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In view to scrutinize the idea that nonlocal modifications of General Relativity could dynamically
address the dark energy problem, we investigate the evolution of the Universe at infrared scales as an
Infinite Derivative Gravity model of the Ricci scalar, without introducing the cosmological constant
Λ or any scalar field. The accelerated expansion of the late Universe is shown to be compatible
with the emergence of nonlocal gravitational effects at sufficiently low energies. A technique for
circumventing the mathematical complexity of the nonlocal cosmological equations is developed
and, after drawing a connection with the Starobinsky gravity, verifiable predictions are considered,
like a possible decreasing in the strength of the effective gravitational constant. In conclusion, the
emergence of nonlocal gravity corrections at given scales could be an efficient mechanism to address
the dark energy problem.

I. INTRODUCTION

There are many experimental and observational evidences that General Relativity, assumed as the fundamental
theory of gravity, is valid at several energy scales. However, despite the enormous success of the Einstein picture, it
lacks in describing the whole cosmic history when stretched to ultraviolet (UV) and infrared (IR) regimes. These
shortcomings can be related to the emergence of tensions in cosmological parameters [1].

The issues for the validity of General Relativity at UV scales are well known: in fact, the Quantum Field Theory
applied to gravity yields incurable divergences beyond the second loop order of renormalization [2], implying the
impossibility of a self-consistent quantum description of the gravitational interaction. Nevertheless, the interest to
describe General Relativity at UV scales has not waned, in spite of the fact that a fully-fledged theory of Quantum
Gravity is not available yet. From a cosmological point of view, the most active areas of research in this direction
include Cosmic Inflation [3–7] and Quantum Cosmology [8–11].

At astrophysical scales, the predictions of General Relativity are greatly successful in giving accurate descriptions of
compact objects, like neutron stars and black holes, addressing solar system dynamics, and also the cosmic evolution
of radiation- and matter-dominated eras. However, also at the IR regime General Relativity suffers some severe
shortcomings, which lead to the introduction of dark matter and dark energy that, up to now, have no definitive
counterparts at fundamental particle level. The latter is the appellative of some unknown source of energy driving
the accelerated expansion of the Universe in the current cosmological era. In order to describe the observed rate of
expansion, it seems that such energy density – which comprises almost 70% of the energy content of the Universe
[12] – should possess two main features: it should be constant and it should exert a negative pressure. Since, to date,
these features cannot be ascribed to any known (and detected) particle, the easiest way to embed a description of
dark energy into the Standard Model of Cosmology is to resort to the addition of a cosmological constant Λ into the
Einstein field equations of General Relativity.

Despite appearing a very simple explanation, the introduction of the cosmological constant term raises a few
important questions. First of all, there is an issue with understanding the physical source of this energy as well as its
observed value; in particular, attempts to link it to the energy density of vacuum produce theoretical expectations
which exceed observational limits by more or less 120 orders of magnitude [13]. Secondly, it might be the case that
General Relativity should be, in some way, “extended” for accounting of cosmological dynamics at IR and UV scales
[13–22].

For the above reasons, last decades have seen a surge of interest in modifications of General Relativity in view to
change and improve the IR behavior, while retaining successes achieved at other scales [23]. Among these approaches,
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with the goal of improving the gravitational interaction with quantum corrections, nonlocal theories of gravity
represent a class of theories where various nonlocal operators are added to the Einstein–Hilbert action assuming
that such corrections arise naturally as quantum loop effects. More specifically, Infinite Derivative Gravity theories
adopt transcendental functions of the covariant d’Alembert operator □ (or its inverse □−1), thus introducing infinite
derivative or integral operators respectively into dynamics. The former family of theories provides regular black hole
and Big Bang solutions [24–28, 47–50] as well as renormalizable and unitary Quantum Gravity models [29–33], while
the latter set of theories has been conceived mainly for an alternative description of the accelerated cosmic expansion,
possibly shedding light on a deeper understanding of the cosmological constant problem [37–46]. The most general
action for ghost-free theories of gravity has been considered in Ref. [34]. Nonlocal massive gravity has been considered
in [35, 36].

An important test for such theories could be selecting further polarizations in gravitational waves as a signature of
nonlocal terms [51–53] or characteristic lengths in the large scale structure. Specifically, the general question that
nonlocality could supply dark matter has been recently discussed in Ref. [54]. In particular, the fact that nonlocal
terms can be related to effective lengths and masses could be the dynamical mechanism giving rise to dark matter at
astrophysical scales as reported in [55] for our Galaxy and in [56, 57] for galaxy clusters.

Specific models of IR modifications of General Relativity have recently been proposed [58–61]. In their approach, an
IR mass scale parameter is introduced by means of nonlocal terms in the action retaining general covariance. Even
though initially this approach was considered as an attempt to construct a consistent Quantum Field Theory of massive
gravity, the modified Einstein field equations can be understood as effective equations of motion emerging from some
more fundamental dynamics.

In this paper, we follow a similar approach trying to build up a model that generates a dynamical mechanism for
dark energy, without introducing the cosmological constant or any scalar field. We look for IR cosmological solutions to
the full equations of motion derived from the nonlocal action presented in [14] and restricted to the quadratic terms in
the Ricci scalar R, i.e. without truncating the action at a given order of the IR mass scale parameter [15]. In doing so,
we explore the effects of IR modifications of General Relativity stemming from Infinite Derivative Gravity as indicated
by an action containing an infinite number of nonlocal operators □−1, laying emphasis on the cosmic expansion of the
late Universe.

The paper is organised as follows. In Sec. II, we define the nonlocal gravitational action and derive its corresponding
equations of motion. In Sec. III, we outline a way to simplify the cosmological equations and present an approximate
IR solution. Finally, we discuss the cosmological solution in Sec. IV and investigate whether it is possible to produce
testable predictions of late accelerated expansion (i.e. dark energy) in terms of nonlocal effects. We draw conclusions
and outline perspectives in Sec. V. Details of calculations are reported in Appendix.

The parameters of the Standard Model of Cosmology are taken from [12]. The adopted metric signature is
(−,+,+,+). We assume c = 1 along the draft.

II. NONLOCAL GRAVITY COSMOLOGY

A. The IR nonlocal action

Considering terms involving the Ricci scalar only, the effective nonlocal gravitational action of Infinite Derivative
Gravity can be expressed as [14]

S =

∫
d4x

√
−g

2
[M2

PR+RF̄1(□)R], (1)

where

F̄1(□) =

∞∑
n=1

f1−n
□−n, f1−n

≡ f̃1−n
M2n, (2)

where f̃1−n are dimensionless constants; MP = 2.44 · 1018 GeV is the reduced Planck mass and M is an IR mass scale.
In the UV limit, M can be neglected with respect to MP and the action reduces to the Einstein–Hilbert action of
General Relativity.

The inverse d’Alembert operator □−1 can be expressed in terms of its Green function as

(□−1j)(x) = fhom(x) +

∫
d4y

√
−g(y)G(x, y)j(y), □xG(x, y) =

1√
−g(x)

δ4(x− y), (3)
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where fhom is some homogeneous solution, i.e. any solution satisfying □fhom(x) = 0. The (retarded) Green function of
the Minkowski spacetime is given by

G(x, y) = G(x− y) = − 1

4π|x⃗− y⃗|
δ(x0 − y0 − |x⃗− y⃗|) . (4)

A solution of the equation □f(x) = j(x), with a vanishing homogeneous solution, is thus1

f(x) = − 1

4π

∫
d4y

√
−g(y)

j(y)

|x⃗− y⃗|
δ(x0 − y0 − |x⃗− y⃗|). (5)

The field equations obtained through the variational principle are [14]

Tµν = M2
PGµν + 2GµνF̄1(□)R+

1

2
gµνRF̄1(□)R− 2(∇µ∇ν − gµν□)F̄1(□)R+Θ1

µν − 1

2
gµν

(
Θ1σ

σ + Θ̄1
)
, (6)

with

Θ1
µν ≡

∞∑
n=1

f1−n

n−1∑
l=0

∇ν□
−l−1R∇µ□

−n+lR, (7a)

Θ̄1 ≡
∞∑

n=1

f1−n

n−1∑
l=0

□−l−1R□−n+l+1R. (7b)

Here Gµν = Rµν − 1
2gµνR is the Einstein tensor. The trace of the field equations is

−M2
PR+ 6□F̄1(□)R−Θ1σ

σ − 2Θ̄1 = T. (8)

The nonlocal action can also be recast in terms of n additional scalar fields ϕn with the definition

ϕn ≡ □−nR, (9)

from which follows that

RF̄1(□)R = R

∞∑
n=1

f1−n□
−nR = R

∞∑
n=1

f1−nϕn; (10)

therefore, this model can be considered as equivalent to a generalised scalar-tensor theory with n classical scalar fields
non-minimally coupled to gravity.

B. Nonlocality in a homogeneous, isotropic and flat Universe

The Friedmann–Lemaître–Robertson–Walker metric describing a homogeneous, isotropic and spatially flat Universe
is given by

gµν = diag
(
−1, a2(t), a2(t), a2(t)

)
, (11)

where a(t) is the scale factor. The expression of the corresponding Ricci scalar is

R = 6
aä+ ȧ2

a2
. (12)

In this metric, when acting upon a function of time only, f(t), the d’Alembert operator and its (retarded) inverse are
given respectively by [37]

(□f)(t) = −a−3∂0[a
3∂0f(t)], (13)

(□−1f)(t) = −
∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)f(t′′). (14)

1 The condition fhom(x) = 0 is needed in order to achieve a generally covariant solution [14].
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Therefore, the expression

(□−1R)(x0) = −
∫ x0

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)R(t′′), (15)

which is given by a double time integral, can be contrasted with the one deriving from the general definition of the
inverse of the d’Alembert operator in the Minkowski spacetime,

(□−1R)(x0) = − 1

4π

∫
d4y a3(y0)

R(y0)

|x⃗− y⃗|
δ(x0 − y0 − |x⃗− y⃗|) = − 1

4π

∫
d3y a3(x0 − |x⃗− y⃗|)R(x0 − |x⃗− y⃗|)

|x⃗− y⃗|
, (16)

which, on the contrary, is given by a triple spatial integral; this insight suggests that, in a cosmological context,
nonlocality can be conceived as the effect of interactions that happen in the same place at different cosmic times, other
than in different positions in space at a given cosmic time.

The cosmological equations follow from the field equations (6) applied to the flat Friedmann–Lemaître–Robertson–
Walker metric (11). Because of the symmetries of this metric, there exist only two independent cosmological equations,
namely the ‘00’-component and the ‘11’-component of (6), which, respectively, describe the time evolution of the
energy density ρ and pressure p of a perfect fluid. These two equations can then be combined by the equation of
state for a perfect fluid, p = wρ. Another cosmological equation is given by the trace of the field equations; it can be
combined with one of these two. A detailed derivation of such integro-differential cosmological equations, i.e. the Eqs.
(A20) and (A21), is provided in Appendix.

III. THE FORMAL LOCALISATION

A. Ansatz for the nonlocal operators

Following Refs. [27, 63], a formal integration of equations of motion can be achieved by imposing

□−1R = r1R+ r2, r1 ̸= 0, (17)

which allows to recast the nonlocal operators in a local form, where the information about nonlocality is contained in
the parameters r1 and r2. This implies that

□−nR = rn1

(
R+

r2
r1

)
, n > 0, (18)

F̄1(□)R =

∞∑
n=1

f1−n
rn1

(
R+

r2
r1

)
= F̄1(r

−1
1 )

(
R+

r2
r1

)
, F̄1(r

−1
1 ) =

∞∑
n=1

f1−n
rn1 , (19)

so that Eqs. (6) become

Tµν = M2
PGµν+2F̄1(r

−1
1 )Rµν

(
R+

r2
r1

)
−1

2
F̄1(r

−1
1 )gµνR

(
R+

r2
r1

)
−2F̄1(r

−1
1 )(∇µ∇ν−gµν□)R+Θ1

µν−
1

2
gµν

(
Θ1σ

σ +Θ̄1
)
,

(20)
with (see Eqs. (A6)-(A10) in Appendix)

Θ1
µν = δ0µδ

0
νṘ

2
∞∑

n=1

nf1−nr
n+1
1 , (21)

Θ1σ
σ = −Ṙ2

∞∑
n=1

nf1−n
rn+1
1 , (22)

Θ̄1 =

(
R+

r2
r1

)2 ∞∑
n=1

nf1−n
rn1 − r2

r1
F̄1(r

−1
1 )

(
R+

r2
r1

)
. (23)

When applied to the trace Eq. (8), the same ansatz yields

−M2
PR+ 6F̄1(r

−1
1 )□R−Θ1σ

σ − 2Θ̄1 = T. (24)
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Eqs. (20) and (24) allow to simplify the nonlocal cosmological Eqs. (A20) and (A21) respectively as

M2
P

[
2
ä

a
+ (3w + 1)

ȧ2

a2

]
− (3w − 1)F̄1(r

−1
1 )

aä− ȧ2

a2

(
6
aä+ ȧ2

a2
+

r2
r1

)
+ 12F̄1(r

−1
1 )

aä2 − 5ȧ2ä+ 3aȧ
...
a + a2

....
a

a3

− w + 1

2

r2
r1

F̄1(r
−1
1 )

(
6
aä+ ȧ2

a2
+

r2
r1

)
+

[
18(w − 1)r1

(a2
...
a + aȧä− 2ȧ3)2

a6
+

w + 1

2

(
6
aä+ ȧ2

a2
+

r2
r1

)2
] ∞∑

n=1

nf1−n
rn1 = 0

(25)

and

M2
P
aä+ ȧ2

a2
+ 6F̄1(r

−1
1 )

aä2 − 5ȧ2ä+ 3aȧ
...
a + a2

....
a

a3
− r2

3r1
F̄1(r

−1
1 )

(
6
aä+ ȧ2

a2
+

r2
r1

)
−
[
6r1

(a2
...
a + aȧä− 2ȧ3)2

a6
− 1

3

(
6
aä+ ȧ2

a2
+

r2
r1

)2
] ∞∑

n=1

nf1−n
rn1 = −T

6
;

(26)

clearly, no integral operator appears anymore, but still these cosmological equations appear very hard to solve, as they
are fourth order nonlinear differential equations for the scale factor.

In the matter-dominated era, we have w = 0, T = −ρM and ρM = Ωmρca
3
0a

−3, where Ωm = 0.315 is the density
parameter of nonrelativistic matter at the present cosmic time and ρc = 3.66 · 10−47 GeV4 is the critical density of the
Universe, so cosmological Eqs. (25) and (26) become respectively

M2
P

(
2
ä

a
+

ȧ2

a2

)
+ F̄1(r

−1
1 )

aä− ȧ2

a2

(
6
aä+ ȧ2

a2
+

r2
r1

)
+ 12F̄1(r

−1
1 )

aä2 − 5ȧ2ä+ 3aȧ
...
a + a2

....
a

a3

− r2
2r1

F̄1(r
−1
1 )

(
6
aä+ ȧ2

a2
+

r2
r1

)
−

[
18r1

(a2
...
a + aȧä− 2ȧ3)2

a6
− 1

2

(
6
aä+ ȧ2

a2
+

r2
r1

)2
] ∞∑

n=1

nf1−n
rn1 = 0

(27)

and

M2
P
aä+ ȧ2

a2
+ 6F̄1(r

−1
1 )

aä2 − 5ȧ2ä+ 3aȧ
...
a + a2

....
a

a3
− r2

3r1
F̄1(r

−1
1 )

(
6
aä+ ȧ2

a2
+

r2
r1

)
−
[
6r1

(a2
...
a + aȧä− 2ȧ3)2

a6
− 1

3

(
6
aä+ ȧ2

a2
+

r2
r1

)2
] ∞∑

n=1

nf1−n
rn1 =

1

6
Ωmρca

3
0a

−3.

(28)

It is worth noticing that, if the Ricci scalar expression is implicitly assumed into the trace Eq. (24), such an equation
can be recast as a Klein–Gordon equation for R, where the source term is improved by nonlocal curvature contributions
as well:

[
6F̄1(r

−1
1 )□−M2

P
]
R = T − 2r2

r1
F̄1(r

−1
1 )

(
R+

r2
r1

)
−

[
r1Ṙ

2 − 2

(
R+

r2
r1

)2
] ∞∑

n=1

nf1−nr
n
1 . (29)

An important remark is in order here.

B. An approximate IR solution

Even though the ansatz for the nonlocal operators allows to considerably simplify the equations of motion, it partially
alleviates the complexity of the model and, in particular, the peculiarity of nonlocal effects. In fact, not only the
nonlocality contributions are parameterized in r1 and r2, but also the mathematical complexity is shifted to the ansatz
itself: any possible solution of Eqs. (25) and (26) must first satisfy the relation (17) for some values of r1 and r2.
Indeed, the explicit form of the ansatz, in terms of the scale factor a(t), must satisfy a nonlinear integro-differential
equation containing derivatives up to second order as well as a double time integral:

−6

∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ (a2ä+ aȧ2)(t′′) = 6r1
aä+ ȧ2

a2
+ r2, r1 ̸= 0 . (30)
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FIG. 1. The evolution of the scale factor (on the left) and the Hubble parameter normalized with respect to the
Hubble constant (on the right) in the late Universe.

Also this form is quite difficult to be reduced to simple analytic solutions, hence we will search for approximate
solutions still retaining all the information on nonlocal effects from Infinite Derivative Gravity. For example, the
following form of the scale factor can be adopted to implement the technique:

a(t) = āe
λ
2 t2 . (31)

The corresponding Hubble parameter is

H(t) ≡ ȧ

a
= λt. (32)

For λ > 0 this solution represents a possible way to account for the accelerated expansion of late Universe and so, in
the IR limit, this toy model can dynamically describe dark energy.

The free parameters of the model are the IR mass scale M , the parameter λ of the scale factor and the numerical
coefficients f̃1−n

. The IR mass has to be M ∼
√
Λ ∼ H0 for consistency with observations, where Λ = 4.24 ·10−84 GeV2

is the cosmological constant and H0 ≈ 1.44 · 10−42 GeV is the Hubble constant. Since Λ ∼ 10−84 GeV2, this means
that we can assume M ∼ 10−42 GeV.

In the Standard Model of Cosmology, the transition from the matter-dominated to the dark-energy-dominated era
happens at

z∗ = 0.295, a∗ = 0.772, t∗ = 10.3Gyr. (33)

If the model we are considering has to describe dynamically dark energy, then its corrections to Einstein’s General
Relativity should be negligible until t∗ – so that all predictions of the Standard Model of Cosmology remain unaltered
– and, from then on, its effects should become observable, possibly resulting in predictions discriminating from those of
the Standard Model of Cosmology. Since the model does not introduce new matter degrees of freedom, nonrelativistic
matter contributes to the dynamics also for t > t∗, even though its effects are small when compared to the nonlocal
effects: in this case, we can refer to a nonlocal-effects-dominated era. See the plots of Eqs. (31) and (32) in FIG. 1.
The parameter λ can thus be fixed by requiring that the scale factor for the matter-dominated era (a(t) ∝ t2/3) and
that for the subsequent accelerated expansion match at t∗. First of all, by imposing the boundary condition a(t0) = a0,
where t0 = 13.8Gyr is the current age of the Universe, one finds the expression

a(t) = a0e
λ
2 (t2−t20); (34)

then, the matching condition gives

a(t∗) = a0e
λ
2 (t2∗−t20) = a∗ ⇒ λ =

2 ln
(
a0

a∗

)
t20 − t2∗

, (35)

that is λ = 6.14 · 10−3 Gyr−2 = 2.67 · 10−84 GeV2. Therefore, while M2
P ∼ 1037 GeV2 is the UV mass scale, M2 and λ

are both IR mass parameters with M2 ∼ λ ∼ 10−84 GeV2.
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FIG. 2. Comparison of (□−1R)(τ) and its approximation in the time interval τ∗ ≤ τ ≤ τ0.

It is convenient to introduce the dimensionless time parameter τ ≡ λt2, thereby τ(t∗) ≡ τ∗ = 0.651 and τ(t0) ≡ τ0 =
1.17. One finds

R(τ) = 12λτ + 6λ, (36)

(□R)(τ) = −72λ2τ − 24λ2, (37)

(□−1R)(τ) = −τ

[
2 + 2F2

(
1, 1;

3

2
, 2;−3

2
τ

)]
, (38)

where 2F2 is a generalised hypergeometric function. This scale factor does not satisfy exactly the ansatz (17). However,
in the interval τ∗ ≤ τ ≤ τ0, the function 2F2 is slowly-varying in time and thus approximates with its mean value
≈ 2/3. See FIG. 2. It is worth noticing that the relative errors are less than 3%.

As a result, the values of the parameters for which the ansatz (17) is approximately verified are

r1 ≈ − 2

9λ
≡ 1

λ̄
, r2 ≈ 4

3
. (39)

From Eqs. (18) and (19), we see that this result implies

□−nR = λ̄−n(R− 6λ), (40)

F̄1(□)R = (R− 6λ)

∞∑
n=1

f1−n
λ̄−n = (R− 6λ)

∞∑
n=1

f̃1−n

(
M2

λ̄

)n

= F̄1(λ̄)(R− 6λ) , (41)

which we are going to discuss. An important remark is in order at this point. A similar line of attack of the problem
can be adopted also at UV scale. See for example [31, 62].

IV. DARK ENERGY AS A NONLOCAL GRAVITATIONAL EFFECT

Substituting the result (41) into the nonlocal action (1) yields

S =

∫
d4x

√
−g

2

{
[M2

P − 6λF̄1(λ̄)]R+ F̄1(λ̄)R
2
}
. (42)
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This expression shows that, for the particular solution (34), this Infinite Derivative Gravity model represents a
correction to the Starobinsky model, whose action can be expressed as

S =

∫
d4x

√
−g

2
M2

P(R+ αR2). (43)

The nonlocal effects, contained in the dimensionless coefficient F̄1(λ̄), act both as a correction to the gravitational
constant (and therefore to Einstein’s General Relativity) and as a dynamical source for the R2 term of Starobinsky
gravity.

The coefficient F̄1(λ̄) remains to be determined. One possibility is to compute all the coefficients f̃1−n and then add
them up as follows:

F̄1(λ̄) =

∞∑
n=1

f̃1−n

(
M2

λ̄

)n

≈ −2M2

9λ
f̃1−1 +

4M4

81λ2
f̃1−2 −

8M6

729λ3
f̃1−3 +

16M8

6561λ4
f̃1−4 − . . .

≈ −0.0832f̃1−1
+ 0.00693f̃1−2

− 0.000577f̃1−3
+ 0.0000480f̃1−4

− . . . . ,

(44)

where we have retained three significant figures. Substituting Eqs.(34) and (39) into cosmological Eqs. (27) and (28)
gives respectively

M2
Pλ(2 + 3τ) + 48F̄1(λ̄)λ

2(1 + 4τ) + 8λ2τ(8 + 9τ)

∞∑
n=1

nf1−n
λ̄−n = 0 (45)

and

M2
Pλ(1 + 2τ) + 24F̄1(λ̄)λ

2(1 + 4τ) +
16

3
λ2τ(4 + 9τ)

∞∑
n=1

nf1−n
λ̄−n =

1

6
Ωmρce

− 3
2 (τ−τ0). (46)

The last two equations are constraints for the coefficients f̃1−n
. First of all, it must be clarified why these equations

contain the time variable τ , whereas they should constrain some constant quantities; this is the case because the ansatz
(17) is only approximately satisfied, in particular it is satisfied only if a slowly-varying function of time (the generalised
hypergeometric function 2F2) is neglected: as a consequence, also the coefficients f̃1−n

should be some slowly-varying
functions of time, in such a way that they can still be regarded as almost constant during the cosmological era of
interest. Secondly, Eqs. (45) and (46) are two constraints whereby an infinite set of parameters, i.e. the coefficients
f̃1−n

, cannot be completely determined.
A theory with an infinite number of free parameters – that cannot even be predicted – is devoid of physical meaning.

From a practical point of view, it must exist the possibility to reformulate it in an alternative form containing a finite
number of parameters to avoid infinite fine-tunings.2

An approach is to calculate the dimensionless quantity F̄1(λ̄), since the nonlocal corrections can be rewritten in terms
of this function only. It is a power series with unknown coefficients f̃1−n

and base M2

λ̄
. If all of the infinite coefficients

are of the same order of magnitude with alternating signs, it is a Leibniz series implying that F̄1(λ̄) is converging. We
have to consider that

∣∣∣M2

λ̄

∣∣∣ = 2M2

9λ ∼ 1
12 . Secondly, cosmological Eqs. (45) and (46) constitute nonlinear constraints

for F̄1(λ̄) and thus they cannot provide a general closed form for such coefficient.
A different approach to calculate F̄1(λ̄) is not considering coefficients f̃1−n

and going back to the nonlocal action
(42) obtained for the cosmological solution (34). Assuming the Starobinsky gravity (43), one can define

F̄1(λ̄) ≡ M2
Pα, (47)

so that the action (42) can be put into a more concise form:

S =

∫
d4x

√
−g

2
M2

P[(1− 6αλ)R+ αR2]. (48)

2 An example for the occurrence of a similar rationale in Physics is given by physical systems described through the formalism of Statistical
Mechanics.
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The field equations obtained from the variational principle are a straightforward generalisation of those of Starobinsky
gravity, that is:

(1− 6αλ)Gµν + 2α

(
RRµν − 1

4
gµνR

2 + gµν□R−∇µ∇νR

)
= M−2

P Tµν . (49)

Also in this case, we are assuming that the coefficients f̃1−n
are slowly-varying functions of time, which means that the

quantity α can be considered as effectively constant during the cosmological era of interest.
The trace equation of Eqs. (49) is

6α□R− (1− 6αλ)R = M−2
P T. (50)

Substituting expressions (36) and (37), one finds

α =
M−2

P T +R

6(λ+□)R
=

Ωmρc

6M2
Pλ

e−
3
2 (τ−τ0) − 2τ − 1

6λ(10τ + 3)
, (51)

which, when evaluated at the present cosmic time, yields the following result:

α =

Ωmρc

6M2
Pλ

− 2τ0 − 1

6λ(10τ0 + 3)
, (52)

that is α = −1.37 · 1082 GeV-2.3 This implies that

F̄1(λ̄) =
Ωmρc

6λ −M2
P(2τ0 + 1)

6λ(10τ0 + 3)
(53)

and so F̄1(λ̄) = −8.14 · 10118.
Let us discuss this result in view of the nonlocal action (42). The coefficient of the first term, the one proportional to

R, is M2
P − 6λF̄1(λ̄) = 7.26 · 1036 GeV2= 1.22M2

P; in particular, the result F̄1(λ̄) < 0 implies a decrease of the effective
gravitational constant in the current cosmological era, i.e. G → Geff = G/1.22 = 82%G, thereby possibly explaining
dark energy away as the manifestation of nonlocal gravitational effects on cosmological scales. These nonlocal effects
can thus be regarded either as repulsive gravity (in the sense of spacetime curvature) or as negative pressure (in the
sense of matter sources).

The coefficient of the second term, the one proportional to R2, is F̄1(λ̄), whose negative sign could hint at the
presence of ghosts in the theory: that is the case in a Minkowski background [67], but it has yet to be demonstrated in
a curved spacetime as well. Furthermore, in the Starobinsky model, the parameter α corresponds to a mass being
m = 1/

√
−6α, yielding m ∼ 10−42 GeV∼ H0, so the sum of the nonlocal series can be physically interpreted as

proportional to the mass of a (very light) scalar field.

V. DISCUSSION AND CONCLUSIONS

The present analysis shows that it is possible to describe dark energy in the context of Infinite Derivative Gravity,
considered as an effective theory of gravity with nonlocal terms. This represents an alternative picture to the addition
of cosmological constant in General Relativity or to the introduction of some unknown scalar fields. In particular,
the considered phenomenological model provides an accelerated expansion of the late Universe without affecting the
evolution of the previous cosmological eras, as the nonlocal effects are significant only in the IR limit.

Interestingly, the model also predicts a reduction of the effective gravitational constant in the current cosmological
era: therefore, it could be possible that, after the matter-dominated era, the evolution of the Universe is driven by the
emergence of nonlocal gravitational effects, which remain ‘hidden’ until the Universe has cooled enough. See also [15].
This conclusion points out the fact that General Relativity is valid with great accuracy in the energy interval between
the IR limit, set by M , where nonlocal effects become dominant, and the UV limit, set by MP, where quantum effects

3 As a check that α can indeed be considered as almost constant in the cosmological era of interest, we note that the relative error between
its value at τ0 and its value at τ∗ is less than 3%.
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take over. At cosmological scales, results from the JWST and Euclid missions could be indicative in this direction
[64, 65]. The very recent DESI results could be extremely interesting in this perspective [66].

Another important issue is related to the fact that, in our approach, it is natural to recover the Starobinsky model,
improved with non-local corrections. This scenario can produce interesting inflationary regimes. See Refs. [69, 70].
At inflationary epochs, nonlocal effects produce a blue tilted tensor spectrum with small non-Gaussianities [71, 72].
In this perspective, the present late time IR analysis could be useful to realize a straightforward unification between
inflation and dark energy era. This topic will be developed in a forthcoming paper.

Finally, nonlocal terms can be probed by Lunar Laser Ranging results pointing out time-variations of the gravitational
coupling. This approach seems to rule out some nonlocal gravity models as discussed in Ref. [68]. In particular, the
Deser-Woodard models would be not viable while models considering the extraction of the transverse part from the
tensor (□−1Gµν) result dynamically consistent. In the present discussion, we have taken into cosmological scales where
nonlocal terms drive the IR behavior. In future investigations, these models will be tested at Solar System scales with
the aim to achieve a general picture of nonlocal dynamics.

Moreover, one should not overlook that the present analysis indicates that Infinite Derivative Gravity can be
predictive without resorting to a truncation of its infinitely many derivative terms, which play a crucial role for the
quantization of the theory [34]. Besides the applications in the IR limit, the formalism outlined here, as pointed out
above, can be applied also in the UV limit, considering, in particular, the Starobinsky inflation and the primordial
cosmological perturbations.

A general remark is important before concluding the discussion. The effect of having eras in the evolution of the
Universe is intriguing and, very likely, is the key aspect to achieve a whole cosmic history. However, mechanisms similar
to those discussed here can be considered taking into account other extended gravities like f(R) or Gauss-Bonnet
gravity. The general idea is that geometric corrections to General Relativity can trigger the transitions to the various
epochs. Some interesting examples are reported in Refs. [73–75].
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Appendix: Derivation of the nonlocal cosmological equations

Here we provide an in-depth calculation of nonlocal cosmological Eqs. (A20) and (A21). The nonzero components
of the Ricci tensor in the flat Friedmann–Lemaître–Robertson–Walker metric (11) are

R00 = −3
ä

a
, R11 = R22 = R33 = aä+ 2ȧ2. (A1)

Thus, making use of the expression (12) for the Ricci scalar, we have that the ‘00’-component and the ‘11’-component
of the Einstein tensor are given respectively by

G00 = R00 −
1

2
g00R = 3

ȧ2

a2
, G11 = R11 −

1

2
g11R = −2aä− ȧ2. (A2)

The stress-energy tensor for a perfect fluid in the metric (11) is given by

T ν
µ = diag

(
−ρ(t), p(t), p(t), p(t)

)
, (A3)

so its relevant components are

T00 = ρ, T11 = a2p. (A4)
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Furthermore, considering that

F̄1(□)R = 6

∞∑
n=1

f1−n
□−n

(
aä+ ȧ2

a2

)
, (A5)

Θ1
µν = 36δ0µδ

0
ν

∞∑
n=1

f1−n

n−1∑
l=0

∂0□
−l−1

(
aä+ ȧ2

a2

)
∂0□

−n+l

(
aä+ ȧ2

a2

)
, (A6)

Θ1σ
σ = gµνΘ1

µν = −36

∞∑
n=1

f1−n

n−1∑
l=0

∂0□
−l−1

(
aä+ ȧ2

a2

)
∂0□

−n+l

(
aä+ ȧ2

a2

)
, (A7)

Θ̄1 = 36

∞∑
n=1

f1−n

n−1∑
l=0

□−l−1

(
aä+ ȧ2

a2

)
□−n+l+1

(
aä+ ȧ2

a2

)
, (A8)

∂0R = 6
a2

...
a + aȧä− 2ȧ3

a3
, (A9)

□R = −6a−3∂0

(
a3∂0

aä+ ȧ2

a2

)
= −6

aä2 − 5ȧ2ä+ 3aȧ
...
a + a2

....
a

a3
, (A10)

the ‘00’-component and the ‘11’-component of field Eqs. (6) can be rewritten respectively as

T00 = M2
PG00 + 2G00F̄1(□)R+

1

2
g00RF̄1(□)R+Θ1

00 −
1

2
g00

(
Θ1σ

σ + Θ̄1
)
, (A11a)

T11 = M2
PG11 + 2G11F̄1(□)R+

1

2
g11RF̄1(□)R+ 2g11□F̄1(□)R− 1

2
g11

(
Θ1σ

σ + Θ̄1
)

(A11b)

or, more explicitly, as

ρ = 3M2
P
ȧ2

a2
+ 18

(
− ä

a
+

ȧ2

a2

) ∞∑
n=1

f1−n□
−n

(
aä+ ȧ2

a2

)

+ 18

∞∑
n=1

f1−n

n−1∑
l=0

∂0□
−l−1

(
aä+ ȧ2

a2

)
∂0□

−n+l

(
aä+ ȧ2

a2

)
+ 18

∞∑
n=1

f1−n

n−1∑
l=0

□−l−1

(
aä+ ȧ2

a2

)
□−n+l+1

(
aä+ ȧ2

a2

)
(A12)

and

p = −M2
P

(
2
ä

a
+

ȧ2

a2

)
+ 6

[
− ä

a
+

ȧ2

a2
− 2a−3∂0(a

3∂0)

] ∞∑
n=1

f1−n
□−n

(
aä+ ȧ2

a2

)

+ 18

∞∑
n=1

f1−n

n−1∑
l=0

∂0□
−l−1

(
aä+ ȧ2

a2

)
∂0□

−n+l

(
aä+ ȧ2

a2

)
− 18

∞∑
n=1

f1−n

n−1∑
l=0

□−l−1

(
aä+ ȧ2

a2

)
□−n+l+1

(
aä+ ȧ2

a2

)
.

(A13)

Using the equation of state, p = wρ, Eqs. (A12) and (A13) can be combined into a single integro-differential equation
for the scale factor:

M2
P

[
2
ä

a
+ (3w + 1)

ȧ2

a2

]
− 6

[
(3w − 1)

(
ä

a
− ȧ2

a2

)
− 2a−3∂0(a

3∂0)

] ∞∑
n=1

f1−n
□−n

(
aä+ ȧ2

a2

)

+ 18(w − 1)

∞∑
n=1

f1−n

n−1∑
l=0

∂0□
−l−1

(
aä+ ȧ2

a2

)
∂0□

−n+l

(
aä+ ȧ2

a2

)

+ 18(w + 1)

∞∑
n=1

f1−n

n−1∑
l=0

□−l−1

(
aä+ ȧ2

a2

)
□−n+l+1

(
aä+ ȧ2

a2

)
= 0.

(A14)
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Carrying out the same substitutions for trace Eq. (8), one obtains

M2
P
aä+ ȧ2

a2
+ 6a−3∂0(a

3∂0)

∞∑
n=1

f1−n
□−n

(
aä+ ȧ2

a2

)
− 6

∞∑
n=1

f1−n

n−1∑
l=0

∂0□
−l−1

(
aä+ ȧ2

a2

)
∂0□

−n+l

(
aä+ ȧ2

a2

)

+ 12

∞∑
n=1

f1−n

n−1∑
l=0

□−l−1

(
aä+ ȧ2

a2

)
□−n+l+1

(
aä+ ȧ2

a2

)
=

1− 3w

6
ρ.

(A15)

The nonlocal operators appearing in Eqs. (A14) and (A15) can be evaluated as follows:[
□−1

(
aä+ ȧ2

a2

)]
(t) = −

∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ (a2ä+ aȧ2)(t′′), (A16)[
∂0□

−1

(
aä+ ȧ2

a2

)]
(t) =

[
□−1

(
a2

...
a + aȧä− 2ȧ3

a3

)]
(t) = −

∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ (a2
...
a + aȧä− 2ȧ3)(t′′). (A17)

By recursive application of the operator □−1, from Eqs. (A16) and (A17), one finds respectively that[
□−n

(
aä+ ȧ2

a2

)]
(t)

= (−1)n
∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2)

0

dt(2n−1) a−3
(
t(2n−1)

) ∫ t(2n−1)

0

dt(2n) (a2ä+ aȧ2)
(
t(2n)

)
, (A18)[

∂0□
−n

(
aä+ ȧ2

a2

)]
(t) =

[
□−n

(
a2

...
a + aȧä− 2ȧ3

a3

)]
(t)

= (−1)n
∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2)

0

dt(2n−1) a−3
(
t(2n−1)

) ∫ t(2n−1)

0

dt(2n) (a2
...
a + aȧä− 2ȧ3)

(
t(2n)

)
,

(A19)

where both expressions contain 2n time integrals with 2n variables of integration t′, t′′, . . . , t(2n−1), t(2n). Finally,
substituting the results (A18) and (A19) into Eqs. (A14) and (A15) yields

0 = M2
P

[
2
ä

a
+ (3w + 1)

ȧ2

a2

]
− 6

[
(3w − 1)

(
ä

a
− ȧ2

a2

)
− 2a−3∂0(a

3∂0)

]{ ∞∑
n=1

(−1)nf1−n

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2)

0

dt(2n−1) a−3
(
t(2n−1)

) ∫ t(2n−1)

0

dt(2n) (a2ä+ aȧ2)
(
t(2n)

)]}

+ 18(w − 1)

{ ∞∑
n=1

(−1)n+1f1−n

·
n−1∑
l=0

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2l)

0

dt(2l+1) a−3
(
t(2l+1)

) ∫ t(2l+1)

0

dt(2l+2) (a2
...
a + aȧä− 2ȧ3)

(
t(2l+2)

)]

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2l−2)

0

dt(2n−2l−1) a−3
(
t(2n−2l−1)

) ∫ t(2n−2l−1)

0

dt(2n−2l) (a2
...
a + aȧä− 2ȧ3)

(
t(2n−2l)

)]}

+ 18(w + 1)

{ ∞∑
n=1

(−1)n+1f1−n

·
n−1∑
l=0

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2l)

0

dt(2l+1) a−3
(
t(2l+1)

) ∫ t(2l+1)

0

dt(2l+2) (a2ä+ aȧ2)
(
t(2l+2)

)]

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2l−4)

0

dt(2n−2l−3) a−3
(
t(2n−2l−3)

) ∫ t(2n−2l−3)

0

dt(2n−2l−2) (a2ä+ aȧ2)
(
t(2n−2l−2)

)]}
(A20)
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and

1− 3w

6
ρ = M2

P
aä+ ȧ2

a2
+ 6a−3∂0(a

3∂0)

{ ∞∑
n=1

(−1)nf1−n

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2)

0

dt(2n−1) a−3
(
t(2n−1)

) ∫ t(2n−1)

0

dt(2n) (a2ä+ aȧ2)
(
t(2n)

)]}

− 6

{ ∞∑
n=1

(−1)n+1f1−n

·
n−1∑
l=0

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2l)

0

dt(2l+1) a−3
(
t(2l+1)

) ∫ t(2l+1)

0

dt(2l+2) (a2
...
a + aȧä− 2ȧ3)

(
t(2l+2)

)]

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2l−2)

0

dt(2n−2l−1) a−3
(
t(2n−2l−1)

) ∫ t(2n−2l−1)

0

dt(2n−2l) (a2
...
a + aȧä− 2ȧ3)

(
t(2n−2l)

)]}

+ 12

{ ∞∑
n=1

(−1)n+1f1−n

·
n−1∑
l=0

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2l)

0

dt(2l+1) a−3
(
t(2l+1)

) ∫ t(2l+1)

0

dt(2l+2) (a2ä+ aȧ2)
(
t(2l+2)

)]

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2l−4)

0

dt(2n−2l−3) a−3
(
t(2n−2l−3)

) ∫ t(2n−2l−3)

0

dt(2n−2l−2) (a2ä+ aȧ2)
(
t(2n−2l−2)

)]}
.

(A21)

In the matter-dominated era, nonlocal cosmological Eqs. (A20) and (A21) become respectively

0 = M2
P

[
2
ä

a
+ (3w + 1)

ȧ2

a2

]
− 6

[
− ä

a
+

ȧ2

a2
− 2a−3∂0(a

3∂0)

]{ ∞∑
n=1

(−1)nf1−n

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2)

0

dt(2n−1) a−3
(
t(2n−1)

) ∫ t(2n−1)

0

dt(2n) (a2ä+ aȧ2)
(
t(2n)

)]}

− 18

{ ∞∑
n=1

(−1)n+1f1−n

·
n−1∑
l=0

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2l)

0

dt(2l+1) a−3
(
t(2l+1)

) ∫ t(2l+1)

0

dt(2l+2) (a2
...
a + aȧä− 2ȧ3)

(
t(2l+2)

)]

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2l−2)

0

dt(2n−2l−1) a−3
(
t(2n−2l−1)

) ∫ t(2n−2l−1)

0

dt(2n−2l) (a2
...
a + aȧä− 2ȧ3)

(
t(2n−2l)

)]}

+ 18

{ ∞∑
n=1

(−1)n+1f1−n

·
n−1∑
l=0

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2l)

0

dt(2l+1) a−3
(
t(2l+1)

) ∫ t(2l+1)

0

dt(2l+2) (a2ä+ aȧ2)
(
t(2l+2)

)]

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2l−4)

0

dt(2n−2l−3) a−3
(
t(2n−2l−3)

) ∫ t(2n−2l−3)

0

dt(2n−2l−2) (a2ä+ aȧ2)
(
t(2n−2l−2)

)]}
(A22)
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and

1

6
Ωmρca

3
0a

−3 = M2
P
aä+ ȧ2

a2
+ 6a−3∂0(a

3∂0)

{ ∞∑
n=1

(−1)nf1−n

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2)

0

dt(2n−1) a−3
(
t(2n−1)

) ∫ t(2n−1)

0

dt(2n) (a2ä+ aȧ2)
(
t(2n)

)]}

− 6

{ ∞∑
n=1

(−1)n+1f1−n

·
n−1∑
l=0

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2l)

0

dt(2l+1) a−3
(
t(2l+1)

) ∫ t(2l+1)

0

dt(2l+2) (a2
...
a + aȧä− 2ȧ3)

(
t(2l+2)

)]

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2l−2)

0

dt(2n−2l−1) a−3
(
t(2n−2l−1)

) ∫ t(2n−2l−1)

0

dt(2n−2l) (a2
...
a + aȧä− 2ȧ3)

(
t(2n−2l)

)]}

+ 12

{ ∞∑
n=1

(−1)n+1f1−n

·
n−1∑
l=0

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2l)

0

dt(2l+1) a−3
(
t(2l+1)

) ∫ t(2l+1)

0

dt(2l+2) (a2ä+ aȧ2)
(
t(2l+2)

)]

·

[∫ t

0

dt′ a−3(t′)

∫ t′

0

dt′′ a3(t′′)· · ·
∫ t(2n−2l−4)

0

dt(2n−2l−3) a−3
(
t(2n−2l−3)

) ∫ t(2n−2l−3)

0

dt(2n−2l−2) (a2ä+ aȧ2)
(
t(2n−2l−2)

)]}
.
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