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FINDING PRODUCT SETS IN SOME CLASSES OF AMENABLE GROUPS

DIMITRIOS CHARAMARAS AND ANDREAS MOUNTAKIS

Abstract. In [KMRR22], using methods from ergodic theory, a longstanding conjecture of Erdős

(see [Erd73, Page 305]) about sumsets in large subsets of the natural numbers was resolved. In

this paper, we extend this result to several important classes of amenable groups, including all

finitely generated virtually nilpotent groups, and all abelian groups (G,+) with the property that

the subgroup 2G := {g+ g : g ∈ G} has finite index. We prove that in any group G from the above

classes, any A ⊂ G with positive upper Banach density contains a shifted product set of the form

{tbibj : i < j}, for some infinite sequence (bn)n∈N and some t ∈ G. In fact, we show this result for

all amenable groups that posses a property which we call square absolute continuity. Our results

provide answers to several questions and conjectures posed in [KMRR23].
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1. Introduction

In [KMRR22], Bryna Kra, Joel Moreira, Florian K. Richter and Donald Robertson, using meth-

ods from ergodic theory, proved that every subset A of the positive integers with positive upper

Banach density contains {b1 + b2 + t : b1 6= b2 ∈ B} for some infinite set B ⊂ A and some t ∈ N.

This resolved a longstanding conjecture of Erdős (see [Erd73, Page 305]).

A natural question to ask is whether this result generalizes to other countable groups, such

as Z
d for d ≥ 2 or the discrete Heisenberg group, for example. The purpose of this paper is

to extend the result in [KMRR22] to several important classes of amenable groups, including all

finitely generated virtually nilpotent groups and all abelian groups (G,+) with the property that

the subgroup consisting of the elements 2g := g + g, where g ∈ G, has finite index. To this end,

we first extend the result to all amenable groups satisfying a property that we call square absolute

continuity (see Definition 1.4). Then we show that our result applies to the aforementioned classes

of groups, by showing that they are (virtually) square absolutely continuous. Our main results

provide partial answers to some questions and conjectures posed in [KMRR23] regarding product

sets in large subsets of amenable groups.

Throughout, let G denote a countable group. Let us start with some basic definitions.

Definition 1.1. Let (G, ·) be a group. A sequence Φ = (ΦN )N∈N of finite subsets of G is:

• a left Følner sequence, if it satisfies

lim
N→∞

|gΦN ∩ ΦN |

|ΦN |
= 1 or equivalently, lim

N→∞

|gΦN△ΦN |

|ΦN |
= 0

for any g ∈ G, and

• a right Følner sequence, if it satisfies

lim
N→∞

|ΦNg ∩ ΦN |

|ΦN |
= 1 or equivalently, lim

N→∞

|ΦNg△ΦN |

|ΦN |
= 0

for any g ∈ G.

If both conditions are satisfied, then Φ is a two-sided Følner sequence.

We remark that if a group admits a left (or right) Følner sequence, then it admits a two-sided

Følner sequence. Amenable groups, which are the central object of our study, are defined as follows:

Definition 1.2. A group (G, ·) is called amenable if it admits a left Følner sequence.

The most common example of an amenable group is Z
d, for any d ∈ N. Other examples of

amenable groups are finite groups, abelian groups, solvable groups and finitely generated groups of

subexponential growth. In addition, products of amenable groups, and virtually amenable groups

are amenable. Følner sequences are useful to define notions of density in amenable groups.
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Definition 1.3. Let (G, ·) be an amenable group, Φ a left (right) Følner sequence, and let A ⊂ G.

Then the left (right) upper density of A with respect to Φ is defined as

dΦ(A) := lim sup
N→∞

|A ∩ ΦN |

|ΦN |
.

We say that A has positive left (right) upper Banach density if it has positive left (right) upper

density with respect to some left (right) Følner sequence. We also say that A has positive upper

Banach density if it has positive upper density with respect to some two-sided Følner sequence.

Note that if G is an amenable group, and A ⊂ G has positive left upper Banach density, then

this does not necessarily mean that A has positive right upper Banach density.

Given a group (G, ·), for any g, h ∈ G, Given a sequence B = (bn)n∈N ⊂ G, we define

B ·⊳ B := {bibj : i < j},

B ·⊲B := {bibj : i > j}.

and

B ⊙B := {bibj : i 6= j}.

If G is abelian then B ·⊳ B = B ·⊲ B = B⊙B, which we also denote by B⊕B if the group operation

in G is written using additive notation. We refer to the map sG : G → G, sG(g) = g2, as the

squaring map on G. The image of this map is the subset of G consisting of all the elements of the

form g2, where g ∈ G. We denote this by G2, i.e. sG(G) = G2, and we often refer to it as the

subset of squares.

Definition 1.4. Let G be an amenable group and φ : G → G be a map. We say that G is φ-

absolutely continuous if G admits two Følner sequences Φ = (ΦN )N∈N and Ψ = (ΨN )N∈N satisfying

the following: for any ε > 0 there exists some δ > 0 such that for any u : G→ [0, 1] satisfying

lim sup
N→∞

1

|ΦN |

∑

g∈ΦN

u(g) < δ,

we have that

lim sup
N→∞

1

|ΨN |

∑

g∈ΨN

u(φ(g)) < ε.

If, in particular, φ = sG, then we say that G is square absolutely continuous.

1.1. Main results. The first main theorem of this paper is the following:

Theorem 1.5. Let G be a square absolutely continuous group and A ⊂ G with positive left upper

Banach density. Then there exist an infinite sequence B = (bn)n∈N ⊂ A and some t ∈ G such that

B ·⊳ B ⊂ t−1A.
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Theorem 1.5 provides a positive answer to [KMRR23, Question 5.16], with the extra assumption

that G is square absolutely continuous, and under the weaker assumption that the set A has positive

left upper Banach density, instead of positive upper Banach density.

Remark 1.6. Note that Theorem 1.5 immediately implies an analogous result for right upper Ba-

nach density instead of left upper Banach density. Indeed, through the map g 7→ g−1, Theorem 1.5

is equivalent to the assertion that for any A ⊂ G with positive right upper Banach density, there

exists an infinite sequence C = (cn)n∈N ⊂ A and some r ∈ G such that

C ·⊲C ⊂ Ar−1.

Before continuing, let us recall the following definitions for a group G:

• G is nilpotent if its lower central series is finite, that is to say

G = G0 ⊲ G1 ⊲ · · · ⊲ Gn = {eG},

where Gi+1 := [Gi, G] is the commutator group of Gi and G, i.e., the subgroup of G

generated by the elements of the form hgh−1g−1, where h ∈ Gi, g ∈ G.

• G is finitely generated if there exist g1, . . . , gn ∈ G such that any element of G can be written

as product of g1, . . . , gn.

• G is torsion-free if it does not have any non-trivial element of finite rank, that is to say, for

any g ∈ G with g 6= eG and any n ∈ N, we have gn 6= eG.

• If P is a property of groups, then we say that a group G is virtually P if it has a finite-index

subgroup that has the property P .

In any finitely generated nilpotent group G, there exist some s ∈ N (depending on the degree of

nilpotency and the number of generators of G), some ai ∈ G and some functions ti : G → Z, for

1 ≤ i ≤ s, such that any x ∈ G can be written as x = a
t1(x)
1 · · · a

ts(x)
s . The s-tuple (a1, . . . , as) is a

Mal’cev basis and the s-tuple (t1, . . . , ts) is a Mal’cev coordinate system with respect to this Mal’cev

basis. If G is also torsion-free, then the coordinate maps are injective and hence we can identify G

with Z
s and it is convenient to also identify any x ∈ G with its coordinates (t1(x), . . . , ts(x)) ∈ Z

s.

The above facts about Mal’cev bases can be found in [KM79, Chapter 17.2].

Theorem 1.7. Every torsion-free finitely generated nilpotent group is square absolutely continuous.

Combining Theorems 1.5 and 1.7 we have that every torsion-free finitely generated nilpotent

group satisfies the conclusion of Theorem 1.5. In fact, we prove the following slight strengthening:

Corollary 1.8. Let G be a torsion-free finitely generated nilpotent group and A ⊂ G with positive

left upper Banach density. Then there exist an infinite sequence B = (bn)n∈N ⊂ A and some t ∈ G

such that

B ·⊳ B ⊂ t−1A.
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Moreover, given a Mal’cev coordinate system (t1, . . . , ts) on G, we can choose B so that the following

holds: for any finite set C ⊂ Z and any 1 ≤ i ≤ s, the set {b ∈ B : ti(b) ∈ C} is finite.

Furthermore, we are able to extend the first statement of Corollary 1.8 to all finitely generated

virtually nilpotent groups.

Corollary 1.9. Let G be a finitely generated virtually nilpotent group and A ⊂ G with positive left

upper Banach density. Then there exist g ∈ G, an infinite sequence B = (bn)n∈N ⊂ g−1A, and

some t ∈ G such that

B ·⊳ B ⊂ t−1A.

In particular, this holds for the group UT (n, F )1, where n ∈ N and F is any infinite, finitely

generated field.

Remark 1.10. Note that the class of finitely generated virtually nilpotent groups coincides, in

view of Gromov’s theorem, with the class of finitely generated groups of polynomial growth.

The final part of this subsection is concerned with sumsets in abelian groups. Let G = (G,+)

be an abelian group. We write 2g to denote the element g + g, for any g ∈ G. Moreover, we refer

to the map sG : G→ G as the doubling map and its image is now the subgroup of G consisting of

all elements of the form 2g, where g ∈ G. We denote this subgroup by 2G, i.e., sG(G) = 2G, and

we often refer to it as the doubling subgroup.

In [KMRR23, Conjecture 5.14], it is conjectured that in any countable abelian group G, every set

of positive upper Banach density contains a set of the form B⊕B+ t = {b1 + b2 + t : b1 6= b2 ∈ B}

for an infinite set B ⊂ G and some t ∈ G. It follows from Corollary 1.9 that this conjecture holds

under the additional assumption that G is finitely generated, and moreover, it extends [KMRR22,

Theorem 1.2] from (N,+) to all finitely generated abelian groups. In fact, we are able to verify

[KMRR23, Conjecture 5.14], and hence extend [KMRR22, Theorem 1.2] to an even larger collection

of abelian groups, that contains all the finitely generated abelian groups along with some infinitely

generated ones. The following theorem allows us to do so:

Theorem 1.11. Every abelian group whose doubling subgroup has finite index is square absolutely

continuous.

The following corollary is an obvious consequence of Theorems 1.5 and 1.11:

Corollary 1.12. Let (G,+) be an abelian group such that 2G is a finite-index subgroup of G, and

let A ⊂ G with positive upper Banach density. Then there exist an infinite set B ⊂ A and some

t ∈ G such that

B ⊕B ⊂ A− t.

1UT (n, F ) is the unitriangular n×n matrix group with entries from F . Note that U(3,Z) is the well-known 3× 3

Heisenberg group.
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In particular, this holds for:

• all finitely generated abelian groups,2 and

• all (infinitely generated) abelian groups of the form (Fω
p ,+),3 where p is any odd prime.

Corollary 1.12 is in fact optimal, in the sense that 2G being a finite-index subgroup of G is a

necessary assumption. As shown in a recent paper of Ethan Ackelsberg [Ack24], if 2G has infinite

index in G, then one can always find a set A with upper Banach density arbitrarily close to 1 which

does not contain any shifted sumset t+B ⊕B of some infinite set B.

We remark that Corollary 1.12 can also be proved independently of Theorem 1.5, meaning

that, by slightly modifying the proof of Theorem 1.5, one can directly obtain the result for abelian

groups with finite-index doubling subgroup without showing that such groups are square absolutely

continuous.

1.2. More product sets and open questions. The following remark shows that in the for-

mulation of Theorem 1.5 one can replace left shifts with right shifts and the statement remains

true.

Remark 1.13. Let G and A be as in Theorem 1.5. Then there exist some t ∈ G and some

B = (bn)n∈N ⊂ tAt−1 such that

B ·⊳ B ⊂ At−1.

To see why, let B′ ⊂ A and t ∈ G such that B′ ·⊳ B′ ⊂ t−1A, as guaranteed by Theorem 1.5, and

then let B = tB′t−1.

Aside from replacing left shifts with right shifts, it is also natural to ask whether one can replace

product sets of the form B ·⊳ B with those of the form B ·⊲ B, and additionally when the restriction

B ⊂ A can be imposed. The following table addresses this question in the case when G is a square

absolutely continuous group.

Table 1: Product sets in sets of positive left upper Banach

density

B ·⊳ B ⊂ t−1A, for B ⊂ A True (Theorem 1.5; for dΦ(A) > 0 for some left Følner Φ)

B ·⊳ B ⊂ At−1, for B ⊂ G True (Remark 1.13; for dΦ(A) > 0 for some left Følner Φ)

B ·⊳ B ⊂ At−1, for B ⊂ A False (Example 6.1; with dΦ(A) > 0 for some left Følner Φ)

2It is not hard to check that in finitely generated abelian groups, the doubling subgroup has finite-index.
3
F
ω
p is the direct product of infinitely many copies of Fp = Z/pZ, and it is clearly infinitely generated abelian.
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B ·⊲ B ⊂ t−1A, for B ⊂ G False (Example 6.2; with dΦ(A) = 1 for some left Følner Φ)

B ·⊲ B ⊂ At−1, for B ⊂ G False (Example 6.3; with dΦ(A) = 1 for some left Følner Φ)

The above table shows that Theorem 1.5 is optimal for sets of positive left upper Banach density

in non-commutative groups, in the sense that it is not necessarily true that one can find a product

set of the form B ⊙ B (or even B ·⊲ B) inside shifts of such sets. In addition, we remark that the

table above provides a partial answer to [KMRR23, Question 5.19].

It remains interesting to ask whether product sets of the form B ⊙B can be found in sets with

positive upper Banach density. Unfortunately, our methods here are insufficient to handle this case.

In this spirit, we conclude this section with the two questions below. We remark that the second

one is a special case of [KMRR23, Question 5.17].

Question 1.14. Let G be a square absolutely continuous group and A ⊂ G be a set of positive

upper Banach density. Is it true that there exists some set B ⊂ G such that

B ⊙B ⊂ t−1A ∪Ar−1

for some t, r ∈ G?

Question 1.15. Let G and A be as in Question 1.14. Is it true that there exists some set B ⊂ G

such that

B ⊙B ⊂ t−1Ar−1

for some t, r ∈ G?

1.3. Proof ideas. To prove Theorem 1.5, we follow an ergodic-theoretic approach and we employ

ideas similar to the ones used in [KMRR22] in the setting of (N,+). This approach is based

on methods that were introduced in [KMRR24] to generalize another sumset conjecture of Erdős,

which was initially proved in [MRR19] by Moreira, Richter and Robertson. However, the generality

of the setting of amenable groups compared to (N,+) causes several issues and complications that

we need to handle differently. These issues, along with the new ideas we develop to deal with them,

are briefly discussed below.

After translating Theorem 1.5 into a dynamical statement (see Theorem 3.8), we reduce the

problem to finding certain dynamical configurations given by limit points of orbits of ergodic

measure-preserving G-actions, called Erdős progressions (see Definition 3.2). The natural envi-

ronment in which one can study such progressions is the Kronecker factor of a system, as Erdős

progressions are simply 3-term arithmetic progressions there.

One of the main obstructions we had to overcome in our proof is the lack of commutativity of

G. The most notable among the issues that this leads to is that the Kronecker factor does not
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have the structure of an abelian group, but instead, it is a homogeneous space Z = K/H, for some

compact group K. This makes the study of Erdős progressions more technically challenging. To be

more precise, the abelian nature of the Kronecker factor in the setting of (N,+)-actions is heavily

used in [KMRR22]. Consequently, due to the absence of commutativity in our case, many of the

techniques in [KMRR22] do not generalize easily to our setting. Another difficulty that arises in

non-commutative groups is the erratic behavior of the set of squares G2. In particular, orbits of

points along G2 may be trapped in zero-measure regions, which causes serious trouble in finding

Erdős progressions. The assumption that G is square absolutely continuous is critical in avoiding

this scenario. In addition, we need an extension of a result of Host and Kra ([HK09, Proposition

6.1]) concerning actions of (N,+), to the more general setting of amenable group actions (see

Lemma 3.5, proof in Appendix A).

Acknowledgements. We would like to thank Joel Moreira and Florian K. Richter for their

insightful suggestions, beneficial comments and constant support throughout the writing of this

paper. We also want to thank Ethan Ackelsberg and Felipe Hernández Castro for their useful
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2. Preliminaries

In this section, we state all the preliminaries that will be useful in the rest of the paper regarding

classic notions and theorems of ergodic theory of actions of amenable groups. So, for the rest of

the section, G denotes an arbitrary countable and discrete amenable group.

Basics on G-systems: Given a compact metric space X = (X, dX ), a continuous action T =

(Tg)g∈G of G on X is a collection of continuous functions Tg : X → X such that for any g1, g2 ∈ G,

Tg1 ◦ Tg2 = Tg1g2 . Given such an action, we call the pair (X,T ) a topological G-system.

Given a topological G-system (X,T ) and a point x ∈ X, we define its orbit as OT (x) = {Tgx :

g ∈ G}, and we say that the point is transitive if OT (x) is dense in X.

Fix a topological G-system (X,T ). Let M(X) denote the space of Borel probability measures

on X, equipped with the weak∗ topology, which is compact and metrizable. A measure µ ∈M(X)

is said to be T -invariant, if it is invariant under Tg for all g ∈ G. The subset of M(X) consisting

of T -invariant measures is denoted by MT (X), and it is a closed and convex subset of M(X). The

Borel σ-algebra on X is denoted by BX or just B, if no confusion may arise.

For µ ∈MT (X), the action T on the Borel probability space (X,µ) is called a measure-preserving

G-action and (X,µ, T ) is called a measure-preserving G-system. Note that we omit writing the
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symbol for the σ-algebra, and from now on, whenever this happens, the implied σ-algebra will be

the Borel. For simplicity, we refer to the above as G-actions, and G-systems, respectively.

Given a G-system (X,µ, T ), one can define an action, which by abuse of notation will again be

denoted by T = (Tg)g∈G, of G on L2(X) by Tg : L2(X) → L2(X), Tgf = f ◦ Tg. It is not hard see

that for all g ∈ G, Tg is an isometry of L2(X). Note also that since G acts from the left on X, then

G acts from the right on L2(X).

We remark that we are only considering G-systems where G acts on the prescribed space from

the left, and then any associated Følner will be considered left, without mentioning it, unless it is

necessary.

Product G-system: Given two G-systems (X,µ, T ) and (Y, ν, S), we define the product G-system

(X × Y, µ× ν, T × S), where the underlying σ-algebra is the product of the Borel σ-algebras on X

and Y , which coincides with the Borel σ-algebra on X×Y , and the action is T ×S = (Tg×Sg)g∈G.

Factors of G-systems: Given two G-systems (X,µ, T ) and (Y, ν, S), we say that (Y, ν, S) is a

factor of (X,µ, T ) if there exists a measurable map π : X → Y , which we call a factor map,

satisfying: µ(π−1E) = ν(E) for any measurable E ⊂ Y and for any g ∈ G, π ◦ Tg = Sg ◦ π µ-

almost everywhere on X. When the former is true, we say that ν is the push-forward of µ under

π, and we write πµ = ν. When, additionally, the factor map π is continuous and π ◦ Tg = Sg ◦ π

holds everywhere on X for any g ∈ G, we say that π is a continuous factor map and (Y, ν, S) is a

continuous factor of (X,µ, T ).

Ergodicity and ergodic theorems for G-systems: A G-system (X,µ, T ) is called ergodic if

for any measurable set A the following holds:

T−1
g A = A for all g ∈ G =⇒ µ(A) = 0 or µ(A) = 1.

Given a G-system (X,µ, T ), let A be a sub-σ-algebra of B. For f ∈ L2(X,µ), the conditional

expectation of f on A , denoted by Eµ(f | A ), is defined as the orthogonal projection of f on the

closed subspace L2(X,A , µ) of L2(X,µ). We also denote the sub-σ-algebra of the T -invariant sets

by I = I(T ); that is,

I = I(T ) := {E ∈ B : T−1
g E = E for all g ∈ G}.

Theorem 2.1 (Mean Ergodic Theorem for G-systems, see [Gla03, Theorem 3.33]). Let (X,µ, T )

be a G-system, and let Φ be a Følner sequence. Then, for any f ∈ L2(X),

1

|ΦN |

∑

g∈ΦN

Tgf → Eµ(f | I)

as N → ∞ in L2(X). In addition, if the system is ergodic, the ergodic averages above converge to∫
X
f dµ.

Measure disintegration and ergodic decomposition: When X is a compact metric space,

the spaceM(X) of Borel probability measures on X can be endowed with a σ-algebra M such that
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the space (M(X),M) is a standard Borel space. The following theorem about disintegrations of

measures is very useful.

Theorem 2.2 (Disintegration of measures, see [HK18, Chapter 2, Section 2.5]). Let X be a compact

metric space, B the Borel σ-algebra on X and µ a probability measure on (X,B). Let also D

be a sub-σ-algebra of B. Then there is a (D , µ)-almost everywhere defined and measurable map

(X,D) → (M(X),M), x 7→ µx with the following properties:

• For every f ∈ L1(X,µ), the function x 7→
∫
X
f dµx is in L1(X,D , µ), and for all D ∈ D ,

we have
∫
D
f dµ =

∫
D

( ∫
X
f dµx

)
dµ(x). In particular, this implies that

∫
X
f dµx =

Eµ(f | D)(x) for (D , µ)-almost every x ∈ X.

• µx([x]D ) = 1, where [x]D = ∩x∈D∈DD.

The map satisfying the above properties is unique modulo (D , µ)-null sets, and is called the disin-

tegration of the measure µ over the sub-σ-algebra D . In that case, we write µ =
∫
X
µx dµ(x).

In this paper, we will extensively make use of disintegrations over (continuous) factor maps. Let

π : (X,µ, T ) → (Y, ν, S) be a factor map between two G-systems. In the setting of Theorem 2.2,

let D = π−1(BY ), where BY is the Borel σ-algebra on Y . Then Theorem 2.2 gives a disintegration

y 7→ µy defined on Y , which is unique up to ν-null measure sets, and satisfies the following:

• for ν-almost every y ∈ Y ,

(2.1) Eµ(f | Y )(y) := Eµ(f | D)(y) =

∫

Y

f dµy,

• for ν-almost every y ∈ Y , µy(π
−1({y})) = 1, and finally,

• for any g ∈ G and for ν-almost every y ∈ Y , (Tg)µy = µSgy.

Let (X,µ, T ) be a G-system. Consider the (unique) disintegration of µ with respect to I = I(T )

given by Theorem 2.2. This disintegration is called the ergodic decomposition of µ. Equivalently,

we say that the disintegration x 7→ µx is the ergodic decomposition of µ, if for any f : X → C

measurable and bounded,

(2.2)

∫

X

f dµx = Eµ(f | I)(x)

holds for (I, µ)-almost every x ∈ X.

Theorem 2.3 (Ergodic decomposition of G-systems, see [Gla03, Theorem 3.22]). If (X,µ, T ) is

a G-system as above, then for (I, µ)-almost every x ∈ X, the measure µx is T -invariant and the

system (X,µx, T ) is ergodic.

Generic points and the support of a measure: In addition, we will need the notion of generic

points:
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Definition 2.4. Let (X,µ, T ) be a G-system and let Φ be a Følner sequence. A point a ∈ X is

called generic for µ along Φ if for all f ∈ C(X) we have

lim
N→∞

1

|ΦN |

∑

g∈ΦN

f(Tga) =

∫

X

f dµ

or equivalently if

lim
N→∞

1

|ΦN |

∑

g∈ΦN

δTga = µ

where δx is the Dirac mass at x ∈ X and the limit is in the weak∗ topology. If a is generic for µ

along Φ, then we denote this by a ∈ gen(µ,Φ).

Moreover, we will need the notion of the support of a measure. The support of a Borel probability

measure µ on a compact metric space X is the smallest closed full-measure subset of X and is

denoted by supp(µ). We will need the following lemma, which says that generic points for a

measure have dense orbit in the support of the measure. Its proof is quite standard, and we only

include it for completeness.

Lemma 2.5. Let (Y, ν, S) be a G-system and let y,w ∈ Y . If y ∈ gen(ν,Φ) for some Følner

sequence Φ, and w ∈ supp(ν), then Sgny → w, for some infinite sequence (gn)n∈N in G.

Proof. Fix a compatible metric on X and let B(w, ε) be the open ball centered at w with radius

ε > 0 with respect to this metric. By Urysohn’s lemma, for every ε > 0 there exists a continuous

function f : X → [0, 1] with f = 1 on B(w, ε/2) and f = 0 outside B(w, ε). Since w ∈ supp(ν), it

follows that
∫
Y
f dν > 0. Now, using that y ∈ gen(ν,Φ), we have that

lim
N→∞

1

|ΦN |

∑

g∈ΦN

f(Sgy) =

∫

X

f dν > 0,

which implies that Sgy ∈ B(w, ε) for infinitely many g ∈ G. The result then follows. �

We will also make use of the following result of Lindenstrauss:

Proposition 2.6 (see [Lin99, Theorem 1.2 and Proposition 1.4]). Let (X,µ, T ) be a system and Φ

be a Følner sequence in G. Then there is a subsequence Ψ of Φ such that for all f ∈ L1(µ),

lim
N→∞

1

|ΨN |

∑

g∈ΨN

Tgf(x) = Eµ(f | I)(x)

for µ-almost every x ∈ X.

The next two lemmas follow easily from Proposition 2.6:

Lemma 2.7. Let (X,µ, T ) be an ergodic G-system. Then for any Følner sequence Φ there exists

some subsequence Ψ such that µ-almost every x ∈ X is in gen(µ,Ψ).
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Lemma 2.8. Let (X,µ, T ) be a G-system, let Φ be a Følner sequence, and let x 7→ µx be the ergodic

decomposition of µ. Then there exists some subsequence Ψ of Φ such that µ-almost every x ∈ X is

in gen(µx,Ψ).

Finally, it will be useful to have the following generalisation of [Fur81, Proposition 3.9], whose

proof is again the same as for actions of (N,+), but we include it for the convenience of the reader.

Lemma 2.9. Let G be an amenable group, let (X,µ, T ) be an ergodic G-system, and let a ∈ X be

a point such that µ is supported on OT (a). Then there exists some Følner sequence Ψ such that

a ∈ gen(µ,Ψ).

Proof. By Lemma 2.7, there exists some x0 ∈ OT (a) that is generic for µ along some Følner sequence

Φ. Let F = (fk)k∈N be a dense subset of (C(X), ‖ · ‖∞) and let (ΦNn)n∈N be a subsequence of Φ

such that for every n ∈ N and for every j = 1, 2, . . . , n,
∣∣∣∣

1

|ΦNn |

∑

g∈ΦNn

fj(Tgx0)−

∫

X

fj dµ

∣∣∣∣ <
1

n
.

Since x0 ∈ OT (a), there exists some (gn)n∈N ⊂ G such that Tgna→ x0, so that we may assume that

the equation above holds if we substitute x0 with Tgna. Consider the Følner sequence Ψ = (Ψn)

given by Ψn = ΦNngn. It follows that for every n ∈ N and any j = 1, 2, . . . , n,
∣∣∣∣

1

|Ψn|

∑

g∈Ψn

fj(Tga)−

∫

X

fj dµ

∣∣∣∣ <
1

n
.

Since F is dense in C(X) the conclusion follows as before. �

Kronecker factor and the Jacobs-de Leeuw-Glicksberg decomposition: Let (X,µ, T ) be

a G-system. A function f ∈ L2(X) is called:

• compact, if {Tgf : g ∈ G} is compact with respect to the strong topology on L2(X).

• weak-mixing, if for any Følner sequence Φ, and any f ′ ∈ L2(X),

lim
N→∞

1

|ΦN |

∑

g∈ΦN

|〈Tgf, f
′〉| = 0.

We define the compact component of L2(X) as Hc(T ) = span{f ∈ L2(X) : f is compact}, and

the weak-mixing component of L2(X) as Hwm(T ) = {f ∈ L2(X) : f is weak-mixing}. When no

confusion may arise, we simply write Hc and Hwm respectively.

In case that G is an amenable group, the Jacobs-de Leeuw-Glicksberg decomposition theorem

applies, stating that these two components give a decomposition of L2(X).

Theorem 2.10 (Jacobs-de Leeuw-Glicksberg decomposition, see [KL16, Theorem 2.24]). If (X,µ, T )

is a G-system, then

L2(X) = Hc ⊕Hwm.
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Now we will give a description of the factor of (X,µ, T ) corresponding to the subspace Hc of

L2(X). Note that if f ∈ Hc, then for all g ∈ G, Tgf ∈ Hc, so Hc in invariant under the action

of T on L2(X). Let A be the smallest σ-algebra with respect to which all functions in Hc are

measurable. Then A is T -invariant σ-algebra contained in the Borel σ-algebra of X. Therefore,

the system (X,A, µ, T ) is a factor of the original system, with the factor map being the identity

id : X → X. This factor is called the Kronecker factor of (X,µ, T ).

Our goal now is to give a nice algebraic description of the Kronecker factor when the G-system

(X,µ, T ) is ergodic.

Proposition 2.11. [Mac64, Theorem 1] Let (X,µ, T ) be an ergodic G-system. Then there exist

a compact group K, a closed subgroup H of K and a continuous group homomorphism α : G→ K

with dense image such that the Kronecker factor of (X,µ, T ) is measurably isomorphic to the G-

system (Z,m,R) given as follows: Z = K/H is a homogeneous space, m is the normalized Haar

measure on Z and R = (Rg)g∈G, where for each g ∈ G, Rg : Z → Z is given by Rg(z) = α(g)z.

The system (Z,m,R) is called a rotation on the homogeneous space Z.

This proposition allows us to identify the Kronecker factor with a rotation on a homogeneous

space, whenever (X,µ, T ) is ergodic.

Characteristic factors for G-systems: The notion of characteristic factors will play a funda-

mental role later in one of our proofs. Characteristic factors are relevant to the ergodic averages

in question, in each different problem. Here we have the following theorem for the characteristic

factors with respect to some double averages that will concern us.

Theorem 2.12. Let (X,µ, T ) be an ergodic G-system, let (Z,m,R) be its Kronecker factor and Φ

be a Følner sequence. Then for any f1, f2 ∈ L∞(X), we have

lim
N→∞

1

|ΦN |

∑

g∈ΦN

Tgf1 ⊗ Tgf2 = lim
N→∞

1

|ΦN |

∑

g∈ΦN

TgEµ(f1 | Z)⊗ TgEµ(f2 | Z)

in L2(X ×X,µ × µ). We say then that the characteristic factor for the averages in the left-hand

side of the above is the Kronecker.

The proof of this theorem will follow easily from the following lemma.

Lemma 2.13. Let (X,µ, T ) be a G-system. Then

Hwm(T )⊗ L2(X) ⊂ Hwm(T × T ) and L2(X) ⊗Hwm(T ) ⊂ Hwm(T × T ).

Proof. We will only prove the first inclusion, as the second follows in an analogous way. Let Φ be

any Følner sequence, and let f1 ∈ Hwm(T ) and f2 ∈ L2(X). We may assume that ‖f1‖2, ‖f2‖2 ≤ 1.

We want to show that

(2.3) lim
N→∞

1

|ΦN |

∑

g∈ΦN

∣∣∣〈(Tg × Tg)(f1 ⊗ f2), F 〉L2(µ×µ)

∣∣∣
2
= 0
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for any F ∈ L2(X ×X,µ × µ).

Let F ∈ L2(X × X,µ × µ) and ε > 0. We may assume that ‖F‖L2(µ×µ) = 1. Now, since

finite linear combinations of functions of the form f ′1 ⊗ f ′2, where f
′
1, f

′
2 ∈ L2(X), form a dense

subset of L2(X ×X,µ × µ), we can find F ′ =
∑k

i=1 ci(f
′
1,i ⊗ f ′2,i) with ‖F ′‖L2(µ×µ) ≤ 1 such that

‖F − F ′‖L2(µ×µ) < ε/2. Then by the Cauchy-Schwarz inequality we have

∣∣〈(Tg × Tg)(f1 ⊗ f2), F 〉L2(µ×µ)

∣∣2 = 〈(Tg × Tg)(f1 ⊗ f2), F 〉L2(µ×µ)〈F, (Tg × Tg)(f1 ⊗ f2)〉L2(µ×µ)

= 〈(Tg × Tg)(f1 ⊗ f2), F
′〉L2(µ×µ)〈F

′, (Tg × Tg)(f1 ⊗ f2)〉L2(µ×µ)

+ 〈(Tg × Tg)(f1 ⊗ f2), F
′〉L2(µ×µ)〈F − F ′, (Tg × Tg)(f1 ⊗ f2)〉L2(µ×µ)

+ 〈(Tg × Tg)(f1 ⊗ f2), F − F ′〉L2(µ×µ)〈F, (Tg × Tg)(f1 ⊗ f2)〉L2(µ×µ)

<
∑

1≤i,j≤k

cicj〈(Tg × Tg)(f1 ⊗ f2), f
′
1,i ⊗ f ′2,i〉L2(µ×µ)〈f

′
1,j ⊗ f ′2,j, (Tg × Tg)(f1 ⊗ f2)〉L2(µ×µ) + ε

≤
∑

1≤i,j≤k

cicj‖f
′
2,i‖2‖f

′
1,j‖2‖f

′
2,j‖2|〈Tgf1, f

′
1,i〉|+ ε.

Therefore, using that f1 is a weak-mixing function, we have that

lim sup
N→∞

1

|ΦN |

∑

g∈ΦN

∣∣〈(Tg × Tg)(f1 ⊗ f2), F 〉L2(µ×µ)

∣∣2 =

=
∑

1≤i,j≤k

cicj‖f
′
2,i‖2‖f

′
1,j‖2‖f

′
2,j‖2 lim sup

N→∞

1

|ΦN |

∑

g∈ΦN

|〈Tgf1, f
′
1,i〉|+ ε = ε.

Since ε > 0 was arbitrary, then (2.3) follows. The proof is complete. �

Proof of Theorem 2.12. Let Φ be Følner sequence, and let f1, f2 ∈ L2(X). Then we write

1

|ΦN |

∑

g∈ΦN

Tgf1 ⊗ Tgf2 =
1

|ΦN |

∑

g∈ΦN

Tg(f1 − Eµ(f1 | Z))⊗ Tg(f2 − Eµ(f2 | Z))

+
1

|ΦN |

∑

g∈ΦN

Tg(f1 − Eµ(f1 | Z))⊗ TgEµ(f2 | Z)

+
1

|ΦN |

∑

g∈ΦN

TgEµ(f1 | Z)⊗ Tg(f2 − Eµ(f2 | Z))

+
1

|ΦN |

∑

g∈ΦN

TgEµ(f1|Z)⊗ TgEµ(f2 | Z).(2.4)

Note that the limits of all the terms above exist by the mean ergodic theorem (Theorem 2.1) applied

to T × T . By Theorem 2.10, the functions f1 − Eµ(f1 | Z), f2 − Eµ(f2 | Z) are both weak-mixing.

Then, by Lemma 2.13, the functions (f1−Eµ(f1 |Z))⊗(f2−Eµ(f2 |Z)), (f1−Eµ(f1 |Z))⊗Eµ(f2 |Z)

and Eµ(f1 | Z) ⊗ (f2 − Eµ(f2 | Z)) are weak-mixing with respect to T × T . Hence, the limits of
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the first three terms in the right-hand side of (2.4) are 0 in L2(X ×X,µ × µ). Then the theorem

follows. �

A correspondence principle: Finally, we need the following instance of the correspondence

principle, whose proof is classical, and we include it here for sake of completeness.

Theorem 2.14 (Correspondence principle). Let G be an amenable group, let A ⊂ G and assume

that there exists a left Følner sequence Φ such that dΦ(A) = limN→∞
|A∩ΦN |
|ΦN | exists. Then there exist

an ergodic G-system (X,µ, T ), a clopen set E ⊂ X, a Følner sequence Ψ, and a point a ∈ gen(µ,Ψ)

such that µ(E) ≥ dΦ(A) and A = {h ∈ G : Tha ∈ E}.

Proof. Consider the compact metric space X := {0, 1}G = {x = (xg)g∈G : xg ∈ {0, 1} ∀ g ∈ G},

equipped with the Borel σ-algebra. We define the continuous action T on X by Th(xg)g∈G =

(xgh)g∈G, for any h ∈ G and (xg)g∈G ∈ X. Now, consider the point a = (1A(g))g∈G ∈ X and the

clopen set E = {x = (xg)g∈G ∈ X : xeG = 1}. By the choice of a, for h ∈ G we have that h ∈ A

if and only if Tha ∈ E, and therefore A = {h ∈ G : Tha ∈ E}. Consider the sequence of Borel

probability measures on X defined by

N 7→ µN =
1

|ΦN |

∑

h∈ΦN

δTha

let µ′ be a weak∗ limit point of that sequence. Then µ′(E) = dΦ(A), and µ′ is T -invariant, but

not necessarily ergodic. Let x 7→ µ′x be the ergodic decomposition of µ′. Then µ′ =
∫
x
µ′x dµ′(x),

so there exists x0 ∈ X such that for the measure µ = µ′x0
, we have that (X,µ, T ) is ergodic and

µ(E) ≥ dΦ(A). For all N ∈ N, µN is supported on the orbit closure of a, and hence µ′ is also

supported on the orbit closure of a. Therefore, we may assume that µ is also supported on the orbit

closure of a (as this is the case with µ′x for µ′-almost every x ∈ X). Then it follows by Lemma 2.9,

that a ∈ gen(µ,Ψ) for some Følner sequence Ψ. �

3. Reduction of Theorem 1.5 to dynamical statements

In this section we translate our first main theorem, namely, Theorem 1.5, in a dynamical lan-

guage. This will allow us to approach the problem through ergodic theoretic techniques.

3.1. Dynamical reformulation via correspondence principle. Usually in ergodic theory, cor-

respondence principles serve as bridges between combinatorial and dynamical statements. Thus,

we can use the correspondence principle (Theorem 2.14) to show that Theorem 1.5 follows from

Theorem 3.1 below, which is more dynamical in nature.

Theorem 3.1 (First dynamical reformulation of Theorem 1.5). Let G be a square absolutely con-

tinuous group and (X,µ, T ) be an ergodic G-system. Let a ∈ gen(µ,Φ) for some Følner sequence
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Φ and E ⊂ G be clopen with µ(E) > 0. Then there exist an infinite sequence B = (bn)n∈N ⊂ {h ∈

G : Tha ∈ E} and some t ∈ G such that

t · B ·⊳ B ⊂ {h ∈ G : Tha ∈ E}.

Proof that Theorem 3.1 implies Theorem 1.5. Let A ⊂ G have positive left upper Banach density,

so that there exists some Følner sequence Φ such that dΦ(A) = limN→∞
|A∩ΦN |
|ΦN | > 0, (where we

have passed to a subsequence). Then consider (X,µ, T ), E, Ψ and a, as insured by Theorem 2.14,

satisfying µ(E) ≥ dΦ(A) > 0 and {h ∈ G : Tha ∈ E} = A. It follows then by Theorem 3.1 that

there exist an infinite sequence B = (bn)n∈N ⊂ A and some t ∈ G such that t · B ·⊳ B ⊂ A. �

3.2. Erdős progressions. The conclusion of Theorem 3.1 is still a rather combinatorial statement,

so we need to reformulate it again into a dynamical statement. For this to be achieved, we will use

the natural notion of Erdős progressions, as defined in [KMRR22], which is a dynamical variant of

arithmetic progressions.

Definition 3.2. Given a topological G-system (X,T ), a point (x0, x1, x2) ∈ X3 is a 3-term Erdős

progression, if there exists an infinite sequence (gn)n∈N in G such that

(3.1) (Tgn × Tgn)(x0, x1) → (x1, x2)

We refer to 3-term Erdős progressions simply as Erdős progressions. Through the notion of

Erdős progressions we are able to reformulate Theorem 3.1 as follows:

Theorem 3.3 (Second dynamical reformulation). Let G be a square absolutely continuous group,

and let (X,µ, T ) be an ergodic G-system and a ∈ gen(µ,Φ) for some Følner sequence Φ. If E ⊂ X is

a clopen set with µ(E) > 0, then there exist t ∈ G, x1 ∈ E and x2 ∈ Tt
−1E such that (a, x1, x2) ∈ X3

forms an Erdős progression.

For the reduction of Theorem 3.1 to Theorem 3.3 we provide the following lemma.

Lemma 3.4. Let G be a group. Let (X,T ) be a topological G-system, and let E,F ⊂ X be open sets.

Assume that there exists an Erdős progression (a, x1, x2) ∈ X3 with x1 ∈ E and x2 ∈ F . Then there

exists an infinite sequence B = (bn)n∈N ⊂ {g ∈ G : Tga ∈ E} such that B ·⊳ B ⊂ {g ∈ G : Tga ∈ F}.

To see how Theorem 3.1 follows from Theorem 3.3 just take F = Tt
−1E in the above lemma.

Proof of Lemma 3.4. By assumption there exists an infinite sequence (gn)n∈N in G such that (Tgn×

Tgn)(a, x1) → (x1, x2). Since Tgna→ x1 ∈ E and E is open, we get that Tgna ∈ E for n sufficiently

large, so we may assume without loss of generality that (gn) ⊂ {g ∈ G : Tga ∈ E}. Therefore we

will construct the sequence B to be a subset of (gn).

We construct the sequence B = (bn)n∈N inductively.

• Since Tgnx1 → x2 ∈ F and F is open, we can pick b1 ∈ (gn) such that Tb1x1 ∈ F . Then

(x1, x2) ∈ (T−1
b1
F )× F which is open.
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• Since (Tgn×Tgn)(a, x1) → (x1, x2), we pick b2 ∈ (gn) such that (Tb2×Tb2)(a, x1) ∈ (T−1
b1
F )×

F and b2 6= b1 (this is possible since there are infinitely many choices). Then

a ∈ T−1
b1b2

F and x1 ∈ T−1
b2
F.

• Induction step: Assume we have found b1, b2, . . . , bn ∈ (gn) all distinct to each other such

that

(3.2) a ∈
⋂

1≤i<j≤n

T−1
bibj

F and x1 ∈
⋂

1≤m≤n

T−1
bm
F.

Since (Tgn × Tgn)(a, x1) → (x1, x2) ∈
(⋂

1≤m≤n T
−1
bm
F
)
× F and this set is open, we can

pick bn+1 ∈ (gn) such that

(Tbn+1 × Tbn+1)(a, x1) ∈

( ⋂

1≤m≤n

T−1
bm
F

)
× F

and bn+1 6∈ {bm : 1 ≤ m ≤ n} (since there are infinitely many choices). Combining this

with the inductive hypothesis, we obtain that

a ∈
⋂

1≤i<j≤n+1

T−1
bibj

F and x1 ∈
⋂

1≤m≤n+1

T−1
bm
F.

Taking B = (bn)n∈N we clearly have an infinite subset of (gn) and since (3.2) holds for any n ∈ N

by construction, we get that B ·⊳ B ⊂ {g ∈ G : Tga ∈ F} as desired. �

3.3. Continuous factor maps to the Kronecker factor. On our way to show Theorem 3.3, it

will be useful to have the extra assumption of the G-system having a continuous factor map to its

Kronecker factor. The reason for that will become clear towards the proof of our main theorem.

As we will see below, it is possible to make such an assumption.

We begin by generalizing a result of Host and Kra in [HK09] from actions of (N,+) to actions

of amenable groups.

Lemma 3.5. [HK09, Proposition 6.1 for group actions] Let G be an amenable group, let (X,µ, T )

be an ergodic G-system, (Z,m,R) be its Kronecker factor and ρ : (X,µ, T ) → (Z,m,R) be a factor

map. If a ∈ X is a transitive point, then there exists a point z ∈ Z and a Følner sequence Ψ such

that

(3.3) lim
N→∞

1

|ΨN |

∑

g∈ΨN

f1(Tga) · f2(Rgz) =

∫

X

f1 · (f2 ◦ ρ) dµ

holds for any f1 ∈ C(X) and f2 ∈ C(Z).

We remark that the result still holds if we replace (Z,m,R) by any factor of (X,µ, T ) that is

distal as a topological system.

Proof. The proof of this lemma is given in the Appendix A. �
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Remark 3.6. Let (X,µ, T ) be an ergodic G-system, and let a ∈ gen(µ,Φ) for some Følner sequence

Φ. From Lemma 2.5 we have that every point in supp(µ) belongs to the orbit closure of a, and

therefore µ
(
OT (a)

)
= 1. This implies that we can replace X with OT (a) without affecting the

ergodic theoretic properties of the system, and then the generic point a is also transitive. Therefore,

whenever we have a generic point in a system, we may assume without loss of generality that it is

also transitive.

Proposition 3.7. Let (X,µ, T ) be an ergodic G-system, and let a ∈ gen(µ,Φ) for some Følner

sequence Φ. Then there exists an ergodic extension (X̃, µ̃, T̃ ) of (X,µ, T ), a Følner sequence Φ̃ and

a point ã ∈ gen(µ̃, Φ̃) such that:

(i) There exists a continuous factor map π̃ : X̃ → X with π̃(ã) = a.

(ii) (X̃, µ̃, T̃ ) has continuous factor map to its Kronecker factor.

(iii) If (ã, x̃1, x̃2) ∈ X̃3 is an Erdős progression, then (a, x1, x2) ∈ X3 is an Erdős progression,

where xi = π̃(x̃i), for i = 1, 2.

Proof. The proofs of (i) and (ii) are identical to those in the case G is the semigroup (N,+), and

they can be found in [KMRR24, Proposition 3.20]. Therefore, here we only provide a sketch of the

proof.

Let (Z,m,R) be the Kronecker factor of (X,µ, T ), and let π : X → Z be a factor map. Define

X̃ = X×Z and T̃ = T×R, consider the map ρ : X → X̃, given by ρ(x) = (x, π(x)), and then define

µ̃ = ρµ. Then the map ρ : X → X̃ is an isomorphism of the G-systems (X̃, µ̃, T̃ ) and (X,µ, T ),

and therefore, since (X,µ, T ) is ergodic, we get that (X̃, µ̃, T̃ ) is also ergodic. In addition, the

projection on the first coordinate π̃ : X̃ → X is a continuous factor map of the systems.

By Remark 3.6, we may assume that the point a is transitive. Then we can use Lemma 3.5 to

find a point z ∈ Z and Følner sequence Φ̃ such that (3.3) holds for all f1 ∈ C(X) and f2 ∈ C(Z).

Using the definition of the measure µ̃, it is not too difficult to see that for any continuous function

F ∈ C(X̃),

lim
N→∞

1

|Φ̃N |

∑

g∈Φ̃N

F (Tg ×Rg)(a, z) =

∫

X̃

F dµ̃,

which means that the point ã = (a, z) is in gen(µ̃, Φ̃). In addition, π̃(ã) = a.

Now, as the systems (X,µ, T ) and (X̃, µ̃, T̃ ) are isomorphic, their Kronecker factors are also

isomorphic, so we may assume that (Z,m,R) is the Kronecker factor of (X̃, µ̃, T̃ ). Then the

projection on the second coordinate p : X̃ → Z is a continuous factor map from (X̃, µ̃, T̃ ) to its

Kronecker factor.

Now, let us prove (iii). By assumption, (T̃gn × T̃gn)(ã, x̃1) → (x̃1, x̃2) for some (gn)n∈N in G. We

now notice that

Tgn(a) = Tgn(π̃(ã)) = π̃(T̃gn) → π̃(x̃1) = x1,

since π̃ is a continuous factor map. Similarly, we get Tgn(x1) → x2 and the result follows. �



FINDING PRODUCT SETS IN SOME CLASSES OF AMENABLE GROUPS 19

This proposition allows us to reduce Theorem 3.3 to the case of ergodic G-systems with contin-

uous factor maps to their Kronecker factor as desired. Evidently, Theorem 3.3 follows from the

following:

Theorem 3.8 (Reduction to G-systems with continuous factor maps to the Kronecker factor).

Let G be a square absolutely continuous group, let (X,µ, T ) be an ergodic G-system admitting a

continuous factor map to its Kronecker factor, and let a ∈ gen(µ,Φ) for some Følner sequence

Φ. If E ⊂ X is clopen and µ(E) > 0, then there exist t ∈ G, x1 ∈ E and x2 ∈ T−1
t E such that

(a, x1, x2) ∈ X
3 forms an Erdős progression.

The proof of Theorem 3.8 will be given in the next section.

4. Measures on Erdős progressions and the proof of Theorem 3.8

In this section we prove Theorem 3.8, and consequently, Theorem 1.5.

4.1. Measures on Erdős progressions. In what follows we fix a square absolutely continuous

group G. We also fix an ergodic G-system (X,µ, T ). In addition, as per the assumptions of

Theorem 3.8, we assume that (X,µ, T ) admits a continuous factor map to its Kronecker factor.

The Kronecker factor of (X,µ, T ) is denoted by (Z,m,R) and π : X → Z stands for the continuous

factor map. According to Proposition 2.11, Z = K/H where K is a compact group and H is a

closed subgroup of K. We denote by p the natural projection p : K → K/H, p(k) = kH. We also

fix a bi-invariant metric dK on K, that is a metric on K compatible with the topology on K such

that for all u, v, w ∈ K, dK(uv, uw) = dK(v,w) = dK(vu,wu).

Moreover, m is the (left) Haar measure on Z, which is given as the push forward of the (left)

Haar measure mK in K by the natural projection K → Z = K/H. We remark that since K is

compact, it is unimodular, so mK , and consequently m, are two-sided invariant. Finally, the action

R = (Rg)g∈G is given by Rg(z) = α(g)z, where α : G → K is a continuous group homomorphism

with dense image. Also, πi : X×X → X denotes the projection to the i-th coordinate, for i = 1, 2.

Moreover, z 7→ ηz is a fixed disintegration of µ over the continuous factor map π.

Definition 4.1. Consider the squaring map sK : K → K, sK(k) = k2, on K. We define the Borel

probability measure mK2 on K as the push-forward of the Haar measure mK under the map sK ,

i.e., the measure on K, given by mK2(A) = mK(s−1
K (A)), for each Borel A ⊂ K.

We will prove the following lemma, which is a key ingredient that will allow us to define the

measures in order to study Erdős progressions.

Lemma 4.2. The measure mK2 is absolutely continuous with respect to mK .

Before we prove Lemma 4.2, let us state and prove an auxiliary lemma that will be used through-

out this section:
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Lemma 4.3. Let Ψ = (ΨN )N∈N be any Følner sequence in G. Then the sequence of measures

(νN )N∈N defined as

νN :=
1

|ΨN |

∑

g∈ΨN

δα(g)

converges in the weak∗ topology to the Haar measure mK on K.

Proof. The space of Borel probability measures on K is weak∗ compact and metrizable, so in order

to prove the result, it suffices to prove that if (νNj
)j∈N is a convergent subsequence of (νN )N∈N,

then it converges to the Haar measure mK .

Let (νNj
)j∈N be a subsequence of (νN )N∈N which converges in the weak∗ topology to a measure

ν on K. To prove that ν is the Haar measure on K, it suffices to prove that for all continuous

functions h on K and all k ∈ K, we have that
∫
K
h(ky) dν(y) =

∫
K
h(y) dν(y).

Let dK be a translation invariant metric on K. Let also h : K → C be continuous, k ∈ K and

ε > 0. Since K is compact, we have that h is uniformly continuous, so there is δ > 0 such that if

dK(y1, y2) < δ, then |h(y1)−h(y2)| < ε. Recall that (α(g))g∈G is dense in K, so there is g0 such that

dK(k, α(g0)) < δ. We then have that for all y ∈ K, dK(ky, α(g0)y) < δ, so |h(ky)− h(α(g0)y)| < ε,

and we obtain that

∣∣∣∣
∫

K

h(y) dν(y)−

∫

K

h(ky) dν(y)

∣∣∣∣ ≤
∣∣∣∣
∫

K

h(y) dν(y)−

∫

K

h(α(g0)y) dν(y)

∣∣∣∣+
∣∣∣∣
∫

K

h(α(g0)y) dν(y)−

∫

K

h(ky) dν(y)

∣∣∣∣

≤

∣∣∣∣
∫

K

h(y) dν(y)−

∫

K

h(α(g0)y) dν(y)

∣∣∣∣+ ε.

From the continuity of h and the definition of ν we have that

∫

K

h(α(g0)y) dν(y) = lim
j→∞

1

|ΨNj
|

∑

g∈ΨNj

h(α(g0)α(g)) = lim
j→∞

1

|ΨNj
|

∑

g∈ΨNj

h(α(g0g))

= lim
j→∞

1

|ΨNj
|

∑

g∈g0ΨNj

h(α(g)) = lim
j→∞

1

|ΨNj
|

∑

g∈ΨNj

h(α(g))

=

∫

K

h(y) dν(y),

so combining with the previous we get that
∣∣ ∫

K
h(y) dν(y) −

∫
K
h(ky) dν(y)

∣∣ ≤ ε, and since ε

was arbitrary, we obtain that
∫
K
h(y) dν(y) =

∫
K
h(ky) dν(y), which proves that ν = mK , and

concludes the proof. �
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Proof of Lemma 4.2. As K is compact and metrizable, the measures mK ,mK2 are regular. In

particular, for each Borel A we have

mK(A) = sup
C⊂A

C compact

mK(C) = inf
O⊂A
O open

mK(O) and mK2(A) = sup
C⊂A

C compact

mK2(C) = inf
O⊂A
O open

mK2(O).

Therefore, to prove that mK2 is absolutely continuous with respect to mK , it suffices to prove that

for each compact set C ⊂ K, if mK(C) = 0, then mK2(C) = 0.

Let C ⊂ K be a non-empty (for otherwise the result is trivial) compact with mK(C) = 0 and let

ε > 0. As G is square absolutely continuous, we know that there are two Følner sequences Φ and

Ψ in G and a δ > 0 such that for any u : G → [0, 1] satisfying lim supN→∞
1

|ΦN |

∑
g∈ΦN

u(g) < δ,

we have that lim supN→∞
1

|ΨN |

∑
g∈ΨN

u(g2) < ε. Since

0 = mK(C) = inf
O⊂A
O open

mK(O),

we can pick an open set O ⊃ C with mK(O) < δ. By Urysohn’s lemma, we know that there is a

continuous function f : K → [0, 1] such that f = 1 on C and f = 0 outside O. By Lemma 4.3 we

then have that

δ > mK(O) ≥

∫

K

f(k) dmK(k) = lim
N→∞

1

|ΦN |

∑

g∈ΦN

f(α(g)),

and by the choice of δ we get that

lim sup
N→∞

1

|ΨN |

∑

g∈ΨN

f(α(g2)) < ε.

From the definition of mK2 and the continuity of k 7→ f(k2) we then obtain
∫

K

f(k) dmK2(k) =

∫

K

f(k2) dmK(k) = lim
N→∞

1

|ΨN |

∑

g∈ΨN

f(α(g)2) = lim
N→∞

1

|ΨN |

∑

g∈ΨN

f(α(g2)) < ε,

where for the third equality we use that α is a group homomorphism. So after all we havemK2(C) ≤∫
K
f(k) dmK2(k) < ε, and as ε was arbitrary, we have that mK2(C) = 0. This concludes the

proof. �

Now, we define measures σ on X×X, and we want σ to be defined as natural measures to study

Erdős progressions. It is not hard to see that Erdős progressions on K/H are exactly the triplets

of the form (z, kz, k2z) for some k ∈ K and z ∈ K/H. Therefore, following the definition given in

[KMRR22], we will define these measures as the natural measures on points (x1, x2) ∈ X ×X to

find Erdős progressions on K/H starting at π(a), namely (π(a), kπ(a), k2π(a)), for k ∈ K.

Definition 4.4. We define the measure σ on X ×X, given by

(4.1) σ :=

∫

K

ηkπ(a) × ηk2π(a) dmK(k).
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Let us comment on why the measure σ is indeed well-defined. Let k0 ∈ K such that π(a) = k0H.

Since all the maps involved are measurable, we get that the map K → M(X), k 7→ ηkπ(a) ×

ηk2π(a) dmK(k) is indeed a Borel measurable map on K. It remains to prove that it is mK almost

everywhere defined, and then the integral will induce a well defined Borel probability measure on

X ×X.

Since η is m-almost everywhere well-defined on Z, we can consider a set Z ′ ⊂ Z with m(Z ′) = 1

such that ηz is well-defined for all z ∈ Z ′. Since pmK = m, the set K ′ = p−1(Z ′) has mK(K ′) = 1.

Then alsomK(K ′k−1
0 ) = 1, and then it is not difficult to check that the mapK →M(X), k 7→ ηkπ(a)

is well defined on K ′k−1
0 . On the other hand, from Lemma 4.2, we have that mK2 is absolutely

continuous with respect to mK , so 1 = mK2(K ′k−1
0 ) = mK(s−1

K (K ′k−1
0 )), and again it is not too

difficult to check that the map K →M(X), k 7→ ηk2π(a) is well defined on s−1
K (K ′k−1

0 ).

So, after all, the map K →M(X×X), k 7→ ηkπ(a)×ηk2π(a) is well defined on K ′k−1
0 ∩s−1

K (K ′k−1
0 )

and mK(K ′k−1
0 ∩ s−1

K (K ′k−1
0 )) = 1, i.e., k 7→ ηkπ(a)× ηk2π(a) is mK-almost everywhere well-defined,

which was to be proved, and therefore σ is indeed well-defined.

Using the invariance of mK we can express σ as

(4.2) σ =

∫

K

ηkk0H × ηk2k0H dmK(k) =

∫

K

ηkH × η
kk−1

0 kH
dmK(k)

Proposition 4.5. The measure σ has the following properties:

(i) π1σ = µ.

(ii) π2σ is absolutely continuous with respect to µ.

Proof of Proposition 4.5. (i) Using (4.2), we have that

π1σ =

∫

K

ηkH dmK(k) =

∫

Z

ηz dm(z) = µ.

(ii) From the definition of σ we have that π2σ =
∫
K
ηk2π(a) dmK(k). Fix k0 such that π(a) = k0H.

Let A ⊂ X with µ(A) = 0. Then µ(A) =
∫
Z
ηz(A) dm(z), so we get that there is a set Z ′ ⊂ Z

with m(Z ′) = 1 such that for all z ∈ Z ′, ηz(A) = 0. As pmK = m, we have mK(p−1(Z ′)) = 1

and then also mK((p−1Z ′)k−1
0 ) = 1. Finally, using Lemma 4.2 we get that mK2((p−1Z ′)k−1

0 ) =

mK(s−1
K ((p−1Z ′)k−1

0 )) = 1. For each k ∈ s−1
K ((p−1Z ′)k−1

0 ) we have that k2π(a) ∈ Z ′, so ηk2π(a)(A) =

0, and therefore π2σ(A) = 0. �

Theorem 4.6. For any set E ⊂ X with µ(E) > 0, we have that

σ

(
E ×

⋃

t∈G

T−1
t E

)
> 0.

Proof. Let E ⊂ X with µ(E) > 0 and recall that we want to show that the set E×
⋃

t∈G T
−1
t E has

positive measure σ. We begin by expressing this set as

E ×
⋃

t∈G

T−1
t E = (E ×X) ∩

(
X ×

⋃

t∈G

T−1
t E

)
.
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By Proposition 4.5 (i), we have that σ(E ×X) = µ(E) > 0. Therefore, it is enough to show that

(4.3) σ

(
X ×

⋃

t∈G

T−1
t E

)
= 1.

Notice that the set
⋃

t∈G T
−1
t E is clearly T -invariant and since µ is ergodic and µ(E) > 0, it follows

that µ
(⋃

t∈G T
−1
t E

)
= 1. By Proposition 4.5 (ii), π2σ is absolutely continuous with respect to µ,

so

1 = π2σ

( ⋃

t∈G

T−1
t E

)
= σ

(
X ×

⋃

t∈G

T−1
t E

)
,

which concludes the proof. �

4.2. A continuous ergodic decomposition. In this subsection we will define measures λ(x1,x2),

for (x1, x2) ∈ X ×X, in a way that (x1, x2) 7→ λ(x1,x2) will be a continuous ergodic decomposition

of µ× µ. We follow the definition given in [KMRR24, Eq. (3.10)] and [KMRR22, Eq. (3.1)].

Definition 4.7. For (x1, x2) ∈ X ×X we define the measures λ(x1,x2) on X ×X by

(4.4) λ(x1,x2) =

∫

K

ηkπ(x1) × ηkπ(x2) dmK(k).

Given x1, x2 ∈ X, we let k1, k2 ∈ K be such that π(xi) = kiH, for i = 1, 2. Then, using the

invariance of mK , we can write

(4.5) λ(x1,x2) =

∫

K

ηkk1H × ηkk2H dmK(k) =

∫

K

ηkH × η
kk−1

1 k2H
dmK(k).

Theorem 4.8. The map (x1, x2) 7→ λ(x1,x2) is a continuous ergodic decomposition of µ× µ in the

following sense:

(i) It is a continuous map.

(ii) It satisfies
∫
X×X

λ(x1,x2) d(µ× µ)(x1, x2) = µ× µ.

(iii) The G-system (X ×X,λ(x1,x2), T × T ) is ergodic for µ× µ-almost every (x1, x2) ∈ X ×X.

In addition, for any x1, x2 ∈ X we have that

(4.6) λ(x1,x2) = λ(Tgx1,Tgx2)

for any g ∈ G.

Proof. For the proof of (i) and (ii) we refer to [KMRR24, Proposition 3.11], as the proof there can

be directly adapted to our case. We will now prove (iii). It is not too difficult to see that for all

(x1, x2) ∈ X × X and for all g ∈ G, (Tg × Tg)λ(x1,x2) = λ(x1,x2), i.e., λ(x1,x2) is T × T -invariant.

Therefore, to prove (iii), it suffices to prove that there is some Følner sequence Ψ in G such that

for (µ×µ)-almost every (x1, x2) ∈ X ×X and all bounded and measurable functions F on X ×X,

lim
N→∞

1

|ΨN |

∑

g∈ΨN

(Tg × Tg)F =

∫

X×X

F dλ(x1,x2),
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in L2(X ×X,λ(x1,x2)).

Now, since X is a compact metric space, there is a countable family of continuous functions

(fk)k∈N which is dense in Lp(ν) for all p ∈ [1,+∞) and all Borel probability measures ν on X.

Then, it is not too difficult to see that the set consisting of finite linear combinations of functions

the form (fj1 ⊗ fj2)j1,j2∈N is dense in L2(ρ) for all Borel probability measures ρ on X ×X. Hence,

using an approximation argument, it suffices to prove that there is a Følner Ψ in G and a set

W ⊂ X ×X with (µ× µ)(W ) = 1 such that for all (x1, x2) ∈W and for all j1, j2 ∈ N

lim
N→∞

1

|ΨN |

∑

g∈ΨN

(Tg × Tg)(fj1 ⊗ fj2) =

∫

X×X

fj1 ⊗ fj2 dλ(x1,x2),

in L2(X ×X,λ(x1,x2)).

Step 1. Let Φ be any Følner sequence in G. Then, using Theorem 2.12, we get that for each

j1, j2 ∈ N,

lim
N→∞

1

|ΦN |

∑

g∈ΦN

(Tg × Tg)(fj1 ⊗ fj2) = lim
N→∞

1

|ΦN |

∑

g∈ΦN

(Tg × Tg)(Eµ(fj1 | Z)⊗ Eµ(fj2 | Z))

in L2(µ × µ). Combining this with (ii) yields

lim
N→∞

∫

X×X

∫

X×X

∣∣∣∣
1

|ΦN |

∑

g∈ΦN

(Tg × Tg)(fj1 ⊗ fj2)(y1, y2)

−
1

|ΦN |

∑

g∈ΦN

(Tg × Tg)(Eµ(fj1 | Z)⊗ Eµ(fj2 | Z))(y1, y2)

∣∣∣∣
2

dλ(x1,x2)(y1, y2) d(µ× µ)(x1, x2) = 0.

Then for each j1, j2 ∈ N we can find a sub-Følner sequence Φ̃ of Φ, depending on j1, j2, such that

for (µ× µ)-almost every (x1, x2) ∈ X ×X, we have

lim
N→∞

∫

X×X

∣∣∣∣
1

|Φ̃N |

∑

g∈Φ̃N

(Tg × Tg)(fj1 ⊗ fj2)

−
1

|Φ̃N |

∑

g∈Φ̃N

(Tg × Tg)(Eµ(fj1 | Z)⊗ Eµ(fj2 | Z))

∣∣∣∣
2

dλ(x1,x2) = 0,

and since the limits of both averages above exist by Theorem 2.1, we have that, for (µ×µ)-almost

every (x1, x2) ∈ X ×X,

lim
N→∞

1

|Φ̃N |

∑

g∈Φ̃N

(Tg × Tg)(fj1 ⊗ fj2) = lim
N→∞

1

|Φ̃N |

∑

g∈Φ̃N

(Tg × Tg)(Eµ(fj1 | Z)⊗ Eµ(fj2 | Z))

in L2(X×X,λ(x1,x2)). Since the family (fj1⊗fj2)j1,j2∈N is countable, then using a diagonal argument

one can find a Følner sequence Ψ and a set W1 ⊂ X ×X with (µ × µ)(W1) = 1 such that for all
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(x1, x2) ∈W1 and j1, j2 ∈ N, we have that

(4.7) lim
N→∞

1

|ΨN |

∑

g∈ΨN

(Tg × Tg)(fj1 ⊗ fj2) = lim
N→∞

1

|ΨN |

∑

g∈ΨN

(Tg × Tg)(Eµ(fj1 | Z)⊗ Eµ(fj2 | Z))

in L2(X ×X,λ(x1,x2)).

Step 2. Consider the sequence of probability measures on K defined by νN := 1
|ΨN |

∑
g∈ΨN

δα(g).

From Lemma 4.3 we know that νN → mK as N → ∞ in the weak∗ topology.

Let φ1, φ2 : Z → C be continuous. For each z1, z2 ∈ Z, consider the function φz1,z2 : K → C

defined by φz1,z2(k) = φ1(kz1)φ2(kz2). Then, φz1,z2 is continuous, so we have that

∫

K

φ1(kz1)φ2(kz2) dmK(k) =

∫

K

φz1,z2(k) dmK(k) = lim
N→∞

1

|ΨN |

∑

g∈ΨN

φz1,z2(α(g))

= lim
N→∞

1

|ΨN |

∑

g∈ΨN

φ1(α(g)z1)φ2(α(g)z2)

= lim
N→∞

1

|ΨN |

∑

g∈ΨN

(Rg ×Rg)(φ1 ⊗ φ2)(z1, z2).

Since the previous holds for all z1, z2 ∈ Z, using the dominated convergence theorem, we get that

lim
N→∞

∫

Z×Z

∣∣∣∣
1

|ΨN |

∑

g∈ΨN

(Rg×Rg)(φ1⊗φ2)(z1, z2)−

∫

K

φ1(kz1)φ2(kz2) dmK(k)

∣∣∣∣
2

d(m×m)(z1, z2) = 0,

i.e., the sequence 1
|ΨN |

∑
g∈ΨN

(Rg ×Rg)(φ1 ⊗ φ2) converges in L
2(Z ×Z,m×m) as N → ∞ to the

function (z1, z2) 7→
∫
K
φ1(kz1)φ2(kz2) dmK(k).

Step 3. Given two bounded measurable maps h1, h2 : Z → C, approximating them in L2(Z,m)

by two continuous functions φ1, φ2 and using Step 2, one can prove that 1
|ΨN |

∑
g∈ΨN

(Rg×Rg)(h1⊗

h2) converges in L
2(Z×Z,m×m) as N → ∞ to the function (z1, z2) 7→

∫
K
h1(kz1)h2(kz2) dmK(k).

Since π : (X,µ, T ) → (Z,m,R) is a factor map, it is not too difficult then to see that

(4.8)
1

|ΨN |

∑

g∈ΨN

(Tg × Tg)(h1 ◦ π ⊗ h2 ◦ π) →
[
(x1, x2) 7→

∫

K

h1(kπ(x1))h2(kπ(x2)) dmK(k)
]

as N → ∞ in L2(X ×X,µ × µ).

For each j ∈ N, Eµ(fj | Z) can be viewed either as a function on Z or as a function on X

measurable with respect to π−1(Z). In this proof, we always view Eµ(fj | Z) as a function on X

measurable with respect to π−1(Z). For each j ∈ N, let ψj be Eµ(fj |Z) when viewed as a function

on Z, so we have that for µ-almost every x ∈ X, ψj ◦π(x) = Eµ(fj |Z)(x). Then for each j1, j2 ∈ N
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and (x1, x2) ∈ X ×X, we have
∫

X×X

fj1(y1)fj2(y2) dλ(x1,x2)(y1, y2) =

∫

K

∫

X×X

fj1(y1)fj2(y2) d(ηkπ(x1) × ηkπ(x2))(y1, y2) dmK(k)

=

∫

K

∫

X

fj1(y1) dηkπ(x1)(y1)

∫

X

fj2(y2) dηkπ(x2)(y2) dmK(k)

=

∫

K

ψj1(kπ(x1))ψj1(kπ(x1)) dmK(k)(4.9)

where the last equality follows using (2.1). After all, combining (4.8) and (4.9) we get that for each

j1, j2 ∈ N,

1

|ΨN |

∑

g∈ΨN

(Tg × Tg)(Eµ(fj1 | Z)⊗ Eµ(fj2 | Z)) →
[
(x1, x2) 7→

∫

X×X

fj1 ⊗ fj2 dλ(x1,x2)

]

as N → ∞ in L2(X × X,µ × µ). Now, since the family fj1 ⊗ fj2 is countable, using (ii) and a

diagonal argument as in Step 1, one can find a sub-Følner sequence of Ψ, which by abuse of notation

we again denote by Ψ, and a set W2 ⊂ X ×X with (µ×µ)(W2) = 1 such that for all (x1, x2) ∈W2

and j1, j2 ∈ N,

(4.10) lim
N→∞

1

|ΨN |

∑

g∈ΨN

(Tg × Tg)(Eµ(fj1 | Z)⊗ Eµ(fj2 | Z)) =

∫

X×X

fj1 ⊗ fj2 dλ(x1,x2)

in L2(X ×X,λ(x1,x2)).

Let W = W1 ∩W2. Then (µ × µ)(W ) = 1, and combining (4.7) and (4.10), we get that for all

(x1, x2) ∈W and all j1, j2 ∈ N,

lim
N→∞

1

|ΨN |

∑

g∈ΨN

(Tg × Tg)(fj1 ⊗ fj2) =

∫

X×X

fj1 ⊗ fj2 dλ(x1,x2)

in L2(X ×X,λ(x1,x2)), which was to be proved.

To conclude the proof we are left with showing (4.6). To this end, using the invariance of mK ,

for any g ∈ G, we have that

λ(Tgx1,Tgx2) =

∫

Z

ηkα(g)π(x1) × ηkα(g)π(x2) dmK(k) =

∫

Z

ηkπ(x1) × ηkπ(x2) dmK(kα(g)−1)

=

∫

Z

ηkπ(x1) × ηkπ(x2) dmK(k) = λ(x1,x2).

The proof of the theorem is now complete. �

Theorem 4.9. We have that

σ({(x1, x2) ∈ X ×X : (x1, x2) ∈ supp(λ(x1,x2))}) = 1.

Theorem 4.10. There exists some Følner sequence Ψ such that

σ({(x1, x2) ∈ X ×X : (a, x1) ∈ gen(λ(x1,x2),Ψ)}) = 1.
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We first deal with Theorem 4.9. Let us first state and prove some results that will be useful in

order to prove Theorem 4.9.

Let F(X) be the family of the closed, nonempty subsets of the compact metric space (X, dX ).

We endow this family with the Hausdorff metric D, defined by

D(A,B) = max

{
sup
x∈A

dX(x,B), sup
y∈B

dX(y,A)

}
,

for any A,B ∈ F(X).

We will need the following two lemmas, the proofs of which are omitted, as they can be found

in [KMRR22]:

Lemma 4.11. [KMRR22, Lemma 3.8] Let W be a compact metric space, M(W ) the space of

Borel probability measures on W endowed with the weak∗ topology, and F(W ) the space of closed,

non-empty subsets of W with the Hausdorff metric. Then

• The map ν 7→ supp(ν) from M(W ) to F(W ) is Borel measurable.

• If x 7→ ρx is a measurable map from W to M(W ), then {x ∈ X : x ∈ supp(ρx)} is a Borel

set.

Lemma 4.12. [KMRR22, Lemma 3.9] The disintegration z 7→ ηz satisfies that the subset

{x ∈ X : x ∈ supp(ηx)} of X is Borel measurable and

µ({x ∈ X : x ∈ supp(ηx)}) = 1.

Using those, we can now prove the following proposition, which is a variant of [KMRR22, Propo-

sition 3.10].

Proposition 4.13. There exists a sequence δj → 0 such that for µ-almost every x ∈ X there exists

w ∈ K with π(x) = wH such that for any open neighborhood U of x, we have

(4.11) lim
j→∞

mK({k ∈ K : ηkH(U) > 0} ∩ BK(w, δj))

mK(BK(w, δj))
= 1,

where BK(w, δj) denotes the ball centered at w ∈ K and with radius δj in K with respect to the

fixed metric dK .

Proof. Let F : K → F(X) given by F (k) = supp(ηkH). The natural projection p : K → Z

is continuous, hence Borel measurable, the map z 7→ ηz is Borel measurable, as (ηz)z∈Z is a

disintegration and by Lemma 4.11, the map ν 7→ supp(ν) is also Borel measurable, thus, we obtain

that their composition F is also Borel measurable. By Lusin’s theorem [AB06, Theorem 12.8], for

any j ∈ N there exists a closed Kj ⊂ K with

(4.12) mK(Kj) > 1− 2−j
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such that F |Kj
is continuous. For j ∈ N, using the fact that K, and so Kj , is compact, we obtain

that F |Kj
is uniformly continuous. Therefore, for any j ∈ N, there exists some δj > 0 such that for

any k1, k2 ∈ Kj we have

dK(k1, k2) ≤ δj =⇒ D(F (k1), F (k2)) <
1

j
.

Fix j ∈ N. Then by the invariance ofmK , there is cj > 0 such that for all k ∈ K,mK(BK(k, δj)) =

cj . The regularity of the measure mK implies that there is a compact set Cj ⊂ BK(eK , δj) such

that mK(Cj) ≥ cj −
cj
2j
. Now, by Urysohn’s lemma, there is a continuous function fj : K → [0, 1]

such that fj = 1 on Cj and fj = 0 outside BK(eK , δj).

Consider the set

Wj =

{
k ∈ Kj :

∫

Kj

fj(wk
−1) dmK(w) ≥

(
1−

1

j

)∫

K

fj(w) dmK(w)

}
.

Note that ∫

K

fj(w) dmK(w) ≥ mK(Cj) ≥ cj −
cj
2j
> 0.

Then we can consider the function

χj : K → [0, 1], χj(k) =

∫
Kj
fj(wk

−1) dmK(w)
∫
K
fj(w) dmK(w)

and moreover, we let

Aj =

{
k ∈ K : χj(k) ≥ 1−

1

j

}
.

Then we see that

(4.13) Wj = Kj ∩Aj .

We will show that the set Wj is closed. Using the dominated convergence theorem and the

fact that fj is continuous, one can show that if (kℓ)ℓ∈N is a sequence in K and kℓ → k, then∫
Kj
fj(wk

−1
ℓ ) dmK(w) →

∫
Kj
fj(wk

−1) dmK(w), and this proves the continuity of χj. As a result,

the set Aj is a closed subset of K, and since Kj is also closed, it follows that Wj is closed.

Now, using Fubini’s theorem and the invariance of mK we deduce that
∫

K

χj(k) dmK(k) =
1∫

K
fj(w) dmK(w)

∫

K

∫

K

fj(wk
−1)1Kj

(w) dmK(k) dmK(w)

=
1∫

K
fj(w) dmK(w)

∫

K

1Kj
(w)

∫

K

fj(k) dmK(k) dmK(w)

= mK(Kj) > 1−
1

2j

and then we have that

1−
1

2j
<

∫

Aj

χj(k) dmK(k)+

∫

Ac
j

χj(k) dmK(k) ≤ mK(Aj)+

(
1−

1

j

)
mK(Ac

j) = 1−
1

j
+
mK(Aj)

j
,
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which gives that

(4.14) mK(Aj) > 1−
j

2j
.

Combining (4.12), (4.13) and (4.14), we obtain that

∑

j∈N

mK(K \Wj) =
∑

j∈N

mK(K \ (Kj ∩Aj)) <
∑

j∈N

1 + j

2j
<∞.

Let W =
⋃

J∈N

⋂
j≥J Wj. It follows by the Borel- Cantelli lemma, using the last equation

above, that mK(W ) = 1. Now let L := {x ∈ X : x ∈ supp(ηπ(x))} ∩ π−1(p(W )). Observe that

p(W ) =
⋃

J∈N p
(⋂

j≥J Wj

)
. For each J ∈ N,

⋂
j≥J Wj is a closed subset of K, thus it is compact

and since p is continuous, we get that p
(⋂

j≥J Wj

)
is also compact, thus it is Borel measurable.

As a result, we get that p(W ) is indeed a Borel subset of Z. In addition, p−1(p(W )) ⊃ W

and since mK(W ) = 1 we have that mK(p−1(p(W )) = 1. Therefore, m(p(W )) = 1 and hence

µ(π−1(p(W ))) = 1. Then, in view of Lemma 4.12, it follows that L is a Borel subset of X and

µ(L) = 1.

We now show that elements of L satisfy (4.11) and this will conclude the proof. Let x ∈ L =

{x ∈ X : x ∈ supp(ηπ(x))} ∩ π−1(p(W )). Then x ∈ π−1(p(W )) so there is w ∈ W such that

π(x) = p(w) = wH. Let U be an open neighborhood of x. Then we have that there exists J ∈ N

such that for any j ≥ J , w ∈Wj and B(x, 1
j
) ⊂ U .

We now claim that

BK(w, δj) ∩Kj ⊂ {k ∈ K : ηkH(U) > 0}.

To prove this, we let w′ ∈ BK(w, δj)∩Kj . Then dK(w′, w) < δj and so, D(F (w′), F (w)) < 1
j
. Notice

now that F (w) = supp(ηwH) = supp(ηπ(x)), and so, x ∈ F (w), as x ∈ L. Then, by the definition of

the Hausdorff metric, there exists x′ ∈ F (w′) with dX(x, x′) < 1
j
, and so, x′ ∈ U , which, combined

with the fact that x′ ∈ F (w′), yields U ∩ F (w′) 6= ∅. It follows that ηw′H(U) > 0.

It follows from the above claim that

(4.15)

mK({k ∈ K : ηkH(U) > 0} ∩ BK(w, δj))

mK(BK(w, δj))
≥
mK(BK(w, δj) ∩Kj)

mK(BK(w, δj))
=

∫
K
1BK(w,δj)(u)1Kj

(u) dmK(u)

mK(BK(eK , δj))

The denominator in the right-most term in (4.15) is smaller or equal to 2j

2j−1
mK(Cj), which then

is smaller or equal to 2j

2j−1

∫
K
fj(u) dmK(u), and therefore the expression in (4.15) is greater or

equal to

(4.16)

∫
K
1BK(w,δj)(u)1Kj

(u) dmK(u)∫
K
fj(u) dmK(u)

(
1−

1

2j

)
.
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Observe that for all u ∈ K, 1BK(w,δj)(uw) = 1BK(eK ,δj)(u), so we have that
∫

K

1BK(w,δj)(u)1Kj
(u) dmK(u) =

∫

K

1BK(w,δj)(uw)1Kj
(uw) dmK(u)

=

∫

K

1BK(eK ,δj)(u)1Kj
(uw) dmK(u) ≥

∫

K

fj(u)1Kj
(uw) dmK(u)

=

∫

K

fj(uw
−1)1Kj

(u) dmK(u) =

∫

Kj

fj(uw
−1) dmK(u).

Combining the last equation with (4.15) and (4.16), we get that

mK({k ∈ K : ηkH(U) > 0} ∩ BK(w, δj))

mK(BK(w, δj))
≥

∫
Kj
fj(uw

−1) dmK(u)
∫
K
fj(u) dmK(u)

(
1−

1

2j

)

≥

(
1−

1

j

)(
1−

1

2j

)
,

where the least inequality is due to the fact that w ∈ Wj. Then, taking the limit as j → ∞ we

obtain that

lim
j→∞

mK({k ∈ K : ηkH(U) > 0} ∩ BK(w, δj))

mK(BK(w, δj))
= 1

and this concludes the proof. �

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. Let S = {(x1, x2) ∈ X ×X : (x1, x2) ∈ supp(λ(x1,x2))}. By Lemma 4.11, S

is a Borel subset of X × X. Consider a sequence δj → 0 such that Proposition 4.13 is satisfied,

and let L ⊂ X be the set of x ∈ X that satisfy (4.11). By Proposition 4.13, µ(L) = 1. Following

the argument in [KMRR22, Proposition 3.11] we will show that σ(L × L) = 1 and L × L ⊂ S.

Consequently, we will have that σ(S) = 1, concluding the proof.

We start by showing that σ(L × L) = 1. We write L × L = (L × X) ∩ (X × L) and so it is

enough to show that both sets in this intersection have full measure σ. By Proposition 4.5 (i), we

have that σ(L ×X) = π1σ(L) = µ(L) = 1. By Proposition 4.5 (ii), the measure π2σ is absolutely

continuous with respect to µ, and since µ(L) = 1, it follows that σ(X × L) = π2σ(L) = 1.

To conclude the proof, we show that L×L ⊂ S. Let (x1, x2) ∈ L×L. To show that (x1, x2) ∈ S,

it is enough to show that for all open neighborhoods U1, U2 of x1, x2 we have λ(x1,x2)(U1 ×U2) > 0.

Let U1, U2 be open neighborhoods of x1, x2 respectively. By writing λ(x1,x2) =
∫
K
ηkH ×

η
kk−1

1 k2H
dmK(k), where k1, k2 ∈ K are such that π(x1) = k1H, π(x2) = k2H, we see that it

suffices to show that the set W = W (k1, k2) := {k ∈ K : ηkH(U1) > 0 and η
kk−1

1 k2H
(U2) > 0} has

positive measure mK , for some choice of the k1, k2 as above. By Proposition 4.13, we can choose

the elements k1, k2 ∈ K such that

(4.17)
mK({k ∈ K : ηkH(U1) > 0} ∩ BK(k1, δ))

mK(BK(k1, δ))
≥

3

4
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and

(4.18)
mK({k ∈ K : ηkH(U2) > 0} ∩ BK(k2, δ))

mK(BK(k2, δ))
≥

3

4
,

for some δ > 0. Now using (4.18) along with the bi-invariance of both dK and mK , we have that

mK({k ∈ K : η
kk−1

1 k2H
(U2) > 0} ∩ BK(k1, δ))

mK(BK(k1, δ))

=
mK({k ∈ K : ηkH(U2) > 0} · k−1

2 k1 ∩ BK(k2, δ) · k
−1
2 k1)

mK(BK(k2, δ) · k
−1
2 k1)

=
mK({k ∈ K : ηkH(U2) > 0} ∩ BK(k2, δ))

mK(BK(k2, δ))

≥
3

4
.(4.19)

Combining (4.17) and (4.19) yields mK(W )
mK(BK(k1,δ))

≥ 1
2 . This implies that mK(W ) > 0 and concludes

the proof. �

It remains to show Theorem 4.10. To this end, we need the following lemma, which is the analog

of [KMRR22, Lemma 3.7] in our setting.

Lemma 4.14. For σ-almost every (x1, x2) ∈ X ×X, we have λ(a,x1) = λ(x1,x2).

Proof. By the definition of σ and the fact that z 7→ ηz is a disintegration, it follows that for σ-

almost every (x1, x2), we have π(x1) = wπ(a) and π(x2) = wπ(x1), for some w ∈ K. For any such

(x1, x2), using the right invariance of mK , we have

λ(x1,x2) =

∫

X×X

ηkπ(x1) × ηkπ(x2) dmK(k) =

∫

X×X

ηkwπ(a) × ηkwπ(x1) dmK(k)

=

∫

X×X

ηkπ(a) × ηkπ(x1) dmK(kw−1) =

∫

X×X

ηkπ(a) × ηkπ(x1) dmK(k) = λ(a,x1).

This concludes the proof. �

We are now ready to prove Theorem 4.10.

Proof of Theorem 4.10. Consider the measure νa := δa × µ, where δa denotes the Dirac mass at a.

Claim. There exists some Følner sequence Ψ such that

νa({(x0, x1) ∈ X ×X : (x0, x1) ∈ gen(λ(x0,x1),Ψ)}) = 1.

From the definition of νa, it is clear that for νa-almost every (x0, x1) ∈ X×X, x0 = a. Therefore,

assuming the Claim we have that

νa({(a, x1) ∈ X ×X : (a, x1) ∈ gen(λ(a,x1),Ψ)}) = 1,
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which, by the definition of νa implies that

µ({x1 ∈ X : (a, x1) ∈ gen(λ(a,x1),Ψ)}) = 1.

Then, by Proposition 4.5 (i), we have that π1σ = µ, and therefore

σ({(x1, x2) ∈ X ×X : (a, x1) ∈ gen(λ(a,x1),Ψ)}) = 1.

From Lemma 4.14, we know that λ(a,x1) = λ(x1,x2) for σ-almost every (x1, x2), and consequently,

σ({(x1, x2) ∈ X ×X : (a, x1) ∈ gen(λ(x1,x2),Ψ)}) = 1,

which was to be proved. Now, to finish the proof of Theorem 4.10, it only remains to prove the

Claim.

Proof of Claim. In this proof we follow the argument used in the proof of [KMRR24, Theorem 7.6].

Apply Lemma 2.8 for the ergodic decomposition (x0, x1) 7→ λ(x0,x1), to obtain a Følner sequence Φ

such that

(4.20) (µ × µ)({(x0, x1) ∈ X ×X : (x0, x1) ∈ gen(λ(x0,x1),Φ)}) = 1.

Consider the map X →M(X), s 7→ νs = δs×µ, where δs denotes the Dirac mass at s. It is quite

straightforward to see that s 7→ νs is a continuous disintegration of µ× µ, and moreover, satisfies

(4.21) (Tg × Tg)νs = νTgs

for any s ∈ X. By (4.20) and the fact that s 7→ νs is a disintegration of µ × µ, it follows that for

µ-almost every s ∈ X, νs-almost every (x0, x1) ∈ X × X is in gen(λ(x0,x1),Φ). Fix b ∈ supp(µ).

Then

(4.22) νb-almost every (x0, x1) is in gen(λ(x0,x1),Φ).

By Lemma 2.5, there exists some sequence (gn)n∈N in G such that Tgna→ b, and now by continuity

of the disintegration s 7→ νs, combined with (4.21), it follows that

(4.23) (Tgn × Tgn)νa → νb.

Now, let F = (Fk)k∈N be a dense subset of C(X ×X) and for k,N ∈ N, consider the sets

Ak,N =

{
(x0, x1) ∈ X ×X : max

1≤j≤k

∣∣∣∣
1

|ΦN |

∑

g∈ΦN

Fj((Tg × Tg)(x0, x1))−

∫

X×X

Fj dλ(x0,x1)

∣∣∣∣ ≤
1

k

}
.

Using (4.22) and the monotone convergence theorem, it follows that for any k ∈ N there exists

some N(k) ∈ N, such that

(4.24) νb(Ak,N(k)) ≥ 1− 2−k.

For k,N ∈ N, we define

Bk,N =

{
(x0, x1) ∈ X ×X : dX×X((x0, x1), Ak,N ) <

1

k

}
,
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where dX×X is the metric on X ×X. Then for k sufficiently large, we have

(4.25) max
1≤j≤k

∣∣∣∣
1

|ΦN(k)|

∑

g∈ΦN(k)

Fj((Tg × Tg)(x0, x1))−

∫

X×X

Fj dλ(x0,x1)

∣∣∣∣ ≤
2

k
,

for any (x0, x1) ∈ Bk,N(k). The sets Ak,N are open, while the sets Bk,N are closed subsets of X×X,

and also Ak,N(k) ⊂ Bk,N(k), so by Urysohn’s lemma, we can find, for all k ∈ N, continuous functions

fk : X ×X → [0, 1] such that

fk|Ak,N(k)
= 1 and fk|(X×X)\Bk,N(k)

= 0.

By (4.22), for each k ∈ N, there exists n(k) ∈ N such that
∣∣∣∣
∫

X×X

(Tgn(k)
× Tgn(k)

)fk dνa −

∫

X×X

fk dνb

∣∣∣∣ ≤ 2−k.

Let (hk)k∈N be the subsequence of (gn)n∈N defined by hk = gn(k), for k ∈ N. Then, by the equation

above, we have

νa
(
(Thk

× Thk
)−1Bk,N(k)

)
≥

∫

X×X

(Thk
× Thk

)fk dνa ≥

∫

X×X

fk dνb − 2−k

≥ νb(Ak,N(k))− 2−k ≥ 1− 2−k+1 (by (4.24)),

for any k ∈ N. Therefore, it holds that
∑

k≥1

νa
(
(Thk

× Thk
)−1Bk,N(k)

)
= ∞,

and then, by the Borel-Cantelli lemma, it follows that νa-almost every (x0, x1) ∈ supp(νa) belong

to all, but finitely many, sets (Thk
× Thk

)−1Bk,N(k). Then by (4.25), it follows that for νa-almost

every (x0, x1) ∈ X ×X and k sufficiently large, we have

max
1≤j≤k

∣∣∣∣
1

|Ψk|

∑

g∈Ψk

Fj((Tg × Tg)(x0, x1))−

∫

X×X

Fj dλ(Thk
×Thk

)(x0,x1)

∣∣∣∣ ≤
2

k
,

where Ψ is the Følner sequence defined by Ψk = hkΦN(k), for k ∈ N. Using (4.6), the above

equation becomes

max
1≤j≤k

∣∣∣∣
1

|Ψk|

∑

g∈Ψk

Fj((Tg × Tg)(x0, x1))−

∫

X×X

Fj dλ(x0,x1)

∣∣∣∣ ≤
2

k
.

Sending k → ∞, we have shown that

lim
k→∞

1

|Ψk|

∑

g∈Ψk

F ((Tg × Tg)(x0, x1)) =

∫

X×X

F dλ(x0,x1)

holds for νa-almost every (x0, x1) ∈ X × X and for any F ∈ F . An approximation argument

concludes the proof of the Claim. △

The proof of the theorem is complete. �
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4.3. The proof of Theorem 3.8. We are now ready to prove Theorem 3.8.

Let G be a square absolutely continuous group, let (X,µ, T ) be an ergodic G-system admitting

a continuous factor map to its Kronecker factor, and let a ∈ gen(µ,Φ) for some Følner sequence

Φ. Let also E be a clopen subset of X with µ(E) > 0. Consider the measure σ given in (4.1). By

Theorems 4.9 and 4.10, we have that there is a Følner sequence Ψ such that

(4.26) σ({(x1, x2) : (a, x1) ∈ gen(λ(x1,x2),Ψ) and (x1, x2) ∈ supp(λ(x1,x2))}) = 1.

On the other hand, by Theorem 4.6 we have that

(4.27) σ

(
E ×

⋃

t∈G

T−1
t E

)
> 0.

Combining (4.26) and (4.27) we get that there exists (x1, x2) ∈ X × X such that for the T × T -

invariant measure λ := λ(x1,x2) we have that (a, x1) ∈ gen(λ,Ψ), (x1, x2) ∈ supp(λ) and also

(x1, x2) ∈ E ×
(⋃

t∈G T
−1
t E

)
. Hence, there is t ∈ G such that x1 ∈ E and x2 ∈ T−1

t E. Finally,

applying Lemma 2.5 for Y = X × X, S = T × T , y = (a, x1) and w = (x1, x2), ν = λ and for

the Følner sequence Ψ we get that there is an infinite sequence (gn)n∈N in G such that (Tgn ×

Tgn)(a, x1) → (x1, x2) in X ×X. Therefore, (a, x1, x2) ∈ X3 forms an Erdős progression, and this

concludes the proof of Theorem 3.8.

5. Proof of the corollaries of Theorem 1.5

We start by showing Theorem 1.7, and then we will prove Corollaries 1.8 and 1.9. We split the

proof of Theorem 1.7 into the following three lemmas:

Lemma 5.1. Let G be an amenable group, let M > 0 and let φ : G → G be a map such that for

every g ∈ G, |φ−1({g})| ≤ M . Suppose that there exist two Følner sequences Φ and Ψ in G and

some η > 0 such that for any N ∈ N, we have that φ(ΨN ) ⊂ ΦN and

|φ(ΨN )|

|ΦN |
≥ η.

Then G is φ-absolutely continuous.

Lemma 5.2. Let G be a torsion-free finitely generated nilpotent group. Then the squaring map sG

on G is injective.

Lemma 5.3. Let G be a torsion-free finitely generated nilpotent group. Then there exists some

Følner sequence Ψ in G and some η > 0 such that for any N ∈ N, we have that sG(ΨN ) ⊂ ΨN+1

and

(5.1)
|sG(ΨN )|

|ΨN+1|
= η.
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It is clear that Theorem 1.7 follows immediately from Lemmas 5.1, 5.2 and 5.3, where Lemma 5.1

is applied for φ = sG, Ψ the Følner guaranteed by Lemma 5.3 and Φ the Følner given by ΦN =

ΨN+1.

Proof of Lemma 5.1. Let G,φ,Φ,Ψ and η be as in the assumptions of Lemma 5.1. We will prove

something stronger than we require, namely that for any u : G→ [0, 1] we have

lim sup
N→∞

1

|ΨN |

∑

g∈ΨN

u(φ(g)) ≤
M

η
lim sup
N→∞

1

|ΦN |

∑

g∈ΦN

u(g),

and then for any ε > 0, taking δ = ηε/M > 0 yields that G is φ-absolutely continuous. Let

u : G→ [0, 1], and let (ΨNk
)k∈N such that

lim
k→∞

1

|ΨNk
|

∑

g∈ΨNk

u(φ(g)) = lim sup
N→∞

1

|ΨN |

∑

g∈ΨN

u(φ(g)).

For each k ∈ N, using the assumption on Φ and Ψ, we have that φ(ΨNk
) ⊂ ΦNk

and
|φ(ΨNk

)|

|ΦNk
| ≥ η.

Then for every k ∈ N we have

1

|ΨNk
|

∑

g∈ΨNk

u(φ(g)) ≤
M

|φ(ΨNk
)|

∑

g∈φ(ΨNk
)

u(g) ≤
M

η

1

|ΦNk
|

∑

g∈ΦNk

u(g),

so letting k → ∞ we obtain that

lim
k→∞

1

|ΨNk
|

∑

g∈ΨNk

u(φ(g)) ≤
M

η
lim sup
k→∞

1

|ΦNk
|

∑

g∈ΦNk

u(g) ≤
M

η
lim sup
N→∞

1

|ΦN |

∑

g∈ΦN

u(g),

which concludes the proof. �

Let G be a torsion-free finitely generated nilpotent group and fix a Mal’cev coordinate system

(t1, . . . , ts). By [KM79, Theorem 17.2.5], we have that for any 1 ≤ i ≤ s, there are polynomials pi

in i − 1 variables, with rational coefficients, satisfying pi(Z
i−1) ⊂ Z such that for any x ∈ G, we

have

(5.2) ti(x
2) = 2ti(x) + pi({tj(x) : j < i}).

Proof of Lemma 5.2. The proof becomes obvious by using (5.2). �

Proof of Lemma 5.3. Let G be a torsion-free finitely generated nilpotent group and fix a Mal’cev

coordinate system (t1, . . . , ts). We identify the groupG with Z
s as implied by the Mal’cev coordinate

system. Let (pi)1≤i≤s be the sequence of polynomials satisfying (5.2) and for each i we denote the

number of terms of pi by γi. Now we will define three integer-valued sequences (bi)1≤i≤s, (ci)1≤i≤s

and (di)1≤i≤s that will help us to construct the Følner sequence Ψ with the required properties.

We start with the latter one and we define it recursively as follows: Let d1 = 1. Now let 1 < i ≤ s

and suppose that dj has been defined for all 1 ≤ j < i. Given a monomial m(x1, . . . , xi−1) =

xe11 . . . x
ei−1

i−1 , with ej ≥ 0 for any 1 ≤ j < i, we let d(m) =
∑

1≤j<i ejdj , and then we also let
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d(pi) = max{d(m) : the monomial m appears in pi}. Then we define di = max{d(pi), 1}. The other

two sequences are defined as follows: Let b1 = 0. Now we fix 1 < i ≤ s. We denote by mi the

monomial m appearing in pi with maximal coefficient in absolute value such that d(pi) = d(m).

Then we define bi to be ceiling of the absolute value of the coefficient of mi. Finally, for any

1 ≤ i ≤ s, we let ci = γibi + 2. We also note that di = d(mi) for each 1 ≤ i ≤ s.

Let us now define the Følner sequence Ψ. By the definition of (bi)1≤i≤s and (di)1≤i≤s, we have

that for any 1 ≤ i ≤ s, if |xj | ≤Mdj for every 1 ≤ j < i, for some M > 0, then |mi(x1, . . . , xi−1)| ≤

biM
di , and then, |pi(x1, . . . , xi−1)| ≤ γibiM

di . It follows that for any 1 ≤ i ≤ s, the following

implication holds:

(5.3) |xj | ≤ c
Ndj
j ∀ 1 ≤ j < i =⇒ |pi(x1, . . . , xi−1)| ≤ γibic

Ndi
i .

Given M > 0, we use the notation [M ] := (−M,M ] ∩ Z. Now, for any N ∈ N, we define

ΨN = [c
(N−1)d1
1 ]× [c

(N−1)d2
2 ]× · · · × [c(N−1)ds

s ].

It is not hard to check that Ψ = (ΨN )N∈N is Følner sequence in G. We show that s(ΨN ) ⊂ ΨN+1

for every N ∈ N. Let N ∈ N and then

s(ΨN ) =
{
(2ti(x) + pi((tj(x))1≤j<i))1≤i≤s : ti(x) ∈ [c

(N−1)di
i ] ∀ 1 ≤ i ≤ s

}
.

Let x2 = (t1(x
2), . . . , ts(x

2)) ∈ s(ΨN ). We claim that for each 1 ≤ i ≤ s, we have that

(5.4) ti(x
2) ∈ [cNdi

i ].

Let 1 ≤ i ≤ s. For any 1 ≤ j < i, we have that tj(x) ∈ [c
(N−1)dj
j ], and then we have that

ti(x
2) = 2ti(x) + pi((tj(x) : j < i))

∈ (pi((tj(x))1≤j<i)− 2c
(N−1)di
i , pi((tj(x))1≤j<i) + 2c

(N−1)di
i ] ∩ (2Z+ pi((tj(x))1≤j<i))

⊂ [cNdi
i ],

where the last one follows from that |pi((tj(x))1≤j<i)| ≤ γibic
(N−1)di
i , by (5.3), and from the defi-

nition of ci along with that di ≥ 1. This shows (5.4) and hence that s(ΨN ) ⊂ ΨN+1.

It remains to prove (5.1) and we show it for the Følner Ψ and with η :=
∏

1≤i≤s c
−di
i > 0. In

other words, we prove that for any N ∈ N we have

(5.5)
|s(ΨN )|

|ΨN+1|
=

∏

1≤i≤s

c−di
i .

Let N ∈ N. By Lemma 5.2, sG is injective, and since ΨN is finite, we have that

|s(ΨN )| = |ΨN | =
∏

1≤i≤s

2s
( ∏

1≤i≤s

cdii

)N−1

.
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Moreover, we clearly have

|ΨN+1| =
∏

1≤i≤s

2s
( ∏

1≤i≤s

cdii

)N

,

and so (5.5) follows from comparing the last two equations. This concludes the proof. �

Having established Theorem 1.7, we are ready to prove Corollary 1.8. Before we prove it, let us

make some remarks.

Let s ∈ N and 1 ≤ i ≤ s. We say that a non-empty set L ⊂ Z
s is a line in the i-th coordinate if

there is a non-empty interval I in Z, i.e. a set of the form {m, . . . ,m+ r} for some m, r ∈ Z with

r ≥ 0, and some integers xj, j ∈ {1, . . . , s} \ {i} such that

L = {x1} × · · · × {xi−1} × I × {xi+1} × · · · × {xs}.

We refer to the length of the interval I as the length of the line L.

Let G be a torsion-free finitely generated nilpotent group and (t1, . . . , ts) a Mal’cev coordinate

system. For each 1 ≤ i ≤ s, let ei be the element with coordinates (e
(i)
1 , . . . , e

(i)
s ), where e

(i)
i = 1

and e
(i)
j = 0 for j 6= i. Every g ∈ G has a unique representation as (t1(g), . . . , ts(g)) ∈ Z

s, and this

defines a bijective map from G to Z
s. From now on, we identify each g ∈ G with its coordinates

(t1(g), . . . , ts(g)) ∈ Z
s, and every set E ⊂ G with the corresponding set of coordinates in Z

s. We

freely pass from viewing a set E ⊂ G as a subset of Zs and vice versa, without stating it, as it will

be clear from the context.

If E is a finite subset of G and 1 ≤ i ≤ s, then E can be written as a finite disjoint union of

lines in the i-th coordinate, and this can be done in many ways. We want to write E as a union of

lines which is going to be maximal in some sense that is going to be useful for us in our proof of

Corollary 1.8.

More precisely, if E is a finite subset of G, and 1 ≤ i ≤ s, then we can always write it as a

disjoint union E =
⊔ℓ

j=1L
(j) such that the sets L(j) are lines in the i-th coordinate, and for each

j, the line L(j) is maximal within E, meaning that for each 1 ≤ j ≤ s, eiL
(j) is not a subset of E.

Note that although there always exists such a choice of lines, it may not be unique, but uniqueness

is not necessary for our purposes. We are now ready to prove Corollary 1.8.

Proof of Corollary 1.8. The first part of Corollary 1.8 follows immediately by combining Theorems

1.5 and 1.7. It remains to prove that if G is a torsion-free finitely generated nilpotent group, then

given a Mal’cev coordinate system (t1, . . . , ts) on G, we can choose B so that for any finite set

C ⊂ Z and any 1 ≤ i ≤ s, the set {b ∈ B : ti(b) ∈ C} is finite.

Let G be a torsion-free finitely generated nilpotent group, let A have positive left upper Banach

density, and Ψ = (ΨN )N∈N a left Følner sequence such that dΨ(A) > 0, where the previous density

exists. In addition, let (t1, . . . , ts) be any Mal’cev coordinate system on G.

Claim. There is a Følner sequence Ψ′ such that dΨ′(A) > 0 and for any finite set C ⊂ Z and any

1 ≤ i ≤ s, the set {N ∈ N : ti(Ψ
′
N ) ∩C 6= ∅} is finite.
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Assume that we have proved the Claim. Then we can consider the set A′ :=
⋃

N∈NA ∩ Ψ′
N .

Then we have that dΨ′(A) > 0, so by Corollary 1.8, there is an infinite sequence B ⊂ A′ ⊂ A and

some t ∈ G such that t ·B ·⊳ B ⊂ A′ ⊂ A. Let C ⊂ Z be finite and 1 ≤ i ≤ s. For each N ∈ N, Ψ′
N

is finite and {N ∈ N : ti(Ψ
′
N ) ∩ C 6= ∅} is also finite, so since B ⊂

⋃
N∈NΨ′

N is infinite, one easily

sees that {b ∈ B : ti(b) ∈ C} is finite. So it remains to prove the Claim.

Proof of Claim. We know that dΨ(A) = limN→∞
|A∩ΨN |
|ΨN | > 0. For each 1 ≤ i ≤ s and N ∈ N, let

δi,N =
|ΨN△(eiΨN )|

|ΨN |
.

Since Ψ is a Følner sequence, for all i, δi,N → 0 as N → ∞. Then we can choose a sequence QN of

natural numbers such that QN → ∞ as N → ∞ and for all i, QNδi,N → 0 as N → ∞.

Step 1: For each N ∈ N, ΨN is a finite subset of G, so we can write it as a disjoint union of lines

in the 1st coordinate, which are maximal within ΨN . Let Ψ
(1)
N be the union of those lines whose

length is greater that QN , and mN be the number of those lines whose length is less than or equal

to QN . Then

QNδ1,N = QN
|ΨN△(e1ΨN )|

|ΨN |
≥
QNmN

|ΨN |
≥

|ΨN | − |Ψ
(1)
N |

|ΨN |
.

Therefore,
|Ψ

(1)
N

|

|ΨN | → 1 asN → ∞, from which one gets that Ψ(1) = (Ψ
(1)
N )N∈N is a left Følner sequence

in G. In addition, it is not difficult to see that the density dΨ(1)(A) exists and dΨ(1)(A) = dΨ(A).

Recall that for each N ∈ N, Ψ
(1)
N is a disjoint union of some lines in the 1-st coordinate

L(1,N), . . . , L(ℓN ,N) whose length is greater than QN . Let N1 = 1 and set Ψ̃
(1)
1 = Ψ

(1)
1 . Since

Ψ
(1)
1 is finite, the projection P1 of Ψ

(1)
1 in the first coordinate is also finite. For each N ∈ N, let

Ψ
(1,2)
N = {g ∈ Ψ

(1)
N : t1(g) /∈ P1} =

ℓN⊔

j=1

{g ∈ L(j,N) : t1(g) /∈ P1}.

Then Ψ
(1,2)
N ⊂ Ψ

(1)
N and

|Ψ
(1,2)
N |

|Ψ
(1)
N |

=

∑ℓN
j=1 |{g ∈ L(j,N) : t1(g) /∈ P1}|

∑ℓN
j=1 |L

(j,N)|
≥

∑ℓN
j=1(|L

(j,N)| − |P1|)
∑ℓN

j=1 |L
(j,N)|

= 1−

∑ℓN
j=1 |P1|

∑ℓN
j=1 |L

(j,N)|
≥ 1−

ℓN |P1|

ℓNQN
= 1−

|P1|

QN
.

Since QN → ∞ as N → ∞, we have that |P1|
QN

→ 0 as N → ∞, so
|Ψ

(1,2)
N

|

|Ψ
(1)
N

|
→ 1 as N → ∞. Hence,

we can pick N2 ∈ N,N2 > N1 such that
|Ψ

(1,2)
N2

|

|Ψ
(1)
N2

|
> 1

2 . Set Ψ̃
(1)
2 = Ψ

(1,2)
N2

.
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Now since Ψ̃
(1)
2 is finite, the projection P2 of Ψ̃

(1)
2 in the first coordinate is also finite. For each

N ∈ N, let

Ψ
(1,3)
N = {g ∈ Ψ

(1)
N : t1(g) /∈ P1 ∪ P2} =

ℓN⊔

j=1

{g ∈ L(j,N) : t1(g) /∈ P1 ∪ P2}.

Then Ψ
(1,3)
N ⊂ Ψ

(1)
N and as before, we have that

|Ψ
(1,3)
N |

|Ψ
(1)
N |

≥ 1−
|P1|+ |P2|

QN
.

Again, since QN → ∞ as N → ∞, we have that |P1|+|P2|
QN

→ 0 as N → ∞, so
|Ψ

(1,3)
N

|

|Ψ
(1)
N

|
→ 1 as N → ∞.

Hence, we can pick N3 ∈ N,N3 > N2 such that
|Ψ

(1,3)
N3

|

|Ψ
(1)
N3

|
> 2

3 . Set Ψ̃
(1)
3 = Ψ

(1,3)
N3

.

Continuing inductively, we find a strictly increasing sequence of natural numbers (Nk)k∈N such

that for all k ∈ N, Ψ̃
(1)
k ⊂ Ψ

(1)
Nk

⊂ ΨNk
and

|Ψ̃
(1)
k

|

|Ψ
(1)
Nk

|
> 1− 1

k
. Then

|Ψ̃
(1)
k

|

|Ψ
(1)
Nk

|
→ 1 as k → ∞, from which one

gets that Ψ̃(1) = (Ψ̃
(1)
k )k∈N is a left Følner sequence in G. In addition, it is not difficult to see that

the density d
Ψ̃(1)(A) exists and d

Ψ̃(1)(A) = d
(Ψ

(1)
Nk

)k∈N

(A) = dΨ(1)(A) = dΨ(A). In addition, from

the construction of Ψ̃(1), we have that for any finite set C ⊂ Z, the set {k ∈ N : t1(Ψ̃
(1)
k ) ∩ C 6= ∅}

is finite.

Step 2: Repeat Step 1 with Ψ̃(1) in place of Ψ, which we write as a disjoint union of lines in the

2nd coordinate that are maximal within Ψ̃
(1)
N , to obtain a strictly increasing sequence of natural

numbers (Nk)k∈N and a left Følner sequence Ψ̃(2) such that for all k ∈ N, Ψ̃
(2)
k ⊂ Ψ̃

(1)
Nk

,
|Ψ̃

(2)
k

|

|Ψ̃
(1)
Nk

|
→ 1

as k → ∞ and such that for any finite set C ⊂ Z, the set {k ∈ N : t2(Ψ̃
(2)
k )∩C 6= ∅} is finite. Then

we will also have that the density d
Ψ̃(2)(A) exists and dΨ̃(2)(A) = d

Ψ̃(1)(A) = dΨ(A).

Recall that Ψ̃(1) has the property that for any finite set C ⊂ Z, the set {N ∈ N : t1(Ψ̃
(1)
N )∩C 6= ∅}

is finite. As Ψ̃
(2)
k ⊂ Ψ̃

(1)
Nk

for all k ∈ N, we get that for any finite set C ⊂ Z, the set {k ∈ N :

t1(Ψ̃
(2)
k ) ∩ C 6= ∅} is finite. Hence, after all, for any finite set C ⊂ Z and any i ∈ {1, 2}, the set

{k ∈ N : ti(Ψ̃
(2)
k ) ∩ C 6= ∅} is finite.

Repeating the same procedure, after s steps, we find a left Følner sequence Ψ̃(s) such that the

density dΨ̃(s)(A) exists, dΨ̃(s)(A) = dΨ(A) > 0 and for any finite set C ⊂ Z and any i ∈ {1, . . . , s},

the set {N ∈ N : ti(Ψ̃
(s)
N ) ∩ C 6= ∅} is finite. Taking Ψ′ := Ψ̃(s), we see that Ψ′ satisfies the Claim,

thus concludes its proof. △

Since the Claim is established, the proof of the corollary is complete. �

Now, we have to show Corollary 1.9, but this is not hard using the fact that finitely generated

nilpotent groups are virtually torsion-free. Let us first show the following simple lemma:
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Lemma 5.4. Let G be an amenable group, H be a subgroup of G with |G : H| = r <∞ and Φ be

a Følner sequence in G. Then the following hold:

(i) dΦ(H) = 1
r
.

(ii) Letting ΨN = ΦN ∩H for each N ∈ N, the sequence Ψ = (ΨN )N∈N is a Følner sequence in

H.

In the following proof and onwards, we use the symbol ⊔ to denote the disjoint union.

Proof. (i) This is quite easy to check.

(ii) Let h ∈ H and suppose for sake of contradiction that

ℓ = lim inf
N→∞

|hΨN ∩ΨN |

|ΨN |
< 1.

For any N ∈ N, we have that

hΦN ∩ ΦN = (hΨN ∩ΨN ) ⊔ ((hΦN ∩ ΦN ) \H),

hence,

|hΦN ∩ ΦN |

|ΦN |
=

|hΨN ∩ΨN |

|ΦN |
+

|(hΦN ∩ ΦN ) \H|

|ΦN |
≤

|hΨN ∩ΨN |

|ΨN |
·
|ΨN |

|ΦN |
+

|ΦN \H|

|ΦN |
.

Using (i), it follows that

lim
N→∞

|hΦN ∩ΦN |

|ΦN |
≤
ℓ

r
+ 1−

1

r
< 1,

which contradicts the fact that Φ is a Følner sequence in G. Therefore, Ψ is indeed a Følner

sequence in H and the proof of the lemma is complete. �

Proof of Corollary 1.9. Let G be a finitely generated virtually nilpotent group, Φ = (ΦN )N∈N be

a Følner sequence in G and A be a subset of G with dΦ(A) > 0. By passing to a subsequence for

which the limit exists, we may assume that dΦ(A) > 0. Let G′ be a nilpotent finite-index subgroup

of G. Since G is finitely generated, by writing it as a disjoint union of finitely many left cosets of

G′, it is easy to see that G′ is also finitely generated, and it is also nilpotent. By [KM79, Theorem

17.2.2], there exists a normal subgroup H of G′ with finite index, which is torsion-free. Hence,

H is a torsion-free finitely generated nilpotent group, which has finite index in G. By writing G

as finite disjoint union of left cosets of H, we can see that there exists some g ∈ G such that

dΦ(g
−1A ∩H) = dΦ(A ∩ gH) > 0. Again, by passing to a subsequence, we may assume that the

limit exists, so dΦ(g
−1A ∩H) = dΦ(A ∩ gH) > 0. We let ΨN = ΦN ∩H for each N ∈ N and by

Lemma 5.4 (ii), Ψ = (ΨN )N∈N is a Følner sequence on H. Hence for every N ∈ N we have that

|g−1A ∩ΨN |

|ΨN |
=

|g−1A ∩ ΦN ∩H|

|ΦN |
·
|ΦN |

|ΨN |
,

thus,

dΨ(g
−1A ∩H) =

dΦ(g
−1A ∩H)

dΦ(H)
> 0,
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using Lemma 5.4 (i). Therefore, recalling that H is torsion-free finitely generated nilpotent group,

Corollary 1.8 yields an infinite sequence B ⊂ g−1A ∩ H ⊂ g−1A and some t0 ∈ H such that

B ·⊳ B ⊂ t−1
0 g−1A ∩H ⊂ t−1A, where we have set t = gt0 ∈ G. This concludes the proof. �

Once we have established the corollaries concerning finitely generated nilpotent groups, we move

on to showing the results corresponding to abelian groups, namely Theorem 1.11 and Corollary 1.12.

Obviously, the latter is an immediate consequence of the former and of Theorem 1.5, so it suffices

to show Theorem 1.11.

Proof of Theorem 1.11. Let (G,+) be an abelian group such that 2G has finite index in G, let Ψ be

any Følner sequence in G and consider the doubling map sG : G→ 2G, g 7→ 2g. We will show that

the assumptions of Lemma 5.1 are satisfied, which will yield that G is square absolutely continuous.

Then | ker(sG)| = |G : 2G| = r, hence

(5.6) |s−1
G ({g})| ≤ r, ∀g ∈ G.

By assumption, there exist r ∈ N and g1, . . . , gr ∈ G, where g1 = eG, such that

G =
r⊔

i=1

(gi + 2G).

We define Φ = (ΦN )N∈N by ΦN =
⊔r

i=1(gi + 2ΨN ). Assuming that this is a Følner sequence in G,

by taking η := 1
r
, we have that

(5.7) sG(ΨN ) = 2ΨN ⊂ ΦN and
|sG(ΨN )|

|ΦN |
=

|2ΨN |

r|2ΨN |
= η.

Combining (5.6) and (5.7), we have that the assumptions of Lemma 5.1 are indeed satisfied. Thus,

it suffices to show that Φ is a Følner sequence in G.

Let g ∈ G and ε > 0. There exist 1 ≤ i0 ≤ r and h ∈ G such that g = gi0 + 2h. Then

(5.8) (g +ΦN) ∩ ΦN =

( r⊔

i=1

(gi0 + gi + 2(h +ΨN ))

)
∩

( r⊔

j=1

(gj + 2ΨN )

)
.

Since the cosets gj + 2G are disjoint, it follows that for each 1 ≤ i ≤ r, there exists a unique 1 ≤

j(i) ≤ r such that gi0 +gi ∈ gj(i)+2G, so there is yi ∈ G such that gi0 +gi = gj(i)+2yi. In addition,

if we assume that for i1 6= i2 we have j(i1) = j(i2), then we have that gi1−gi2 = 2yi1−2yi2 ∈ 2G, so

gi1+2G = gi2+2G, which is a contradiction. Therefore, the map j : {1, . . . , r} → {1, . . . , r}, i 7→ j(i)

is a bijection, and then (5.8) becomes

(g+ΦN )∩ΦN =

r⊔

i=1

(
(gj(i)+2(yi+h+ΨN ))∩ (gj(i)+2ΨN )

)
=

r⊔

i=1

(
gj(i)+(2(yi+h+ΨN )∩2ΨN )),
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thus, we have that

|(g +ΦN ) ∩ΦN | =
r∑

i=1

|2(yi + h+ΨN ) ∩ 2ΨN )| =
r∑

i=1

|sG(yi + h+ΨN ) ∩ sG(ΨN ))|

≥
r∑

i=1

|sG((yi + h+ΨN ) ∩ΨN )|.(5.9)

Now since Ψ is a Følner sequence in G, for N sufficiently large, we have that for every 1 ≤ i ≤ r,

|(yi + h+ΨN )△ΨN | ≤ ε
r
|ΨN |, and then we have that

(5.10)
|sG((yi + h+ΨN ) ∩ΨN )|

|sG(ΨN )|
≥ 1−

|sG(ΨN△(yi + h+ΨN ))|

|sG(ΨN )|
≥ 1−

r|ΨN△(yi + h+ΨN )|

|ΨN |
≥ 1− ε,

where for the second inequality above we use that |sG(ΨN△(yj+h+ΨN))| ≤ |(ΨN△(yj+h+ΨN ))|

and that |sG(ΨN )| ≥ 1
r
|ΨN |, as |s−1

G ({z})| ≤ r for all z ∈ G.

Then, combining (5.9) and (5.10) we get that for N sufficiently large

|(g +ΦN) ∩ ΦN |

|ΦN |
≥

∑r
i=1(1− ε)|sG(ΨN )|

r|sG(ΨN )|
= 1− ε.

Since ε > 0 was arbitrary, it follows that limN→∞
|(g+ΦN )∩ΦN |

|ΦN | = 1. Thus, Φ is a Følner sequence

in G, and the proof is complete. �

6. Counterexamples on products sets

To construct the counterexamples we introduce some convenient notation. We denote by H3 the

3× 3 discrete Heisenberg group, that is the group of 3× 3 upper triangular matrices with 1 in the

diagonal and integer entries. Using the obvious Mal’cev coordinate system in this group we identify

H3 with Z
3 by writing elements of H3 as a = (a1, a2, a3) where the group operation is given by

ab = (a1 + b1, a2 + b2, a3 + b3 + a1b2). For N ∈ N, we denote [N ] := [1, N ], where all intervals are

considered in Z, and [N ]′ := [1, N ] ∩ (2Z + 1). All the counterexamples below are constructed on

the group G = H3. By Corollary 1.8, we may assume that any infinite sequence B ⊂ H3 considered

below is infinite in all coordinates.

Example 6.1. We construct a set A ⊂ H3 and a Følner sequence Φ with dΦ(A) > 0 such that

there is no infinite sequence B = (b(n))n∈N ⊂ A satisfying B ·⊳ B ⊂ At−1 for some t ∈ G.

Consider the Følner sequence Φ = (ΦN )N∈N with ΦN = (2N + [N ])× [N ]× [N2]. It is not hard

to see that Φ is a left Følner sequence, but not a right one. Let Φ′
N = (2N +[N ]′)× [N ]′× [N2]′ and

consider the set A =
⋃

N∈NΦ′
N . Clearly, dΦ(A) > 0. Suppose, for sake of contradiction, that there

exist an infinite sequence B = (b(n))n∈N ⊂ A and some t ∈ H3 such that {b(i)b(j) : i < j} ⊂ At−1.

We denote t−1 = (t1, t2, t3). We observe that B ∩ Φ′
N 6= ∅ for infinitely many N ∈ N. Let

b = b(i) = (b1, b2, b3), for some i ∈ N, such that b ∈ Φ′
N for some N large (compared to the ti’s).

Then we can find some j > i such that the element c = b(j) = (c1, c2, c3) belongs in some Φ′
M for
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some M much larger than N , and then bc ∈ At−1. It follows that bc ∈ Φ′
Qt

−1, for some Q ∈ N,

where

Φ′
Qt

−1 = (2Q + [Q]′ + t1)× ([Q]′ + t2)× ([Q2]′ + t3 + t2(2
Q + [Q]′)).

Then (bc)1 = O(2Q) and on the other hand, (bc)1 = b1 + c1 ∈ 2N + 2M + [N +M ]′, and hence we

have that (bc)1 = O(2M ). It follows that Q and M are of the same order (and, in fact, we can show

that they are equal). We now want to show that t2 6= 0. By the fact that bc ∈ Φ′
Qt

−1, we have that

bc ∈ (2Z + 1 + t1)× (2Z + 1 + t2)× (2Z+ 1 + t3 + t2).

On the other hand, multiplying b and c, and using that bi and ci are odd for all i, gives that

bc = (b1 + c1, b2 + c2, b3 + c3 + b1c2) ∈ 2Z× 2Z × (2Z + 1).

It follows that all the ti’s are odd, and in particular, t2 6= 0.

Now, since cb ∈ Φ′
Qt

−1 and t2 6= 0, we have that

(bc)3 ≫ 2Q ≫ 2M .

On the hand, for M sufficiently large, we have that

(bc)3 = b3 + c3 + b1c2 ≤ N2 +M2 + (2N +N)M ≪M2,

which yields a contradiction.

Example 6.2. We construct a set A ⊂ H3 and a Følner sequence Φ with dΦ(A) = 1 such that

there is no infinite sequence B = (b(n))n∈N ⊂ G satisfying B ·⊲ B ⊂ t−1A for some t ∈ G.

Consider the same Følner sequence Φ as in Example 6.1. We observe that ΦN ∩ΦM = ∅ for any

N 6= M , and in particular, the projections of any two such sets in the first coordinate are disjoint

subsets of Z. We define the set A =
⋃

N∈N ΦN and clearly we have dΦ(A) = 1. Suppose, for

sake of contradiction, that there exist an infinite sequence B = (b(n))n∈N ⊂ H3 and some t ∈ H3

such that {b(i)b(j) : i > j} ⊂ t−1A. We denote t = (t1, t2, t3) and b(1) = b = (b1, b2, b3). We

may assume without loss of generality that b2 6= 0. We let B′ = (b(n))n≥2. Moreover, we denote

b−1 = y = (y1, y2, y3) and then we have that B′ ⊂ t−1Ay. It follows that B′ ∩ t−1ΦNy 6= ∅ for

infinitely many N ∈ N. Fix c = b(i) for some i > 1 such that c ∈ B′ ∩ t−1ΦMy for some large

M ∈ N. Then cb ∈ t−1A, which implies that cb belongs in exactly one set of the form t−1ΦN . We

have that

(cb)1 = c1 + b1 ∈ 2M + [M ] + t1 + y1 + b1 = 2M + [M ] + t1,

hence cb ∈ t−1ΦM . Then we have that (cb)3 ∈ [M2] + t1[M ] + t3, which imples that (cb)3 ≪ M2,

for M sufficiently large. On the other hand, multiplying c and b gives that

(cb)3 = c3 + b3 + c1b2 ≫ c1 ∈ 2M + [M ] + t1 + y1,

which implies that (cb)3 ≫ 2M = 2M , for M sufficiently large, where the implied constant is again

absolute. This yields a contradiction.
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Example 6.3. Consider the same Φ and A ⊂ H3 as in Example 6.2. Then we show that there is

no infinite sequence B ⊂ H3 satisfying B ·⊲ B ⊂ At−1.

To see why, suppose, for sake of contradiction, that there exists such a sequence B and, as we

did in Remark 1.13, consider the sequence B′ = t−1Bt. Then we have that B′ ·⊲ B′ ⊂ t−1A, which

cannot hold for this particular set A as we saw in Example 6.2. This yields a contradiction.

Appendix A. A result of Host and Kra for amenable groups

The purpose of this appendix is to prove Lemma 3.5. The proof follows the ideas in the proof

of [HK09, Proof of Proposition 6.1], adapted in our setting. We state the following classical result

(see for example [Rud91, Example 11.13 (a)]), which we will need in the proof of Lemma 3.5:

Lemma A.1. Let X be a compact metric space. Then the only linear multiplicative functionals on

the algebra C(X) are the point evaluations, i.e., evx(f) = f(x), for x ∈ X.

For convenience, we restate the lemma we want to prove:

Lemma 3.5. [HK09, Proposition 6.1 for group actions] Let G be an amenable group, let (X,µ, T )

be an ergodic G-system, (Z,m,R) be its Kronecker factor and ρ : (X,µ, T ) → (Z,m,R) be a factor

map. If a ∈ X is a transitive point, then there exists a point z ∈ Z and a Følner sequence Ψ such

that

(A.1) lim
N→∞

1

|ΨN |

∑

g∈ΨN

f1(Tga) · f2(Rgz) =

∫

X

f1 · (f2 ◦ ρ) dµ

holds for any f1 ∈ C(X) and f2 ∈ C(Z).

We remark that the result still holds if we replace (Z,m,R) by any factor of (X,µ, T ) that is

distal as a topological system.

Proof. As in [HK09], we split the proof into two parts.

Construction of a common extension. Let A ⊂ {f : X → C : f is measurable and bounded} be

the closed (in norm) subalgebra that is spanned by C(X) and {f ◦ ρ : f ∈ C(Z)}. This is a unital

commutative separable algebra, which contains the constants and is invariant under both complex

conjugation and T . Consider the Gelfand spectrum of A, which is defined as

W = {χ : A → C : χ is linear and multiplicative}.

Note that W is compact and metrizable, since A is separable. By Gelfand’s theorem, there

exists an isometric isomorphism F : C(W ) → A, satisfying F−1(f)(χ) = χ(f) for all f ∈ A and all

χ ∈ W . Hence for all f̃ ∈ C(W ) and all χ ∈ W , we have f̃(χ) = χ(F (f̃)). For g ∈ G and χ ∈ W ,

we define Sg(χ) : A → C, Sg(χ)(f) = χ(f ◦ Tg). Then it is not too difficult to see that for each

g ∈ G, Sg : W →W is a homeomorphism, and we also let S = (Sg)g∈G. Then for every χ ∈W , we

have that

χ(F (f̃ ◦ Sg)) = f̃(Sg(χ)) = Sg(χ)(F (f̃)) = χ(F (f̃) ◦ Tg)
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for f̃ ∈ C(W ) and any g ∈ G. In particular, for every x ∈ X, by considering the evaluation

functional evx ∈W , it follows that

F (f̃ ◦ Sg)(x) = evx(F (f̃ ◦ Sg)) = evx(F (f̃) ◦ Tg) = (F (f̃) ◦ Tg)(x)

holds for any f̃ ∈ C(W ) and any g ∈ G. Thus, we have that

(A.2) F (f̃ ◦ Sg) = F (f̃) ◦ Tg

for every f̃ ∈ C(W ) and for every g ∈ G.

Now, we consider the embedding F−1|C(X) : C(X) →֒ C(W ). Given w ∈ W , evw ◦ F−1|C(X)

is a linear multiplicative functional on C(X), and by Lemma A.1, there exists a unique x ∈ X

such that evw ◦ F−1|C(X) = evx. Thus, we can define πX : W → X by πX(w) = x if and only if

evw ◦ F−1|C(X) = evx. The last equation is equivalent to that for any f ∈ C(X) and w ∈W ,

f ◦ πX(w) = evπX(w)(f) = evw ◦ F−1|C(X)(f) = F−1(f)(w).

Hence πX is the unique map from W to X satisfying

(A.3) f ◦ πX = F−1(f)

for any f ∈ C(X). We claim that πX is continuous and surjective.

To show continuity, we let (wn)n∈N in W such that wn → w ∈ W . Then for any f ∈ C(W ),

we have evwn(f) → evw(f). Hence, for any f ∈ C(X), we have evπX(wn)(f) → evπX(w)(f), that

is, f(πX(wn)) → f(πX(w)). Since X is compact, πX(wn) has a convergent subsequence, which

by abuse of notation we denote by πX(wn). Suppose for sake of contradiction that πX(wn) →

y 6= πX(w). Then by Urysohn’s lemma, we can find some f ∈ C(X) and some disjoint open

neighborhoods U1 ∋ πX(w), U2 ∋ y, such that f |U1 = 1 and f |U2 = 0. It follows that πX(wn) ∈ U2

for large n, hence f(πX(wn)) = 0 for large n, while f(πX(w)) = 1, but this contradicts the fact

that f(πX(wn)) → f(πX(w)). This shows that every convergent subsequence of πX(wn) converges

to πX(w), and since X is compact, it follows that πX(wn) → πX(w), showing the continuity of πX .

To show that πX is surjective, let x ∈ X and consider the linear multiplicative functional evx

on C(X). Since F−1|C(X) is an embedding, it follows that F−1|C(X) ◦ evx is a linear multiplicative

functional on C(W ). Then, by Lemma A.1, there exists some w ∈ W such that F−1|C(X) ◦ evx =

evw. Hence, πX(w) = x, showing that πX is surjective.

Moreover, for any g ∈ G and any f ∈ C(X), let f̃ = F−1(f) ∈ C(W ), and then F (f̃) = f ∈ C(X)

and by (A.2), F (f̃ ◦ Sg) = f ◦ Tg ∈ C(X). Then, using (A.2) and (A.3), we have that

f ◦ Tg ◦ πX = F (f̃ ◦ Sg) ◦ πX = f̃ ◦ Sg = F (f̃) ◦ πX ◦ Sg = f ◦ πX ◦ Sg

for any g ∈ G and any f ∈ C(X). It follows by Urysohn’s lemma that

(A.4) Tg ◦ πX = πX ◦ Sg
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for any g ∈ G. Therefore, we have proved that W is an extension of X with πX being a continuous

topological factor map.

Similarly, by considering the embedding F−1|C(Z)◦ρ : C(Z) ◦ ρ →֒ C(W ), there exists a unique

surjective continuous map πZ : W → Z such that

(A.5) f ◦ πZ = F−1(f ◦ ρ)

for any f ∈ C(Z), and

(A.6) Rg ◦ πZ = πZ ◦ Sg

for any g ∈ G. Hence, W is also an extension of Z with πZ being a continuous topological factor

map.

Now we will find a measure on W , with which W will become a measurable extension of X and

Z. Since f 7→
∫
f dµ is a positive linear functional on A, there exists a unique probability measure

ν on W such that ∫

X

f dµ =

∫

W

F−1(f) dν

for any f ∈ A. By (A.2), we have that ν is S-invariant, by (A.3), we have πXν = µ and by (A.5),

we have πZν = m. Consequently, πX and πZ are factor maps.

The last thing in this first step is to show that πX is actually a measurable isomorphism between

W and X and thus, that the measure ν is ergodic. First, we want to extend (A.3) in C(W ) ≃ A.

For f ∈ A, it holds
∫
W

|F−1(f)|2 dν =
∫
X
|f |2 dµ, and F−1 is an isometry from A (with the

L2(X,µ) norm) into L2(W,ν). Combining the facts that C(X) is dense in A (with respect to

the L2(X,µ) norm) and that (A.3) holds for all f ∈ C(X), we obtain that (A.3) holds for all

f ∈ A, ν-almost always. Then consider the map H : L2(X,µ) → L2(W,ν), such that f 7→ f ◦ πX .

Then H(L2(µ)) is closed in L2(W,ν), since the map is an isometry, and notice that it contains

F−1(A) = C(W ). Thus, H(L2(X,µ)) = L2(W,ν), showing that πX is a measurable isomorphism,

and consequently, that (W,ν, S) is ergodic. Finally, for any f ∈ C(Z), using (A.3) and (A.5), we

see that f ◦ πZ = F−1(f ◦ ρ) = f ◦ ρ ◦ πX holds ν-almost always, and so, πZ = ρ ◦ πX .

Construction of the Følner sequence. Since (W,ν, S) is ergodic, it follows that there exists w1 ∈

gen(ν,Φ) for some Følner sequence Φ.

Set x1 = πX(w1). Transitivity of a implies that there exists a sequence (hN )N∈N ⊂ G such that

(A.7) lim
N→∞

sup
g∈ΦN

dX(Tgx1, TghN
a) = 0,

where dX is the metric on the space X. Now set z1 = πZ(w1). Let E(Z,R) be the Ellis semigroup of

(Z,R), that is, the closure of R as an element of ZZ , where this space is equipped with the pointwise

convergence topology. Let R0 ∈ (RhN
)N∈N ⊂ E(Z,R). By Proposition 2.11 R is a rotation, which

implies that is a bijection from Z to itself. In case that (Z,m,R) is any distal system (and not

necessarily the Kronecker factor), then we also have that R is a bijection (see by [Aus88, Chapter
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5]). Therefore, there exists z0 ∈ Z such that R0(z0) = z1. Then there exists a subsequence of

(hN )N∈N, which, by abuse of notation, we denote as (hN )N∈N, such that limN→∞RhN
z0 = z1.

Therefore, there exists a further subsequence, which once again we denote in the same way, for

which it holds that

(A.8) lim
N→∞

sup
g∈ΦN

dZ(Rgz1, RghN
z0) = 0,

where dZ is the metric on the space Z.

Let f1 ∈ C(X), f2 ∈ C(Z). By (A.7) and (A.8), we have that

lim
N→∞

sup
g∈ΦN

|f1(Tgx1)− f1(TghN
a)| = 0 and lim

N→∞
sup
g∈ΦN

|f2(Rgz1)− f2(RghN
z0)| = 0.

We define the Følner sequence Ψ = (ΨN )N∈N, by ΨN = ΦNhN for any N ∈ N. It is easy to check

that since Φ is a left Følner sequence, then Ψ is also a left Følner sequence. It follows from the

above equations that

lim
N→∞

∣∣∣∣
1

|ΨN |

∑

g∈ΨN

f1(Tga)f2(Rgz0)−
1

|ΦN |

∑

g∈ΦN

f1(Tgx1)f2(Rgz1)

∣∣∣∣ =

= lim
N→∞

∣∣∣∣
1

|ΦN |

∑

g∈ΦN

(
f1(TghN

a)f2(RghN
z0)− f1(Tgx1)f2(Rgz1)

)∣∣∣∣

≤ lim
N→∞

sup
g∈ΦN

|f1(TghN
a)f2(RghN

z0)− f1(Tgx1)f2(Rgz1)|

≤ lim
N→∞

sup
g∈ΦN

(
|f1(TghN

a)f2(RghN
z0)− f1(TghN

a)f2(Rgz1)|

+ |f1(TghN
a)f2(Rgz1)− f1(Tgx1)f2(Rgz1)|

)

≤ lim
N→∞

(
‖f1‖∞ sup

g∈ΦN

|f2(RghN
z0)− f2(Rgz1)|+ ‖f2‖∞ sup

g∈ΦN

|f1(TghN
a)− f1(Tgx1)|

)

= 0.(A.9)
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Moreover, recalling that w1 ∈ gen(ν,Φ) and observing that f1 ◦ πX ∈ C(W ) and f2 ◦ πZ ∈ C(W ),

we have that

lim
N→∞

1

|ΦN |

∑

g∈ΦN

f1(Tgx1)f2(Rgz1) = lim
N→∞

1

|ΦN |

∑

g∈ΦN

f1(Tg(πX(w1)))f2(Rg(πZ(w1)))

= lim
N→∞

1

|ΦN |

∑

g∈ΦN

f1(πX(Sgw1))f2(πZ(Sgw1)) (by (A.4),(A.6))

=

∫

W

(f1 ◦ πX)(f2 ◦ πZ) dν

=

∫

W

(f1 ◦ πX)(f2 ◦ ρ ◦ πX) dν (since πZ = ρ ◦ πX)

=

∫

W

f1 · (f2 ◦ ρ) dµ (since πXν = µ).(A.10)

Combining (A.9) and (A.10) yields the desired result. The proof is complete. �
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