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ABSTRACT

We explore three-body binary formation (3BBF), the formation of a bound system via gravitational

scattering of three initially unbound bodies (3UB), using direct numerical integrations. For the first

time, we consider systems with unequal masses, as well as finite-size and post-Newtonian effects.

Our analytically derived encounter rates and numerical scattering results reproduce the 3BBF rate

predicted by Goodman & Hut (1993) for hard binaries in dense star clusters. We find that 3BBF occurs

overwhelmingly through nonresonant encounters and that the two most massive bodies are never the

most likely to bind. Instead, 3BBF favors pairing the two least massive bodies (for wide binaries) or the

most plus least massive bodies (for hard binaries). 3BBF overwhelmingly favors wide binary formation

with super-thermal eccentricities, perhaps helping to explain the eccentric wide binaries observed by

Gaia. Hard binary formation is far rarer, but with a thermal eccentricity distribution. The semimajor

axis distribution scales cumulatively as a3 for hard and slightly wider binaries. Though mergers are

rare between black holes when including relativistic effects, direct collisions occur frequently between

main-sequence stars—more often than hard 3BBF. Yet, these collisions do not significantly suppress

hard 3BBF at the low velocity dispersions typical of open or globular clusters. Energy dissipation

through gravitational radiation leads to a small probability of a bound, hierarchical triple system

forming directly from 3UB.

1. INTRODUCTION

The formation of binaries containing stellar and com-

pact objects is essential to the production of numerous

high-energy astrophysical phenomena, including gravi-

tational wave emission and/or fast radio bursts released

with compact object mergers (e.g., Rodriguez et al.

2019; Kremer et al. 2021), X-ray binaries (Sana et al.

2012), and supernovae (Maoz et al. 2014). Binaries

are also essential to the evolution of dense stellar en-

vironments since they act as dynamical heat sources

that expand the cluster’s core through repeated scatter-

ing interactions—“binary burning” (e.g., Heggie & Hut

2003)—and promote stellar collisions and tidal disrup-

tion events (Bacon et al. 1996; Fregeau et al. 2004a; Ryu

et al. 2023).

Many stellar binaries form ‘primordially’ in molecular

clouds (e.g., Shu et al. 1987), but also dynamically from

two fully-formed and isolated bodies, especially in dense

stellar environs. Several types of dissipative effects may

bind two lone stars together, including dynamical fric-

tion in a gaseous medium (Rozner et al. 2023), tidal

heating of one star by another (‘tidal capture’; e.g.,

Fabian et al. 1975; Generozov et al. 2018), and gravi-

tational wave emission in a close passage of two com-

pact objects (‘gravitataional wave capture’; e.g., Quin-

lan & Shapiro 1989). In this work, we explore a purely

Newtonian phenomenon, three-body binary formation
(3BBF), in which three isolated (energetically unbound)

bodies pass near each other and gravitationally scatter

to form a new binary. The leftover single acts as a source

of dissipation in this scenario, a catalyst, transferring

gravitational potential energy into the kinetic energies

of the single and a new binary’s center-of-mass.

The body of work investigating 3BBF is presently

very limited compared to investigations of the afore-

mentioned binary formation mechanisms. The histor-

ical lack of interest is likely due to over-generalization of

early analytic estimates of 3BBF’s impact on star clus-

ters (Heggie 1975; Stodolkiewicz 1986; Goodman & Hut

1993). The usual narrative states that the 3BBF rate is

negligible over most of a cluster’s dynamical lifetime,

except in the short window of time central densities

spike during the core collapse process (e.g., Hut 1985;

Freitag & Benz 2001; Joshi et al. 2001) or even there-
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after (e.g., Statler et al. 1987; Hut et al. 1992).1 Such

studies generally predate the cluster modeling commu-

nity’s widespread incorporation of primordial binaries

and realistic IMFs—and therefore neglect essential BH

dynamics. Due to the 3BBF rate’s steep mass depen-

dence in its classic ∼n3G5m5/σ9 scaling (e.g., Heggie

1975; Kulkarni et al. 1993; O’Leary et al. 2006; Banerjee

et al. 2010; Morscher et al. 2013, 2015), BH populations

greatly enhance 3BBF. Without such massive bodies,

efficient 3BBF would require an extreme cluster density

only achieved in very deep core collapse beyond the cen-

tral density of today’s observationally ‘core-collapsed’

Milky Way globular clusters, whose cores remain sup-

ported by central binary burning (Weatherford et al.

2023). In fact, accounting for BH retention and using

the 3BBF recipe of Morscher et al. (2015), Weather-

ford et al. (2023) predict that 3BBF occurs frequently in

globular clusters—an overwhelming majority involving

BHs—and cumulatively powers many high-speed ejec-

tions. Due to its impact on the formation of dynami-

cally active BH binaries and high-speed ejection, 3BBF

is essential for understanding star cluster evolution, BH

mergers, and high-velocity stellar populations.

Earlier disinterest in 3BBF may also stem from its

overwhelming tendency to form soft binaries, coupled

with the assumption that such binaries are unlikely to

survive long enough to contribute significantly to cluster

dynamics via binary burning. Indeed, strong encounters

quickly disrupt most soft binaries and also tighten those

formed especially hard until they merge or are ejected

from the cluster (e.g., Hut & Inagaki 1985; McMillan

1986; Goodman & Hernquist 1991; Bacon et al. 1996;

Chernoff & Huang 1996; Fregeau et al. 2004a). This rea-

soning was previously used to justify neglecting 3BBF,

either entirely (e.g., Joshi et al. 2000; Fregeau et al.

2003), or if none of the bodies were BHs (e.g., Morscher

et al. 2015), in prescription-based Monte Carlo star clus-

ter models such as CMC (Rodriguez et al. 2022). Unfor-

tunately, this neglects the formation of binaries of only

moderate hardness, with or without BHs. A staggering

result of Goodman & Hut (1993) is that soft binaries

from 3BBF, though typically short-lived, form so fre-

quently that the small fraction which do survive and

harden sufficiently may yield over 90% of hard binaries

over long timescales in massive star clusters. These bi-

naries would, in fact, survive long enough to contribute

1 Here, “core collapse” is the process by which the most massive
objects in a stellar cluster rapidly evacuate kinetic energy from
central regions, sink deeper into the cluster (dynamical friction),
and subsequently contract the core to increasingly higher densi-
ties, a process that is halted by 3BBF.

substantially to binary burning but are not typically ac-

counted for in cluster modeling (outside of direct N -

body simulations, which have their own limitations; see

below).

Despite renewed interest, modern 3BBF recipes (e.g.,

Goodman & Hut 1993; Ivanova et al. 2005, 2010;

Morscher et al. 2013, 2015) are untested by numeri-

cal scattering experiments. The only two examples of

such studies, Agekyan & Anosova (1971) and Aarseth &

Heggie (1976)—hereafter referenced as AH76—suffered

from small sample sizes and were limited to equal point

masses. And while full direct N -body codes capture

3BBF naturally, a detailed analysis of this physical pro-

cess is challenging due to the rarity of the event in

the low-mass, small-N , or low-density clusters typically

modeled by such codes (Tanikawa et al. 2013; Maŕın

Pina & Gieles 2023).

To this day, the direct N -body approach borders on

being too computationally expensive to practically simu-

late globular clusters that are simultaneously as massive,

old, and dense as those in the Milky Way (Wang et al.

2016; Arca Sedda et al. 2023). Conversely, much faster

Monte Carlo and semi-analytic codes use highly approxi-

mate recipes (e.g., Rodriguez et al. 2022, and references

therein) for 3BBF rather than direct integration with

a small-N -body code—e.g., Fewbody (Fregeau et al.

2004a) or Tsunami (Trani & Spera 2023). In fact, the

prescription in CMC automatically pairs the two most

massive bodies in three-body “interactions” at a numer-

ically untested rate based on the local stellar density,

velocities, and masses. No rigorous justification exists

for this pairing, yet it may have dramatic implications

for newly formed binaries and cluster evolution.

Here, we present a rigorous framework for 3UB inter-

actions and self-consistently investigate 3BBF physics

through direct N -body scattering experiments. Our

methodology builds upon the work done by AH76 with

adjustments made to correct a minor inconsistency in

the Monte Carlo sampling scheme AH76 adopted from

Agekyan & Anosova (1971). Our investigation is built

on the Tsunami integrator (Trani & Spera 2023; Trani,

Spera, & Atallah 2024, in preparation) and the Cusp-

Building Python package (Atallah et al. 2023).

Our methodology is detailed in Section 2, explain-

ing the initial condition algorithm in Section 2.1. We

reproduce the results of AH76 using their 3UB algo-

rithm in Section 2.2 and also justify the need for cor-

recting the original AH76 algorithm by analyzing a sim-

ple “particle-in-box” simulation. Section 2.3 features

a first-principles derivation of the 3UB encounter rate

complementary to our algorithm, validated to be cor-

rect to within percent error in the particle-in-box sim-
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ulation. In Section 3, we broadly explore 3BBF in the

point mass limit. The equal-mass hard binary forma-

tion rate predicted by Goodman & Hut (1993) is re-

produced in Section 3.1.2 and we discuss our findings

regarding super-thermal wide binary formation in Sec-

tion 3.1.3. We investigate the 3UB scattering of unequal

point masses in Section 3.2 before applying our frame-

work to the scattering of bodies with finite-size, main-

sequence (MS) stars and black holes (BHs) in Section 4.

We lay out our conclusions and discuss next steps in

Section 5.

2. METHODS

Our three-body scattering experiments are conducted

with the CuspBuilding Python package (Atallah et al.

2023), a Monte Carlo scattering framework built upon

the Tsunami integrator (Trani & Spera 2023; Trani,

Spera, & Atallah 2024, in preparation). Tsunami

is a direct N -body integrator based on Mikkola’s al-

gorithmic regularization (Trani & Spera 2022; Trani

et al. 2019a,b), using the leapfrog algorithm in con-

junction with Bulirsch-Stoer extrapolation (Stoer & Bu-

lirsch 1980) and the chain-coordinate system introduced

in Mikkola & Aarseth (1993).

These techniques allow tsunami to follow close

encounters with extreme accuracy without reduc-

ing the integration time-step, unlike traditional in-

tegrators (e.g., Fregeau et al. 2004b). This makes

tsunami an ideal code for integrating any compact

few-body system, including extreme mass-ratio con-

figurations, such as stellar-mass binary BH scatter-

ing in the vicinity of an SMBH (Trani et al. 2023).

The Tsunami/Cuspbuilding framework yields ex-

treme precision and speed, with a typical evaluation rate

of ∼200 3UB scatterings per second, per CPU core. In

total, we generate over 1010 3UB encounters, one of the

largest sets of scattering interactions yet generated for

a single work.

As in Agekyan & Anosova (1971) and AH76, we ini-

tiate all bodies relative to the origin of an inertial refer-

ence frame, O. This origin serves as the “target” of all

three bodies. Unlike in AH76, we adopt a “spherical”

initial condition sampling method in contrast to their

“cylindrical” method; we elaborate on this distinction

and provide a robust numerical justification for adjust-

ing this algorithm in Sections 2.1 and 2.2.

2.1. Initial Condition Algorithm

The initial condition algorithm may be subdivided

into three parts:

1. Select the masses and velocity vectors of the three

scattering bodies.

R1
𝑏0

z0

Ԧ𝑠0

R2

Ԧ𝑟0

v0 m0

m1

m2

v1

v1

Ԧr1

Ԧ𝑟2

Figure 1. A schematic of our three unbound body (3UB)
initial condition algorithm, projected in 2D. The labels used
here are in line with the prescriptions of Equations (1)–(5).

2. Randomly assign a point in a sphere of radius R1

to each body. This point is drawn from a distribu-

tion explicitly uniform in the volume of a sphere.

3. Pull each body backward in time along a straight

line using their individual velocity vectors. This

procedure approximates gravitationally isolating

the three bodies far from the region of interaction.

We begin by defining a set of initial properties for

each body: initial masses, mi, and velocities, v⃗i, with

i = {0, 1, 2}. Relative to the origin, a set of impact

parameters bi and offsets zi (along the line parallel to

the body’s velocity) are then sampled using the following

relations:

bi = si sinϕi

zi = si cosϕi

si = 3
√
Ui(0, 1)R1

ϕi = cos−1 [Ui(−1, 1)]

R1 = 2χ1b90

b90 = max

[
G(mi + mj)

⟨(v⃗i − v⃗j)2⟩

]
.

(1)

Here, R1 is the radius of an “interaction volume” cen-

tered on O, χ1 scales R1 to probe strong and weak en-

counter regimes, b90 is the largest average 90◦ deflection

impact parameter of all two-body combinations, ϕi is

an inclination angle drawn from an inclination distribu-
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tion uniform in cosine, and Ui(0, 1) is a random number

sampled uniformly between 0 and 1. This procedure is

equivalent to sampling points within a sphere of radius

R1 from a distribution uniform in volume.2 The drawn

points are expressed in vector notation as

s⃗i = bie⃗
⊥
i − zie⃗

∥
i (2)

with e⃗⊥
i , e⃗

∥
i representing basis vectors perpendicular and

parallel, respectively, to the randomly sampled velocity

vectors of each body.

The set of points sampled by the above procedure are

not the actual initial conditions for the scattering exper-

iment. Rather, they describe a point in time—the epoch

time—at which all three bodies, if they were to travel

on straight-line trajectories, would all be located simul-

taneously within the interaction volume of radius R1.

To initialize the scattering experiment with the bodies

far away from the interaction volume, we then pull each

body backwards in time along the straight line paral-

lel to its velocity vector, effectively applying an offset

in each body’s arrival time to the interaction region. If

the bodies were to travel on straight-line trajectories,

such initial conditions would therefore guarantee that

all three bodies are in the interaction volume at the

epoch time. In reality, the trajectories will curve due

to gravitational focusing, but the mathematical chaos

of the three-body problem prevents the construction of

a general, unbiased, and analytically-sampled choice of

initial conditions that would make the same guarantee

while accounting for the influence of gravity.

To pull each body backwards in time, we need to se-

lect an appropriate time-offset. Following from AH76,

we begin by selecting a reference distance, R2. By divid-

ing R2 by the velocity magnitude of the slowest moving

body, we obtain the epoch time, te:

R2 = 2χ2b90

te =
R2

min(vi)
,

(3)

where χ2 is a scaling parameter modulating R2; as in

AH76, we set χ2 = 15χ1. The offset distance, drawn

backward along the aforementioned straight-line trajec-

tory, is therefore

∆r⃗
∥
i = −v⃗ite = −vitee⃗

∥
i . (4)

2 To the contrary, AH76 explores the parameter space using the
volumes of arbitrarily rotated, overlapping cylinders—setting
bi =

√
Ui(0, 1)R1 and zi = Ui(−1, 1)R1.

With these offsets in hand, the initial conditions for each

body are then

r⃗i = bie⃗
⊥
i − (zi + vite)e⃗

∥
i ,

v⃗i = vie⃗
∥
i .

(5)

Finally, the initial orientations/basis vectors of each

body are rotated along standard, randomly drawn Euler

angles (i.e., Ω0Ω1Ω2) relative to O. We redraw both the

locations s⃗i of the bodies at te and the Euler rotations if

any two-body combination or the net three-body system

have a negative total energy in the two- or three-body

center-of-mass frames, respectively. Just as in AH76,

we do not filter out 3BBF event/strong encounter oc-

curring outside of the fixed interaction volume. An ex-

ample schematic of a 3UB initial condition is displayed

in Figure 1.

The duration of every simulation is entirely adaptive

and individualized to each scattering initial condition.

CuspBuilding integrates the system until t = 2te be-

fore assessing whether all outgoing hierarchies are “ener-

getically isolated.” A hierarchy is energetically isolated

if the gravitational potential energy between each hier-

archy is less than 1% of their relative kinetic energy.

Here, a single body system is still a hierarchy of rank

1. If all hierarchies are isolated, then CuspBuilding

considers the system to have reached its final state and

terminates integration.

2.2. Replicating & Assessing Aarseth & Heggie 1976

Before exploring new results, it is useful to reproduce

the original 3BBF investigation conducted by Aarseth

& Heggie (1976), using their unmodified algorithm (i.e.,

with a cylindrically-sampled impact parameter) in the

Newtonian, point mass regime. Figure 2 compares the

3BBF probability—the fraction of 3UB scattering exper-

iments resulting in a binary forming—as a function of

χ1, between AH76 and our Tsunami re-implementation

of their method. As seen in the lower panel, our re-

implementation results in no more than ±20% difference

in the 3BBF probability from AH76, easily explained

by the dramatic increase in sample size and computing

resources. We also recover the χ−2
1 dependency in the

total 3BBF probability and validate that the AH76 algo-

rithm correctly results in indistinguishable bodies (with
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Figure 2. Reproduction of three-body binary formation
(3BBF) probabilities reported in Aarseth & Heggie (1976).
Top Panel : Probability Pij of forming a binary containing
bodies i and j as a function of dimensionless impact pa-
rameter χ1 (see Equation 1) through the interaction of three
equal-mass bodies initially on unbound trajectories. The ini-
tial velocities at infinity are drawn from a Maxwellian distri-
bution. Red crosses mark the total 3BBF probability, inde-
pendent of pairing, while shapes represent the pair-specific
probabilities. As expected, equal-mass bodies have equal
probabilities of pairing. Black crosses, with error bars, are
the values reported in AH76. Bottom Panel : Fractional dif-
ference in probabilities between our results and AH76. We
see good agreement (∆≲20%).

identical mass and velocity) having equal likelihood of

pairing; see the red shapes in the top panel.3

Unfortunately, the initial condition algorithm em-

ployed by AH76 probes an asymmetric encounter vol-

ume comprised of randomly oriented overlapping cylin-

ders, expanding the effective encounter volume by

50% − 150% when compared to our desired spherical

sampling algorithm. Fewer binaries form as a result

(see Section 3.1) and those that do are softer. To test

whether our algorithm is self-consistent with an isotropic

assumption, as was intended in AH76, we generated a

simple “particle-in-box” simulation of non-interacting

3 We also note we have rigorously tested many other 3UB configu-
rations, such as targeting an incoming single at the center-of-mass
of a hyperbolic two-body encounter, the setup often used in an-
alytic estimates of the 3BBF rate. We found that even for the
case of equal masses and velocities, such setups always bias the
pairing probability toward the incoming single.

point masses with periodic boundary conditions. A

number of standard assumptions were correctly vali-

dated here: (i) The classic geometric encounter rate,

⟨Γ⟩ = πnr2v, was found correct to within percent error.

(ii) Our newly derived encounter rate, Γ3B, (see Sec-

tion 2.3) is found to be correct to within small number

fluctuations. (iii) The radial distribution of three bod-

ies occupying a fixed, spherical volume at random times

in the simulation scales as r3i /R
3
1, where ri is the radial

location of the body passing through the fixed volume

of radius R1.

2.3. Encounter Rate

We present the first encounter rate that correctly pre-

dicts the probability per unit time of a 3UB interaction

occurring. Note that an encounter rate is not a for-

mation rate; the formation rate may be determined by

calculating a numerically determined efficiency through

many scattering interactions. Previous work (Heggie

1975; Goodman & Hut 1993) assessed 3BBF using de-

tailed balance, bypassing the need for an encounter rate

and directly predicting a formation rate.

We consider two different geometric interpretations for

the encounter rate:

• A stationary spherical volume embedded in a host

environment containing particle fields with local

number densities ni and velocity dispersions σi for

each of up to three distinct populations i ∈ [1, 3].

• A spherical volume containing one target body—

not necessarily at its center—that moves with the

velocity of the target and thus has the same veloc-

ity dispersion, σt, relative to its host environment.

To derive the encounter rate, we first define the prob-

ability of finding a body within an enclosing volume em-
bedded in a particle field,

Pi = ni–Vi, (6)

where –V is the enclosing volume and ni–Vi ≪ 1. The

encounter rate is thus

Γi =
dPi

dt
= ni

d–Vi

dt
, (7)

where d–V/dt is the volumetric flow-rate. Fundamentally,

the one-dimensional flow-rate through a volume may be

expressed as

d–Vi

dt
=

d–Vi

dzi

dzi
dt

= Aivi (8)

where Ai is the projected cross-sectional area in the flow

direction of a particle field, and vi is the velocity of that
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fluid. If Pi is labeled as an “event”, then the probability

of three independent and simultaneous events, a 3UB

event, is

P3B =
1

l!
PiPjPk

=
ninjnk

l!
–Vi–Vj–Vk,

(9)

where l! is the standard correction for joint Poisson dis-

tributions when particles are drawn from the same field

(e.g., l = 2 if two particles are selected from the same

field). The respective mean encounter rate is

Γ3B ≡ ninjnk

l!
(viAi–Vj–Vk + vjAj–Vi–Vk + vkAk–Vi–Vj) . (10)

For all bodies to meet within the same sphere of radius

R1, we may set –V{i,j,k} = 4πR3
1/3 and A{i,j,k} = πR2

1.

The mean encounter rate then becomes

Γ3B =
3β3

4 l!
R8

1ninjnk(vi + vj + vk),
(11)

where β ≡ 4π
3 , and the rate per unit volume is

Γ̃3B ≡ Γ3B

–V
=

3β2

4 l!
R5

1ninjnk (vi + vj + vk) . (12)

For the case of an isotropic Maxwellian velocity dis-

tribution in each particle field, then

Γ̃3B =
3β2

√
2π l!

R5
1ninjnk (σi + σj + σk) , (13)

where σi is the velocity dispersion of each particle

species. This rate assumes a small enough volume that

the number density of the local field is roughly constant.

To find an encounter rate relative to an individual

target already embedded within a spherical volume of

radius R1 (i.e., the “per-body” rate), we may set Pk = 1.

Here, P3B = 1
l!PiPj. Following the above calculation, the

three-body encounter rate per body is then

Γ3B,pb =
3β2

4 l!
R5

1ninj

(
vreli + vrelj

)
, (14)

where vreli is the velocity of body i relative to the target,

body k. For a Maxwellian velocity distribution,

Γ3B,pb =
3β2

√
2π l!

R5
1ninj

(
σrel
i + σrel

j

)
σrel
i =

√
σ2
t + σ2

i ,

(15)

where σt is the velocity dispersion describing the motion

of the target body. This per-body encounter rate and

the volumetric rate are correct to within percent-level in

10 3

10 2

10 1

100

PM
F

3B, pb

Poisson/Theory
P-Box Simulation

0 1 2 3 4
Nenc/(n tcross)

10 3

10 2

10 1

100

PM
F

3B

Figure 3. Yellow points show the discrete probability den-
sity function (PMF) for the number of times (Nenc) three
particles in a particle-in-box simulation are simultaneously
within a small spherical volume at the box’s center. The
count on the horizontal axis is expressed as a rate by divid-
ing Nenc by a large multiple, n, of the box’s average crossing
time, tcross, given particle speeds sampled from a Maxwellian
distribution. The upper and lower panels show the per-body
and volumetric encounter rates, with n = 5 and n = 50, re-
spectively. Each particle travels at constant speed and elas-
tically bounces off the walls of the box. The count Nenc in-
creases by one each time a particle passes into the encounter
volume while at least two other bodies are already inside
the volume (or one other body in the per-body rate). The
simulation results are compared to our derived encounter
rates from Equation (13)—blue points—by sampling from

a Poisson distribution, P (N) = (Γ̃3B δt)Ne−Γ̃3B δt/N !, where
δt = n tcross.

our simple particle-in-box simulation (Figure 3), gener-

ated with non-interacting particles and periodic bound-

ary conditions.

Finally, note that if all three particle fields are de-

scribed by the same masses and local velocity disper-

sion, then substituting Equation (1) into Equation (12)

results in the scaling

Γ̃3B ∝ χ5
1

G5m5n3

σ9
.

(16)

This reproduces the classic ∼G5m5n3σ−9 scaling from

earlier estimations of the three-body encounter rate

(e.g., Goodman & Hut 1993; Heggie & Hut 2003; Binney

& Tremaine 2008). However, not all three-body encoun-
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ters result in formation of a binary. The true volumetric

3BBF rate Γ̃F must therefore be numerically determined

and satisfies the relation

Γ̃F = PijΓ̃3B, (17)

where Pij is the numerically determined probability of

forming a binary (with pairing {i, j}) per ‘encounter’

occurring at rate Γ3B.

3. 3BBF IN THE POINT MASS LIMIT

We now explore the outcomes of 3UB scatterings for

point-particles of both equal and unequal masses. To be

consistent with our validated encounter rate, derived by

invoking spherical symmetry, we use our corrected algo-

rithm that probes time offsets spherically (Section 2.1)

instead of using the cylindrical prescription of AH76.

To aid astrophysical interpretation of our results, we

first define our criteria for “hard” and “soft” binaries.

Traditionally, this refers to binaries with binding ener-

gies greater than (hard) or less than (soft) the typical

kinetic energy of gravitating bodies in the local environ-

ment (Heggie & Hut 2003; Binney & Tremaine 2008).

We make a slight modification by using the “fast” and

“slow” criteria justified by Hills (1990), where the hard-

ness of a newly formed binary is determined instead by

its orbital velocity relative to the local velocity distribu-

tion surrounding the 3UB encounter. The “fast/slow”

boundary is

afs,ij =
G(mi + mj)

⟨v2rel⟩
, (18)

where mi,mj are the masses of the two newly paired

bodies and ⟨v2rel⟩ is the typical mean-squared rel-

ative velocity of the new binary, simplified to be

⟨v2rel⟩ = 3σ2
rel = 6σ2 for an isotropic gas described by a

Maxwellian with a 1D velocity dispersion σ. Note that
max (afs,ij) = b90.

The definition of afs,ij and b90 are dependent on the

velocity dispersion selected for a set of scattering exper-

iments. In effect, we may extract “scale-free” results in

the Newtonian regime by simply dividing length scales

by b90, afs,ij, or R1, hence why we frequently employ

χ1 as an independent variable in all of our experiments.

When we refer to “hard” and “semi-soft” binaries, we

mean binaries with aij < afs,ij and aij < 10 afs,ij, respec-

tively. Semi-soft binaries include hard binaries, though

their contribution is negligible since the binary 3BBF

probability decreases steeply with binary hardness.

Note that, throughout the entirety of our results, we

find no evidence of any 3UB encounter or 3BBF event

exhibiting resonant behavior in any regime. Here, reso-

nance is the process by which a temporary bound state

forms containing all of the scattering bodies, usually

characterized by a long, chaotic orbital dance. Cusp-

Building provides output when encounters are long-

lived (e.g., the encounter is unresolved at t > 2te) and

none of our scattering experiments triggered this condi-

tion. Additionally, every single animation of 3BBF en-

counters we have produced in every regime (e.g., hard,

soft, unequal-mass, etc.) are distinctively perturbative

encounters, characterized by up to two slingshots shared

by the three interacting bodies. Resonant interactions

have long been understood to be strongly disfavored, if

not impossible, when the total energy in the center-of-

mass frame of the three-body system is positive (Heggie

& Hut 2003; Binney & Tremaine 2008).

3.1. Equal Point Masses

In Figure 4, we show the 3BBF probability for the

case of equal point masses as a function of the dimen-

sionless impact parameter χ1. Colors distinguish bina-

ries formed of different hardness while the point styles

compare the outcome using the cylindrical AH76 algo-

rithm (crosses) versus our spherical correction to their

algorithm (points). Spherical sampling boosts the 3BBF

probability at all scales by ∼10% − 50% when compared

to AH76’s cylindrical sampling method. For both sam-

pling methods, the 3BBF probability for binaries with

aij < R1 and χ1 ≫ 1 scales as Pij ∝ χ−4.5
1 . This is

slightly shallower than the χ−5
1 scaling one would expect

from equating the 3BBF rate to the 3UB encounter rate

(e.g., Goodman & Hut 1993; Ivanova et al. 2005, 2010;

Binney & Tremaine 2008; Morscher et al. 2013, 2015).

Binaries from 3BBF also exhibit several nearly geo-

metrically scale-free properties when scaled to R1. In

the center panel of Figure 5, we show the cumulative dis-

tribution for binary semi-major axes (SMA) from 3BBF,

normalized by the radius of the interaction volume, R1.

In the bottom panel, we display the eccentricity distribu-

tion of binaries with a > R1—which we will periodically

reference as wide binaries—and binaries with a < R1.

In both panels, the color of the distribution denotes the

value of χ1 used in the scattering experiment. We find

that both the SMA and eccentricity distributions do not

depend on χ1 in that they are nearly independent of the

size of the interaction volume (geometrically scale-free).

Specifically, the binaries with a < R1 are well-described

by the thermal eccentricity distribution (dashed black;

f(e) = 2e, C(e) = e2) while binaries overall (dominated

by those with a > R1) have super-thermal eccentricity.

It may appear counter-intuitive that 85% of the bina-

ries have an SMA larger than the radius of the interac-

tion volume, a > R1, and super-thermal eccentricities.

However, there is no lower limit on binding energy, and

so there is no upper bound on SMA. Separately, the di-
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Figure 4. Equal-mass 3BBF probabilities colored by mini-
mum hardness with comparisons between the spherical and
cylindrical (AH76) initial condition algorithms. Top Panel :
3BBF probability, Pij, versus dimensionless impact parame-
ter, χ1; all bodies are drawn from an identical Maxwellian
velocity distribution. The 95% confidence intervals are in-
cluded as error bars for all points under the assumption
3BBF is a Poissonian process. However, these error bars are
difficult to see for any probability ≳10−7 due to the large
sample size (109 scatterings per value of χ1). As expected,
Pij ∝ χ−2

1 in the “soft-binary” limit (large χ1), in accordance
with the scaling identified by AH76. Both algorithms pro-
duce a Pij ∝ χ−4.5

1 decay for binaries with aij ≲ R1 (the fit
is the gray dashed line), as opposed to the χ−5

1 decay ex-
pected from standard analytic estimates; the discrepancy is
likely due to the complicated nature of gravitational focusing
in 3UB (see text). Bottom Panel : Scatter plot quantifying
the difference in probability between the two algorithms. We
find that the harder the binary formed the greater the boost
spherical sampling provides to 3BBF, up to ∼30% for hard
binaries (purple).

ameter of the smallest sphere containing all three bodies

at any point during integration, dmin, sets the maximum

periapse, a(1−e) < dmin, in all 3BBF and the minimum

apoapsis, a(1 + e) > dmin, in > 99% of 3BBF, inde-

pendent of algorithm and binary hardness (Figure 6).

For low binding energies (large SMA), a ≫ R1, imply-

ing that the resultant eccentricity distribution must be

super-thermal (⟨e⟩ ∼ 1) to satisfy the inequality.

Our results unambiguously confirm that binaries with

with a < R1, encompassing all hard binaries, are born

with thermal eccentricities. This is a classic prediction

for both hard and soft binaries under the assumption
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Figure 5. Top Panel : CDF of binary semi-major axis a
normalized by the fast-slow boundary afs during equal point
mass 3BBF. Each curve represents an experiment with a
different value of χ1 = R1/(2b90). Middle Panel : Identical
to top panel, except the CDF is normalized instead by the
radius of the encounter volume, R1. Binaries formed with
a ≲ R1 account for ≈15% of pairings. Independent of χ1,
the cumulative semi-major axis distribution scales approx-
imately as C(a) ∼ a3. Bottom Panel : The corresponding
CDFs for binary eccentricity e. Irrespective of χ1, the e dis-
tribution for binaries with a < R1 (overlapping solid curves)
is nearly thermal, C(e) ≈ e2, while the e distribution includ-
ing all binaries (overwhelmingly soft binaries; dashed curves)
is super-thermal, C(e) ≈ eβ for β > 2. So the widest binaries
formed via 3BBF tend to have super-thermal eccentricity.
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Figure 6. CDFs of pericenter and apocenter distances nor-
malized by (top) the diameter dmin of the smallest sphere
containing all three bodies at any time during the 3BBF
interaction and (bottom) the diameter of the interaction vol-
ume, 2R1. These CDFs include every binary in the equal-
point-mass scattering experiments with χ1 = 10. Colors
highlight the algorithm employed, the original cylindrical al-
gorithm (solid red) from AH76 versus our corrective spher-
ical algorithm (dotted blue). In both cases, the minimum
apoapse and maximum periapse distances are very nearly
dmin. This shows that dmin dictates the binary’s orbital el-
ements and implies that the fundamental physics of 3BBF
is independent of the initial condition algorithm, so long as
χ2 > χ1 ≫ 1.

they have undergone many successive encounters within

their environment (Jeans 1919; Heggie 1975). Sample
3UB trajectories resulting in hard and wide 3BBF, as

well as in no 3BBF (a simple flyby of three single bod-

ies), are displayed in Figure 7. The figure shows that

3BBF occurs as a single, non-resonant event, implying

that the thermal distributions may be more fundamental

to binary formation than previously assumed, indepen-

dent of gravothermal equilibrium, detailed balance, or

any need for many successive encounters.

3.1.1. Choice of χ1

Having examined how the 3BBF probability depends

on χ1 in the case of equal point masses, it is natural

to wonder what is a proper choice of χ1. Setting χ1

high enough that R1 exceeds the interparticle distance

in the host environment would clearly violate the as-

sumed isolation of the interaction from its surroundings.

Yet simply anchoring R1 to the interparticle distance is

not computationally optimal; since the 3BBF probabil-

ity drops steeply with increasing χ1, choosing too large

a χ1 needlessly inflates the number of scattering exper-

iments required to achieve a robust sample of binaries.

However, χ1 cannot be made arbitrarily small without

biasing the properties of the binaries that are formed.

In the limit χ1 → 0, the initial positions and veloc-

ities of all bodies are focused toward a point because

R2 = 15R1 (χ2 = 15χ1) in the AH76 method. This

minimizes the angular momentum in the global refer-

ence frame and causes the 3BBF probability to saturate

(no longer follow a simple power law scaling with χ1).

By initializing the bodies deeper within their mutual po-

tential wells, this limit also results in a total initial en-

ergy much nearer to zero than in a scattering experiment

conducted at higher χ1. Since the 3UB problem requires

total positive energy, shrinking χ1 too far would bias the

initial conditions to be just barely unbound. From an

algorithmic perspective, the vast majority of randomly-

generated initial conditions in this limit would sample

at least two bound bodies, and have to be thrown out.

This artificially truncates the energy–angular momen-

tum parameter space that would otherwise be obtained

naturally from the isotropically sampled Maxwellian ve-

locity distributions.

A key limiting factor in choosing χ1 and χ2 is the aver-

age interparticle distance, ⟨r⟩, of the local environment

the bodies live in. Specifically, to satisfy the assumption

of an isolated 3UB encounter, then R1 must be < ⟨r⟩.
We can form a qualitative picture by first writing ⟨r⟩ in

terms of fundamental quantities of the Plummer model,

⟨r⟩ =
GMP

6

σ
4/3
c

σ10/3
N−1/3, (19)

where MP is the total mass of the Plummer cluster,

σc =
√

GM
6 bP

is the Plummer core velocity dispersion,

bP is the Plummer scale length, σ is the local velocity

dispersion, and N ≈ MP/⟨m⟩ is the number of bodies in

the cluster. In normalizing ⟨r⟩ by 4b90,4 we can probe

how it relates to the χ1 and χ2 scalings employed in this

work. To satisfy R1 < ⟨r⟩, we must set χ1 < χr, where

χr =
⟨r⟩
4b90

=
1

8
N2/3

(σc

σ

)4/3

=
1

8

[
N

(
1 +

r2

b2P

)]2/3
,

(20)

with r as the radial distance from the center of the Plum-

mer cluster. If we limit our investigations to the core of

4 An extra factor of two is added here so that we may consider
⟨r⟩ to be the maximal possible diameter of a spherical volume
spanning an isolated encounter.
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Figure 7. A 2D projection of six different equal-mass 3UB realizations. Each column corresponds to scatterings that result
in (i) no, (ii) hard (here, a ≪ R1), or (iii) wide (a > R1) 3BBF. The blue shaded region is the interaction volume of the
initial condition algorithm (with radius R1) and the red shaded region is defined by R2; see Section 2.1 for details. Line color
represents the trajectory of an individual body while color-coded arrows show the direction bodies are moving at uniformly
selected color-coded time-steps in the simulation. The larger the spacing between arrows, the faster the body is moving. No
resonant encounters occur here or in any 3UB simulation made yet.

a cluster, we find that χr ≈ 0.125N2/3 and that clusters

consisting of N = {103, 104, 105, 106, 107} bodies have

a dimensionless χr ≈ {13, 60, 270, 1250, 5800}, respec-

tively. These choices of N span the typical range for

open clusters to dense nuclear star clusters.

To choose an appropriate χ1 for the rest of our

analysis—and thereby enable more thorough examina-

tion of other important considerations for 3BBF—we

take guidance from the above estimates surrounding χr

and Figures 4 and 5. In particular, the scalings of the

3BBF probabilities on χ1 asymptotically settle into sim-

ple power laws at χ1 ≳ 10, allowing straightforward ex-

trapolation in dynamically active environments that can

sustain larger values of 10 < χ1 < χr. Beyond this point,

the properties of the binaries such as semi-major axis

(normalized by R1) and eccentricity no longer depend

on χ1.5 We therefore choose to use a default value of

5 We find this also holds for unequal mass simulations.

χ1 = 10 in all our following analysis, unless noted other-

wise. For this choice of χ1, ≈0.7% of all 3UB initial con-

ditions result in at least two of the three bodies already
being energetically bound to each other. These 3UB

initial conditions are rejected since we are interested in

formation of new binaries. Although this rejection rate

is larger than the typical 3BBF probability at χ1 = 10,

our tests indicate that including scatterings where bod-

ies are allowed to be bound at initialization does not

significantly alter the soft or hard 3BBF probabilities in

the equal and unequal mass cases. It follows that 3UB

initial conditions in which two bodies are initiated espe-

cially close to one another are not a significant source

of 3BBF. Our choice of χ1 = 10 therefore balances both

accuracy and computational efficiency.

3.1.2. Hard Binary Formation

We now estimate the hard 3BBF rate in the equal

point mass limit using the results of our analytically de-

rived encounter rate—Equation (13)—and numerically
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determined formation probabilities (Figure 4). We as-

sert that the general solution to a numerically deter-

mined volumetric 3BBF rate is of the form

Γ̃F (< a, χ1) = P (< a, χ1) Γ̃3B (χ1) , (21)

where Γ̃3B is the 3UB volumetric encounter rate and the

3BBF rate per 3UB encounter, P (< a, χ1), is extracted

from Figure 4.

Simplified for the case of identical bodies and velocity

distributions, the volumetric encounter rate is

Γ̃3B =
25/2π3/2

3
n3R5

1σ. (22)

The cumulative distribution of hard-binary SMA has

the form P (< a) ∝ (a/afs)
3

when a < R1. In Fig-

ure 4, the cumulative probability of forming binaries

with a/afs ≤ 1 is

P (< a, χ1) ≈ 1.85 × 10−6
(χ1

10

)−4.5
(

a

afs

)3

. (23)

Combining this probability with our encounter rate, the

hard 3BBF rate for equal masses is

Γ̃F (< a, χ1) ≈ 0.081
G5m5n3

σ9

(
a

afs

)3

χ
1/2
1 . (24)

Note that the χ
1/2
1 dependency in Equation (24) high-

lights a unique environmental constraint on 3BBF rates

not accounted for in any previous works. While the

formation rate appears to be divergent—Γ̃F → ∞ as

χ1 → ∞—this is contingent on the existence of an envi-

ronment with an infinite average interparticle distance,

a nonphysical consideration. Thus, to properly estimate

a local 3BBF rate, a careful determination of the largest

possible χ1 < χr must be used in future (semi-)analytic

prescriptions. Recently, Ginat & Perets (2024) corrobo-

rated our χ−4.5
1 probability scaling, finding an identical

scaling by evaluating their analytic framework with their

least stringent limiting condition on the 3UB interaction

volume.

If we consider χ1 = 10 as a test case and redefine our

hardness criteria in terms of the hard-soft boundary as

defined by Goodman & Hut (1993), ahs = Gm1m2

2mσ2 we

may substitute afs → 2
3ahs. The formation rate then

becomes Γ̃F (<a) ≈ 0.86 G5m5n3

σ9

(
a
ahs

)3

. The coefficient

of 0.86 is a close match to the prediction of 0.75 from

Goodman & Hut (1993) using detailed balance (and in-

tegrating their Equation 2.6 from x/(mσ2) : [1 → ∞]),
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Figure 8. The estimated cumulative 3BBF rate for the
interaction of three equal-mass bodies sampled from identical
Maxwellian velocity distributions. Here, we show only the
scattering experiments with dimensionless impact parameter
χ1 = 10. The blue curve is a CDF of semi-major axis (a/afs)
scaled by Equation (17) and the black dashed line is a curve
fit defined by Equation (24). The physical cross section for
3BBF increases with mass and decreases with speed since
R1 ∝ m/σ2. Our rate is within 15% of the rate predicted by
Goodman & Hut (1993); see text near Equation (24).

sans the SMA and χ1 scalings we have identified.6 This

semi-analytic expression for the 3BBF rate is displayed

as a function of SMA in Figure 8 and over-plotted atop

the numerical results for equal masses and χ1 = 10.

3.1.3. Wide Binary Formation

Soft binaries may also be described by the same scal-

ing relations shown in the previous section so long as

the parameter space of binary properties are restricted

to a < R1. The opposite limit—a > R1—hosts proper-

ties exclusively describing the widest binaries that may

form through 3BBF. These binaries follow an entirely

different binary formation probability curve (P ∝ χ−2
1 )

and their SMA and eccentricity distributions are not de-

scribed by a simple power law, unlike in the hard binary

limit. Given that binary SMA and eccentricity distri-

butions are nearly independent of χ1 for χ1 ∈ [10, 100]

(Figure 5), we may combine the scattering experiments

6 Note that our formation rate is a “cumulative quantity” in that
it expresses the rate of 3BBF of a minimum hardness; it is not a
probability density function.
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Figure 9. Heat map of binary eccentricity versus SMA (nor-
malized by R1, the radius of the interaction volume) across
all 3BBF scatterings with χ1 ≥ 10. Each (vertical) bin in
SMA is normalized by the cumulative probability of binary
formation in that bin C(a/R1). Eccentricity is thermal and
roughly independent of SMA for a/R1 ≲ 1, but skews in-
creasingly super-thermal with increasing a/R1 for a/R1 ≳ 1
(∼98% of binaries).

spanning this interval to examine these binary proper-

ties at higher resolution. As a reminder, χ1 represents

a numerical factor chosen for convenience, with a maxi-

mal value dependent on environmental properties (e.g.,

the local average inter-particle separation).

Figure 9 is a two-dimensional heat map of the result-

ing SMA–eccentricity space from this combined dataset.

The underlying density is normalized individually in

each (vertical) bin in SMA to aid visualization of the

eccentricity distribution for any given SMA. Figure 9
shows that the eccentricity distribution is roughly inde-

pendent of SMA for a/R1 < 1 (with some fluctuation

attributable to low resolution at low SMA). However,

for a/R1 > 1, the binaries formed from 3BBF skew in-

creasingly eccentric (super-thermal) as SMA increases,

with the absolute softest binaries formed with a fixed

interaction volume being exclusively super-thermal.

Following the same calculation as our hard binary for-

mation rate from the previous section, the formation

rate for super-thermal wide binaries crucially depends

on the size of the interaction volume, R1. Additionally,

a power-law fit to the red curve in Figure 4 for χ1 > 10

yields a functional form for the overall 3BBF probability

of P ≈ 4.2χ−2
1 . Since ≈85% of those binaries are wide

(have a > R1 in Figure 5), then the probability of form-

ing a wide binary from 3BBF in the equal-mass limit at

χ1 > 10 is roughly

P (a > R1) ≈ 3.6χ−2
1 = 14.4

b290
R2

1

= 1.6
G2m2

σ4R2
1

. (25)

Combining this probability with equation 22, the volu-

metric 3BBF rate for (super-thermal) wide binaries in

the equal-mass limit is

Γ̃F(a > R1) ≈ 16.8
G2m2n3

σ3
R3

1. (26)

Additionally, >50% of wide binaries have an SMA be-

tween 1 < a/R1 < 5 (see Figure 5).

The ability to realize a super-thermal, wide binary

distribution is contingent on the dynamical properties

of environments hosting 3BBF. Dynamically active and

well-populated environments (e.g., star cluster cores)

may enable many successful 3BBF events, but reason-

ably long-lived binaries form hard, with SMA smaller

than the average inter-particle separation (i.e., a < R1 <

⟨rsep⟩). Newly formed binaries with SMAs larger than

the average inter-particle separation (and super-thermal

eccentricities) are highly unlikely to persist within dense

environments. In effect, binaries born within a central,

dynamically active region should be thermal, indepen-

dent of binary binding energy.

Yet, open clusters, star cluster halos, and stellar

streams may not be so prohibitive (Peñarrubia 2021).

The isotropically distributed recoil velocity experienced

by all new binaries in 3BBF may quickly dissociate them

from loose environments with low escape velocity, en-

abling the formation of binaries wider than the ⟨rsep⟩ of

their original host. Thus, in contrast with other dynam-

ical methods which do not explicitly investigate 3UB in-

teractions (Hamilton & Modak 2023; Xu et al. 2023), the

3BBF mechanism may dynamically populate the super-

thermal wide binaries observed by Gaia in the galactic

field (Tokovinin 2020; Hwang et al. 2022).

3.2. Unequal Point Masses

We now report our findings on the first investigation

of 3BBF for the case of unequal point masses. Just

as in our equal-mass investigation, each body has an

initial velocity randomly drawn from a single shared

Maxwellian velocity distribution, with position and ve-

locity basis vectors assigned according to our algorithm

(see Section 2.1). In total, this dataset contains exactly

2.1× 1010 simulations, or 109 scatterings per mass ratio

combination.

Figure 10 summarizes our results. The top row is

the 3BBF probability, Pij, as a function of mass ratio,

qi. We explore the unequal-mass 3UB parameter space

by transforming masses as: (m0,m1,m2) → (q0, q1, q2)
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Figure 10. Probability of binary formation, Pij, versus mass ratio of the second most massive body, q1 = m1/m0. Mass ratios,
qi = mi/m0, are labeled in descending order by mass, with q0 = 1 and q2 ≤ q1 ≤ 1. The 95% confidence intervals are included
as error bars for all points under the assumption 3BBF is a Poissonian process. However, these error bars are difficult to see for
any probability ≳10−7 due to the large sample size (109 scatterings per value of χ1). Accounting for hardness, we find that the
pairing of the two most massive bodies is the least likely across the majority of the parameter space; the two least-massive bodies
are the most likely pairing when allowing for binaries of arbitrarily large SMA. Each panel (column) shows Pij for a different
fixed q2 = m2/m0. Color distinguishes binaries with the different minimum hardnesses specified in the legend while shapes
indicate the three possible pairings of bodies. For most unequal mass ratios, new binaries typically contain the least massive
body. The total 3BBF probability (cross-hatched curves for each color) increases with q2 (i.e., as the mass ratios approach
unity), regardless of binary hardness. See Table 1 for a numeric list of these probabilities and their counting uncertainties.

with qi = mi/m0, q2 ≤ q1 ≤ q0, and fixing q0 = 1. Col-

ors denote the minimum hardness (aij/afs,ij < x) of the

binaries considered in each SMA bin while shapes sep-

arate binaries by the mass pairing {i, j}. The dimen-

sionless impact parameter is fixed to χ1 = 10 for all
experiments as we find that it balances resolution, ef-

ficiency, and accuracy throughout the entire parameter

space (see Section 3.1).

A key assumption of 3BBF prescriptions in star clus-

ter modeling codes such as CMC (e.g., Morscher et al.

2013, 2015) is that the two most massive bodies (q0, q1)

in a 3UB encounter are the most likely to pair into a

binary. Our findings unambiguously reject this assump-

tion. Including binaries of any size, it is instead the two

least massive bodies (q1, q2) which are the most likely to

pair. The most plus least massive bodies (q0, q2) are the

second most likely to pair generally, but the most likely

in the hard binary limit. The pairing of (q0, q1) is the

least likely 3BBF end-state independent of hardness, be-

coming orders-of-magnitude less likely as q2 approaches

the test particle limit. Naively, the tidal effect experi-

enced between two bodies within the gravitational field

of a third scales as
(

mk

mi+mj

)1/3

, where mk is the mass

of the perturbing body. So it is significantly easier for

a more massive particle to perturb two low mass bod-

ies than for a low mass body to perturb two high mass

bodies. Stated differently, it is easier to change the en-

ergy/momentum of a less-massive body (less inertia),

making it easier to extract two-body energy if the left-

over single is more massive.

The differences in the pairing probabilities become in-

creasingly subtle the closer in mass the three bodies are.

For most of the explored parameter space, the pairing of

(q0, q2) is the most probable hard binary pairing, with

the most massive bodies (q0, q1) and least massive bod-

ies (q1, q2) swapping prevalence as q1 → 1. As mass ra-

tios approach unity, hard (q0, q1) pairings become more

probable. Still, the pairing of the most massive bodies

always comprises < 50% of total pairings, independent

of hardness.

Turning to binary SMA and eccentricity distribu-

tions for fixed mass ratios (Figures 11 and 12), many
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Figure 11. Binary SMA CDFs across various mass ratios with fixed velocity dispersion and χ1 = 10. Mass ratios, qi = mi/m0

with m0 ≥ m1 ≥ m2, are seen at the top of each subplot. Color specifies the pairing {qi, qj} of each distribution. For aij < R1

(here, R1 = 2χ1afs,01), the SMA distributions exhibit a simple power-law relation similar to the equal-mass case, but feature
non-trivial deviations in the wide-binary limit (aij > R1).

of the tendencies occurring in equal-mass scattering

are asymptotically emergent as binaries approach the

fast/slow boundary. For the most extreme mass ra-

tios (q2 = 0.1), C(aij) ∝ a2.5−3.0
ij and the SMA for

the pairing of the most massive bodies (q0, q1) scales

as a2.501 . As q2 → 1, all SMA distributions tend towards

C(aij) ∝ a3.0ij , as earlier identified in the case of equal

masses.

Eccentricity distributions for binaries with

aij/afs,ij < 10 follow an identical trend to what we

identified with equal-mass encounters: they closely

follow a thermal distribution. The only exception is

the pairing of the two high-mass bodies, which yields

a mildly super-thermal eccentricity distribution. Mean-

while, the eccentricity distributions for soft binaries are

more extreme than in the case of equal-mass scattering.

The soft pairing of (q0, q1) is extremely super-thermal

(⟨e01⟩ ≳ 0.95) while the soft pairing of (q1, q2) tends

closer to a thermal distribution than in the equal-mass

case.

4. PAIRING STARS AND BLACK HOLES

We now explore for the first time 3BBF between MS

stars with masses mMS/M⊙ : {0.5, 1, 2} and stellar mass

BHs with masses mBH/M⊙ : {20, 50, 100}. This is also

the first study consider either relativistic or finite-size

effects within the context of 3UB encounters. Addition-

ally, we explore 3BBF between the encounter of: (i) two

BHs and an MS star and (ii) two MS stars and a BH—

mixed-species encounters that dominate 3BBF at most

times in models of typical Milky Way globular clusters

(e.g., Weatherford et al. 2023).

As in our point mass simulations, we fix the dimen-

sionless impact parameter to be χ1 = 10 and draw the

velocities of all bodies from a Maxwellian with a 1D

velocity dispersion σ. In reality, species with such dif-

ferent masses will typically have different velocity distri-

butions, but we leave nuanced exploration of this further

complexity to future work to focus on the raw influence

of mass ratio, along with relativistic and finite-size ef-

fects. However, variation in σ also varies the impact pa-

rameter since R1 ∝ σ−2, so probes the strength of these

effects in close passages. To show this impact clearly in

our results, we therefore vary the velocities in the range
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Figure 12. Binary eccentricity CDFs across various mass ratios with fixed velocity dispersion and χ1 = 10. Mass ratios,
qi = mi/m0 with m0 ≥ m1 ≥ m2, are seen at the top of each subplot. Color specifies which two of the three bodies end up in
the binary, numbered in decreasing order of their mass (0,1,2). The {solid, dashed} line style corresponds to binaries with SMA
{greater, less} than 10afs,ij. Wide binaries, those with aij ≳ 10afs,ij, exhibit identical super-thermal eccentricity distributions
across mass-pairings for fixed masses.

σ ∈ [1, 300] km s−1 for MS stars and σ ∈ [3, 3000] km s−1

for BHs. Varying mass to probe relativistic and finite-

size effects effects is also an option, but the typical mass

distributions of evolved MS stars and stellar-mass BHs

in dense star clusters each span a smaller range than

the typical local mean-squared velocities of the various

dynamically active environments they may inhabit (e.g.,

open clusters to nuclear star clusters). Also, 3BBF rates

scale more steeply with σ than with mass.

To explore the finite-size effects, we assign radii to

stellar bodies according the classic MS radius relation

(Demircan & Kahraman 1991),

ri = (mi/M⊙)3/5R⊙. (27)

To mitigate inaccuracies in the post-Newtonian (PN)

approximation near the event horizon, BHs are assigned

radii of 7 times their Schwarzschild radius,

ri = 14
Gmi

c2
. (28)

In all cases, collisions between stars are handled with the

“sticky sphere” approximation, combining the masses

(with no mass loss) once the surfaces of stellar bodies

touch. The collison product is then placed instanta-

neously at the center-of-mass of the two former bod-

ies with their center-of-mass velocity. BH mergers are

treated with the numerical relativity prescriptions of

Lousto & Zlochower (2013); Healy & Lousto (2018).

Collisions between BHs and MS stars are resolved by

placing the BH at the center-of-mass of the star–BH

pair with their mutual center-of-mass velocity and as-

sume no accretion (the star is destroyed). Under all

circumstances, PN terms up to PN3.5 are enabled dur-

ing integration and all BHs are assumed initially non-

spinning. We do not include tidal physics in this first

exploration of non-point-mass 3UB interactions, but we

plan to explicitly explore such effects in a later work.

4.1. Main-sequence Stars

In Figure 13, we present our findings for 3UB inter-

actions between equal-mass MS stars for three differ-

ent cases: mi/M⊙ = {0.5, 1, 2}. The left panel shows

the 3BBF probabilities as a function of σ, colors again
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Figure 13. 3BBF distributions from scattering finite-sized bodies with main-sequence (MS) star radii, varying the 1D velocity
dispersion σ and stellar mass but keeping χ1 = 10 fixed.
Left : Probability of 3BBF normalized by the total 3BBF probability (for χ1 = 10) in the earlier point mass scenario (red curve
in Figure 4). Line style denotes the mass of the MS star, color again indicates binary hardness, while black indicates collision
probabilities. The black labels are: coll—one collision, cap+coll—collision and capture of the third body, 3coll—all three
bodies collide during scattering. For most (but especially higher) velocities, collision probabilities exceed 3BBF probabilities.
Even so, collisional effects negligibly reduce the 3BBF probability for σ ≲ 30 km s−1.
Right : Cumulative SMA and eccentricity distributions for each velocity dispersion. As reflected in the formation rates at left,
the SMA distribution is roughly independent of σ until σ ≳ 30 km s−1, where hard 3BBF becomes increasingly unlikely. Soft
binaries are universally described by the same super-thermal eccentricity distribution (set of overlapping curves in the lower
half of the eccentricity panel) independent of σ. Binaries with a/afs < 10 all closely follow a thermal eccentricity distribution
(black curve) until the distributions become disrupted by the prevalence of collisions when σ ≳ 30 km s−1, quickly suppressing
formation of hard, eccentric binaries.

indicating binary hardness, with some additional black

curves for collision probabilities (see caption). To better

show the impact of finite size, we normalize the 3BBF

probabilities by the total 3BBF probability (for χ1 = 10)

in our equal point mass experiments from Section 3.1

(the red curve in Figure 4). The right panels of Fig-

ure 13 show the corresponding SMA and eccentricity

distributions. In the lower panel, we show both the ec-

centricity distributions for all binaries regardless of SMA

(lower set of overlapping curves), as well as only the

subset of binaries with a < 10afs (upper set of overlap-

ping curves, predominantly found near the black curve

representing a thermal distribution). Since it is domi-

nated by wide binaries, the total binary population fea-

tures the same super-thermal eccentricity distribution

found in our the equal point mass experiments. This

distribution does not depend on σ, as evidenced by the

extreme degree of overlap of these curves. Meanwhile,

the subset of binaries with a < 10afs feature a nearly

thermal eccentricity distribution, except at very high

σ ≳ 300 km s−1, where eccentricity instead skews signif-

icantly sub-thermal; solely due to eccentric binary peri-

apse distances becoming comparable to MS stellar radii.

From the collision rates displayed in the left panel,

it is immediately apparent that collisions are often or-

ders of magnitude more common when compared to hard

3BBF (Pcoll/Phard ∈ [100, 103]). Yet, for all but the

highest choices of σ (lowest R1), the inclusion of finite-

size collisional effects does not appreciably alter the

3BBF probability from the simpler point mass scenario.
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Figure 14. 3BBF distributions from scattering three equal-mass BHs, accounting for relativistic effects (post-Newtonian terms
up to PN3.5) and varying the 1D velocity dispersion σ.
Left : 3BBF probability normalized by the total 3BBF probability (at χ1 = 10) in the point mass scenario (red curve in Figure 4).
Line style denotes the mass of the BH, color represents hardness, and collision probabilities are in black. The black labels
are: coll—one collision, cap+coll—collision and capture of the third body, 3coll—all three bodies collide during scattering,
hier3—formation of a hierarchical triple which lives for more than 10 orbital periods of the outer tertiary before the inner
binary merges. BH mergers are far less common than MS mergers under identical velocity profiles. Relativistic effects never
impede 3BBF probabilities, instead augmenting hard 3BBF when σ ≳ 100 km s−1.
Right : Cumulative SMA and eccentricity distributions for each choice of velocity dispersion. As σ → c, GW emission encourages
BH binaries to form with smaller SMA. Soft binaries (set of overlapping curves in the lower half of the eccentricity panel) are
universally described by the same super-thermal eccentricity distribution as in the point mass case. Binaries with a/afs < 10
all closely follow a thermal eccentricity distribution (black curve), independent of the relativistic effects present during 3BBF.

Changes to hard 3BBF specifically (purple) are statis-

tically insignificant until σ ≳ 30 km s−1, corresponding

to ri/R1 ≳ 10−4. Notably, this already exceeds σ at

the center of typical globular clusters. Collisional sup-

pression of 3BBF becomes relevant as the radius of the

interaction volume, R1, approaches 103 R⊙. Changes to

the SMA and eccentricity distributions at low σ are sim-

ilarly negligible when compared to the point mass limit.

At speeds high enough that the point mass and finite size

scenarios strongly deviate from each other, the SMA and

eccentricity deviations increase rapidly with σ (decreas-

ing R1). It is only when σ ≳ 100 km s−1 that collisions

severely hinder formation of especially hard and/or ec-

centric binaries. This may be relevant to nuclear star

clusters, but not open or globular clusters.

Fixing velocity and χ1, the radius R1 of the interac-

tion volume increases faster with mass than the radius

ri of MS stars. This can be seen from the proportion

R1/ri ∝ m
2/5
i (equations (1) and (27)). Therefore, given

identical velocity profiles, 3BBF involving more massive

MS stars is less impeded by collisions—i.e., collisions

in 3UB encounters are more frequent for lower-mass MS

stars. The cross sections for two-body collisions and cap-

ture+collision events (two of the bodies colliding wth the

collision product forming a binary with the third star)

scale as P ∝ σ2 ∝ b−1
90 . The probability of all three bod-

ies colliding scales as P ∝ σ4 ∝ b−2
90 .

That collisions arising from 3UB encounters do not

significantly reduce the 3BBF rate from the point mass

case reveals a fundamental aspect of 3BBF physics.
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Namely, the overwhelming majority of initial configu-

rations that align two-body trajectories into extremely

tight periapse passages do not produce 3BBF in the

point mass regime. Naturally, for finite-size bodies, such

close passages result in collisions instead. This find-

ing contradicts the intuition that if a tertiary body ap-

proaches two already strongly-interacting bodies, a tight

binary will form. We have no evidence that this occurs

in the 3BBF animations we have generated of hard or

soft binary formation. Instead, our results strongly sug-

gest that all three bodies “democratically” participate

in a perturbative binary formation process.

4.2. Black Holes

Figure 14 presents the outcomes of 3UB interac-

tions between three equal-mass BHs, accounting for

relativistic effects, in three separate cases: mi/M⊙ =

{20, 50, 100}. Layout and line coloration/style are iden-

tical to Figure 13 for MS stars. All 3BBF probabilities

in the left panel are again normalized by the total 3BBF

probability for equal point masses (at χ1 = 10) in Sec-

tion 3.1. As expected, accounting for relativistic effects

changes negligibly the 3BBF probability from the New-

tonian point mass scenario except in the case of hard bi-

naries (purple) at high σ ≳ 300 km s−1 (rs/R1 ≳ 10−6).

It is also clear from the collision rates (black) that BH

mergers are far less likely than collisions between typical

MS stars for identical velocities. This is a natural result

of the minuscule physical cross-section for two-body GW

capture compared to the (relatively enormous) physical

radius of MS stars of identical velocity. Using the GW

capture radius, rp,GW, from Quinlan & Shapiro (1989),

we find that rp,GW/R1 ∝ (σ/v)10/7. This is precisely

the scaling with σ that we find for the probabilities

of collision (coll; black circles) and capture+collision

(cap+coll; black triangles).

Additionally, the scalings with σ of the 3BBF and

collision probabilities are independent of mass since rs
and R1 both scale ∝ m with ri/R1 = 0.3(σ/c)2. In

other words, relativistic deviations from the point mass

scenario scale only in powers of v/c. These relativistic

deviations do not begin to peak above numerical noise

until σ ≳ 100 km s−1 (i.e., σ/c ≳ 10−4), observable in

the subtle boost to the hardest portion of the SMA dis-

tribution, becoming more dramatic as σ/c → 1. We find

no deviation in eccentricity distributions in comparison

to point mass interactions. Thus, hard 3BBF with BHs

is well-described by a thermal eccentricity distribution.

We are also excited to report a small probability in

which three unbound BHs may undergo a 3UB interac-

tion that produces a hierarchical triple via GW emission.

Though most capture+collision end-states (cap+coll)
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Figure 15. 3BBF probabilities (non-normalized) between
(left) a BH and two MS stars and (right) two BHs and an
MS star with χ1 = 10. All BHs (initially non-spinning)
have mass 10M⊙ and all MS stars have mass 1M⊙. These
scattering experiments are thus the finite-sized, relativistic
equivalent of the earlier simulation sets for unequal masses
with qi = {1, 0.1, 0.1} (left) and qi = {1, 1, 0.1} (right), re-
spectively. Specific binary pairing combinations are iden-
tified by shape as in Figure 10. Colors distinguish 3BBF
resulting in different binary hardness, as well as several dif-
ferent collision probabilities (labeled as in Figures 13 and 14).
We find that 3BBF rates are largely unchanged compared to
the Newtonian point mass limit, but direct collisions occur
more frequently as the local velocity dispersion increases.
Tidal disruption events should be even more frequent since
they have a larger cross section compared to direct BH–star
collisions.

involve the formation of a short-lived triple BH system,

we only classify outcomes as a hierarchical triple (hier3;

black crosses) when the hierarchy survives for τ≳10 or-

bital periods of the outer tertiary before the inner binary

merges. A binary BH containing a second-generation

BH merger product is always left behind in these equal-

mass, zero-spin scenarios due to the nonexistence of GW

recoil kicks in such a case. However, we stress that this

is an extremely rare occurrence and is poorly resolved,

even for environments with a local velocity dispersion in

excess of 1000 km s−1.

4.3. Main-sequence Stars and Black Holes
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Figure 16. Survival function (1 − C(vf/σ)) for the final
velocity (vf/σ) of the catalyzing single (top row) and binary
(bottom row). These distributions include only the binaries
formed with aij/afs,ij < 3. Color and line style illustrate the
velocity dispersion and specific mass pairing, respectively.
The vertical black line at vf/σ = 2

√
3 denotes the escape

velocity from the core of a Plummer cluster.

A key application of 3UB encounters is the sce-

nario involving MS stars (∼1M⊙) and stellar-mass

BHs (∼10M⊙) within the cores of dense star clusters.

Weatherford et al. (2023) recently demonstrated that

such encounters dominate 3BBF at most times in typi-

cal Milky Way globular clusters (those retaining signif-

icant BH populations). They also found that such in-

teractions may dominate high-speed ejection (∆vk > σ)

from such clusters due to the recoil experienced by the

leftover single, expected to typically be a low-mass MS

star. However, the frequency of high-speed ejection and

the identity of the ejected body (i.e., high-mass or low-

mass object, single or binary) may be conditional on

previously unexplored unequal-mass, finite-size, and rel-

ativistic effects.

In Figure 15, we reaffirm that physical collisions, de-

spite being more frequent than hard 3BBF, do not sig-

nificantly suppress hard 3BBF when compared to the

point mass scenario for the unequal masses (and ve-

locity dispersions; σ ∈ [1, 20] km s−1) explored here.

This result is consistent with our findings in Sec-

tions 4.1 and 4.2 that high-σ environments are necessary

to significantly suppress hard 3BBF among equal-mass

MS stars (σ ≳ 30 km s−1) or BHs (σ ≳ 100 km s−1).

BH–star 3BBF rates for both mass combinations are

unchanged compared to the Newtonian point mass sce-

nario (see Figure 10), but the collision rate is substan-

tial. As we demonstrated in Section 4.1, initial config-

urations that produce collisions are more frequent than

hard 3BBF when scattering finite-sized bodies. How-

ever, these initial states are non-degenerate for typi-

cal cluster velocity dispersions; i.e., an initial state that

produces a hard binary in the point mass regime does

not necessarily produce a collision during an identical

encounter with finite-size bodies. An unexpected con-

sequence follows if we consider that the tidal disrup-

tion radius is about 2.2 times larger than the BH–star

collision radius between a 10M⊙ BH and a 1M⊙ MS

star (rt = r∗ (mBH/m∗)
1/3

). Namely, the number of

BH–star tidal disruption events may be between 2 to 5

times higher than the direct collision rate, contingent on

the subtleties of 3UB gravitational focusing. While di-

rect BH–star collisions do not meaningfully suppress the

hard 3BBF rate, we are uncertain whether tidal disrup-

tion events would yield significant suppression. Regard-

less, these results suggest 3UB encounters may provide

a substantial boost to the predicted frequency of tran-

sient tidal/collisional phenomena in the cores of dense

star clusters.

In Figure 16, we also examine the final velocity vf of

binaries and the leftover (catalyzing) singles produced

by 3BBF from the above setup (i.e., BHs of mass 10M⊙
and MS stars of mass 1M⊙). Note the velocities shown

are in the frame of the interaction volume, akin to the

global reference frame of the host environment, not the

center-of-mass frame of the three bodies. The primary

advantage is the direct translation to the final velocity

of each body within its host environment. We also only

include in the analysis binaries formed with aij/afs ≤ 3—

i.e., hard and slightly wider binaries.

Given our assumption that the bodies’ velocities are

drawn from the same distribution regardless of mass,

we find it is excessively rare that newly formed BH–MS

or BH–BH binaries have a final velocity in excess of

the escape velocity (vesc = 2
√

3σ) of a Plummer core

with the same characteristic velocity dispersion. Even

in the favorable case where a (heavy) BH catalyzes the

formation of a (light) MS–MS binary with a12/afs ≤ 3,

ejection of the binary only occurs <5% of the time. No-

tably, Figure 15 shows that the MS–MS pairing in such

a case is also 10 times less likely than a BH–MS pairing,

for which ejection of the binary would be even harder.

Weatherford et al. (2023) similarly predicted that the

energy release from 3BBF alone is almost never directly

responsible for the ejection of a binary. Notably, the

simplified 3BBF prescription from the CMC code used in
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that study automatically pairs the most massive bodies,

artificially making binary ejection even more unlikely

than the otherwise small fraction found here.

From simple momentum conservation, the prospect of

low-mass catalysts experiencing high-speed kicks from

3BBF is much more promising. When an MS star cat-

alyzes the formation of a BH–MS or BH–BH binary

with aij ≤ 3afs,ij, ∼10% and ∼90% of MS star cata-

lysts have final velocities vf > vesc, respectively. Hard

3BBF can lead to even higher ejection speeds for single

stars as vf ∝ σ if we only consider point-mass Newto-

nian mechanics. As discussed in Section 4, by adding

finite-size considerations, direct collisions between stars

with masses of ∼1M⊙ begin to reduce 3BBF for veloc-

ity dispersions between 30–50 km s−1 and eliminate hard

3BBF at σ > 100 km s−1. This reduction in 3BBF rates

due to collisions is less pronounced for more massive

bodies since the size of the interaction volume increases

faster than the physical radii of interacting stars.

At an order-of-magnitude level, these results are con-

sistent with the velocity distribution from MS star ejecta

via 3BBF in CMC (Weatherford et al. 2023). There are a

variety of complexities that need to be further explored

to make a more rigorous comparison, however. For ex-

ample, the initial velocities of the bodies in Figure 16

are sampled from the local velocity dispersion (typical

velocity), while successful 3BBF ejecta from Weather-

ford et al. (2023) should naturally be skewed to (higher)

initial velocities already near to vesc. Furthermore, Fig-

ure 16 does not account for species of different mass

having different σ; nor does it account for the full distri-

bution of mass ratios and relative velocity ratios found

in typical 3UB encounters in the core of a dense star

cluster. We leave a more rigorous analysis of such con-

siderations to future work.

Finally, as mentioned earlier, tidal physics will likely

modify the final velocity of the catalyst. For exam-

ple, Kremer et al. (2022) demonstrated that velocity

kicks applied to stellar remnants following tidal disrup-

tion events (due to asymmetric mass loss) may exceed

∼200 km s−1 when the mass of the BH is at least 10

times greater than the star’s mass. So the prospect

of impulsive acceleration to high speed during a 3UB

encounter is likely much higher than suggested by our

results accounting only for (post-)Newtonian dynam-

ics. Along with Figure 16, we find that 3UB encoun-

ters should contribute to the ejection of runaway stars

(and possibly even hypervelocity stars) from globular

clusters, supporting Weatherford et al. (2023). Conclu-

sively demonstrating that 3BBF dominates the produc-

tion of such ejecta over other binary-mediated channels

requires further numerical examination of the 3BBF rate

for realistic velocity and mass distributions in globular

clusters. This is especially true when considering hyper-

velocity ejecta, which fundamentally would result from

encounters deep in the tail of the 3BBF kick velocity

distribution.

5. SUMMARY AND FUTURE WORK

5.1. Summary

We have explored the formation of new binaries from

three unbound bodies in greater detail than any prior

efforts, including the first study of 3BBF to feature un-

equal masses, finite-size effects, and post-Newtonian ef-

fects. Specifically, we study 3BBF by running >3×1010

three-body scattering experiments with the state-of-the-

art direct N -body integrator Tsunami. After reproduc-

ing the canonical 3BBF scattering experiments of AH76,

we correct an oversight in their algorithm (adopted from

Agekyan & Anosova 1971) related to spherical symme-

try. With this correction and a new analytic encounter

rate for 3BBF, we compute a hard 3BBF rate that agrees

well with Goodman & Hut (1993) in the case of equal-

mass bodies; see Equation (24). We also confirm that

3BBF is almost exclusively an impulsive phenomenon.

Resonant encounters leading to 3BBF are extremely dis-

favored due to the total positive energy of three unbound

bodies, preventing a three-body bound state from occur-

ring without dissipation (e.g., gravitational radiation or

collisions). Additional key results are as follows:

1. Newly formed binaries from 3BBF are overwhelm-

ing soft, in agreement with AH76 and Goodman

& Hut (1993). We find that the cumulative distri-

bution of binary semi-major axis, a, scales as a3—

notably shallower than the a5.5 scaling of 3BBF

recipes in Monte Carlo star cluster modeling (e.g.,

CMC; Rodriguez et al. 2022). Typical SMA also

grows with dimensionless impact parameter χ1, so

larger interaction volumes lead to both wider bina-

ries and higher 3BBF rates (since 3UB encounter

rates scale as χ5
1). This has dramatic implications

for star cluster dynamics since soft binaries are of-

ten assumed to disrupt too quickly to affect clus-

ter evolution. Yet Goodman & Hut (1993) esti-

mate ≳90% of long-lived binaries form soft; they

are simply the rare few of many soft binaries from

3BBF that survived and hardened. So neglect of

soft 3BBF in cluster modeling may warrant re-

examination.

2. Wide binaries from 3BBF have super-thermal ec-

centricities. Since most binaries form soft, this

implies that soft 3BBF may produce the eccentric
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wide binaries observed with Gaia (e.g., Tokovinin

2020; Hwang et al. 2022). Star clusters may there-

fore be robust sources of eccentric wide binaries.

In particular, such binaries may form via 3BBF

interactions in short-lived or dissolving clusters

(though this likely results in a thermal eccentric-

ity distribution, e.g., Kouwenhoven et al. 2010), or

perhaps in the extended tidal tails of more mas-

sive clusters. Although the local density in tidal

tails is significantly lower than in the core of a

star cluster, the highly-correlated epicyclic trajec-

tories of slow escapers in tidal tails may produce

exceptionally low relative velocities between neigh-

boring bodies conducive to wide 3BBF; recall the

3BBF rate depends much more steeply on relative

velocity than on density. Survival of newly-formed

wide binaries and their deposition into the Galac-

tic field may also be easier in this case, and the

extreme velocity anistropy in tidal tails may re-

sult in significantly different semi-major axis or

eccentricity distributions than expected from an

isotropic assumption for 3BBF (as in this paper).

We shall examine such prospects in future work.

3. Independent of mass ratio, the eccentricity distri-

bution of hard binaries formed through 3BBF is

universally well-described by the classic thermal

distribution (e.g., Jeans 1919; Heggie 1975). This

likely occurs because an isotropically distributed

sea of gravitating bodies will fully explore phase

space, analogous to how resonant binary-single en-

counters fully explore phase space in the aforemen-

tioned texts. The a3 scaling of the cumulative dis-

tribution for SMA also holds for hard binaries in

most cases; a key exception is the (unlikely) pair-

ing of two massive bodies by a low-mass catalyst.

4. Exploring unequal-mass 3BBF for the first time,

our results refute the common assumption that the

two most massive bodies are the most likely to pair

(e.g., Morscher et al. 2013). Instead, the two least

massive bodies pair most frequently in soft/wide

binaries while the most massive plus least massive

bodies pair most frequently in hard binaries. Only

for mass ratios near unity are the two most massive

bodies likely to pair (up to ≈40% of hard 3BBFs).

5. Physical stellar collisions are a more likely out-

come of a 3UB encounter than hard binary forma-

tion for MS stars with velocities σ > 1 km s−1. Yet

the collisions do not significantly suppress 3BBF

among MS stars (relative to the point mass limit)

at velocity dispersions ≲ 30 km s−1. This implies

that the initial states leading to stellar collisions in

3UB interactions are largely separate from those

leading to hard binary formation.

6. Post-Newtonian effects can promote hard binary

BH formation through gravitational wave emis-

sion during close high-speed approach. Yet such

enhancement (and prevalence of BH mergers) is

only significant for σ ≳ 100 km s−1, likely only rel-

evant in nuclear star clusters. In such high-σ envi-

ronments, the probability of forming short-lived

hierarchical triples through 3UB BH scattering

can also be significant, surpassing the hard 3BBF

probability. Formation of longer-lived triples (sur-

viving for at least several orbits of the outer ter-

tiary) remains rarer than hard 3BBF, even when

σ ≳ 1000 km s−1.

7. The above results hold for mixed-species inter-

actions between stellar-mass BHs and MS stars,

the dominant type of 3UB encounters in star clus-

ter models (Weatherford et al. 2023). For typical

masses and velocities in globular clusters, neither

direct collisions nor post-Newtonian effects signifi-

cantly alter 3BBF rates in this case relative to the

limit of Newtonian point masses. As with MS stars

alone, BH–star collisions in these mixed-species

encounters are much more common than hard bi-

nary formation, but do not significantly suppress

3BBF. Since the cross section for a tidal disruption

event (TDE) is larger than for a direct BH–star

collision, 3UB encounters in star clusters may be

a significant source of TDEs.

8. We confirm that 3BBF can eject bodies from star

clusters at speeds at least a few times their cen-

tral escape velocity (depending on the mass ratios

in the encounter). In particular, when a MS star

catalyzes the production of a typical hard BH–

MS or BH–BH binary, ∼10% and ∼90%, respec-

tively, of the MS catalysts exit the 3UB encounter

fast enough to escape their host cluster. 3BBF

in star clusters may therefore contribute to run-

away stars in the Galactic halo, but at rates that

remain uncertain pending future work that more

closely examines 3BBF in a background environ-

ment with fully realistic mass and velocity distri-

butions. Tidal disruption physics may further en-

hance high-speed ejection from 3BBF since asym-

metric mass loss imparts an additional kick to the

stripped star (Kremer et al. 2022). Newly formed

binaries rarely exit 3BBF events with sufficient

speed to escape from the center of a star cluster,

even when the catalyst is much more massive than

the binary.
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9. Finally, our results agree with an independent an-

alytical investigation of 3BBF by Ginat & Perets

(2024), submitted during the review process of this

work. In particular, Ginat & Perets (2024) devel-

oped a statistical analytic theory investigating the

probabilities of 3BBF and the distributions of or-

bital parameters in the equal-mass case and agree

that 3BBF is a promising source of wide eccentric

binaries. They also corroborated that the 3BBF

probability for binaries formed with SMA less than

their strong interaction region (i.e., a < R1) scales

as Pij ∝ χ−4.5
1 and that these binaries have an

approximately thermal eccentricity distribution.

They also corroborate that soft, wide binaries fea-

ture a super-thermal eccentricity distribution.

5.2. Future Work

Despite having touched on some of the more extreme

regimes of the 3UB parameter space in this work, the

overwhelming majority is yet to be explored (e.g., vary-

ing velocity ratios, non-isotropic environments, energy

partitioning). Given the number of other considerations

investigated here, these regimes are beyond the scope of

this work, but may dramatically impact binary proper-

ties.

Proper treatment of tidal physics in the close pas-

sages of stars, including tidal disruption events, in 3UB

scattering may be impactful and requires focused study.

In particular, our results in Section 4.3 demonstrate

that direct BH–star collisions do not meaningfully re-

duce the rate of hard binary formation, yet they are a

more common outcome. The complex interplay between

tidal physics and hard binary formation is yet to be ex-

plored, but we do know the tidal disruption rate will be

at least twice as frequent as the collision rate—if only

due to gravitational focusing. It immediately follows

that tidal disruption events are likely highly prevalent

in 3UB encounters within dense stellar clusters. Addi-

tionally, future studies will be targeted towards specific

environments, enabling us to make concrete and practi-

cal environment-specific 3BBF rate predictions.

In total, our results should serve as a reminder that

the 3UB problem is largely unexplored. Expectations

concerning populations of dynamically assembled bina-

ries may change significantly when a proper treatment

of arbitrary mass-ratio 3UB scattering is incorporated

into Monte Carlo star cluster modeling codes such as

CMC. While 3BBF features obvious applications in con-

straining the history of dynamically assembled compact-

object binaries and their subsequent mergers observable

through gravitational waves, the potential for enhancing

our understanding of “traditional” stellar binary forma-

tion provides further incentive for renewing investiga-

tions into 3BBF as a critical topic in dynamical astro-

physics.
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APPENDIX

Table 1 comprises all the 3BBF probabilities from Figure 10.
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Table 1. The 3BBF probabilities from Figure 10 for selected cases of unequal masses, distinguished by hardness and specific
mass pairing. Each sub-table contains the values for different minimum hardness (aij/afs,ij), rows contain probabilities for a
specific set of mass ratios (q1, q2) with fixed q0 = 1, and columns specify pairing combination. Additionally, the 95% confidence
interval is included for every probability. There are exactly 109 simulations generated per mass ratio or 2.1× 1010 in total.

all

(q1, q2) Ptot P01 P02 P12

(0.10, 0.10) (4.05± 0.00)× 10−3 (9.54± 0.02)× 10−4 (9.53± 0.02)× 10−4 (2.14± 0.00)× 10−3

(0.25, 0.10) (7.04± 0.01)× 10−3 (1.04± 0.00)× 10−3 (2.53± 0.00)× 10−3 (3.47± 0.00)× 10−3

(0.40, 0.10) (8.78± 0.01)× 10−3 (1.02± 0.00)× 10−3 (3.60± 0.00)× 10−3 (4.16± 0.00)× 10−3

(0.55, 0.10) (9.64± 0.01)× 10−3 (9.44± 0.02)× 10−4 (4.20± 0.00)× 10−3 (4.49± 0.00)× 10−3

(0.70, 0.10) (9.96± 0.01)× 10−3 (8.60± 0.02)× 10−4 (4.48± 0.00)× 10−3 (4.62± 0.00)× 10−3

(0.85, 0.10) (9.98± 0.01)× 10−3 (7.80± 0.02)× 10−4 (4.57± 0.00)× 10−3 (4.62± 0.00)× 10−3

(1.00, 0.10) (9.82± 0.01)× 10−3 (7.09± 0.02)× 10−4 (4.55± 0.00)× 10−3 (4.55± 0.00)× 10−3

(0.33, 0.33) (1.73± 0.00)× 10−2 (4.82± 0.00)× 10−3 (4.78± 0.00)× 10−3 (7.69± 0.01)× 10−3

(0.44, 0.33) (1.86± 0.00)× 10−2 (4.71± 0.00)× 10−3 (5.80± 0.00)× 10−3 (8.05± 0.01)× 10−3

(0.56, 0.33) (1.90± 0.00)× 10−2 (4.46± 0.00)× 10−3 (6.49± 0.00)× 10−3 (8.07± 0.01)× 10−3

(0.67, 0.33) (1.89± 0.00)× 10−2 (4.19± 0.00)× 10−3 (6.86± 0.01)× 10−3 (7.90± 0.01)× 10−3

(0.78, 0.33) (1.86± 0.00)× 10−2 (3.90± 0.00)× 10−3 (7.03± 0.01)× 10−3 (7.64± 0.01)× 10−3

(0.89, 0.33) (1.81± 0.00)× 10−2 (3.64± 0.00)× 10−3 (7.08± 0.01)× 10−3 (7.36± 0.01)× 10−3

(1.00, 0.33) (1.75± 0.00)× 10−2 (3.39± 0.00)× 10−3 (7.04± 0.01)× 10−3 (7.04± 0.01)× 10−3

(0.50, 0.50) (2.49± 0.00)× 10−2 (7.38± 0.01)× 10−3 (7.38± 0.01)× 10−3 (1.02± 0.00)× 10−2

(0.58, 0.50) (2.51± 0.00)× 10−2 (7.14± 0.01)× 10−3 (7.90± 0.01)× 10−3 (1.01± 0.00)× 10−2

(0.67, 0.50) (2.50± 0.00)× 10−2 (6.84± 0.01)× 10−3 (8.29± 0.01)× 10−3 (9.87± 0.01)× 10−3

(0.75, 0.50) (2.47± 0.00)× 10−2 (6.55± 0.01)× 10−3 (8.50± 0.01)× 10−3 (9.62± 0.01)× 10−3

(0.83, 0.50) (2.42± 0.00)× 10−2 (6.25± 0.00)× 10−3 (8.63± 0.01)× 10−3 (9.33± 0.01)× 10−3

(0.92, 0.50) (2.36± 0.00)× 10−2 (5.92± 0.00)× 10−3 (8.68± 0.01)× 10−3 (8.98± 0.01)× 10−3

(1.00, 0.50) (2.30± 0.00)× 10−2 (5.65± 0.00)× 10−3 (8.67± 0.01)× 10−3 (8.67± 0.01)× 10−3

aij/afs,ij < 10

(q1, q2) Ptot P01 P02 P12

(0.10, 0.10) (3.03± 0.03)× 10−5 (1.41± 0.02)× 10−5 (1.42± 0.02)× 10−5 (1.97± 0.09)× 10−6

(0.25, 0.10) (8.70± 0.06)× 10−5 (1.06± 0.02)× 10−5 (6.78± 0.05)× 10−5 (8.55± 0.18)× 10−6

(0.40, 0.10) (1.34± 0.01)× 10−4 (7.79± 0.17)× 10−6 (1.07± 0.01)× 10−4 (1.89± 0.03)× 10−5

(0.55, 0.10) (1.50± 0.01)× 10−4 (5.53± 0.15)× 10−6 (1.13± 0.01)× 10−4 (3.12± 0.03)× 10−5

(0.70, 0.10) (1.49± 0.01)× 10−4 (3.98± 0.12)× 10−6 (1.01± 0.01)× 10−4 (4.44± 0.04)× 10−5

(0.85, 0.10) (1.43± 0.01)× 10−4 (3.02± 0.11)× 10−6 (8.39± 0.06)× 10−5 (5.63± 0.05)× 10−5

(1.00, 0.10) (1.39± 0.01)× 10−4 (2.34± 0.10)× 10−6 (6.80± 0.05)× 10−5 (6.84± 0.05)× 10−5

(0.33, 0.33) (3.69± 0.01)× 10−4 (1.52± 0.01)× 10−4 (1.50± 0.01)× 10−4 (6.75± 0.05)× 10−5

(0.44, 0.33) (4.08± 0.01)× 10−4 (1.35± 0.01)× 10−4 (1.89± 0.01)× 10−4 (8.44± 0.06)× 10−5

(0.56, 0.33) (4.17± 0.01)× 10−4 (1.18± 0.01)× 10−4 (2.00± 0.01)× 10−4 (9.96± 0.06)× 10−5

(0.67, 0.33) (4.07± 0.01)× 10−4 (1.04± 0.01)× 10−4 (1.92± 0.01)× 10−4 (1.12± 0.01)× 10−4

(0.78, 0.33) (3.90± 0.01)× 10−4 (9.11± 0.06)× 10−5 (1.76± 0.01)× 10−4 (1.23± 0.01)× 10−4

(0.89, 0.33) (3.67± 0.01)× 10−4 (8.05± 0.06)× 10−5 (1.56± 0.01)× 10−4 (1.31± 0.01)× 10−4

(1.00, 0.33) (3.46± 0.01)× 10−4 (7.14± 0.05)× 10−5 (1.37± 0.01)× 10−4 (1.37± 0.01)× 10−4

(0.50, 0.50) (7.05± 0.02)× 10−4 (2.65± 0.01)× 10−4 (2.65± 0.01)× 10−4 (1.76± 0.01)× 10−4

(0.58, 0.50) (7.02± 0.02)× 10−4 (2.46± 0.01)× 10−4 (2.72± 0.01)× 10−4 (1.85± 0.01)× 10−4

(0.67, 0.50) (6.84± 0.02)× 10−4 (2.24± 0.01)× 10−4 (2.68± 0.01)× 10−4 (1.92± 0.01)× 10−4

(0.75, 0.50) (6.62± 0.02)× 10−4 (2.09± 0.01)× 10−4 (2.56± 0.01)× 10−4 (1.96± 0.01)× 10−4

(0.83, 0.50) (6.34± 0.02)× 10−4 (1.93± 0.01)× 10−4 (2.42± 0.01)× 10−4 (2.00± 0.01)× 10−4

(0.92, 0.50) (6.00± 0.02)× 10−4 (1.77± 0.01)× 10−4 (2.21± 0.01)× 10−4 (2.02± 0.01)× 10−4

(1.00, 0.50) (5.69± 0.01)× 10−4 (1.64± 0.01)× 10−4 (2.03± 0.01)× 10−4 (2.03± 0.01)× 10−4



27

Table 1 (Continued)

aij/afs,ij < 3

(q1, q2) Ptot P01 P02 P12

(0.10, 0.10) (1.66± 0.08)× 10−6 (8.21± 0.56)× 10−7 (8.01± 0.56)× 10−7 (4.03± 1.25)× 10−8

(0.25, 0.10) (3.97± 0.12)× 10−6 (6.12± 0.49)× 10−7 (3.18± 0.11)× 10−6 (1.83± 0.27)× 10−7

(0.40, 0.10) (5.34± 0.14)× 10−6 (4.32± 0.41)× 10−7 (4.44± 0.13)× 10−6 (4.66± 0.42)× 10−7

(0.55, 0.10) (5.24± 0.14)× 10−6 (2.75± 0.33)× 10−7 (4.18± 0.13)× 10−6 (7.83± 0.55)× 10−7

(0.70, 0.10) (4.62± 0.13)× 10−6 (1.98± 0.28)× 10−7 (3.27± 0.11)× 10−6 (1.15± 0.07)× 10−6

(0.85, 0.10) (4.26± 0.13)× 10−6 (1.68± 0.26)× 10−7 (2.50± 0.10)× 10−6 (1.59± 0.08)× 10−6

(1.00, 0.10) (3.92± 0.12)× 10−6 (1.25± 0.22)× 10−7 (1.84± 0.08)× 10−6 (1.95± 0.09)× 10−6

(0.33, 0.33) (1.69± 0.03)× 10−5 (7.52± 0.17)× 10−6 (7.50± 0.17)× 10−6 (1.84± 0.08)× 10−6

(0.44, 0.33) (1.75± 0.03)× 10−5 (6.67± 0.16)× 10−6 (8.48± 0.18)× 10−6 (2.36± 0.10)× 10−6

(0.56, 0.33) (1.66± 0.03)× 10−5 (5.80± 0.15)× 10−6 (8.06± 0.18)× 10−6 (2.79± 0.10)× 10−6

(0.67, 0.33) (1.55± 0.02)× 10−5 (5.20± 0.14)× 10−6 (7.17± 0.17)× 10−6 (3.17± 0.11)× 10−6

(0.78, 0.33) (1.44± 0.02)× 10−5 (4.70± 0.13)× 10−6 (6.14± 0.15)× 10−6 (3.58± 0.12)× 10−6

(0.89, 0.33) (1.31± 0.02)× 10−5 (4.10± 0.13)× 10−6 (5.12± 0.14)× 10−6 (3.91± 0.12)× 10−6

(1.00, 0.33) (1.21± 0.02)× 10−5 (3.69± 0.12)× 10−6 (4.15± 0.13)× 10−6 (4.21± 0.13)× 10−6

(0.50, 0.50) (2.94± 0.03)× 10−5 (1.21± 0.02)× 10−5 (1.23± 0.02)× 10−5 (5.07± 0.14)× 10−6

(0.58, 0.50) (2.90± 0.03)× 10−5 (1.16± 0.02)× 10−5 (1.19± 0.02)× 10−5 (5.50± 0.15)× 10−6

(0.67, 0.50) (2.71± 0.03)× 10−5 (1.04± 0.02)× 10−5 (1.09± 0.02)× 10−5 (5.81± 0.15)× 10−6

(0.75, 0.50) (2.57± 0.03)× 10−5 (9.89± 0.20)× 10−6 (9.81± 0.19)× 10−6 (6.02± 0.15)× 10−6

(0.83, 0.50) (2.42± 0.03)× 10−5 (9.23± 0.19)× 10−6 (8.76± 0.18)× 10−6 (6.23± 0.16)× 10−6

(0.92, 0.50) (2.27± 0.03)× 10−5 (8.53± 0.18)× 10−6 (7.63± 0.17)× 10−6 (6.50± 0.16)× 10−6

(1.00, 0.50) (2.13± 0.03)× 10−5 (8.01± 0.18)× 10−6 (6.57± 0.16)× 10−6 (6.69± 0.16)× 10−6

aij/afs,ij < 1

(q1, q2) Ptot P01 P02 P12

(0.10, 0.10) (4.63± 1.34)× 10−8 (2.12± 0.90)× 10−8 (2.32± 0.95)× 10−8 (2.02± 2.79)× 10−9

(0.25, 0.10) (1.60± 0.25)× 10−7 (3.02± 1.08)× 10−8 (1.26± 0.22)× 10−7 (4.03± 3.95)× 10−9

(0.40, 0.10) (1.81± 0.26)× 10−7 (1.71± 0.81)× 10−8 (1.49± 0.24)× 10−7 (1.51± 0.76)× 10−8

(0.55, 0.10) (1.86± 0.27)× 10−7 (2.01± 0.88)× 10−8 (1.41± 0.23)× 10−7 (2.52± 0.99)× 10−8

(0.70, 0.10) (1.39± 0.23)× 10−7 (1.21± 0.68)× 10−8 (1.01± 0.20)× 10−7 (2.62± 1.01)× 10−8

(0.85, 0.10) (1.17± 0.21)× 10−7 (4.03± 3.95)× 10−9 (7.35± 1.69)× 10−8 (3.93± 1.23)× 10−8

(1.00, 0.10) (1.20± 0.22)× 10−7 (9.07± 5.92)× 10−9 (5.74± 1.49)× 10−8 (5.34± 1.44)× 10−8

(0.33, 0.33) (5.94± 0.48)× 10−7 (2.56± 0.32)× 10−7 (2.86± 0.33)× 10−7 (5.14± 1.41)× 10−8

(0.44, 0.33) (5.99± 0.48)× 10−7 (2.47± 0.31)× 10−7 (2.97± 0.34)× 10−7 (5.55± 1.47)× 10−8

(0.56, 0.33) (5.48± 0.46)× 10−7 (2.11± 0.29)× 10−7 (2.56± 0.31)× 10−7 (8.07± 1.77)× 10−8

(0.67, 0.33) (5.15± 0.45)× 10−7 (1.95± 0.27)× 10−7 (2.38± 0.30)× 10−7 (8.27± 1.79)× 10−8

(0.78, 0.33) (4.92± 0.44)× 10−7 (1.87± 0.27)× 10−7 (1.82± 0.27)× 10−7 (1.23± 0.22)× 10−7

(0.89, 0.33) (4.35± 0.41)× 10−7 (1.62± 0.25)× 10−7 (1.35± 0.23)× 10−7 (1.37± 0.23)× 10−7

(1.00, 0.33) (3.88± 0.39)× 10−7 (1.31± 0.23)× 10−7 (1.41± 0.23)× 10−7 (1.16± 0.21)× 10−7

(0.50, 0.50) (9.70± 0.61)× 10−7 (4.23± 0.40)× 10−7 (4.11± 0.40)× 10−7 (1.36± 0.23)× 10−7

(0.58, 0.50) (9.49± 0.61)× 10−7 (3.87± 0.39)× 10−7 (4.04± 0.40)× 10−7 (1.57± 0.25)× 10−7

(0.67, 0.50) (8.64± 0.58)× 10−7 (3.93± 0.39)× 10−7 (3.28± 0.36)× 10−7 (1.43± 0.24)× 10−7

(0.75, 0.50) (8.21± 0.56)× 10−7 (3.77± 0.38)× 10−7 (2.74± 0.33)× 10−7 (1.69± 0.26)× 10−7

(0.83, 0.50) (8.18± 0.56)× 10−7 (3.44± 0.37)× 10−7 (2.79± 0.33)× 10−7 (1.95± 0.27)× 10−7

(0.92, 0.50) (7.60± 0.54)× 10−7 (3.42± 0.36)× 10−7 (2.44± 0.31)× 10−7 (1.74± 0.26)× 10−7

(1.00, 0.50) (6.87± 0.52)× 10−7 (2.85± 0.33)× 10−7 (1.92± 0.27)× 10−7 (2.10± 0.29)× 10−7
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