
Go Green: Selected Configuration Interaction as a More Sustainable Alternative for High Accuracy

Pierre-François Loos,^{a)} Yann Damour, Abdallah Ammar, Michel Caffarel, Fábris Kossoski, and Anthony Scemama Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

Recently, a new distributed implementation of the full configuration interaction (FCI) method has been reported [Gao et al. J. Chem Theory Comput. 2024, 20, 1185]. Thanks to a hybrid parallelization scheme, the authors were able to compute the exact energy of propane (C_3H_8) in the minimal basis STO-3G. This formidable task involves handling an active space of 26 electrons in 23 orbitals or a Hilbert space of 1.3×10^{12} determinants. This is, by far, the largest FCI calculation reported to date. Here, we illustrate how, from a general point of view, selected configuration interaction (SCI) can achieve microhartree accuracy at a fraction of the computational and memory cost, via a sparse exploration of the FCI space. The present SCI calculations are performed with the Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI) algorithm, as implemented in a determinant-driven way in the QUANTUM PACKAGE software. The present study reinforces the common wisdom that among the exponentially large number of determinants in the FCI space, only a tiny fraction of them significantly contribute to the energy. More importantly, it demonstrates the feasibility of achieving comparable accuracy using more reasonable and sustainable computational resources, hence reducing the ever-growing carbon footprint of computational chemistry.

I. INTRODUCTION

The full configuration interaction (FCI) method provides the exact solution of the Schrödinger equation in a given basis set, the number of electrons and orbitals defining the size of the Hilbert space. As such, it is often considered the ultimate answer when one wants to compare the performances of approximate methods.^{1–3} However, the computational cost and memory requirement of a FCI calculation increases exponentially fast with the size of the system making it feasible on small systems only. FCI calculations on realistic molecular systems were achieved in the late 1980's, largely owing to the groundbreaking work of Knowles and Handy.^{4–7} The significant milestone of surpassing the one-billion determinant barrier was accomplished in 1990 by Olsen et al.⁸ While there were several improvements during the first decade of the twenty-first century,^{9–11} the pace notably slowed thereafter.^{12,13}

This slowdown can be ascribed partially to the emergence of alternative methodologies, notably selected configuration interaction (SCI) methods, which had lain dormant^{14–17} but underwent a resurgence in the early 2010's.^{18,19} The essence of these methods lies in their sparse exploration of the Hilbert space, focusing only on the most energetically relevant determinants. This strategy stems from the realization that within the vast FCI space, only a tiny fraction of determinants significantly impact the energy.

Nowadays, SCI methods alongside related techniques like density-matrix renormalization group (DMRG) approaches^{20–22} and others,^{23–32} have become central

^{a)}Electronic mail: loos@irsamc.ups-tlse.fr

to modern electronic structure theory.^{1–3} Their main objective is to compute reference correlation and excitation energies in small molecular systems with exceptional accuracy, often rivaling FCI results.^{2,33–40} Modern implementations of SCI encompass methodologies such as CIPSI (CI using a Perturbative Selection made Iteratively),^{1,16,18,19,33,41–46} adaptive sampling CI (ASCI),^{47–50} semistochastic heatbath CI (SHCI),^{35,36,51–57} and iterative CI (iCI).^{58–62} Stochastic CI techniques, like Monte Carlo CI (MCCI)^{63,64} and FCI quantum Monte Carlo (FCIQMC),^{65–70} adopt a similar approach, utilizing stochastic wave function representations to identify crucial determinants.

Recently, Gao et al.⁷¹ reported a new implementation of FCI using a hybrid parallelization scheme combining multiprocessing with MPI and multithreading with OpenMP. They were able to compute the exact energy of propane (C_3H_8) in the STO-3G basis set. This calculation corresponds to a Hilbert space of size 1.3×10^{12} determinants. This formidable feat effectively breaks the one-trillion determinant barrier and is by far the largest FCI calculation reported to date. According to Ref. 71, this calculation required running 512 processes on 256 nodes for a total wall time of 113.6 hours. Their hardware consisted of nodes equipped with two Intel Xeon Gold 6148 CPUs, boasting a total of 384 GB of memory and 40 logical cores per CPU, enabling the execution of 40 threads per process. The most memory-consuming task requires an astonishing amount of 19 TB of memory.

In this study, our objective is to demonstrate that SCI calculations can be conducted routinely with significantly lower computational resources while still producing energies that closely match those obtained through FCI, thus contributing to the reduction of the ever-growing carbon footprint associated with computational chemistry.

II. RESULTS AND DISCUSSION

Our calculations are performed on a single node of the CALMIP supercomputer center (Toulouse, France), which has been in production since September 2018. This node is a dual-socket Intel Skylake 6140 CPU@2.3 Ghz with 192 GB of memory for a total of 36 physical CPU cores. The numbers given for the energy consumption of a calculation represent all the energy used by the compute node for the duration of the run. These values were obtained from the database of the SLURM job scheduler, which was configured such that the acct_gather_energy plugin obtains the energy consumption from the Baseboard Management Controller (BMC) via the Intelligent Platform Management Interface (IPMI) protocol.

The present SCI calculations have been carried out with the CIPSI algorithm.^{16,18,19,42–44} One of the main differences between conventional FCI implementations and the CIPSI implementation reported in Ref. 44 is that the former is integral-driven while the latter is determinantdriven. (Note that the SHCI method, due to its different

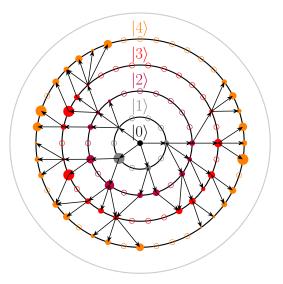


FIG. 1. Schematic presentation of the growth of the variational space as a function of the CIPSI iterations. Starting from a reference Slater determinant $|0\rangle$ built with a given set of orbitals, the variational space is enlarged systematically via the inclusion of the most energetically important determinants of higher excitation degrees (filled circles) to build larger multideterminant wave functions ($|1\rangle$, $|2\rangle$, $|3\rangle$, etc). In such a way, the Hilbert space is explored sparsely by leaving behind the determinants that do not contribute significantly to the energy (empty circles).

selection criteria, is also integral-driven.^{35,51,52}) In a nutshell, CIPSI iteratively increases the size of the so-called variational space characterized by its (zeroth-order) variational energy $E_{\rm var}$ (see Fig. 1). As discussed further below, the variational energy (or SCI energy) converges slowly with respect to the number of determinants in the variational space $N_{\rm det}$. To improve this convergence, $E_{\rm var}$ is corrected by its second-order perturbative energy, $E_{\rm PT2}$, computed within Epstein-Nesbet perturbation theory.⁴² The sum $E_{\rm var} + E_{\rm PT2}$ defines the SCI+PT2 energy. Because there exists an approximate linear relationship between $E_{\rm var}$ and $E_{\rm PT2}$ when $E_{\rm PT2} \rightarrow 0$ is performed to produce the final FCI estimate.^{35,72} In the following, this extrapolated value is named exFCI.

As a first step, we perform a preliminary run where, in addition to iteratively increasing the size of the variational space, we further optimize the orbitals via the minimization of the variational energy.^{45,56,73} This orbital optimization procedure is performed at each CIPSI iteration up to 1.8×10^6 determinants. This run takes 2h56 of wall time, 4.9 GB of memory, and 758 W h of energy consumption. The most memory-consuming task is the Davidson diagonalization of the largest variational space which requires 2.6 GB, while the most expensive PT2 calculation only requires 170 MB of memory. (The orbital optimization step could easily be made globally less expensive without altering the overall accuracy by stopping the calculation earlier.) Then, a new CIPSI

TABLE I. Convergence of the SCI (E_{var}), SCI+PT2 ($E_{var} + E_{PT2}$) and exFCI (E_{exFCI}) energies of propane (C_3H_8) computed in the STO-3G basis with respect to the number of determinants included in the variational space (N_{det}). These calculations are performed with energetically-optimized orbitals. The error with respect to the FCI value of the SCI (Δ_{SCI}), SCI+PT2 ($\Delta_{SCI+PT2}$), and exFCI (Δ_{exFCI}) energies are also reported. The standard errors associated with the 3-point linear fitting procedure performed to obtain the exFCI energies are reported in parenthesis.

$N_{\rm det}$	SCI energy		SCI+PT2 energy		exFCI energy	
	$E_{\rm var}$ $(E_{\rm h})$	$\Delta_{\rm SCI} ({\rm m}E_{\rm h})$	$E_{\rm var} + E_{\rm PT2} (E_{\rm h})$	$\Delta_{\rm SCI+PT2} (mE_{\rm h})$	$E_{\rm exFCI}$ $(E_{\rm h})$	Δ_{exFCI} (m E_{h})
1907	-117.08210421	18.018	-117.09776132	2.361		
3877	-117.08733585	12.787	-117.09848322	1.639		
7756	-117.09094151	9.181	-117.09900385	1.119		
15517	-117.09361712	6.506	-117.09936972	0.753		
31044	-117.09558736	4.535	-117.09959581	0.527		
62113	-117.09702968	3.093	-117.09978179	0.341		
124570	-117.09799309	2.130	-117.09989333	0.229		
249144	-117.09875792	1.365	-117.09998264	0.140	-117.1001435(7)	-0.0208(7)
498290	-117.09926539	0.857	-117.10004465	0.078	-117.100149(3)	-0.026(3)
996650	-117.09959916	0.524	-117.10007604	0.047	-117.100139(9)	-0.016(9)
1993314	-117.09981192	0.311	-117.10009621	0.026	-117.1001258(1)	-0.0031(1)
3986707	-117.09993942	0.183	-117.10010796	0.015	-117.1001255(3)	-0.0028(3)
7973418	-117.10001798	0.105	-117.10011498	0.0077	-117.1001248(2)	-0.0021(2)
15946880	-117.10006598	0.057	-117.10011864	0.0040	-117.1001237(5)	-0.0010(5)
31893835	-117.10009352	0.029	-117.10012066	0.0020	-117.10012289(6)	-0.00021(6)
63788022	-117.10010827	0.014	-117.10012170	0.00098	-117.10012276(3)	-0.00008(3)
126 541 040	-117.10011587	0.0068	-117.10012219	0.000 49	-117.10012267(3)	+0.00001(3)

TABLE II. Energy of propane (C_3H_8) computed at different levels of theory with the STO-3G basis. The error with respect to the FCI value is also reported.

Method	Energy $(E_{\rm h})$	Error wrt FCI
FCI ^a	-117.100122681461	
CCSD	-117.098767	$1.355\mathrm{m}E_\mathrm{h}$
CCSD(T)	-117.099708	$0.414\mathrm{m}E_\mathrm{h}$
CCSDT	-117.099942158	$0.181\mathrm{m}E_\mathrm{h}$
CCSDTQ	-117.100120230	$2.451\mu E_{ m h}$
SCI ^b	-117.10009352	$0.029\mathrm{m}E_\mathrm{h}$
$SCI+PT2^{c}$	-117.10012066	$2.021\mu E_{ m h}$
$exFCI^d$	-117.10012289(6)	$-0.21(6)\mu E_{ m h}$

^a Reference 71.

^b Variational energy obtained with $N_{\text{det}} = 32 \times 10^6$.

^c Perturbatively-corrected variational energy obtained with

 $N_{\rm det} = 32 \times 10^6.$

 $^{\rm d}$ Extrapolated FCI value obtained via a 3-point linear fit using $N_{\rm det}=32\times10^6$ as the largest variational space.

run is performed with these optimized orbitals. In Table I, we report the evolution of the SCI ($E_{\rm var}$), SCI+PT2 ($E_{\rm var} + E_{\rm PT2}$), and exFCI ($E_{\rm exFCI}$) energies as functions of $N_{\rm det}$. The errors with respect to the FCI energy, $E_{\rm FCI}$, of Gao et al. are also reported.⁷¹ The exFCI values are obtained via a 3-point linear extrapolation of the variational energy using the three smallest $E_{\rm PT2}$ available at a given stage.

The extrapolation procedure of $E_{\rm var}$ as a function of $E_{\rm PT2}$ is illustrated in Fig. 2 for the largest variational space ($N_{\rm det} = 127 \times 10^6$). For the sake of comparison, the CCSD, CCSD(T), CCSDT, and CCSDTQ energies, computed with CFOUR,⁷⁴ are also reported in Fig. 2 and

TABLE III. Wall time, maximum memory consumption, total energy consumption, and error with respect to FCI of the exFCI energy for increasingly large CIPSI calculations performed on propane (C_3H_8) in the STO-3G basis. The energy consumption represents the total consumption of the compute node measured by the BMC for the entire job duration (see main text).

$N_{\rm det}$	Wall time (hh:mm)	Memory consumption	Energy consumption	Error wrt FCI
2×10^{6}	00:14	5.3 GB	74 W h	$\frac{3 \mu E_{\rm h}}{3 \mu E_{\rm h}}$
4×10^6	00:33	8.1 GB	$176\mathrm{W}\mathrm{h}$	$3 \mu E_{\rm h}$
8×10^6	01:19	15 GB	$438\mathrm{W}\mathrm{h}$	$2\mu E_{ m h}$
16×10^6	03:12	25 GB	$1.1\mathrm{kW}\mathrm{h}$	$1\mu E_{ m h}$
32×10^6	13:16	$47 \ \mathrm{GB}$	$4.1\mathrm{kW}\mathrm{h}$	$0.2\mu E_{ m h}$
64×10^6	43:54	$83 \ \mathrm{GB}$	$13\mathrm{kW}\mathrm{h}$	$0.08\mu E_{ m h}$
127×10^6	138:44	138 GB	$42\mathrm{kW}\mathrm{h}$	$0.01\mu E_{ m h}$

Table II. While the CCSD, CCSD(T), and CCSDT calculations require only a few seconds of wall time and a minimal amount of memory, the CCSDTQ calculation is more expensive as it requires 42 minutes of wall time and 508 MB of memory for an energy consumption of 192 W h. The CCSDTQ energy and the SCI+PT2 energy obtained with $N_{det} = 32 \times 10^6$ have similar accuracy and almost reach microhartree accuracy. Sub-microhartree accuracy can be obtained via extrapolation, the exFCI energy having an error of only $-0.21(6) \mu E_h$ compared to FCI.

Table III presents the wall time, maximum memory usage, and total energy consumption for increasingly larger CIPSI calculations. For large variational space, the David-

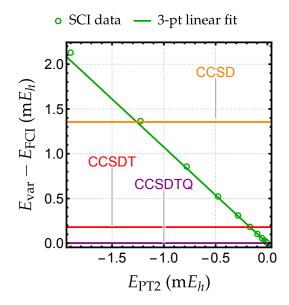


FIG. 2. Variational energy as a function of the second-order perturbative correction for the SCI calculations performed on propane (C_3H_8) in the STO-3G basis and with energetically-optimized orbitals. The 3-point linear fit is based on the three largest variational wave functions reported in Table I.

son diagonalization performed to compute the variational energy⁴⁴ is the most memory-consuming task while the semistochastic calculation of the second-order perturbative correction⁴² is the most CPU-intensive task. The accuracy of the exFCI energy (with respect to the FCI value) is also reported. Achieving microhartree accuracy necessitates approximately 16×10^6 determinants, 25 GB of RAM, and slightly over 3 hours of wall time, totaling approximately 1.1 kW h. Comparatively, a CIPSI calculation employing $N_{\rm det} = 32 \times 10^6$ demands twice the memory, four times the energy consumption, and an additional 10 hours of wall time to achieve an overall accuracy of $0.2 \,\mu E_{\rm h}$.

III. CONCLUSION

We believe that these numbers illustrate nicely that SCI calculations are a more eco-friendly alternative compared to FCI calculations, especially for achieving high accuracy and generating reference values for benchmarking other computational methods. As the variational space expands (see Table III), SCI calculations become more resource-intensive both in terms of computational resources and energy consumption. For example, to perform a calculation up to 126×10^6 determinants, almost 6 days of wall time are required for an energy consumption of 42 kW h. Hence, there remains ample scope for further optimization and improvement.

ACKNOWLEDGMENTS

The authors would like to thank Nicolas Renon (CALMIP) for his technical support. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863481). Additionally, it was supported by the European Centre of Excellence in Exascale Computing (TREX), and has received funding from the European Union's Horizon 2020 — Research and Innovation program — under grant agreement no. 952165. This work was granted access to the HPC resources of CALMIP supercomputing center under the allocation 2024-18005.

SUPPORTING INFORMATION

See the Supporting Information for the geometry of propane and output files associated with the CC calculations, orbital optimization, and CIPSI calculations. Files gathering information about wall time, memory usage, and energy consumption are also provided.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available within the article and its Supporting Information.

REFERENCES

- ¹P.-F. Loos, A. Scemama, and D. Jacquemin, "The quest for highly accurate excitation energies: A computational perspective," J. Phys. Chem. Lett. **11**, 2374–2383 (2020).
- ²J. J. Eriksen, T. A. Anderson, J. E. Deustua, K. Ghanem, D. Hait, M. R. Hoffmann, S. Lee, D. S. Levine, I. Magoulas, J. Shen, N. M. Tubman, K. B. Whaley, E. Xu, Y. Yao, N. Zhang, A. Alavi, G. K.-L. Chan, M. Head-Gordon, W. Liu, P. Piecuch, S. Sharma, S. L. Ten-no, C. J. Umrigar, and J. Gauss, "The ground state electronic energy of benzene," J. Phys. Chem. Lett. 11, 8922–8929 (2020).
- ³J. J. Ériksen, "The shape of full configuration interaction to come," J. Phys. Chem. Lett. **12**, 418–432 (2021).
- ⁴N. Handy, "Multi-root configuration interaction calculations," Chem. Phys. Lett. **74**, 280–283 (1980).
- ⁵P. J. Knowles and N. C. Handy, "A new determinant-based full configuration interaction method," Chem. Phys. Lett. **111**, 315– 321 (1984).
- ⁶P. J. Knowles and N. C. Handy, "A determinant based full configuration interaction program," Comput. Phys. Commun. **54**, 75–83 (1989).
- ⁷P. J. Knowles and N. C. Handy, "Unlimited full configuration interaction calculations," J. Chem. Phys. **91**, 2396–2398 (1989).
- ⁸J. Olsen, P. Jørgensen, and J. Simons, "Passing the one-billion limit in full configuration-interaction (fci) calculations," Chem. Phys. Lett. **169**, 463–472 (1990).
- ⁹R. Ansaloni, G. L. Bendazzoli, S. Evangelisti, and E. Rossi, "A parallel full-ci algorithm," Comput. Phys. Commun. **128**, 496–515 (2000).

- ¹⁰Z. Gan, Y. Alexeev, M. S. Gordon, and R. A. Kendall, "The parallel implementation of a full configuration interaction program," J. Chem. Phys. **119**, 47–59 (2003).
- ¹¹Z. Rolik, Á. Szabados, and P. R. Surján, "A sparse matrix based full-configuration interaction algorithm," J. Chem. Phys. **128**, 144101 (2008).
- ¹²B. S. Fales and B. G. Levine, "Nanoscale multireference quantum chemistry: Full configuration interaction on graphical processing units," J. Chem. Theory Comput. **11**, 4708–4716 (2015).
- ¹³K. D. Vogiatzis, D. Ma, J. Olsen, L. Gagliardi, and W. A. de Jong, "Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations," J. Chem. Phys. **147**, 184111 (2017).
- ¹⁴C. F. Bender and E. R. Davidson, "Studies in configuration interaction: The first-row diatomic hydrides," Phys. Rev. 183, 23–30 (1969).
- ¹⁵J. L. Whitten and M. Hackmeyer, "Configuration interaction studies of ground and excited states of polyatomic molecules. i. the ci formulation and studies of formaldehyde," J. Chem. Phys. **51**, 5584–5596 (1969).
- ¹⁶B. Huron, J. P. Malrieu, and P. Rancurel, "Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions," J. Chem. Phys. 58, 5745–5759 (1973).
- ¹⁷R. J. Buenker and S. D. Peyerimhoff, "Individualized configuration selection in CI calculations with subsequent energy extrapolation," Theor. Chim. Acta **35**, 33–58 (1974).
- ¹⁸E. Giner, A. Scemama, and M. Caffarel, "Using perturbatively selected configuration interaction in quantum monte carlo calculations," Can. J. Chem. **91**, 879–885 (2013).
- ¹⁹E. Giner, A. Scemama, and M. Caffarel, "Fixed-node diffusion monte carlo potential energy curve of the fluorine molecule f2 using selected configuration interaction trial wavefunctions," J. Chem. Phys. **142**, 044115 (2015).
- ²⁰S. R. White, "Density matrix formulation for quantum renormalization groups," Phys. Rev. Lett. **69**, 2863 (1992).
- ²¹S. R. White, "Density-matrix algorithms for quantum renormalization groups," Phys. Rev. B 48, 10345 (1993).
- ²²G. K.-L. Chan and S. Sharma, "The density matrix renormalization group in quantum chemistry," Annu. Rev. Phys. Chem. 62, 465–481 (2011).
- ²³J. J. Eriksen, F. Lipparini, and J. Gauss, "Virtual orbital manybody expansions: A possible route towards the full configuration interaction limit," J. Phys. Chem. Lett. 8, 4633–4639 (2017).
- ²⁴ J. J. Eriksen and J. Gauss, "Many-body expanded full configuration interaction. i. weakly correlated regime," J. Chem. Theory Comput. 14, 5180 (2018).
- ²⁵ J. J. Eriksen and J. Gauss, "Many-body expanded full configuration interaction. ii. strongly correlated regime," J. Chem. Theory Comput. 15, 4873 (2019).
- ²⁶J. J. Eriksen and J. Gauss, "Generalized many-body expanded full configuration interaction theory," J. Phys. Chem. Lett. 27, 7910–7915 (2019).
- ²⁷M. Motta and S. Zhang, "Ab initio computations of molecular systems by the auxiliary-field quantum monte carlo method," WIRES Comput. Mol. Sci. 8, e1364 (2018).
- ²⁸J. Lee, F. D. Malone, and D. R. Reichman, "The performance of phaseless auxiliary-field quantum monte carlo on the ground state electronic energy of benzene," J. Chem. Phys. **153**, 126101 (2020).
- ²⁹E. Xu, M. Uejima, and S. L. Ten-no, "Full coupled-cluster reduction for accurate description of strong electron correlation," Phys. Rev. Lett. **121**, 113001 (2018).
- ³⁰E. Xu, M. Uejima, and S. L. Ten-no, "Towards near-exact solutions of molecular electronic structure: Full coupled-cluster reduction with a second-order perturbative correction," J. Phys. Chem. Lett. 11, 9775–9780 (2020).
- ³¹I. Magoulas, K. Gururangan, P. Piecuch, J. E. Deustua, and J. Shen, "Is externally corrected coupled cluster always better than the underlying truncated configuration interaction?" J. Chem. Theory Comput. **17**, 4006–4027 (2021).

- ³²G. Karthik, D. J. Emiliano, S. Jun, and P. Piotr, "High-level coupled-cluster energetics by merging moment expansions with selected configuration interaction," J. Chem. Phys. **155**, 174114 (2021).
- ³³P.-F. Loos, Y. Damour, and A. Scemama, "The performance of cipsi on the ground state electronic energy of benzene," J. Chem. Phys. **153**, 176101 (2020).
- ³⁴M. Caffarel, T. Applencourt, E. Giner, and A. Scemama, "Communication: Toward an improved control of the fixed-node error in quantum monte carlo: The case of the water molecule," J. Chem. Phys. **144**, 151103 (2016).
- ³⁵A. A. Holmes, C. J. Umrigar, and S. Sharma, "Excited states using semistochastic heat-bath configuration interaction," J. Chem. Phys. **147**, 164111 (2017).
- ³⁶A. D. Chien, A. A. Holmes, M. Otten, C. J. Umrigar, S. Sharma, and P. M. Zimmerman, "Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction," J. Phys. Chem. A **122**, 2714–2722 (2018).
- ³⁷P. F. Loos, A. Scemama, A. Blondel, Y. Garniron, M. Caffarel, and D. Jacquemin, "A mountaineering strategy to excited states: Highly-accurate reference energies and benchmarks," J. Chem. Theory Comput. 14, 4360 (2018).
- ³⁸P.-F. Loos, M. Boggio-Pasqua, A. Scemama, M. Caffarel, and D. Jacquemin, "Reference energies for double excitations," J. Chem. Theory Comput. **15**, 1939–1956 (2019).
- ³⁹P. F. Loos, F. Lipparini, M. Boggio-Pasqua, A. Scemama, and D. Jacquemin, "A mountaineering strategy to excited states: Highly-accurate energies and benchmarks for medium sized molecules," J. Chem. Theory Comput. 16, 1711–1741 (2020).
- ⁴⁰M. Véril, A. Scemama, M. Caffarel, F. Lipparini, M. Boggio-Pasqua, D. Jacquemin, and P.-F. Loos, "Questdb: A database of highly accurate excitation energies for the electronic structure community," WIRES Comput. Mol. Sci. **11**, e1517.
- ⁴¹M. Caffarel, T. Applencourt, E. Giner, and A. Scemama, "Using CIPSI Nodes in Diffusion Monte Carlo," in *Recent Progress in Quantum Monte Carlo* (2016) Chap. 2, pp. 15–46.
- ⁴²Y. Garniron, A. Scemama, P.-F. Loos, and M. Caffarel, "Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory," J. Chem. Phys. **147**, 034101 (2017).
- ⁴³Y. Garniron, A. Scemama, E. Giner, M. Caffarel, and P. F. Loos, "Selected configuration interaction dressed by perturbation," J. Chem. Phys. **149**, 064103 (2018).
- ⁴⁴Y. Garniron, K. Gasperich, T. Applencourt, A. Benali, A. Ferté, J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David, J. P. Malrieu, M. Véril, M. Caffarel, P. F. Loos, E. Giner, and A. Scemama, "Quantum package 2.0: a open-source determinant-driven suite of programs," J. Chem. Theory Comput. **15**, 3591 (2019).
- ⁴⁵Y. Damour, M. Véril, F. Kossoski, M. Caffarel, D. Jacquemin, A. Scemama, and P.-F. Loos, "Accurate full configuration interaction correlation energy estimates for five- and six-membered rings," J. Chem. Phys. 155, 134104 (2021).
- ⁴⁶Y. Damour, R. Quintero-Monsebaiz, M. Caffarel, D. Jacquemin, F. Kossoski, A. Scemama, and P.-F. Loos, "Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality," J. Chem. Theory Comput. **19**, 221–234 (2023).
- ⁴⁷J. B. Schriber and F. A. Evangelista, "Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy," J. Chem. Phys. 144, 161106 (2016).
- ⁴⁸N. M. Tubman, J. Lee, T. Y. Takeshita, M. Head-Gordon, and K. B. Whaley, "A deterministic alternative to the full configuration interaction quantum monte carlo method," J. Chem. Phys. **145**, 044112 (2016).
- ⁴⁹N. M. Tubman, D. S. Levine, D. Hait, M. Head-Gordon, and K. B. Whaley, "An efficient deterministic perturbation theory for selected configuration interaction methods," arXiv (2018), 10.48550/arXiv.1808.02049, 1808.02049.

- ⁵⁰N. M. Tubman, C. D. Freeman, D. S. Levine, D. Hait, M. Head-Gordon, and K. B. Whaley, "Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method," J. Chem. Theory Comput. 16, 2139–2159 (2020).
- ⁵¹A. A. Holmes, N. M. Tubman, and C. J. Umrigar, "Heat-bath configuration interaction: An efficient selected configuration interaction algorithm inspired by heat-bath sampling," J. Chem. Theory Comput. **12**, 3674–3680 (2016).
- ⁵²S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and C. J. Umrigar, "Semistochastic heat-bath configuration interaction method: Selected configuration interaction with semistochastic perturbation theory," J. Chem. Theory Comput. 13, 1595–1604 (2017).
- ⁵³J. E. T. Smith, B. Mussard, A. A. Holmes, and S. Sharma, "Cheap and near exact cassof with large active spaces," J. Chem. Theory Comput. 13, 5468–5478 (2017).
- ⁵⁴J. Li, M. Otten, A. A. Holmes, S. Sharma, and C. J. Umrigar, "Fast semistochastic heat-bath configuration interaction," J. Chem. Phys. **149**, 214110 (2018).
- ⁵⁵Y. Yao, E. Giner, J. Li, J. Toulouse, and C. J. Umrigar, "Almost exact energies for the Gaussian-2 set with the semistochastic heat-bath configuration interaction method," J. Chem. Phys. 153, 124117 (2020).
- ⁵⁶Y. Yao and C. J. Umrigar, "Orbital optimization in selected configuration interaction methods," J. Chem. Theory Comput. 17, 4183–4194 (2021).
- ⁵⁷H. R. Larsson, H. Zhai, C. J. Umrigar, and G. K.-L. Chan, "The Chromium Dimer: Closing a Chapter of Quantum Chemistry," J. Am. Chem. Soc. **144**, 15932–15937 (2022).
- ⁵⁸W. Liu and M. Hoffmann, "Sds: the static–dynamic–static framework for strongly correlated electrons," Theor. Chem. Acc. 133, 1481 (2014).
- ⁵⁹W. Liu and M. R. Hoffmann, "ici: Iterative ci toward full ci," J. Chem. Theory Comput. **12**, 1169–1178 (2016).
- ⁶⁰Y. Lei, W. Liu, and M. R. Hoffmann, "Further development of sdspt2 for strongly correlated electrons," Mol. Phys. **115**, 2696– 2707 (2017).
- ⁶¹N. Zhang, W. Liu, and M. R. Hoffmann, "Iterative configuration interaction with selection," J. Chem. Theory Comput. **16**, 2296– 2316 (2020).

- ⁶²N. Zhang, W. Liu, and M. R. Hoffmann, "Further development of icipt2 for strongly correlated electrons," J. Chem. Theory Comput. 17, 949–964 (2021).
- ⁶³J. P. Coe, "Machine learning configuration interaction," J. Chem. Theory Comput. **14**, 5739–5749 (2018).
- ⁶⁴ J. P. Coe, A. Moreno Carrascosa, M. Simmermacher, A. Kirrander, and M. J. Paterson, "Efficient computation of two-electron reduced density matrices via selected configuration interaction," J. Chem. Theory Comput. 18, 6690–6699 (2022).
- ⁶⁵G. H. Booth, A. J. W. Thom, and A. Alavi, "Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space," J. Chem. Phys. **131**, 054106 (2009).
- ⁶⁶D. Cleland, G. H. Booth, and A. Alavi, "Communications: Survival of the fittest: Accelerating convergence in full configurationinteraction quantum monte carlo," J. Chem. Phys. **132**, 041103 (2010).
- ⁶⁷N. S. Blunt, S. D. Smart, G. H. Booth, and A. Alavi, "An excitedstate approach within full configuration interaction quantum Monte Carlo," J. Chem. Phys. **143**, 134117 (2015).
- ⁶⁸K. Ghanem, A. Y. Lozovoi, and A. Alavi, "Unbiasing the initiator approximation in full configuration interaction quantum monte carlo," J. Chem. Phys. **151**, 224108 (2019).
- ⁶⁹J. E. Deustua, J. Shen, and P. Piecuch, "Converging high-level coupled-cluster energetics by monte carlo sampling and moment expansions," Phys. Rev. Lett. **119**, 223003 (2017).
- ⁷⁰J. E. Deustua, I. Magoulas, J. Shen, and P. Piecuch, "Communication: Approaching ex- act quantum chemistry by cluster analysis of full configuration interaction quan- tum monte carlo wave functions," J. Chem. Phys. **149**, 151101 (2018).
- ⁷¹H. Gao, S. Imamura, A. Kasagi, and E. Yoshida, "Distributed implementation of full configuration interaction for one trillion determinants," J. Chem. Theory Comput. **20**, 1185–1192 (2024).
- ⁷²H. G. A. Burton and P.-F. Loos, "Rationale for the extrapolation procedure in selected configuration interaction," (2024), arXiv:2312.12530 [physics.chem-ph].
- ⁷³D. S. Levine, D. Hait, N. M. Tubman, S. Lehtola, K. B. Whaley, and M. Head-Gordon, "Casscf with extremely large active spaces using the adaptive sampling configuration interaction method," J. Chem. Theory Comput. 16, 2340–2354 (2020).
- ⁷⁴D. A. Matthews, L. Cheng, M. E. Harding, F. Lipparini, S. Stopkowicz, T.-C. Jagau, P. G. Szalay, J. Gauss, and J. F. Stanton, "Coupled-cluster techniques for computational chemistry: The CFOUR program package," J. Chem. Phys. **152**, 214108 (2020).