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Abstract

We study frequency domain electromagnetic scattering at a bounded, penetrable, and inhomogeneous obstacle  C R3.
From the Stratton-Chu integral representation, we derive a new representation formula when constant reference
coefficients are given for the interior domain. The resulting integral representation contains the usual layer potentials,
but also volume potentials on 2. Then it is possible to follow a single-trace approach to obtain boundary integral
equations perturbed by traces of compact volume integral operators with weakly singular kernels. The coupled
boundary and volume integral equations are discretized with a Galerkin approach with usual Curl-conforming and
Div-conforming finite elements on the boundary and in the volume. Compression techniques and special quadrature
rules for singular integrands are required for an efficient and accurate method. Numerical experiments provide
evidence that our new formulation enjoys promising properties.
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1. Introduction

1.1. Mazwell Transmission Problem

We are interested in solving the frequency domain electromagnetic wave scattering problem in a medium that
is homogeneous outside a bounded region §; C R? (see Figure . We denote the exterior domain €2, = R®\ ;.
Material properties are given by functions e € L>(R?) and p € L (R3) where

e(x)=¢g9, pl@)=po forzxze,, (1)
and emax > () > emin > 0, fmax > 1(2) > fmin > 0 almost everywhere in R3.

The equations governing the problem of finding the total electric field u := u® + u'®® and total magnetic field
v := v° + v'"° in this inhomogeneous medium are

curlu —iwp(z)v =0, curlv +iwe(x)u =0, for x € R?, (2)
inc’ ,Uinc

where u are the incident fields satisfying the vacuum Maxwell’s equations in the whole space,

curl u™® — jwpgv™ =0, curlv™ 4 iweu™ =0, for x € R3, (3)
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Figure 1: Geometric setting. Inhomogeneous material.

and u®, v*® satisfy Silver-Miiller radiation conditions [I9] Chapter 6]
. €T .
lim v® x — — «® = 0, uniformly on r = |z|. (4)
r—00 r

The problem can be formulated as the following transmission problem:

Find u,v € Hyp(curl,R® \ T') such that

curlu — iwpgv =0, curlv + iwegu =0 in Q,,
curlu — iwp(x)v =0, curlv + iwe(x)u = in Q,
’Y;Lu — Ve U = —'Ytuinc, ’YtJr'U — Y U = _’thinc on I, (5)

. T :
lim v X — —u =0, uniformly on r = |z,
r—o00 r

where 7 denotes the exterior/interior tangential trace operators (see Section for details).

1.2. VIEs for electromagnetic scattering

In the general setting, it is possible to formulate volume integral equations (VIEs) to solve the transmission
problem . Depending on the material properties, different formulations can be used [7, B5]. An example is given
next:

Find v € H(div, ;) N H(curl, §2;) such that

u — grad div Ngq, ,, (peu) — H%NQMO (pew) — curl Ng, ., (¢m curlu) = u'ne, (6)

€0

where p.(x) =1 — @) Gm(x) =1— ﬁ, and Ng, ., is the Newton potential over 2; with wavenumber &
(introduced in Section [2.2)).



Variants of @ can be found in [22] 23 35] [7]. The operators involved in these formulations are not compact in
H(curl, Q;) or H(div, ;). Most of the equations include integral operators with strongly singular kernels. Therefore,
Fredholm theory can not be used directly, as the operators underlying the VIEs fail to be compact perturbations of the
identity. Spectral properties of the volume integral operators (VIOs) have been studied, with results in the continuous
setting [22], 23] and numerical experiments for the discrete setting [34]. Well-posedness of their discretizations is not
available for the existing formulations. Galerkin discretizations, although widely used in literature, are not guaranteed
to be stable or converge in appropriate normed spaces. Galerkin methods for second-kind boundary integral equations
in L2(T") fail to converge for every asymptotically dense sequence of subspaces of L?(T") [I3]. An equivalent result for
VIEs remains as an open problem.

1.3. BIFEs for piecewise-constant coefficients

For the particular case of piecewise-constant material properties, BIEs can be used to obtain stable formulations
for the transmission problem. First and second-kind BIEs can be written [12, 17, [I8] 46]. In this article we focus
on the first-kind single-trace formulation (STF) from [I2] Section 7.1], also known in the engineering community as
the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation [I4], 43|, [49]. This formulation can also be
extended to the setting of composite scatterers with piecewise-constant material properties. The STF BIEs for
with piecewise-constant coefficients have the following structure:

Find o € H=/?(curly, T') and 8 € H~'/?(divr,T) such that

inc

(M™'A, M +A,)) (;) - _M! <7t’finc> (7)

VO

in H=Y2(curly, T') x H=Y/2(divp,T), where A, is the Maxwell’s Calderén operator with wavenumber £, (see

Section [2.4)).

For piecewise-constant coefficients, BIEs are arguably the best option as a formulation for the transmission problem.
Solving BIE formulations with the boundary-element method (BEM) offers an accurate and efficient approach. Matrix
compression techniques such as H and H?-matrices [2, [4] significantly reduce the cost of storing and solving the dense
linear systems arising from a BEM discretization.

1.4. FEM-BEM coupling

A widely used approach to the discretization of the transmission problem relies on the coupling of a vol-
ume variational formulation in 2; with boundary integral equations realizing the Dirichlet-to-Neumann map for
Q,. Subsequent Galerkin finite-element discretization leads to schemes known as FEM-BEM coupling. Different
couplings can be obtained depending on the choice of boundary integral equations (BIEs) for the coupling, such as
Johnson-Nédélec [30], Bielak-MacCamy [3] or Costabel-Han approaches [20, 29, 27]. Robust formulations with respect
to the wavenumber have also been studied in [28]. We used solutions produced by FEM-BEM coupling as reference in

Section [5.31

1.5. STF-VIEs

One drawback of the approaches mentioned in sections and is that these methods do not benefit from a
piecewise-constant material. Neither classical VIEs nor FEM-BEM coupled formulations reduce to pure BIEs when
applied in the special case of piecewise-constant coefficients. Our interest is to study an extended formulation based on



boundary and volume integral operators. The approach is similar to [48], and the analysis follows closely the acoustic
scattering analog [32, [33], with a few differences that are particular to Maxwell equations. Similar ideas combining
BIEs and VIEs can also be found in [39] 40} [42]. Starting from the Stratton-Chu integral representation, we derive a
new combined integral representation for the electric and magnetic fields. For the case of piecewise-constant coefficients,
the formulation reduces to the simple case of first-kind BIEs . The volume integral operators can be shown to
be compact, and only supported in the domain of inhomogeneity (i.e. not necessarily the whole domain €2, see Figure.

Localized inhomogeneity Localized inhomogeneity
(a) Region to be meshed for VIEs and FEM. (b) Region to be meshed in our formulation.

Figure 2: Domains for transmission problems with spatially varying coefficients.
The requirements are established in the following assumption.

Assumption 1.1. The following assumptions will be required
1. Q; is a bounded Lipschitz domain with boundary I
2. The parameters are smooth inside ;: e, u € C1(;) N C?(Q;).

3. There are positive constants €min, bmins Emax, Mmax Such that
Emin S s(m) S Emax; Hmin S ,u(m) S Hmax
forall x € Q.

4. Reference coefficients 1, u1 € R are chosen such that pp > 0,61 > 0.

In constrast with the acoustic scattering approach, for Maxwell problems we need different techniques. Problems
are no longer coercive, but T-coercive [16]. Discrete stability now depends on h-uniform inf-sup conditions, equivalent
to Th-coercivity. First order formulations play a central role, due to the symmetry between electric and magnetic
fields. Finally, we observed an interesting problem when discretizing volume integral equations: discrete stability of
duality pairings can not be taken for granted as in the scalar case.The required stability estimates are not readily
available as in the case of H'(Q) and its dual space H ().

1.6. Outline and main results

In Section [2.1] we introduce the preliminaries for the functional setting in which we study our equations. We
present the derivation of the representation formula in Section [2.7] Our new representation formula is written in



Section , and we state the variational formulation in Problem Section

In Section [4] we study the continuous problem using standard techniques: Fredholm theory and T-Coercivity. In
Theorem we establish the well-posedness of Problem

Results about the Galerkin discretization are presented in Section Numerical experiments that validate our
formulation are shown in Section [£.3

List of symbols

Symbol Description Section

o) Material coefficients varying in space Section [I]
c™ Spaces of smooth functions Section 2.1
Cg° Smooth functions vanishing on the boundary Section 2.1
Ceomp Compactly supported smooth functions Section 2.1
H®, Hi,o, Hiomp Scalar Sobolev spaces of order s Section 2.1
H®, Hj,., Hnp Vector Sobolev spaces of order s Section 2.7]
H*(T),B°(T) Scalar /vector Sobolev space of order s on T’ Section 2.1
HY2(T), H™Y2(D) Dual spaces of H/?(') and HY/2(I") Section 27]

v, On, Dirichlet /Neumann/Normal trace operators Section 2.1

Yo Y5 Yn Tangential and normal trace operators Section 2]
H~/2(divp,T) Maxwell Trace space v-(H(curl, Q)) Section 2.7]
H~/2(curlp,T) Maxwell Trace space v(H(curl, 2)) Section 2.1]

Gj Fundamental solution with wavenumber x; Section 2.2] @[)
N;, N; Scalar and vector Newton potential Section 2.2]

No.j, Noj Scalar and vector Newton potential (local) Section 221 (12)),
T;, Dj Maxwell layer potentials with wavenumber x; Section 2.2 ,
Tj’ﬂ Weighted Maxwell single layer potential Section 2.2]
V;, K, K, W; BIOs with wavenumber k; Section 2.4]

A; Calder6n operator Section 2.4]

€1, U1 Constant reference coefficients Section 2.7,

Des P Contrast functions with reference coefficients Section 2.7,

E, b Scaled material coefficients Section [3]

Vj’[‘ , Wf < Weighted BIOs with wavenumber &; Section [B]

Af’ﬂ Weighted Calderén operator Section [3]

A AT B ET Volume integral operators (VIOs)
Je,Jm Operators related to traces of VIOs

Diagonal multiplier

Section Bl
Section [3] (70B)), (70d)
Section [B]
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2. Derivation of VIEs

2.1. Preliminaries: Function spaces and trace operators

Let Q; C R3 be a Lipschitz domain, I' := 9, its Lipschitz boundary with outward unit normal n. We rely on
standard Sobolev spaces H*(2;) of order s > 0. We also denote as H~*(2;) the dual space of H?(;) [36] Section 3].
Spaces of compactly supported (resp. locally integrable) functions will be denoted with a sub-index comp (resp. loc),
as in HS (9;). Sobolev spaces on the boundary I' are denoted as H s+1/2 (T"). They arise naturally as boundary

comp
restrictions of elements of H**1(£2;) by the interior Dirichlet trace operator

— . s+1 s+1/2
v HT(Q) — HUVAD), 0<s<

Y u=ulp, forue C™(Q),

which is a bounded operator [36], Theorem 3.37]. Note that we use boldface symbols to indicate vector-valued functions
and function spaces of vector fields. We define the interior normal (component) trace operator vy, [37, Theorem 3.24]

vo s H(div, Q;) — HY3(T),
You=ulr-n, forue [C®(Q)]?,
where the space H(div, ;) is defined as
H(div, Q;) = {uw e [L*()]? : divu € L*()},
the interior tangential (component) trace operator 44 [I1, Theorem 4.1]
v : H(curl,Q;) — H_1/2(curlp,r)7
Youw=mnx (ulr xn), foruc [C®()?,
and the rotated tangential (component) trace operator v, [11, Theorem 4.1]
~vr : H(curl,Q;) — H_l/g(din,F),
Y= ulr xn, foru € [C®(Q))?,
where the occurring spaces are defined as
H(curl,Q;) == {u € L*(Q;) : curlu € L*(Q,)},
H'(curl, Q) = {u € H'(Q) : curlu € H'(Q,)},
H~Y2(curlp,T) = {u € H‘Tl/z(f‘) s curlpp € H_I/Q(F)} , [11, Theorem 4.1]
{ (T) : divpp € H_1/2(F)} , [11, Theorem 4.1]
Hi/Q(I’) = v (H'()), [IT} Section 2],
H,/?(T") == 7 (H'(€)), [IT, Section 2],

5 / 1 e /
and H %) = [Hlf(r)}  H,VA(T) = [Hﬁ/Q(F)} .
Differential operators on surfaces of Lipschitz domains are defined according to [II], Section 4]. We also need

the isomorphism R : H~'/2(curlp, T) — H~Y2(divy,T) given by Ry = n x w. In particular [IT, Section 2], for



u € H(curl, ©;) we have
Rnu) = —v-u,  R(yru) = yu. (8)
For uw € H(A,Q;), where
H(A Q,) = {U S Hl(Qz) : Au € LQ(QZ)} R

we define the Neumann trace operator 9, as [45, Theorem 2.8.3]

oyt H(A, Q) — H-Y(D),
0,u=gradulp-n, forueC®(Q).

Replacing ©; by Q, == R?\ Q; in the previous definitions, we obtain exterior trace operators: v, v, v, v& and 9,
keeping the normal vector n.
We define jump and average trace operators for elements of H'(R?\ T'), H(div,R?\T) and H(A,R?\ T):

bl={F-v) =507+ )

and similarly for other trace operators. We denote the bilinear inner product in L2(£;) as (u,v)q,. It can be extended
to a duality pairing between H~(Q;) and H'(;). Similarly, we define the bilinear dual product for H'/?(T") and its
dual H~'/%(T'), and denote it as (-,-)r. We denote (p, ), the bilinear duality pairing between H~1/2(curlp, T') and
H~'/2(divp,T).

2.2. Fundamental Solutions and Newton Potential

The fundamental solution for the Helmholtz operator with wavenumber x € R is given by G, € Li (R®) 47,
Section 5.4]:
exp(ir|z — yl)
Ar|z —y|

The Newton potential N, : C2°(R?) — C°°(R3) is the mapping defined by [45] Section 3.1.1]

Gz, y) = ., myeR z£y. (9)

N, f () == / G, ) (w)dy. (10)
R3

The Newton potential can be extended to the following two continuous operators

No : Hyghy (RY) — H} (R?),

comp
N, : L2, (R%) — H2_(R?)

comp loc

and more generally, N, : HS,,. (R®) — HT?(R3) is continuous for s € R [ 45, Theorem. 3.12].
Similarly, by extension by zero followed by restriction to €2;, it is possible to consider the Newton potential in a
bounded domain €2; :

N&L.fz : LQ(Q,L) — H2(Ql),

12
NQ,;,K : Hil(Ql) %Hl(QZ) ( )

We define the scalar single layer potential as [2T, Theorem 1]
S, =N,ov : HY3T)— HL (R®\T), (13)



which for smooth enough densities 1) € L>°(I") has the following integral representations for « ¢ I"

(Suth)(@) = / G, y)(y)ds,. (14)
N

The following theorem [19, Theorem 8.1] is essential for the derivation of volume integral equations for scattering
problems.

Theorem 2.1. The Newton potential defines a solution operator for the Helmholtz equation on R3, i.e. for f €
L2 .. (R®) compactly supported in ;, u = N f satisfies

comp
~Au—r*u=f inR? (15)
and the Sommerfeld radiation conditions.

Both the Newton potential and the single layer potential will also be used with vectorial arguments, for which the
following mapping properties hold.

Proposition 2.2. The Newton potential can be extended to vectorial arguments component-wise. We denote it as
Ngq, «, and it defines a continuous linear operator

No, . : L2(Q;) — H?*(), (16)

[z

and it has the integral representation

No, »(f) = /Gﬁ(w —y)f(y)dy,

Q;

for all f € L%(Q;).
The single layer potential can also be extended to vectorial arguments component-wise. We denote it S, and it defines
a continuous linear operator

S. :HV* () 5 H*(RY), -1<s<i

loc

Proof. We know that the scalar Newton potential satisfies

No, » : L2 (%) — H? (). (17)

In particular, for u € L?(Q;), using component-wise leads to
N, : L2(9;) — H?(Q)). (18)
In a similar way, we know (see [45, Theorem 3.1.16]) that the scalar single-layer potential satisfies
S, HY2T(I) —» HLF(RY), -L<s<i1 (19)

For any ¢ € H™1/2%5 s ¢ (=3, %], using (19) component-wise, we obtain

S, :H V¥ S HITRY), —l<s< 1 (20)



Corollary 2.3. The Newton potential defines a continuous linear operator
No, » : H(curl, ;) — H?*(Q;).
Corollary 2.4. The vector-valued single-layer potential S, defines a continuous linear operator
S. : H Y2(divp,T) — H(curl, ;).

Proof. From Proposition since HL (R3) C Hyge(curl,R3), and H-'/2(divp,T) ¢ H,/*(T) ¢ HV2(T) =
[H~1/2(T)]3, we obtain
S.. : H'/2(divp, T') — Hiee(curl, R®). (21)

O

2.8. Stratton-Chu Representation Formula

We show an integral representation for arbitrary vector fields, which will be useful for the study of Maxwell
solutions [37, Theorem 9.1]

Theorem 2.5 (Stratton-Chu Integral Representation). Let w,v € C2(€;), €4, pix > 0, and ks = w\/lixer. Then the
following integral representations hold

u = curl(Ng, ., (curlu —iwp,v)) + iwp N, «, (curl v + iwe, u)

—grad(Ng, «, (divu)) + curl(Sy, (v-u)) + grad(S,, (1nw)) + iwp. Sy, (v-v),
v = curl(Ng, ,, (curlv + iwe,u)) — iwe, Ng, ., (curlu — iwp,v)

— grad(Ng, «, (divv)) + curl(Sy, (rv)) + grad(Ss, (1nv)) — iwe, Sy, (yru).

We introduce the transmission problem with piecewise-constant coeflicients eg, pig > 0 in Q,, €1, 1 > 0 in Q;.

curlu —iwpgv = 0, curlv +iwegu = 0 in Q,,
curlu —iwpv = fi, curlv +iweiu = fo in €, (23)
Tu—ppu = —ypu Yv—yv = —yv" onT,

. Y .
lim v x — —u =0, uniformly on r = |z|
r—00 r

where fi and fy are in H(div, §2;). For Maxwell solutions, the integral representation takes a different form. If u,v
are solutions of , it is possible to express uw and v in terms of yhu, y4u, v-v. Note that from we have

curlu —iwpv=f1iinQ) = wv= iwlm (curlu — fy) in Q;,
curlv +iweiu=foin Q = wu= iwlal (—curlv + f5) in

and therefore, using the property [L1], Section 4]

vE(curl F) = divp (7 F), for all F € H(curl,R®\ ), (24)



we obtain the following identities in H~/2(T")

_ 1 1 . _ _
Tmu=mn-ulp = ——(-n-curlvfr +n- folr) = — (= divr(v7v) + 75 f2) ,
iwey tweq

1 _ _
Tav=m-vlr = —— (n-curlulr —n- filr) = ——— (ewlr (7 w) = 95 f)

Wity
From Theorem in §; we have (k1 = w,/g1p1) for the solution (u,v) of
u = Curl(NQi,lﬂ (-fl)) + iwﬂlNQi,m (f2) - grad(NQiﬁl (le u))

1
—curl(S,, (Ry; w)) + iwp (/{2 grad(S,, (divp(v;v))) + Sk, ('y;v)) ,
1

+ L grad(S., (g f2)),

1Weq

v = Curl(NQi,lﬂ (fQ)) - iw‘ElNQuKl (.fl) - grad(NQi#ﬂ (diV ’U))

1
ourl(S,, (7 0) + iwer (o Erad(Su urle () + 8, Ry w) )
1

+ grad(Sy, (v, f1))-

Wy

Owing to the vanishing source terms, in €2, we find the representation

1
u = curl(S,, Ry u)) —iwpo (Iig grad (S, (divr (7 v))) + Sk, (Viv)) ,
0

v = — curl(S,, (v v)) — iweg <I32 grad(S,, (curlp(y; u))) + SKO(Ryju)) :
0

(25a)

(25b)

(26a)

(26b)

(27a)

(27b)

Proposition 2.6 (Maxwell Layer Potentials [I2, Theorem 5]). We define the Mazwell single layer potential as

T.B=LgradoS,odivr +S,, forall B € H "/?(divr,T),
which is a continuous linear operator
T, : H'2(divp,T) — H(curl®, Q; UQ,) N H(div0,Q; UQ,).
We also define the Maxwell double layer potential as
D,.a = curlS.(Ra), for all o € HY2(curly, ),
which is a continuous linear operator

D, : H Y%(curlp,T) — H(curl?, Q; UQ,) N H(div0,Q; UQ,).

10

(28)



where
H(curlQ, Q,UQ,) ={ueH(curl,Q; UQ,) : curl’u € L2(Q; UQ,)},
H(div0,2,UQ,) ={ucL*(Q;uQ,) : dive =0}.

Maxwell layer potentials define solutions for the Maxwell’s equations complying with the Silver-Miiller radiation
conditions. Note that

curl 7, = curlS, = —D.R, (32a)
curl D,, = curl®(S.R) = (grad div +x%)S.R. (32b)
The following identity is useful in our computations.
Lemma 2.7 ([I2, Lemma 5)). For 8 € H-Y/2(divy,T') we have div(S,(8)) = S, (divy B) in L2(R?).
From Lemma [2.7] and (32b)) we obtain
curl D, = (grad oS, o divr +x?S, )R = kT R. (33)

The Maxwell layer potentials also satisfy jump relations across a boundary I'. This will be useful when deriving
boundary integral equations from integral representations.

Proposition 2.8 (Jump relations [I2, Theorem 7]). Tangential traces of Mazwell layer potentials are well defined
and satisfy

[l Tx =0, [%]D.=-1I, inH Y?(culp,I), (34)
where 1 is the identity operator in H_1/2(cu1rlp7 ).

2.4. Boundary integral operators
Boundary integral operators can be defined by averaging traces of Maxwell layer potentials and .
First, we define the Maxwell single-layer boundary integral operators (or electric field integral operators) [12] Section 5],

1
V., ={nw}T.= s gradp oV, o divp +V* (35)
: H™Y2(divp,T) - H™ V2 (curlp, ),

W, =— {{77'} CUI‘](DN) = - {{'Y‘r}} '%ZTNR = curlr oV, o curlr 'H‘?QV; (36)
: Hfl/z(curlp,F) — Hfl/Q(din,F),
where
V= {7} Sk VEi= {0} See VI = f3: ) (S.R). (37)

Proposition 2.9 (Ellipticity of single layer operator [I2, Lemma 8]). The operators Vo, VE and VT are continuous
and satisfy

Vot )r > C | @ll3 172y for all € H-V2(T), (38a)
(VEB.B)r = C Bllf-r/o(ry  for all B € H*(D), (38b)
(Vie,a)r > Cllalfy oy for all o€ H V(D) (38¢)

11



with constants C > 0 only depending on T’ EI

We also define the Maxwell double-layer boundary integral operators (or magnetic field integral operators),

K, = {%}D. :HY2(curly, T) — H™2(curly, T), (30)
K/ = {v,} (D.R) :H Y?(divp,T) = H™Y2(divp,T),
We collect all of them in the Calderén operator
-K. V.
A, = (WH K) :H(D) — H(D), (40)
where we denote
H(T) = H %(curlp, T) x H™Y2(divp, T). (41)

2.5. Calderon Identities

From the jump relations and definitions of BIOs, traces of layer potentials can be written in the form of
Caldero6n identities. We start from the representation formula in for the transmission problem , that is the
case of piecewise-constant coefficients, and assume that there are no sources f; and fy in ;. Then, it follows from
the definitions and jump relations

Yu=(31-Ky) (5 w) +iwm Ve, (77 0), (42a)

v = (314 KL) (0r0) + oW (3 w). (42b)
Similarly, for and we have

Yu=(31+Ky,) (5 ) —iwpo Ve, (72 v), (43a)

1o = (31 - K,) (0179) = oWy (07 w). (43D)

We denote
~ iwpev, for x € Q,,
V=
wwv, for x € Q;,

and write and as

(1-A.) (”{i‘) o, s

(3I+Ax) (ﬁ:) =0. (45D)

'We write C for a positive generic constant. The value of C' may be different at different occurrences.

12



2.6. Boundary Integral Formulations for Transmission Problems

The focus is still on the case of piecewise-constant coefficients. From the Calderén identities (45)) it is possible to
obtain a formulation for transmission problems. So far, we know that u and v are Maxwell solutions, and we have

written expressions for their interior and exterior traces. It remains to impose transmission conditions

7t+u B 1 0 Ve U _ yeuln® on T
o) \0 &) \rro Ve o '

1 0
M = ( >
0 ke
M1
and combine (46]) with (45b]) to obtain

1A )M Tew) _ 14 A, %Ui.nc _ %ui.nc
(2 + 0) (7;{)> (2 + 0) <,YT1~)1nc ,YT,alnc ’

inc

We denote

inc are interior Maxwell solutions with wavenumber rkq. From (48] we get

(IT+M 1A, M) (7;“') - M <%“mc> .

-5 ~inc
V0 Yo

where we used that u'™¢ and v

Now, subtracting (45a)) from we obtain the first-kind single-trace formulation [I2, Section 7].

Find o € H=Y?(curly,T') and 8 € H~'/?(divy,T') such that

(M1 AL M+ A,) (ﬂ) e (ng;)

V= U

in H=Y?(curlp,I') x H~-'/?(divp,T).

2.7. Boundary-Volume Integral Representation

(48)

Now we return to the situation where the interior coefficients may not be constant anymore, i.e. may vary in

space. We write the transmission problem as follows
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curlu —iwpgv = 0, curlv +iwegu = 0 in Q,,

curlu —iwpv = fi, curlv +iwsiu = fo in Q;, )
Wu—ru = —wu,  puv-yv = —wv'" onl,
lim v x © —u = 0, uniformly on r = |z|,
r—00 r
where
fi(z) = —iwprpm(z)v(T), Ja(x) = iwe1pe(x)u(z),
u(z ez
pm($) =1- ( )a P((w) =1- ( )7
M1 €1

for x € Q;, and €1, ;11 € R4 are conveniently chosen parameters.

Remark 2.10. Note that for smooth parameters ¢ and p (see Assumptz’on and for electric/magnetic fields
u,v € H(curl, Q;) N H(div,);), we obtain that filq, and falq, are in H(div,Q;). Therefore, we are in the setting of
Section [2.3.

The representation formula now reads: In €;,

u = — iwp curl(Na, x, (pmv)) — 1 Na, x, (pe) — grad(Ng, x, (divu)) (52a)
— curl(S,, (Ry; w)) — grad(Sy, (v, u)) + iwps Sk, (v v),

v = iwe; curl(Ng, ., (pew)) — £3Nq, «, (Pmv) — grad(Ng, ,, (divv)) (52b)

+ curl S, (7;u) — grad(Ss, (7, v)) + iwe1 Sy, (Rfyt_u) .

The operator curl(Ng, ., (p« ) : H(curl,Q;) — H(curl,Q;) (x = {e,m}), is only bounded, not compact. This can
be seen by an integration by parts result on Newton potentials. For F € L2(€2;),

curl(Ng, », (F)) = Nq, «, (curl F) + S, (7. F). (53)

It follows that
curl Nﬂiﬁl (pu) = NQiM‘il (curl(pu)) + Sfﬁ (p’y.,-'u,), (54)

where the vector single-layer potential Sy, is only a bounded operator in H(curl, €);).
We will repeatedly make use of the product rule

curl(fF)=grad f x F+ fcurl F, fc CYQ), F c[C*(Q)].

Solutions of also satisfy

div(eu) = grade-u +ediviu) =0 = div(u) = —7¢ - u, in Q;, (55a)
div(pv) = grad p - v + pdiv(v) =0 = div(v) = =7, - v, in Q;, (55b)
where we defined d d
Te = gra 5, T = grach, (56)
€ 1

14



3. STF-VIEs
The representation formula from (52a)) and (52b)) now reads

u = — iwul CuI‘l(l\IQi’,ﬂ1 (pm'U)) - K%Nﬂi,fil (peu) + grad(NQi,fﬂ (Te : u))
— curl(S,, (Ry; ) — grad(S., (v w)) + iwpin Sy, (170)

vV = fweq CuI‘l(N'Qi,N1 (peu)) - K%Nﬂi,m (pm'v) + grad(NQ“m (Tm : ’U))
+ curl(Sy, (- u)) — grad(S,, (74 v)) + iwe1 Sy, (Rv{u) .
The integration by parts result from leads to

curl(No, ., (pmv)) = Ng, s, (curl(ppnv)) + S, (Pm 77 v),
CllI‘l(NQi_’,{l (peu)) = Nﬂi,l‘él (curl(peu)) - Slﬂ (peR’y;’M).

From ([25a)) and (25b]) we obtain

1
U= — divr(yz in H-Y/2(r
T == dive(orv) i VA,
1
a U = - — curlp(vy u iIlH*I/QI‘,
gl o r(7e w) I)

where

for all x € ;.
From now on, we denote v :
representation formula for the fields w, v solving :

u=E"%+ AU—D,, (7 u) + T2l (17 0), in Q;,
v =8+ A"0— D, (Ry,v) — H%Tﬁ’f(R’y{u), in Q;,
where we defined the volume integral operators
E™v = —Nq, x, (curl(p,v)),
E°u = —k2Ng, ., (curl(p.u)),
A" = —kINg, x, (Pmv) + grad Ng, ., (Tr - v),
Au = —KINq, x, (pew) + grad N, ., (T - u),
and the layer potentials
TE(8) = & grad(Se (2 dive(B))) + S, 48), B € H™/2(divr, ),
D, (a) := curl S« (Rex), a € H V2 (curlp, T).

Remark 3.1. We use © as an unknown instead of v in order to avoid scalings in our operators.
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(59a)
(59b)

(60a)

(60b)

(61)

iwpv. Combining expressions (59a)—(60b) into and we obtain a new



We take the trace v, on (62a]) and v, on (62b)). By the jump relations , we obtain
Yo w =" (E"0) + 95 (Au) + (31— Ky,) (v w) + Vi (17 9)
V70 =77 (Bu) + 77 (A™0) + Wi (vg w) + (51 + K, ) (iwp 7, 9)

where we define weighted boundary integral operators as

mn

2I(B) = iz gradp V.., (z dive(8)) + Vi, (#B8), B € H™'2(divr,T),

3
K1

W (a) = curlp an(% curlp (@) 4+ K1V} (Eav), o € H2(curly, T).

We denote o™ := vy, u, B~ =, and rewrite (65a)) and (65b) as
a” =7 (E"0) + 7 (Au) + (51-Ky,) (@) + V/(B7)
B™ =77 (Bu) + 7 (A"0) + Wi (a) + (31+K,) (B7).

We denote ot ==~ u, B = iwpgyFv. From (274), (270) and the jump relations we have

af = (31+Ky,) (o) =V, (B7)
BT =-Wy(a")+ (;1-Kj,) (B7)

From (|67a)—(68b|) we can write

where we defined

3¢ — <7.~. A ) : H(curl, Q;) — H(D),
Jm .= (715 = ) : H(curl,Qi) — %(F)

Combining and with the transmission conditions

(1 0 ) (oﬁ) <1 0 ) <a> ( ’Ytuinc ) ~inc . inc
_ = , , O = dwpgu™.
1 + 1 - 1, gin
0 Ho B 0 K1 B o 1Y ‘

(65a)
(65Db)

(66a)
(66b)

(67a)
(67b)

(68a)
(68Db)

(69a)

(69b)

(70a)

(70b)

(70¢)

(71)

Retaining o == o™ and B := B~ as unknown traces on I', we obtain the single-trace boundary-volume integral
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equation

~inc

inc
(M7'A, M+ AT <g> +3u+ I = —M! (“u ) , (72)
V>

1 0

where M =
0 Ko

1
We summarize the resulting coupled BIEs-VIEs in

Problem 3.2 (STF-VIE). Find fields w,v € H(curl, ;) and traces (o, B) € H(I') such that

PO ! (8%
@) M- lA, M+ ASA | Je | gm 5 zl
_________ =SNG ,
() = | Do T 1-AC BT OfEo = (#)
(62b) KTER DR 1 —BE° 11— A" - 0

holds in H(T') x H(curl, Q;) x H(curl, Q;), where we defined the right-hand-side

[
0

~inc

g1 = 7uC,  go =Ly p

=

4. Analysis of STF-VIEs

4.1. Variational Formulation

We now present a variational formulation for the coupled system (3.2)). We denote by (-, )q, the duality pairing
between H(curl, ;)" and H(curl, ©;). Recall that (-,-), 1 denotes the duality pairing between H~'/2(curlr,T') and
H~1/2(divp,T). In the trace space H(T') we define

() = HIT) X H(T) = C, (@, Q) = (p1,C0)r.r + (€1, p0) 7.1, (73)

for all ¢ = (¢o, 1) € H(I'), ¢ = (Co,¢1) € H(T).

Problem 4.1 (Variational Formulation for STF-VIE). Given g € H(T'), we seek (a,8) € H(T) and
(u,v) € H(Q;) == [H(curl, Q;)]? such that the variational formulation

a((e,8),(¢,8)) + b((w,v),(¢.8) = (9,(C8)),
(e, 8),(w,q)) + d((u,v),(w,q)) = 0,
holds for all (¢,€) € H(T') and (w, q) € H(S;)', where we denote the bilinear forms
a((a, B), (¢, €)) = (M~ A, M+ AZF) (e, B), (¢, 6)), (74)
b((u,v), (¢, £)) = (Iu, (¢, £)) + (I"v, (¢, ), (75)
c((a, /B)v (’U), Q)) = <(Dﬁ1a - Tiylﬁ )aw>ﬂz + <(Dn1(Rﬁ) + H%Tﬁ’f(RO()), Q>Qi, (76)
d((u,v), (w,q)) = (u— A°u — E™v,w)q, + (v — A™v — Eu, q)q, (77)
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Proposition 4.2. The bilinear forms defined in 7

a: HT) xH(T) = C, (78)
b : H(Q;) x H(T) = C, (79)
c : H(T) x H() — C, (80)
are all continuous.
Proof. The result follows from
« Continuity of the vector-valued Newton potential (Proposition .
o Continuity of the Maxwell layer potentials (Proposition .
o Continuity of trace operators [IT, Theorem 4.1].
O

4.2. Coercivity of weak STF-VIEs
Based on the results shown in Section [2:2] we establish mapping properties for the operators defined in Section [3]

Proposition 4.3. The Newton potentials Ng, . and Ng, ..

Ng, , : H(curl, ;) — H'(curl, Q;), (82a)
N, , curl : H(curl, Q;) — H'(curl, ©;), (82b)
grad Ng, , : L*(Q;) — H'(curl, ©;). (82¢)
are continuous.
Proof. We know that
No, . : L2(Q;) — H? (). (83)

We also know the continuous embeddings H(curl, ;) C L2(Q;) and H2(Q;) C H!(curl, §2;). Therefore, we conclude
(824)).

We can show (82D)) from (83), since curl : H(curl, ;) — L?(€;) is bounded.

To show (82d), we consider f € L?(£2;). We know from that Ng, . f € H%(Q;), and therefore grad Ng, . f €
H'(Q;). In addition, we know that curl(grad Ng, . f) = 0. Since both Ng, . f and its curl belong to H'(€2;), we
conclude that Ng,  : L2(Q;) — H!(curl, Q;). O

Corollary 4.4. Under Assumption[I.]], the operators

A° :H(curl,Q;) — H(curl, Q,), A™ : H(curl, ;) — H(curl, ©;),
E°: H(curl, Q;) — H(curl, Q;), E" : H(curl,Q;) — H(curl, Q,),
defined as in (63a)-(63b)) are compact. In particular, the operators
J¢:H(curl,Q;) — H(T), J7" :H(curl,Q;) — H(T),

defined in ([70b)) and (70d)) are compact.
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Proof. From (|63a)) and (63bf), we observe that A¢, A™ Z¢ and ™ are linear combinations of operators of the form
(82a])-(82c). Multipliers are all bounded and smooth, therefore they map elements of H(curl, Q;) to H(curl, Q;), and
to L2(QZ)

The result follows by Rellich’s embedding theorem [45, Theorem 2.5.5], which states compact inclusion from H(Q;)
into L2(£2;) (and therefore from H(£;) into L2(£;)). O

The left-hand side of the STF-VIE @ can be decomposed into several operators as suggested by the operator
matrix notation in (]E[) An abstract analysis on such block operators is given in Appendix In particular, we need
to establish the coercivity /inf-sup stability of the diagonal operators

M™A, M+ AZF - H(TD) — H(D),

<I - A —E ) : H(Qz) — 7‘[(91)

and

—E¢ I-A™

After establishing stability and uniqueness of solutions, from Proposition we will be able to infer well-posedness
of the continuous problem.

The first step is to show that a generalized Garding inequality (T-coercivity) holds for the (weighted) Maxwell
Calderén operator AZF from (70al). We start with the following result for (weighted) scalar and vector-valued single
layer operators.

Lemma 4.5. Let y € C*(Q;) be such that
0< Xmin < X(.’I}) < Xmaz

for all x € Q;. Let k1 >0 and V,, : H-'/2(I') — HY?(T) be the scalar single layer boundary integral operator with
wavenumber k1. Then, there exist a compact operator ©, : H=Y/2(T') — HY?(T') and ¢, > 0 such that

Re {{Vie, (x0), D)1 + (040, P)r} = ey lollzr-1/2(r (84)
holds for all p € H=Y/%(T).

The result can also be extended to the vectorial case. There exist a compact operator ©, : H_l/z(din,F) —
H~'/2(curlp,T) and a constant C, > 0 such that

Re {(VE, (xB), Brr + (0,8, B)rr} = O 181121 (85)
holds for all 8 € H™/2(divr 0,T).
Proof. Note that x'/? is well defined and x'/2 € C*(Q;). Then

(Vi (x9), BT = (Vi (2X290),P)r
= (XM*Vee, (X20), B)r + (Vi X — X2V X2, B
= (Vie, ("%0), 0720))r + (Vir X — X2V, X0, B)r

We define ©, =V, x — x/2V,, x*/2. This is a compact operator due to the cancellation of singularity at = = y:

Gz, y)x(y) — Gz, y)x*(@)x"*(y) = Gz, y)x"*(y) X (y) — x'*(=)).
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We also know that there exists a compact operator Oy, : H~Y2(I') — H'/?(T) such that

Re {(V, 1, ¥)r + (Ov,, &, )r} > ev,, (6115 -12(r

for every ¢ € H~'Y/2(T"). Note that x/2p € H~Y/2(I') for x'/? smooth and ¢ € H~'/2(I'). We define © =
x1/2®\/&1x1/2 — O, and conclude

2
Re {(Vi, (x¢),®)r + (Op,P)r} > v, 1/2

2
X > ex llellg-12¢ry) »

9DHH—UQ(F)

where ¢, depends on ¢y, and x, and we used Lemma in the last inequality.
The result for Vfg1 can be shown by following the same approach and using Lemma O

In the spirit of results valid for the Maxwell Calderén operator [12, Theorem 9], we can state the following
proposition.

Proposition 4.6 (Generalized Garding inequality for AS#). Let e, € C'(;) and define arbitrary positive
coefficients 1, p1, k1. Let Ai’lﬁ be defined as in (70a]), where & = i and fi = ;% Then, there is a compact operator
O : H(T) = H(D), an isomorphism Xr : H(T) — H(T) and a constant Ca > 0 depending on €, ju, &1, p1, k1, i,

el ), Q) ) e e

Proof. The proof is largely based on the one in [I2] Theorem 9], with the difference that the operator Ailﬂ is weighted
by the strictly positive C''~smooth multipliers & and .
We use the regular decomposition theorem [I2, Lemma 2]: o € H~'/2(curlp,T') can be written as

a=oa| +ay o GHﬁm(F), g GHfl/z(curIFO,F), (87)

where
ot llgy 2y < € lleurte ey

Similarly, 8 € H='/?(divp,T') can be written as

B=B1+Bo, BLeHD), BoecH V(divr0,T), (88)
where
HﬂLHHIXm(p) < Cldivy B g-1/2(ry -
We define
Xe (%)= 7). foralla e HY2(cwlp,T), B € H-Y2(divy, ). (89)
B B1—Bo
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Now we write

(e ()= G), = Go)-(5)),
A (3)-(5),
e () (52D,
e (o) G20,

We study the first term in the right-hand side of ,

<<Ai’f‘ <(Z§> 7 (‘0%) >>F = — (Ku, a1, Bo)r — (VZFBo, Bo)r (01)

+ (Whea o1 )r + (K, Bo, L),
where

(V2 Bo, Bo)r = (V5 (2Bo), Bo)r, (92a)

(Whea | o) )r = (Vm(% curlp oy ), curlp @ )r + K5 (VE (Eael), @0 )r (92b)

The second term in (92b) is a compact perturbation since o) € Hlx/ *(T) and Hlx/ *(I') is compactly embedded in

H;l/ *(I) [12, Corollary 1], while for the first term in (925) and (92a)) we have a coercivity result that follows from
Lemma [4.5]

Re{(V}., (o), Bo)r +t(Bo, Bo)} > 1 Hﬁo”?{—m(r) 5 (93a)

Re{(V,ﬂ(é curlr OLL),CUI'IF alh‘ + t(al,al)} > co HCUI‘IF ai||?—]*1/2(l“) . (93b)

On the other hand, from [12, Lemma 6], a symmetry between K, and K, with respect to the duality pairing (-, -)r
implies [12], Theorem 9]

—(Ky, 01, Bo)r + (K, Bo, a1 )r = —2ilm { (K., a1, Bo)r} - (94)

Then, we can establish that there exist a compact perturbation ®4 ; and a constant ca ; > 0 such that

e () (), o ) ) Yoot

2
180120y
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In a similar way, we study the third and fourth terms in and show

s () (), o ) ) oot oo

2
+lleolf-aqry) -
Combining and , and by the stability of the decomposition in and , we conclude that holds. [

Corollary 4.7. Let us define A== M~1A, M + Aifl Then, under Assumption there is a compact operator
Op : H(T) = H(T), an isomorphism Xr : H(I') — H(T') and a constant Cp > 0 depending on €, 1,1, f41, €0, Ho, i,

such that » »
o)) G oo

2 2 2
||(a7ﬂ)||7-¢(r) = Ha”H*l/z(curlp,F) + ||,8HH71/2(C11VF,F) )

for all « € H~Y?(curlp,T') and B € H~Y/?(divp, T).

where

Proof. The proof for a Generalized Garding inequality for M~1 A, M follows the same approach as in Proposition
[4:6] also usign the isomorphism Xp. The result follows by noting that A is a linear combination of two operators that
satisfy a Generalized Garding inequality with same isomorphisms X (Proposition [4.6]). O

Proposition 4.8 (Generalized Garding inequality for I — A*). Let A*, x = {e,m} defined as in (63a]) or (63b),
Au = —k3Nq, ., (pew) + grad Ng, ., (7o - u),
A" = —kiNg, ., (Pmv) + grad Ng, ., (Trm - V).

Then, there exist a compact operator ©, : H(curl, ;) — H(curl,€;), an isomorphism X, : H(curl,Q;) —
(H(curl,©Q;))" and a constant C, > 0 such that

Re {{(I - A"u, X,w)o, + (0.u, W) H(curl,0:) | = Cs ||u||;(curl79i) (98)

holds for all u € H(curl, ;).

Proof. First, we study the duality pairing (u,w)q,, with w € (H(curl, €;))". Note that a simple choice is X, such
that
(u, X,0)q, = (U, V)H(cur,0,) = (¥, D)q, + (curlu, curl®)q,, (99)

for all u,v € H(curl, €;), i.e. the inverse Riesz isomorphism.
In that case, [|X,|| =1 and

_ 2
<’U/,X*’U,>Qj = ||u||H(curl,Qi) . (100)
From Proposition we know that A* is compact in H(curl, ;). Therefore, choosing 0, = A* leads to . O

4.8. STF-VIEs: Uniqueness of solutions

The results from this section require an assumption on the material properties € and p.
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Assumption 4.9. We assume that the material properties € and p are constant on the interface T', i.e.

e(x) =€, wplx)=p, forallxeTl. (101)

Proposition 4.10. Under Assumption[{.9, there exists a unique solution to Problem[3.3

Proof. Let us assume that we have a solution u € H(curl,;), ® € H(curl,Q;), (a,8) € H '/?(curlp,T) x
H~'/2(divy,T) such that

(M™'A, M+ AZH) <;> +Ju+J"0 =0, (102a)
D, (o) = T.H(B) +u— Au — E™% =0, (102b)
RTIE(Re) + Dy (RB) +8 — A™5 — E'u =0, (102c)
in H=Y2(curly, T') x H-Y2(divy, T') x H(curl, ;) x H(curl, Q;).
Because we assume ¢(x) = ¢ > 0 and p(z) = gy > 0 for all © € T', we can rewrite (102a))—(102c) as
(M™'A,, M+ A,,) (‘;) +Ju+ I =0, (103a)
Dy, () =T, (B)+u—A°u—E"0=0, (103b)
k3T, (Ra) + Dy, (RB) + 0 — A0 — E°u = 0, (103c)

The proof is divided into five parts.

1. From (103b)) and (103c|), we show that w and v “almost” satisfy Maxwell equations in £2. We have an extra
term, which is the gradient of a volume potential.

2. We show that the extra term from Part 1 is zero, and therefore u and v satisfy Maxwell equations in €2;.

3. Using Maxwell layer potentials (see and ) and a and 3, we define ug and vy such that they satisfy
Maxwell equations in €2,. Then, we compute the jumps vj up — 75 w and v vy — vy, v. Using (103a)), we show
that the jumps are zero.

4. We conclude that u, v, ug and vy define solutions for the Maxwell transmission problem with no sources. It
follows that all of them are zero. From ([103a)), we conclude that e and 3 are also zero.

Part 1. We take the curl of (103bf). Using (32al), (32b]) we get

k1T x, (Ra) + Dy, (RB) + curlu + i curl N, ,, (p.u) + curl Ng, ., (curl(p,,3)) =0, (104)
which by integration by parts and Assumption 7 can be rewritten as

53T o, (Ra) + Dy, (RB) + curlu + % curlNg, ., (peu) + curl®?Ng, ., (pn®) = 0. (105)
Similarly, (103c) can be rewritten as

K%THI(RCM) +D,,(RB) +v+ K?Ngim (pm®) — grad Ng, x, (Tm - ) + Ii% curl Ng, ., (pew) = 0. (106)
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Substracting (106)) from (105)) we obtain

curlu — v + curlz(NQh,Q1 (pm®)) — ’“%Nﬂi,m (pm®) + grad(Ng, x, (Tm - ©)) = 0. (107)

Note that, as w = Ng, , f defines a solution for the (vector) Helmholtz equation

2 .
—Aw—-rjw=Ff inQ,,

and
—A = curl® — grad div,
we get
curl® NQ«;,M (pm,a) - K’%NQiyﬁl (pm'a) = grad(diV(NQi,fil (pm{]))) + pm® (1083‘)
= grad(Ng, «, (div(pn?))) + P, (108b)

where (108b)) is obtained by the integration by parts

diV(NQiyﬁl (f)) = NQqu (le f) - SK:l (’ijf)v (109)
and Assumption
From (107)) and (108) we write
curlu — ¥ + p,,, + grad(Ng, ., (div(pm®) + T, - ©)) = 0. (110)

Recall that p,(x) =1 — M/ET)’ S0 we can write

curlu — L9 + grad(Ng, ., (div(pm®) + 7 - ©)) = 0. (111)
Part 2. In this part, we show that the third term in (111 is zero. First, we do the following computation

div(pm®) + T - © = div(p,0) + E29L . 5
= dive — div(£o) + 8248 . 5

:divf;—i(gradu-f)—i—udiv(ﬁ))—i— 0

gradp  ~
o

RTINS 1,1 SR T

=divo + (=45 + ;) grad p- 0 — - div(9)

i 1 TR T

=divo + pp; grad pu - © — - div(o) (112)

= pm% grad p - © + py, div(D)

= pmy;(grad p- 0 + pdiv(o)) = pp;; div(ud)
From (112), we can write (111 as

curlu — —ov = —grad(Ng, ., (pml% div(uo))). (113)

E =
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We take the divergence of (113 and get

.., . P L
o div(ud) = —ANg, (P div(p®)) = KN, 5y (Pt div(p®)) + pps: div(pd), (114)

where we used that w = Ng, ., f defines a solution for the (scalar) Helmholtz equation —Aw — k3w = f. Rearranging

terms in (114]) we get

1 1 1p . - 2 1 3: ~
—— —— 4+ —— | div(pv) = k{Nq, «, (Pm - div(po)). 115
< H1 o M um) (o) iNa o ( I (u)) ( )

Writing 7 := idiv(uf)), (114) becomes the Lippmann-Schwinger equation with zero right-hand side [I9] Section 8.2]

n+ H%Nﬂiﬂﬂ (pmn) =0. (116)

This is an equivalent formulation to an homogeneous Helmholtz transmission problem (see [22] Lemma 7], [19]
Theorem 8.3]).

This problem is known to have a unique solution as long as a unique continuation principle holds [19, Section 8.3],
which is the case for p,, € C1(€2;). [19, Theorem 8.6].

The homogeneous problem has only the trivial solution, and we know

n= idiv(/u?) =0.

It follows that w and @ satisfy

curlu — iw/‘(mlm 0) =0 in ;. (117)
We denote v = ﬁf) Similar computations show that
H1
curlv —iweu =0 in ;. (118)

Part 3. Now, we define an exterior field

g = T o (42 8) + Dy (), in R*\ Q, (119a)
99 = Do (LRB) + k5T 1o (Rv), in R*\ @, (119b)

with 99 = iwpev that satisfies

curlug — iwpevg =0 in R¥\ Q, (120a)
curlwvg +iwegug =0 in R®\ Q. (120b)

’yt*'uo _ 1_ «a
(E0) = (- a ) (7). -

Taking traces on ((103b]) and (103c|) we obtain

<7”f> = <1I+Am) <a> +3u+ 375 (122)
V- 0 2 B

Taking traces on (119a)) we get
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Combining (121]) and (122)), from (103a)) we conclude that

+ —
) (M) = (123)
7+ Vo T+ v
Part 4. We know that u,v satisfy (117) and (118). We also know that uy and vy satisfy (120). Moreover, the
transmission conditions ((123) hold. Therefore,

U(x) = ug(x), =€ R3 \ Q, Viz) = vo(x), T € R3 \ Q,
' u(z), x€. ' v(x), xcQ,.

are solutions of the homogeneous Maxwell transmission problem. It follows that U =0, V =0and u =0, v =0.

We conclude from (103a) that
(MA,,M+A,) (Y] =0, (124)
B
which is known to be an invertible operator [12] Theorem 12]. Therefore, a« = 0 and 8 = 0, which concludes the proof.
O

Remark 4.11. The assumption of constant coefficients over the boundary T is essential in two parts of the proof: (1)
for obtaining homogeneous right-hand side in (116]) and therefore a divergence free field; (2) to ensure injectivity of
the single-trace equation in (124). This is similar to what was observed in the Helmholtz transmission problem [32,
Section 3.3].

Theorem 4.12 (Well-Posedness of Problem . Under Assumptions and there exists a unique solution
(a*, B, u*,v*) € H(T) x H(Q;)
to Problem [{.1] which satisfies
e lle-1/2(curte,ry + 18" l-1/2(@ive, ) + 1@ TH(eurs0,) + 10 [HEeur,0) < C HQHH(F) :
Proof. The proof follows Proposition [A-2] and the framework of Appendix [A] In particular, we have
« Compactness results for ¢, J¢ and E™,J™, from Corollary 1.4}
o T-coercivity (or generalized Garding inequality) for
A=MTA, M+ ASH
from Corollary [£.7]
e T-coercivity for I — A*, from Proposition
¢ Uniqueness of solutions, from Proposition
As the assumptions of Proposition hold, we obtain well-posedness of Problem O
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5. Galerkin Discretization

5.1. Finite Element and Boundary Element Spaces

Let {7n}n>0 be a globally quasi-uniform and shape-regular family of simplicial meshes of ; (see [47, Section 9]).
Let {3}, }n~0 be the induced family of meshes on I': ¥, = T,|r. We choose finite element spaces:

e Nj = Np(Tn) C H(curl, ;) of lowest order Nédélec edge elements (in the volume) [41],[26] Section 3],[6].
o B} = E,(S) ¢ HY?(curly, T) of lowest order surface edge elements [5, Section 2.2].

o Wy = Wi(Zh) € HY2(divy,T) of lowest order rotated surface edge elements, also known as RWG (Rao-
Wilton-Glisson) boundary elements in computational engineering [44].

We will denote N} a conforming subspace of the dual space of H(curl, ©;).

Remark 5.1. [t is important to note that, contrary to what is a standard choice in the literature on volume integral
equations [7, [35)], using Ny = Ny, does not lead to a stable discretization of the duality pairing. We briefly describe
why this is not the case in Appendiz E As it happens with the duality product in the trace space [I0], a good approach
might be the use of a dual barycentric finite element complex, i.e. the use of face elements on a dual mesh as a
subspace of H(curl, ;). These claims, although intuitive, remain as an open problem. The generalization of a dual
barycentric complex has been studied in different contexts [15].

5.2. Asymptotic Quasi-Optimality
In order to obtain a final result on the discretization of Problem we need a discrete version of Proposition

As mentioned in Remark this is related to a stable discrete duality pairing in H(curl, ;).
Our goal is to have a conforming discretization of H(curl, €2;)" such that the following holds.

Assumption 5.2 (Discrete inf-sup Condition for d). There ezists cq > 0 such that

cg < inf sup (wn, un)a, for all h > 0.

< i
0Fun €N, OFwrEN ||uh||H(curl,Qi) ||wh| H(curl,Q;)’

We have to include this assumption in order to arrive at the following main result on the quasi-optimality of
Galerkin solutions for .1t

Theorem 5.3. Provided that Assumptions@ and hold, there are hg > 0 and a constant cqe > 0 independent
of h such that there exists a unique Galerkin solution (o, Br,u),vr) € Ep x Wi, x Nj x Ny, of Problemfor all
h < hg. The solution satisfies

[(a®, B, u", v") = (o, Bf, uh, v3)]| < Coo inf (e, B*,u™, v") — (A, Nn, i, vn) ||
((Ahxﬂh))EEhXWh,
Wh,qn)ENRXNp,

Proof. The proof is based on the result from Propositions[A.4] and In particular, we need T}-coercivity result
(see |16, Theorem 2]) for the bilinear form

m((e, B, u,v), (¢, §,w,q)) = a((a, 8), (¢, §)) + b((w,v), (¢ §))
+e((e, B); (w, q)) + d((w, ), (w, q))

from Problem [£.1] According to Proposition [A-4] we need to verify the
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o Tjp-coercivity for a. This result follows by noticing that the regular components in the stable regular decomposition
from and are in the domain of local linear interpolation operators [I12, Lemma 16]. Therefore, T-
coercivity translates to Tp-coercivity simply by local interpolation [I2, Section 9].

e Tp-coercivity for d. This property is supplied by Assumption [5.2

As Ty-coercivity is equivalent to h-uniform inf-sup stability (see [16, Theorem 2]), quasi-optimality follows from m
being A-uniform inf-sup stable up to compact perturbations. O

5.3. Numerical Experiments

We show numerical experiments to validate our formulation. We compare our results with highly-resolved solution
(u}, ;) obtained from a FEM-BEM coupling, also known as the Johnson-Nédélec coupling (see [30]). We study
convergence of solutions with respect to the L?—norm

* 2 * 2
||’U,Z — Uh”Lz(Qi) \/”uh - uh||L2(Qi) + H'Uh - vhHLz(Qi)
errory2 = W, €ITOIT2 y[,2 ‘= S ; (125)
h1IL2 () \/HU;*LHLa(Qi) + ”vZHL?(Qi)
where (uy,, vp,) is a Galerkin solution of Problem In the case of FEM-BEM coupling, we compute vj;, = ﬁ curl(uj).

In all of our experiments, we use Ny (7;) as a finite element space for the dual of H(curl, €2;). Note that, as
mentioned in Remark this may not lead to a stable discretization of the duality pairing in H(curl, Q;).

The implementation was carried out in C++, by extending the BemTooE| library for BEM computations to the
case of VIEs. Numerical integration of singular integrals is computed in terms of a Duffy transformation [24] 25, [38]
and tensorized Gauss quadrature rules. Matrix compression with H—matrices is done with the Castor library [I], a
C++ header-only library for linear algebra computations. We have made our code available in a Github repository El

5.4. Scattering at a dielectric cube

We study the electromagnetic scattering problem at a unit cube
Qi={x=(2,9,2) €ER*: 0 < 2,y,2 < 1}.

Material properties are given by

c(x) = 2+ 4ayz(1 —2)(1 —y)(1 —2), for x €y,
IRt for x € R\ Q.

and u(x) =1 in R3. Note that material properties are constant at the boundary T'.
The incident wave is given by

uinc(
where ko = 1, 29 = (0,1,0) and ey = (1,0,0).
The meshes used for our computations are described in Table[I] The reference solution is obtained by FEM-BEM
coupling computed on the finest mesh. Convergence results are shown in Figure 4. We observe O(h) convergence,

x) = eg exp(ikox - o),

%https://github.com/xclaeys/BemTool
Shttps://github.com/ijlabarca/CoupledBVIE
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which is the best we can expect for this setting, because the approximation spaces merely contain the full space of

piecewise-constant functions. Apparently a potential violation of Assumption does not affect convergence in the
L2-norm in this case.

7
SIS

Meshes

=N
Elements | Nodes | Edges | Mesh size S
24 14 49 1/2
192 63 302 1/4
1536 365 2092 1/8
12288 | 2457 | 15512 1/16 %%}%«ig 0%
TSEATSER
93304 | 17969 | 119344 |  1/32 %e}% 2

Table 1: Meshes used in Section generated by uniform

regular refinement Figure 3: Mesh with 12288 elements.

Convergence Results

0.25 ’,:‘ 4
,:.’ x:'zl
Lz° ”¢’/,/
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} e - FEM-BEM in L2(Q) x L?(Q)
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L I I
0.125 0.25 05

Mesh size (h)

Figure 4: Scattering at a cube: problem of Section Error norms (125 as functions of h.

5.5. Scattering at a tetrahedron
Now we study the problem with Q being the tetrahedron with vertices (0, 0,0), (1,0, 0), (0,1,0), (0,0, 1).
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Meshes
Elements | Nodes | Edges | Mesh size
4 7 15 0.346681
32 22 73 0.173340
256 95 430 0.0866702
2048 525 2892 | 0.0433351
16384 3417 21080 | 0.0216676

Table 2: Meshes used in Section generated by uniform
regular refinement. Figure 5: Mesh with 2048 elements.

Material properties are given by
(@) 2+4zyz(1—2)(1 —y)(1 —2), forx ey,
e(x) = _
1, for x € R?\ ;.

(@) 2+4zyz(1 —2)(1 —y)(1 —2), forx ey,
x) = _
. 1, for z € R®\ Q.

Note that in this case, material properties are not homogeneous over the whole bondary I'. Convergence results are
shown in Figure @ Again, we observe O(h) convergence, although this case does not satisfy the assumptions of
Proposition [£.10] nor Assumption [5.2]

6. Conclusion

We presented a new formulation coupling boundary and volume integral equations. Under assumptions on the
material properties, we are able to show well-posedness of continuous and discrete settings. Uniqueness of solutions
in a general setting remains an open problem. Our numerical experiments show optimal convergence of Galerkin
discretizations. The use of a conforming subspace of the dual of H(curl, (2;) that ensures a stable discretization
remains an open problem.

Funding
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A. Block Operators

In this section we present results from [32, Appendix A] that cover a particular case of block operators. We show
what is required to obtain inf-sup conditions in the continuous and discrete setting. The theoretical results from this
appendix are used to establish well-posedness of the variational STF-VIE problem in Sections [] and [5}

A.1. Fredholm Equation
Let X, II be Hilbert spaces and X', II’ their duals. Consider the operators

A X > X', B:1I - X',
C:X —1I, D: 11 —1I,

all of them bounded linear operators. We study the block operator equation

(o o) ()= (1) rex

A B
T:< ):XXH—>X’><H’

Assumption A.1. The operator

C D
is injective. Moreover, A and D are coercive operators. B is a compact operator.

Proposition A.2 ([32, Proposition A.2]). Under assumption there exists a unique solution (u*,p*) € X x II
to the system in (A.1)). Moreover, the solution satisfies

lw*llx + 12"l < Cllfllxr-

A.2. Galerkin Discretization

Next, we consider the Galerkin discretization of (A.1). Choose finite dimensional subspaces X, C X and II;, C II.
We study the following variational problem: find (up,pn) € Xp x II, such that

(Aup,vn)x + (Bpn,vn)x = (f,vn), for all vy, € Xy,
(Cun, qn)rt + (Dpn, qn)u = 0, for all g5, € IIj,

which can be rewritten as

t ((un,pn), (n,qn)) = (f,vn), forall v, € Xy, qn € I, (A.2)

where
t ((uhaph)) (Uthh)) = <AUh, Uh>X + <Bph7vh>X + <Cuh7Qh>H + <Dph>Qh>H- (AS)

Proposition A.3 (Inf-sup condition, [32 Proposition A.3]). Let Ag: X — X' and Dy : Il — II' be elliptic operators,
and C : X — TI' a bounded operator. The bilinear form tg : (X x II) x (X x IT) — C given by

to((w,p), (v,9)) = (Aou, v) x + (Cu, ¢)u + (Dop, ¢)1,

satisfies the h—uniform discrete inf-sup condition

P < inf sup Re{to((un,pn), (vn,qn))}

< ,  forallh>0. (A.4)
07 (unpn) €Xn XTh 0£ (vy, ,qn ) € X, x T, [ (wns o)l e 1(ons @) [l x
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For the sake of simplicity we have stated Proposition [A.3] assuming elliptic operators Ay and Dy. However, in
Section we face the situation that Dy merely satisfies an inf-sup condition. This case is addressed by the following
extended version of Proposition

Proposition A.4 (inf-sup condition, weakened assumptions, [32], Proposition A.4]). In the setting of Section let
IT be another Hilbert space and 1, C I a finite dimensional subspace. Let C : X — II' be bounded and let Dq : TT — II'
be a bounded operator that satisfies an h—uniform discrete inf-sup condition

Re{(Dopn, qn)=
o< inf sup {{Dopr. an) 5} for all h > 0. (A.5)

T 0#prelly R lpnll HQhHﬁ

Then, the bilinear form to : (X x II) x (X x II) — C given by

to((U,p), (’U, Q)) - <A0u7 v>X + <CU, q)ﬁ + <D0p7 q>ﬁ

satisfies the h—uniform discrete inf-sup condition

o < ir)lf sup Re{to((un,pn), (vn; qn))}
h

< ,  forall h>0. (A.6)
0 (o) €XnxTh o oo i, 1@ PR | e [1(vns @)l 1

Proposition A.5 (|33, Proposition A.2.6]). Let V and W be Hilbert spaces, {Vi}r>o and {Wptnso asymptotically
dense families of finite dimensional subspaces of V. and H respectively. Consider a bounded sesquilinear form
t:V xW — C such that t = tg + tx. We assume the following

1. The operator A : V — W' induced by the sesquilinear form t is injective.

2. The operator K : V. — W' induced by the sesquilinear form tx is compact.

3. The sesquilinear form tg satisfies an inf-sup condition on V. x W.

4. The sesquilinear form to satisfies an h—uniform discrete inf-sup condition on Vi X Wh,.

Then, there exist hg > 0 and ¢, > 0 such that

e it Re{t(on, wn)}

,  forall h < hy. A7
o, s, Tomly Tn (A7)

Proof. We recall that h—uniform inf-sup conditions are equivalent to Tj—coercivity (see [16, Theorem 2]): let {Th}n>0
be the family of bounded linear operators T}, : Vj, — W}, such that

ITh|| <C forall A > 0, (A.8)

and
Re{to(vp, Thon)} > ¢ lonlls  for all vy, € Vi, (A.9)

where ¢, > 0 is independent of h.

We define an operator X : V;, — W such that given v, € V3,

t(q, Xvp) = —tk(q, Thvy) forall g €V, (A.10)
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which means that X = —(A’)"'K'T},. This operator is well defined since A is invertible due to Fredholm alternative
and injectivity. Moreover, X is a compact operator, since K is compact. We choose conveniently

'LUZ(L = Thop + PrXvp, (A.ll)

where Py, : W — W)}, is the W-orthogonal projection. Now, we compute

t(’Uh, U);;) = t(’l)h, Th'Uh) + t(vh, PhX'Uh)
= t(vn, Thon) + t(vn, Xop) + t(vn, (Pr — 1d)Xwvy) (A12)
= t(vn, Thon) — tx (vn, Thvn) + t(vp, (Pn, — 1d)Xop) .
= to(vn, Thon) + t(vp, (P — Id)Xwvy,)
From (A.12)) we obtain
[t(vn, wi)| > [to(vn, Thon)| — [t(vn, (Pn — 1d)Xuvp)| (A13)

> ey Jonlly — Al ol 1(Pn = 14X

where ||(P, — 1d)X]|| — 0 uniformly as h — 0, due to X being a compact operator. Therefore, there exists hg > 0
such that

[t(on, wi)] = {t(on, (T + PuX)wn)| > Fee, [[onlly, (A.14)
This corresponds to Tj—coercivity with a family of operators {Th}h< ho» Where
Ty =Ty + P X, ||Th|| < [Tl + |1 Pull 11X < €,

with C > 0 independent of h. This result is equivalent to an h—uniform inf-sup condition for t, for all A < hg (see [16]
Theorem 2]). O

Proposition A.6 (Asymptotic quasi-optimality,[32, Proposition A.5]). Provided that Assumption[ A.1] holds, there
is ho > 0 and a constant cqo > 0 independent of h such that there exists a unique Galerkin solution (up,pp) € Xp, x I,
of (A.2)) for all h < hg. The solution satisfies

[[(w, p) = (uns )| x et < Cao inf ([ (w, ) = (9, 7o) x et - (A.15)
(Mh,mh)EX ) XI1,

B. Norm equivalence

The coercivity results in Section depend on a norm equivalence in trace spaces. This will be important for the
subsequent analysis.

Lemma B.1. Let x € CY(Q;) be such that

0 < Xmin < X(w) < Xmaz
for all x € Q;. Then

1/2

ctoclellmray < |32 S concl@llnays  for all p € HY(D), (B.1)

H1/2(I)

with constants ci y,C2, depending on x and I
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By duality, the result also holds for H—/?(T)

C1,x H’(/}”H*l/z(F) < HXl/QwHH_lm(F)

The result also extends component-wise to the vectorial case, to HY?(T") and its dual H~/?(T).

Proof. We start by recalling that for any ¢ € H'/?(T), we can write [47, Section 2.5]
o) — o(y)?
Iy = el + / / S

Then, we compute

2 1/2 1/2( ) ( )|2
1/2 H :H 1/2 //|X YW s ds...
HX v H1/2(T) X 1“)Jr |:c—y\3 Sy Qe
We denote e e )
va—y\?’ v

By adding zero,

P (@)e() — X (W)e)| = X (@)e() — X (y)e(x)
X2 (W)e) — X (y)e(y))|
< XM ()lle(x) — o (y)|
+ (@)X 2 () — X2 ()]

< C2,x H’L/)HH’VZ(F) 5 for all w c H_l/Q(l").

(B.2)

(B.3)

(B.4)

(B.5)

Since x € C'(©;) and positively bounded from below, we know that x'/2 € C*(Q;). Therefore, since § is bounded,

|X1/2(w)—xl/2(y)| <Cylz—y|, forallz,yel.

Combining (B.5)) and ( into , we obtain

I§;> < C (Xamaxlpl3a/py + C2P)

@ ::// ol d ds,
hs o — syds
) 1
<C | |p()] mdsy dsg
T T

<ol

where

due to the integral in (B.8b|) being finite, since I' is compact and Lipschitz.
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(B.7)

(B.8a)

(B.8b)

(B.8&c)



From (B.7) and (B.8a) we conclude that there exists a constant ¢y, > 0 such that

V|| e o lllsnray - (B.9)

el e

Using with ' = x~ ! and ¢’ = x'/2¢, we obtain

el < X% L, < e lellaay - (B.10)

H/2(T)

The proof for ¢» € H~'/2(T") follows a duality argument. Note that

1/2
Hxl/QwH = ap XK (B.11a)
H2(T)  gemzmngot 1©llpem
1/2
= sup WPl (B.11b)

peH/2(T)\{0} ||90||H1/2(1“)

HXl/QSOHHl/?(F)

< sup ”7//”}1—1/2(1“) || I (B.11¢)
peH/2(T)\{0} Pl E1/2(r)
= C2x ||1/)||H71/2(r) . (B.11d)
Repeating the argument with x' = x~* and ¢/ = x'/2¢, we conclude
1/2
rx Wy < X720,y < 2x gy
O]

C. L?-Projection in H(curl, £2;)

In the scalar case, there is a h-uniform discrete inf-sup condition for the dual product between H'(Q;) and

H ~1(€;), discretized with the finite dimensional space of piecewise-linear continuous functions P} [8]. The result is
based on the H'-stability of the L?-projection @, : L*(€2;) — P} defined as

(Qru,vn)q, = (u,vy), for all v, € Pl u € L?(). (C.1)
We know @, satisfies (see [8, Theorem 4.1],[31, Theorem 3],[9} Section 3])

1Qnull g1,y < @ llull i,y forallu e HY(Q,). (C.2)

The result in (C.2)) is proven by using a quasi-interpolation operator I 1, known to be stable in H'(£);) and for which
some approximation properties can be shown [8, Section 3|:

I o e (C3)

: < crrhlulgia,), (C4)

u— Ihu‘
= To]
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for all u € H ().
Assuming a quasi-uniform and shape-regular family of meshes, it follows that

1Qnull 1, < HQhu — D+ IhuHHl(sz,;)

<@ =Bl ,, o, + 7]

B H(Qh h)u H(Q;) | e H ()

< k@ =Tl g+ o]

S wf@n e o) F I o,

< fllu = Qull ooy + i |lu =T, o erlluln o,

< Clulme,) + cululpro,) + ¢f ||u||H1(Q,-,) < cQ ||UHH1(Q,-,)

The fundamental step in this proof is: being able to bound the L?-error with the H!-seminorm.

Is it possible to have a similar result in H(curl, ;) with its seminorm? The answer is no. Consider w € H(curl0, ©;)
and Qp, : H(curl, Q;) — Nj, C H(curl, ;) the standard L2-projection into Nédélec edge elements. Then, such a
result requires

[w— Qrwllizg,) < Clwla(cur,o,) =0, (C.5)

which can only be true for constants or polynomials in Ny, but as we know, H(curl0, £2;) is an infinite dimensional
subspace of H(curl, ;). Therefore, such a proof is not valid for the standard L2-projection Qy,.
Some numerical evidence of this issue and its implications will be shown in Appendix [C]

C.1. Numerical experiment

In this section, we study the convergence in the H(curl, ;) norm of the L2-projection Qj, defined as
(Qru,vp)a, = (u,vp)q, forall v, € Njy, u € L2(Q;), (C.6)

where Ny, = Ny, (7p,) is the finite dimensional space of Nédélec edge functions in a tetrahedral mesh Ty, of ;.
In particular, we consider
0= {z=(2,5,2) eR*: 0 <w,y,2 < 1},

and
u(x) = u*(x) = egexp(ikox - xg),

where kg =2, 2o = (0,1,0) and eg = (1,0,0). We can observe in Figure the errors of the projections Qju* in
the L2(Q;) and H(curl, ;) norms.

It is a well known result that the approximation error for L?(€2;) and H(curl, ;) in formulations that are stable
in H(curl, ;) has the same convergence rate, due to the interpolation estimates being the same [26, Remark 10].

Assume [ Qntflgicurt,0;) < O [[¢llgcurs,o,)- Then it follows

||’LL - Qhu”H(Curl,Qi) = ||’LL - Qhu ~ Ut thh”H(curl,Qi)
= 1T~ Qu)(w — v1) lsxicurt.on) (C.7)
< (1+Cs) lu = vallgcar,on)
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Convergence Results: L2-projection
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Figure C.7: L2-projection Qyp, Section Error norms ([125)) as functions of h.

for all vy, € Nj,. From (C.7) we obtain that for smooth vector fields u € H!(curl, ;) it holds
||U - Qh’u’HH(curl,Qi) < (1 + CS) vhigf\/h ||’LL - UhHH(curl,Qi) = O<h)

on shape-regular and quasi-uniform families of meshes.
As we observe in Figure there is a reduced order of convergence of the L2-projection in the H(curl, ;) norm.
We conclude that

Qru O
”hHHw is not bounded uniformly in h. (C.8)

||u||H(curl,Qi)
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