arXiv:2403.04821v1 [cs.OH] 7 Mar 2024

New algorithms for the simplification of multiple trajectories
under bandwidth constraints

Gilles Dejaegere
Université libre de Bruxelles
Brussels, Belgium
gilles.dejaegere@ulb.be

ABSTRACT

This study introduces time-windowed variations of three estab-
lished trajectory simplification algorithms. These new algorithms
are specifically designed to be used in contexts with bandwidth
limitations. We present the details of these algorithms and high-
light the differences compared to their classical counterparts.

To evaluate their performance, we conduct accuracy assess-
ments for varying sizes of time windows, utilizing two different
datasets and exploring different compression ratios. The accu-
racies of the proposed algorithms are compared with those of
existing methods. Our findings demonstrate that, for larger time
windows, the enhanced version of the bandwidth-constrained
STTRACE outperforms other algorithms, with the bandwidth-
constrained improved version of SQuUIsH also yielding satisfac-
tory results at a lower computational cost. Conversely, for short
time windows, only the bandwidth-constrained version of DEAD
RECKONING remains satisfactory.

1 INTRODUCTION

During the last decades, the rapid proliferation of mobile devices
equipped with tracking capabilities has led to a surge in the pro-
duction of spatio-temporal data. This can be observed across
diverse types of geolocation data sources [14]. Democratization
of mobile devices, such as smartphones and wearable technolo-
gies, and the spread of Global Positioning System (GPS) equipped
vehicles or Automatic Identification System (AIS) equipped ves-
sels are some example of reasons for this data explosion. While
the spatio-temporal data offers many exploitation opportunities
(both commercial and research), its increase also causes some
new challenges. One of these challenges is to process this large
amount of data. In 2004, [9] have shown that 100Mb would be nec-
essary to store the localisation of a set of 400 moving objects, with
a frequency of 10 Hz (typical frequency of GPS devices). Bruxelles
Mobilité!, the public administration overseeing mobility-related
infrastructure in the Brussels Capital Region, collects positional
data specifically for heavy-goods vehicles in Brussels. This infor-
mation is primarily utilized to calculate toll charges, represents,
on average, 19 Gigabytes of data accumulated daily [3].

To overcome this difficulty, different compression or simplifi-
cation algorithms have been proposed [1, 7]. One of the most well
known simplification algorithm is the Douglas Peucker (DP) algo-
rithm [4]. This algorithm was initially aimed at line simplification
(without temporal feature). Later, [9] introduced some variations
of the DP algorithm (including the Tor Down TIME RaTIO algo-
rithm (TD-TR)), taking into account the temporal feature of the
locations. Since then, multiple algorithms such as SquisH (and
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its variations) [10, 11], STTRACE [12] or DEAD RECKONING (DR)
[16] have been proposed. The main contribution of this work is
to extend the SouisH, STTRACE and DR algorithms so that they
could be used in contexts where bandwidth limitations apply.
The rest of this paper is divided as follows. First, Section 2 will
provide a definition of compression under bandwidth constraints
as well as a motivation to this problem. Section 3 introduces
three existing trajectory simplification algorithms while variants
of these algorithms for the bandwidth constrained contexts are
described in Section 4. Then, in Section 5, the performances of
these algorithms will be analysed and compared to the existing
algorithms using two different datasets. It will also be shown that
the classical algorithms are not suited for bandwidth constrained
contexts. Finally, Section 6 concludes this work and presents
some further research avenues.

2 COMPRESSION UNDER BANDWIDTH
CONSTRAINTS MOTIVATION

Existing techniques for simplification of trajectories have already
largely been studied. These techniques are generally aimed at
simplifying the trajectories in order to facilitate their exploitation
by machine learning techniques. This is usually performed by
trying to minimize the number of points (position of an object at a
given timestamp) kept without deteriorating the trajectory signif-
icantly. In this work, a different approach will be used. Instead of
trying to minimize the number of points kept, the algorithms in-
troduced in this work will consider some bandwidth constraints.
These constraints are defined as follows. For each period of time,
bandwidth constrained algorithm must respect a predefined limit
on the quantity of points that can be kept. Therefore algorithms
presented in this work are aimed at minimizing the deterioration
of the trajectories during compression without exceeding this
limit on the quantity of points kept, and this, for all time peri-
ods. The size of these periods as well as the number of points
that can be kept are parameters of the compression algorithms.
While bandwidth limitations are mentioned for different con-
texts (vessels tracking [8], animal tracking [6]), the problem of
simplifying trajectories under bandwidth limitation has, to the
best of the authors knowledge, not yet attracted the attention
of the research community. Some existing algorithms (such as
the already mentioned Souisx and STTRACE) provide some so-
lutions to compress trajectories under memory limitations (the
final number of points is a parameter of the methods) but these
are not adapted for bandwidth constrained contexts.

The main use case motivating compression of trajectories
under bandwidth constraints concerns the extension of AIS signal
coverage for maritime monitoring and is detailed in Section 2.1.
Further potential use cases are detailed in Section 2.2.

2.1 Extension of AIS signal coverage

Since 2004, all cargo vessels over 500 GT and all passenger ves-
sels are required to be equipped with AIS transceivers. These
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transceivers allow automatic exchange of information in between
ships and between ships and coastal stations by broadcasting
positional messages using the Self-Organizing Time Division
Multiple Access (SOTDMA) protocol. The International Telecom-
munication Union (ITU) recommendation defines 2 default com-
munication frequencies: AIS 1 (161.975 MHz) and AIS 2 (162.025
MHz) [13].

While AIS data has initially been developed for collision avoid-
ance, since then, it has vastly been used by maritime authorities
to monitor vessels’ behavior and identify illegal activities. The
frequencies and the use of SOTDMA protocol imposed by the
ITU however limit both the range of communication and the
bandwidth available. One vastly used solution to increase the
range for which vessels could be monitored from coastal stations
is satellite AIS. Satellite AIS involves the use of satellites to re-
ceive and relay AIS signals from the ships to the stations. Another
possible solution which does not require the use of satellites is
mentioned in [5]. It consists in allowing ships to repeat some of
the broadcasted signals that they receive from each other, acting
as an "AlS-repeater”. Such a solution however would come at
the cost of an increase in the size of data transmission, which,
if applied naively, might exceed the available bandwidth. For
this reason, compression techniques adapted to bandwidth con-
straints should be developed.

2.2 Objects tracking over the Internet of
Things

Another family of use cases where trajectory compression under
bandwidth constraints might be beneficial could be the tracking
of objects over the Internet of Things (IoT). By design, many IoT
devices have limited capabilities (battery, bandwidth, ...). Object
tracking devices with such limitations could need to compress
the trajectories before communicating them to other devices.
For such devices, compression is not aimed at but a technical
necessity. In this situation bandwidth constrained compression
algorithms would offer the necessary compression while min-
imizing the deterioration of the trajectories. Many situations
could be considered. Some examples are given as follows:

Animal tracking: Animal tracking is more and more used
by private pet owners, live stock owners and by scientists.
For the latter, compressing animals’ trajectories under
bandwidth constraints might be necessary to study ani-
mals’ behaviors in remote locations where communication
capabilities are inherently constrained.

Autonomous fleets: with the recent development of smart
cities and autonomous vehicles, the amount of positional
information generated is always increasing. Combined
with the additional information exchange required in such
smart-cities, the monitoring of the trajectories of fleets of
autonomous vehicles might therefore benefit from band-
width constrained compression.

3 EXISTING ALGORITHMS

In this section, 3 existing algorithms which can be adapted in
bandwidth constraint scenarios will be introduced. For all these
algorithms, we will consider n entities (or targets) for which the
position on earth is tracked over time. For each entity [, its actual
continuous movement over time will be called its real trajectory
and denoted by 7]. In practice, this continuous trajectory will
be measured at discrete timestamps leading to the generation

of the trajectory of /, denoted t; as a time ordered sequence of
measurements of I’s position.

The main purpose of the algorithms will be to compress (or
simplify) the n trajectories into n samples (denoted s; with [ €
{1, ...n}). In this work, we will only consider compression tech-
niques such that the sample s; obtained by compressing f; is
composed of a subset of the points of t; (still ordered by their
timestamps).

In addition for being important algorithms in the trajectory
compression literature, these three algorithms have been chosen
for the following reason. Both Souisa and STTRACE are designed
to compress trajectories to a predetermined target size which
inherently makes them suitable candidates to be adapted in a
bandwidth constrained context. DR, on the other hand, is inher-
ently designed to be applied in real time and will be modified in
order to be able to respect bandwidth limitations.

Hereunder, the three classical algorithms will be introduced.
For simplicity purposes, SQuisH and STTRACE will be illustrated
with a priority queue. It should be noted however that this is
done to simplify the algorithms description and that the priority
queue is not an inherent characteristic of the methods. Indeed,
both methods could be implemented more efficiently without it.

3.1 SquisH

The SquisH algorithm has initially been presented in [10]. Since
then, several improvements have been proposed, such as the
SouisH-E method presented in [11]. It works by compressing each
trajectory individually. It will therefore receive as input a single
trajectory. Each point p in this trajectory will be a tuple composed
of (p.x, p.y, p.ts) with p.x and p.y being its coordinates and p.ts
being the timestamp associated to p. Furthermore, the algorithm
will associate to each point a dynamic priority p.priority which
will depend on the current state of the sample s representing
the trajectory. The main steps of the algorithm are described in
Algorithm 1.

Algorithm 1 Pseudocode of the SquisH algorithm

Input: trajectory ¢, sample size M;
1: s = empty list of points
2: Q = empty priority queue
3:

4 for pint do

5 p.priority = co

6:  s.append(p)

7:  compute_priority(s[—2], s) // s[-2] is the
previous point

8 Q.add(p)

9:  if Q.size() > M; then

10: drop_point_update_priorities(Q, s)

11:  endif

12: end for

13: return s // or Q

The priority of a point in the sample (line 7) is computed as
the Synchronized Euclidian Distance (SED) error introduced in
the sample by removing this point. The SED of a point x with
respect to points a and b such that:

a.ts < x.ts < b.ts (1)

represents the distance between the point x and its projection
x" which is the position the entity would have at time x.ts if



it was moving at constant speed between a and b. Therefore,
SED(a, x, b) be computed as follows:

SED(a, x,b) = dist(x, pos(a, b, x.ts)) (2)

with the distance between two points being computed as their
euclidian distance:

dist(a,b) = y/(ax - b.x)? + (ay - b.y)? 3)

and with the position at a specific time time € [a.ts, b.ts] (ac-
cording to a segment between the two other points a and b) being
defined by:

(b.x —a.x)
b.ts—a.ts
(by—ay)
b.ts —a.ts
The priority of a point at the position / in a sample s of size k is
computed as follows:

compute_priority(s[l],s) = SED(s[l —1],s[I],s[I +1])
Vi=1,.,k-1

pos(a, b, time).x = a.x + X (time — a.ts)  (4)

pos(a, b, time).y = a.y + X (time — a.ts)  (5)

With the priorities of s[0] = s[k] = co as the first and the last
point of the sample will always be kept.

When a new point is added to the sample, the size of the pri-
ority queue might exceed the maximum allowed buffer size. In
this case, the point with the lowest priority should be dropped
(both from the sample and from priority queue) (see line 10).
Once a point is dropped, the priority of the "neighbors" of this
point should be updated. In order not to recompute the priority
of the points, SQuisH works by increasing the priority of the
neighboring points by the priority of the point dropped. By de-
noting s the sample before the dropping of the point s[I] and s’
the sample after the removal, the priorities of the points which
were neighboring s[!] will be computed as follows:

s"[1 — 1].priority = s[l — 1].priority + s[l].priority ~ (7)
s"[1].priority = s[l + 1].priority + s[l].priority  (8)

It should be noted that the point following s[I] has the index [ +1
in s while it has the index [ in s’ due to the removal of s[[]. Once
the priority of these two points is recomputed, their positions in
the priority queue are adapted as well.

It is important to keep in mind that for SQuisH as well as for
all all other algorithms presented in this work, when a point is
dropped, it is dropped both from the priority queue and from the
sample it belongs to.

3.2 STTRrACE

The STTRACE algorithm was initially presented in [12]. Its pseu-
docode is presented in Algorithm 2.

It is very similar to SQuisH except the three following differ-
ences:

line 4: It compresses the different trajectories simultane-
ously (the n trajectories are contained into a single stream
of points S7°). Each point p of the stream will be a tuple
composed of (p.id, p.x, p.y, p.ts) with p.id being the index
of the trajectory t,, ;4 it belongs to, p.x and p.y being its
coordinates and p.ts being the timestamp associated to p.
Furthermore, it operates in an unbalanced way;, i.e. after
simplification, samples representing more complicated
trajectories will be composed of more points than samples
representing more simple ones. This result is obtained by

Algorithm 2 Pseudocode of the STTRACE algorithm

Input: Stream ST, maximal buffer size Mn
1: S = matrix of | empty lists
2: Q = empty priority queue

3:
4 for pin 87 do

5. s=S[pid]

6:  if interesting(p, s, Q) then

7: p-priority = oo

8: s.append(p)

9: compute_priority(s, s[—2])

10: Q.add(p)

11: if Q.size() > M; then

12: drop_point_recompute_priorities(Q, S)
13: end if

14:  endif

15: end for

// or Q

16: return S

maintaining a single priority queue for all the points of
the different trajectories.

line 12: When one point x is dropped from the priority
queue and from the concerned sample S[x.id] (note that
the sample S[x.id] is generally not the same sample as
the sample in which the last point was added), the priori-
ties of the neighboring points of x in the sample S[x.id]
will not be updated using an heuristic approach such as
in SquisH. Instead, when removing a point s[I] from the
sample s, both the priority of s[I — 1] will be recomputed
as SED(s[l-2],s[l—1],s[I+1]) and the priority of s[[+1]
will be recomputed as SED(s[I — 1], s[I + 1], s[] + 2]).

line 6: Before adding the next point p inasample s = S[p.id],
it will first check whether this point seems promising. This
is performed by computing what the priority of the last
point in s would be if p was added to s
SED(s[—-2],s[—1], p). If this potential priority is lower
than the lowest priority in the priority queue, then point
p is not added to the sample.

3.3 DR

The DR algorithm has been initially presented in [16]. It has
the particularity of being inherently designed for real-time ap-
plications. The main idea is that when a point p is considered
to be added to the sample s, the deviation between p and the
expected position according to the last points of s at the time
p-ts will be computed. If this deviation is larger than a defined
threshold, then p is added to the sample s. The pseudocode for
the DR algorithm is provided in Algorithm 3

The estimated position (line 4) can be computed in two differ-
ent ways according to the information contained in the stream
of points. If each point p of the stream is composed of
(p.id, p.x, p.y, p.ts) (which is also the information required by
the SquisH and STTRACE algorithms), then the expected position
will be computed as if the object was travelling with constant
direction and speed from s[—1] (with the direction and the speed
being computed according to the straight line between s[—2] and



Algorithm 3 Pseudocode of the DR algorithm

Input: Stream ST, deviation threshold e
1: S = matrix of | empty lists
2: for pin 87 do
3 s=S[pid]

4 p’ = estimate_position(s, p.ts)
5. if dist(p’, p) > € then

6: s.append(p)

7. end if

8. end for

9: return S

s[-1]):
;o (s[-1].x = s[-2].x)
plx=s[-1]x+ S=1].05 —s[=2].0s X (p.ts —s[-1].ts) (9)
ply=s[-1]y+ (s1=1)y = s[=21.y) X (p.ts — s[-1].ts) (10)

s[—1].ts — s[-2].ts

In some cases (such as in the AIS data), each point p in the
stream contains some information with respect to its speed and
direction of the moving object. Each point p is then composed of
(p.id, p.x, p.y, p.ts, p.sog, p.cog) with p.sog and p.cog represent-
ing respectively the speed over ground and course over ground
of the entity. Then this additional information can be used to
compute the estimated position p’ of p:

p’.x =s[—1].x + cos(s[—1].cog) x s[—1].s0g X (p.ts — s[—1].ts)
(11)

P’y =s[-1].y +sin(s[-1].cog) x s[~1].s0g X (p.ts — s[—1].ts)
(12)

4 BWC VARIANTS

While the previous section consisted in an introduction of dif-
ferent existing compression techniques, this section consists in
the introduction of BandWidth-Constrained (BWC) variants of
the existing algorithms. Four variants will be analysed in this
work: BWC-STTRACE, BWC-STTRAcCE-IMmp, BWC-Souisua, BWC-
DR. All of them share the main idea of extending their respective
existing algorithm in a time windowed manner. However some
slight adaptations have to be performed for the BWC-Squisu and
BWC-DR algorithms. Furthermore, the time windowed constraint
also gives us the opportunity of proposing “improvement" of the
BWC-STTRACE algorithm (which is denoted BWC-STTRACE-ImP).
The modifications necessary for these three algorithms will be
developed hereunder.

For simplicity purposes, the bandwidth will be considered as a
constant parameter in all the algorithms. This means that for each
time window, the same number of points will be kept. However,
in practice, nothing prevents the algorithms of being used with
an array of bandwidths for each different time window or in a
more dynamic way by adapting the bandwidth according to the
real time congestion of the network.

4.1 BWC-SouisH and BWC-STTRACE

The BWC-STTRACE method is simply the modification of the
STTraACE method applied on every time window, with the partic-
ularity that points kept in the sample of previous time windows
can be used to compute the priority of points in the current time
window. The priority of points in BWC-STTRACE is identically
computed as in the original STTRACE method. The bandwidth

constrains are respected by flushing and re-initializing the pri-
ority queue after each time window. A similar approach is used
for the BWC-SquisH algorithm. One of the characteristics of the
SouisH method, is that the numbers of points kept in the sim-
plification of the trajectories have to be determined beforehand.
However, the repartition of the number of points that should be
kept for each trajectory individually in each time window is not
straight forward. For this reason, the BWC-SquisH algorithm is
an “STTRACE inspired" modification of the SQuisH algorithm as
instead of compressing the trajectories individually, a single pri-
ority queue of limited size is shared for all trajectories. Such as for
BWC-STTRACE , the priority of points in BWC-SQuisH is identi-
cally computed as in the original Souisa method. The pseudocode
for the algorithms fo BWC-STTRACE and BWC-SquisH are iden-
tical and are shown in Algorithm 4. While the pseudocodes are
identical, it is important to remember that both methods still
compute the priorities differently.

Algorithm 4 Pseudocode of the BWC-Squisa , BWC-STTRACE
and BWC-STTRAcE-Imp algorithms. Underlined parts are the
addition required for BWC-STTRACE-IMP .

Input: Stream ST, window limit bw, window duration J, start
time start, precision €
: S = matrix of [ empty lists

1

2: T = matrix of [ empty lists

3: Q = empty priority queue

4: window_end = start + 6

s5: for pin ST do

6: if p.ts > window_end then

7: ﬂush(Q)

8: window_end = window_end + 6
9: endif

10: s, t=S[p.id], T[p.id]

11:  p.priority = oo

12:  s.append(p)

13:  t.append(p)

14:  compute_priority_imp(s[—2], s, t, €)
15 Q.add(p) o
16:  if Q.size() > bw then

17: drop_point_recompute_priorities(Q, S, T, €)
18:  endif

19: end for
20: return

4.2 BWC-STTRrRACE-IMP

The main motivation behind this improvement is that in STTRACE,
the priority of a point is computed using the sample it belongs
to. Therefore, this priority is computed independently of the
previously removed points. While the removal of a single point
with a small priority will lead to a slight deviation in the sam-
ple, significant deviations can result of successively removing
such points. The pseudocode of BWC-STTRACE-IMP is detailed
in Algorithm 4.

The priority of a point in a sample is therefore computed as
follows. Instead of computing the SED error introduced in the
sample when removing the concerned point, BWC-STTRACE-ImP
computes the difference between the SED error of the sample with
respect to the initial trajectory with and without the considered
point.



This error will be computed according to the distance between
the synchronized position in the trajectory and the position in
corresponding sample at regular time intervals (denoted €). To
compute these positions (in a trajectory or in sample denoted x)
at a specific time ¢, the "neighboring" points should be identified.
These neighbor points will be denoted x; (the first point in x
before time t) and x} (the first point in x after time ¢):

X, = pE€x st
pts <t (13)
ANBgex st pts<qts<t

x;r = peEx st
t < pits (14)
ANBgex st t<qts<pits

By using equations 4, 5 and 14, we will define a function x(t)
providing the position of the entity at time ¢ according to the
sample or trajectory x:

x(t) = pos(x; ,x/,t) (15)
Then, the set of all the timestamps where the errors will be
computed will be denoted W (s[!],s). Indeed, the priority of a
points s[/] will be the sum of all the errors for all timestamps

between s[I — 1].ts and s[I + 1].ts with the step €. W(s[I],s, )
will therefore be denoted:

W(s[l],s,0) = {s[l = 1].ts + ke |
keN* As[l—1].ts+ke <s[l+1].ts} (16)

Finally, the sample that would be obtained by removing the node
s[I] from s will be denoted:

sh=s\s[l] (17)

Using these notations, the priority in the sample s with respect
to an initial trajectory traj of a point s[I] can then be computed
as:

compute_priority_imp(s[l],s, traj, €) =

D (dist(traj(t), s(t))) — dist (traj(1), s_l(t)))) (18)
teW(s[l],s,€)

Once more, such as in STTRACE, when dropping a point from
a sample, the priority of the previous and following points in the
sample will need to be recomputed.

While BWC-STTRAcE-IMp will produce more accurate results,
it is at the cost of a more computationally expensive computation
of the priorities. The computation of the priority of the point s[I]
in STTRACE or BWC-STTRACE requires the computation of one
distance as well as one position (from two existing points and one
timestamp). On the other hand the computation of the priority of
s[l] in BWC-STTRACE-IMP requires the computation of at most
2%5 X 2 distances as well as @ X 3 positions. Indeed, since
s[l — 1] might belong to the previous time window, the duration
between sl — 1] and s[I + 1] is at most 2 X § which leads the set
W (s[l],s, €) to be at most of size @ For every timestamp in
this set, 3 positions (according to the real trajectory, the initial
sample and the simplified sample) as well as 2 distances must be

computed.

4.3 BWC-DR

The DR algorithm has been modified in order to fulfill bandwidth
constrains. This is performed, such as for SQuisH and STTRACE by
the introduction of time windows and a priority queue. Instead

of using the distance between the position of the processed point
with its expected position as a binary criterion to decide whether
to add this point to the corresponding sample or not, this distance
will be used as the priority of the point. Therefore, only the points
which are the furthest of their expected position will be kept in
each time window.

The pseudocode for the BWC-DR algorithm is detailed in
Algorithm 5.

Algorithm 5 Pseudocode of the BWC-DR algorithm.

Input: Stream ST, window limit bw, window duration J, start
time start
1: S = matrix of [ empty lists
2: Q = empty priority queue
3: window_end = start + 6
4
5. for pin ST do

6: if p.ts > window_end then

7 flush(Q)

8: window_end = window_end + 8
9 end if

10.  p’ = estimate_position(s, p.ts)
11:  p.priority = dist(p’, p)
122 s.append(p)

13 Q.add(p)

14 if Q.size() > bw then

15: drop_point_recompute_priorities(Q, S)
16:  end if

17: end for

18: return

Similarly as with Souisa and STTRACE (bandwidth constrained
versions or not), when one point s[!] is dropped from the priority
queue, it is also removed from the corresponding sample. There-
fore, the priorities of some points of s must be recomputed. With
BWC-DR, its is not the priorities of the two neighbors (s[] — 1]
and s[! + 1]) which must be recomputed, but the priorities of the
one or two next nodes (s[I + 1] and s[I + 2]).

5 EMPIRICAL RESULTS

In this section, the performance of the introduced BWC algo-
rithms as well as their classical equivalents and the classical
TD-TR algorithm will be compared. The comparison will be per-
formed on two datasets of different spatial and temporal ranges.

5.1 Datasets

5.1.1 AIS. The first dataset consists of 24h of AIS data in
the region between the cities of Copenhagen and Malmo on first
January 2021 [2]. It is composed of 103 trips totalling 96819 points.
The trips can be seen in Figure 1.

5.1.2  Birds. The second dataset consists of three months of
GPS of black-backed gulls between the 9th of July and the 9th
of October 2021 [15]. It is composed of 45 trips totalling 165244
points. While most of these trips originate from Belgium and
North of France, some are spreading as far as the north of Spain.
Few other trips are also entirely taking place in Spain and one in
Algeria. These trips can be seen in Figure 2.

5.2 Algorithm accuracy

In this section, the accuracy of the different algorithms is com-
puted. In order to asses this accuracy, every algorithm is applied
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Figure 2: Birds trips.

to simplify all initial trajectories. Once these simplifications are
computed, the distance between synchronized projection on the
initial and simplified trajectories are computed at a regular time
interval.

It is important to note that this accuracy evaluation is not
aimed at stating that some compression algorithms are better
than others. Indeed, when selecting a compression algorithm,
different factors have to be taken into account. While the accu-
racy is generally an important factor, other factors such as time
and space complexity should be taken into account. Furthermore
the BWC algorithms are designed to be able to be used in situa-
tions with additional bandwidth constraints. It is not surprising
that the fulfillment of these additional constraints may lead to a
deterioration of the algorithms accuracy.

While the different algorithms require different parameters,
these were determined in order to produce a similar total number
of points in the simplified trajectories produced by the different
algorithms. For each dataset, the algorithms will be assessed with
parameters such that both around 10% and around 30% of the
original points are kept in the simplified trajectories.

The exact value of the parameters for the classical algorithms
are listed hereunder.

SQUISH SQUISH requires the maximal number or points kept
for each individual trajectory. This maximal number of
point as been set to 10% and 30% of the initial points of
each trajectory.

STTRACE STTRACE requires the maximal number or points
kept for for all trajectories. This maximal number of points
has been set to 10% and 30% of all initial points.

DR DR requires a distance threshold. This threshold has
been set to 425 and 115 meters for the ais dataset and has
been set to 2500 and 950 meters for the birds dataset.

TD-TR The TD-TR time algorithm requires a tolerance
threshold. This threshold has been set to 0.15 and 0.051 in
the AIS dataset as well as 16.7 and 1.5 for the Birds dataset.

For each of the classical algorithms, its accuracy (average dis-

tance in meters between the simplified and original trajectories)
can be seen in Table 1.

AlS Birds
10% 30% 10% 30%

SQUISH 20.87  4.83 585.34  44.95
STTRACE 58.66 9.78 1823.10 431.65
DR 42.68 13.12 697.14  46.48
TD-TR 2.95 1.08 274.78 26.87

Table 1: Accuracy of the classical algorithms on the differ-
ent datasets.

As it can be seen from Table 1, TD-TR is outperforming the
other algorithms. This is due to the fact that Souisx, STTRACE
and DR are designed to be less computationally expensive.

The performances of the BWC algorithms on the AIS dataset
can be found in Tables 2 and 3.

window size (min) 120 60 15 5 0.5
points per window 800 400 100 33 4
BWC-Squisn 10.97 10.65 7.35 7.90 130.59
BWC-STTRACE 17.23  12.49 6.25 5.09 81.54
BWC-STTRACE-ImP 1.49 1.53 1.72 4.62 108.39
BWC-DR 65.46 69.55 50.60 48.90 34.81

Table 2: Accuracy of the different BWC algorithms when
simplifying until 10% of the AIS dataset for different sizes
of time windows.

window size (min) 120 60 15 5 0.5
points per window 240 1200 300 100 12
BWC-Squisa 1.82 1.67 1.51 1.32  21.57
BWC-STTRACE 8.87 4.42 2.12 2.34 7.13
BWC-STTrace-Imp 055 0.55 0.56  0.57 14.55
BWC-DR 19.60 19.48 12.15 10.36 9.60

Table 3: Accuracy of the different BWC algorithms when
simplifying until 30% of the AIS dataset for different sizes
of time windows.

Furthermore, we can notive from Tables 2 and 3 that for large
enough windows (between 15 and 120 minutes), BWC-STTRACE-
Imp is outperforming the other BWC and classical algorithms.
This is due to the fact that the priority of the points is evalu-
ated using the sample and the original trajectory. It can also be



noticed that for small time windows, the performances of BWC-
SouisH, BWC-STTRrRACE and BWC-STTRACE-IMP deteriorate. The
deterioration is even drastic for 30 seconds time windows when
keeping 10% of the points. This is due to the fact that these three
algorithms compute the priority of a point according to both
the previous and the next point in the sample. Therefore, for
small time windows, there will generally be less than 2 points per
trajectory in the sample, making the removal of a point arbitrary
and therefore leading to inaccurate simplifications. On the other
hand the performances of BWC-DR are more constant and even
improve for smaller time windows. This is due to the fact that
BWC-DR only makes use of the previous one (or two) points to
compute the priority of the currently processed point. Therefore,
even with small time windows, it will be able to compute the
priorities correctly using points kept during the previous time
windows.

As expected, it can also be noted that the average error of the
improved version of BWC-STTRACE-ImP is indeed smaller than
the one of BWC-STTRACE. Surprisingly however, even BWC-
STTRACE outperforms the classical STTRACE algorithm. One
hypothesis is that this is due to STTRACE both assessing the
priority of points using current simplified trajectory only and
simultaneously comparing different trajectories of different na-
tures. Therefore, trajectories with different sampling frequencies
could be compressed simultaneously. Trajectories with lower fre-
quencies might fill up the priority queue as the priority of a point
which is far apart in time from its neighbors in the sample will
intuitively be higher than the one of a point close to its neighbors.
Restarting with an empty priority queue at frequent time interval
might help mitigate this phenomenon. SQuUIsH on the other hand,
does not seem to suffer from this drawback. This might be due
to their heuristic which counterbalance this effect by adding the
priorities of points deleted from the sample.

The performances of the BWC algorithms on the Birds dataset
can be found in Tables 4 and 5.

window size (days) 31 7 1 1/4 1/24
points per window 5580 1260 180 45 8
BWC-SquisH 777 939 884 1061 3615
BWC-STTRACE 2780 2651 1144 1277 3096
BWC-STTRACE-ImP 273 382 497 749 3437
BWC-DR 1997 1752 1677 1421 1314

Table 4: Accuracy of the different BWC algorithms when
simplifying until 10% of the Birds dataset for different sizes
of time windows.

window size (days) 31 7 1 1/4 1/24
points per window 16740 3780 540 135 22
BWC-Squisn 77 104 108 126 4882
BWC-STTRACE 1245 707 245 247 6828
BWC-STTRACE-ImP 32 50 60 77 4706
BWC-DR 570 605 623 465 554

Table 5: Accuracy of the different BWC algorithms when
simplifying until 30% of the Birds dataset for different sizes
of time windows.

Similar observations can be seen in Tables 4 and 5 for the Birds
dataset as for the AIS dataset. Surprisingly, it can be seen that
increasing the bandwidth from 8 to 22 points for the 1 hour time
window lead to worse results for BWC-Sguisa, BWC-STTRACE
and BWC-STTRACE-IMP. This confirms the arbitrary simplifica-
tion performed by these algorithms if there are not enough points
for each trip in each time window.

5.3 Points distribution

In this section, the time repartition of points conserved with
classical compression algorithms will be illustrated. This will
be done by compressing the AIS dataset to 10% of its original
size and by analysing the time repartition of the points kept for
each period of 15 minutes. It will be shown that these algorithms
do not produce an homogeneous time-partitioned results. In
this configuration, 100 points should be kept in each period in
order to satisfy the bandwidth constrain. The time repartition
of simplified points for the TD-TR, SouisH, STTRACE and DR
are illustrated in Figures 3, 4, 5 and 6. These figures consist in
histograms representing the number of points remaining in all
simplified trajectories during each period.

Number

Figure 3: Histogram of the quantity of points in different
time-windows in samples obtained with TD-TR.

Figure 4: Histogram of the quantity of points in different
time-windows in samples obtained with SQuisH.

In each figure, the limit of 100 points is indicated with the
blue dotted line. These figures confirm the need of using different
compression techniques in context with bandwidth constrains.
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Figure 6: Histogram of the quantity of points in different
time-windows in samples obtained with DR.

6 CONCLUSION

In this work, four variations of existing algorithms for the sim-
plification of trajectories have been introduced. These variations
are aimed at being used in a situation with bandwidth limitations.
The performances of the four algorithms have been studied for
different sizes of time windows for two different datasets and
for different compression rates. While the more computationally
intensive BWC-STTRACE-IMP outperforms the other algorithms
for the larger time windows, the performances of BWC-DR re-
main more stable with small time windows. Finally, the modified
BWC-SquisH provides satisfying results at a lower computational
cost.

Several further improvements could still be considered. First
of all, this work extends three well known algorithms to a time
windowed context. Different algorithms might also be considered
for such an extension. Furthermore, the presented algorithms
could be further optimized. For instance the transition between
time windows for the BWC-SouisH as well as BWC-STTRACE
and BWC-STTRACE-IMP could be improved. Indeed, actually, all
the last points of a trajectory in a window are assigned an infinity
priority as there is no information accessible within the window
with respect to the next points. This is probably the main rea-
son why BWC-Souisa , BWC-STTrRACE and BWC-STTRACE-ImP
perform so poorly when the number of points kept in a time
window is low compared to the number of trips. The priority of

these last points could therefore be computed during the next
time window, leading hopefully to more accurate results. The
DR algorithm could also be modified in a different manner to
satisfy bandwidth constrains instead of using a time-windowed
approach with a priority queue. For instance, the distance thresh-
old could be modified in real time by the algorithm according to
the number of points in the sample at a given time.
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