012336
https://doi.org/10.1088/1367-2630/aaaa06
https://doi.org/10.1038/s41586-018-0019-0
https://doi.org/10.1038/s41586-018-0019-0
https://doi.org/10.1088/2058-9565/ab01e8
https://doi.org/10.1088/2058-9565/ab01e8
https://doi.org/10.1103/PhysRevResearch.2.013016
https://doi.org/10.1103/PhysRevResearch.2.013016
https://doi.org/10.1103/physrevresearch.2.033465
https://doi.org/10.1109/FOCS54457.2022.00085
https://doi.org/10.1109/FOCS54457.2022.00085
https://doi.org/10.1137/18m1174726
http://dx.doi.org/10.1137/18M1174726
https://doi.org/10.1137/18m1174726
http://dx.doi.org/10.1137/18M1174726
https://doi.org/10.1007/s00220-020-03839-5
https://doi.org/10.1103/PRXQuantum.3.010317
https://doi.org/10.1103/PRXQuantum.3.010317
https://doi.org/10.1103/PhysRevA.84.062118
https://doi.org/10.1103/PhysRevA.84.062118
https://doi.org/10.3390/e21020185
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.98.010401
http://stacks.iop.org/1367-2630/10/i=7/a=073013
https://doi.org/10.1109/CCC.2008.26
https://doi.org/10.1109/CCC.2008.26
https://doi.org/10.1103/PhysRevLett.88.040404
https://doi.org/10.1103/PhysRevA.65.032118
https://doi.org/10.1103/PhysRevA.65.052325
https://doi.org/10.1103/PhysRevA.65.052325
http://arxiv.org/abs/0810.5400
https://doi.org/10.1103/PhysRevX.8.021072
https://doi.org/10.1103/PhysRevX.8.021072
https://doi.org/10.1103/PhysRevA.88.014102
https://doi.org/10.1103/PhysRevA.91.012121
https://doi.org/10.1103/PhysRevA.91.012121
https://doi.org/10.1088/1367-2630/7/1/229
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.65.1838
https://doi.org/10.1103/PhysRevLett.65.1838
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.1103/PhysRevResearch.1.033073
https://doi.org/10.1103/PhysRevResearch.2.033420
https://doi.org/10.1103/PhysRevResearch.2.033420
https://doi.org/10.1007/BF01207366
https://doi.org/10.1007/BF01207366
https://doi.org/https://doi.org/10.1016/0375-9601(92)90819-8
https://doi.org/10.1103/PhysRevLett.68.3259
https://doi.org/10.1103/PhysRevLett.68.3259
https://doi.org/10.1103/PhysRevA.91.022115
https://doi.org/10.1103/PhysRevA.87.050102
https://doi.org/10.1103/PhysRevA.87.050102
https://doi.org/10.1103/PhysRevLett.113.040401
https://doi.org/10.1109/TIT.2005.851738
https://doi.org/10.1109/TIT.2005.851738
https://doi.org/10.1103/PhysRevA.88.052119
https://doi.org/10.1103/PhysRevA.88.052119
https://doi.org/10.1214/aoms/1177729694
https://docs.mosek.com/modeling-cookbook/expo.html
https://docs.mosek.com/modeling-cookbook/expo.html
https://doi.org/10.1103/PhysRevA.75.042103


18

(2007).
[96] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell’s

Theorem, Quantum Theory and Conceptions of the Universe
(Kluwer, Dordrecht, 1989) Chap. Going Beyond Bell’s Theo-
rem, pp. 69–72.

[97] N. D. Mermin, Quantum mysteries revisited, Am. J. Phys. 58,
731 (1990).

[98] J. Kaniewski, Analytic and nearly optimal self-testing bounds
for the Clauser-Horne-Shimony-Holt and Mermin inequali-
ties, Phys. Rev. Lett. 117, 070402 (2016).

[99] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham,
R. Parekh, U. Chabaud, and E. Kashefi, Quantum certification
and benchmarking, Nat. Rev. Phys. 2, 382 (2020).

[100] T. R. Tan, Y. Wan, S. Erickson, P. Bierhorst, D. Kien-
zler, S. Glancy, E. Knill, D. Leibfried, and D. J. Wineland,
Chained Bell inequality experiment with high-efficiency mea-
surements, Phys. Rev. Lett. 118, 130403 (2017).

[101] J.-D. Bancal, K. Redeker, P. Sekatski, W. Rosenfeld, and
N. Sangouard, Self-testing with finite statistics enabling the
certification of a quantum network link, Quantum 5, 401
(2021).

[102] P. Wills, E. Knill, K. Coakley, and Y. Zhang, Performance of
test supermartingale confidence intervals for the success prob-
ability of Bernoulli trials, J. Res. Natl. Inst. Stan. 125, 125003
(2020).

[103] Y. Zhang, A. Seshadri, and E. Knill, Confidence-interval con-
struction with non-i.i.d. spot-checking trials & its application
in quantum information, in Optica Quantum 2.0 Conference
and Exhibition, Technical Digest Series (Optica Publishing
Group, Denver, Colorado, 2023) p. QTu3A.20.
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