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Abstract— A world model creates a surrogate world to train a
controller and predict safety violations by learning the internal
dynamic model of systems. However, the existing world models
rely solely on statistical learning of how observations change
in response to actions, lacking precise quantification of how
accurate the surrogate dynamics are, which poses a significant
challenge in safety-critical systems. To address this challenge,
we propose foundation world models that embed observations
into meaningful and interpretable latent representations. This
enables the surrogate dynamics to directly predict interpretable
future states by leveraging a training-free large language model.
In two common benchmarks, this novel model outperforms
standard world models in the safety prediction task and has
a performance comparable to supervised learning despite not
using any data. We evaluate its performance with a more
specialized and system-relevant metric by comparing estimated
states instead of aggregating observation-wide error.

I. INTRODUCTION

A world model represents an understanding of how a
robotic system works by learning how observations change
with corresponding actions [1]. For example, it can describe
how the image seen by a legged robot changes after taking
several steps. Originally, world models were introduced
to address data insufficiency when training reinforcement-
learning controllers, which were limited by scarce real-world
data [2], [3]. This training typically requires the agent to
operate in a real environment to gather extensive data, which
makes it difficult and costly to explore diverse scenarios.
As shown in Fig. 1, a world model can learn the behavior
of both the true dynamical model and observation models
and thus become a surrogate of the real world. Some world
models also learn rewards to support controller training. Not
only do world models offer a new way for constructing better
controllers by building a new generative world, the surrogate
dynamics also support quantifying the competence [4] and
safety predictions [5] for highly critical autonomous robots.

In the past, researchers primarily focused on training better
controllers with world models, with insufficient attention
given to how accurate the world of world models is — a cru-
cial aspect for safety-critical robots. Typically, a world model
does not directly predict observations, such as images from
cameras or other sensor data, due to the constraints on time
and computational resources. Instead, as shown on the left of
Fig. 2, it extracts useful features into latent representations
with an encoder, which is part of a Variational Autoencoder
(VAE) [6], and then predicts based on these representations.
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Fig. 1. A dynamical model (blue flow) vs. a world model (orange flow).

Usually, the performance of the world model is evaluated
with the Mean Square Error (MSE) between the predicted
observation and ground truth; this metric considers only the
aggregate performance of the reconstruction — and lacks
the examination of the fine-grained and meaningful details
of the prediction. This coarse checking does not distinguish
slight but critical differences (e.g., if a car’s position shifts
a few pixels, it may lead to a collision) that may cause
devastating outcomes in safety predictions. Also, the latent
representations do not have a physical meaning in standard
models and cannot be used to evaluate whether a predicted
latent state is safe or has other important characteristics.
As a result, it becomes necessary to develop an additional
classifier to check such critical aspects, akin to a safety check
as discussed in our earlier work [5], which requires more
data, adds noise, and may suffer from distribution shift in
predicted observations (compared to the real sensor data).

The rise of foundation models provides an opportunity
to create meaningful representations with a zero-shot seg-
mentation of observed images. Not only the interpretable
representations can simplify the prediction and also the
whole world model can also be implemented with a training-
free architecture using Large Language Models, eliminating
the need to collect and label training data.

This paper proposes foundation world models that further
reduce data requirements by using foundation models in two
key elements of world models. First, to obtain interpretable
latent representations, we use the Segment Anything Model
(SAM) [7] to get the pixel positions of all objects in the
observation. The important characteristics of latent states, in
particular their safety (e.g., whether a collision has occurred
or not), can be calculated based on these representations.
Second, we predict the future position of these objects with
a Large Language Model (LLM). In addition, we introduce a
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Fig. 2. The structure of an existing world model (left) and the proposed foundation world model (right).

more focused metric for the accuracy evaluation of predicted
state. This metric helps us evaluate the quality of surrogate
dynamics in a system-specific way.

Our evaluation on two common simulated benchmarks
demonstrates the value of foundation world models. Our
foundation model not only demonstrates superior state pre-
diction based on the newly proposed metric — but also excels
in safety predictions. We experiment with several baseline
approaches, evaluation metrics, and different Large Language
Models for latent prediction.

In summary, this paper makes three contributions:
1) A training-free world model that combines foundation

models with interpretable embedding and overcomes
the distribution shift of the predicted observation,
which occurs in standard world models.

2) A segmentation-based metric for the accuracy of the
surrogate dynamic prediction by quantifying the devi-
ations of each object in the observation.

3) An experimental study of safety prediction where foun-
dation world models show better performance despite
not using any training data, compared to the existing
world model and supervised learning methods.

Sec. II introduces the details of world models and our
problem description. Sec. III and Sec. IV describe the
foundation world models and the results of our experiments.
In Sec. V and Sec. VI, we will review the related work and
discuss the conclusion and future work.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Observation Prediction with World Models

Consider a system s with dynamical model f in state xt,
where action ut is generated by an image-based controller
h: h(yt) = ut. Each time step, the dynamics generates the
state for the next time step: f(xt,ut) = xt+1. The system
also includes an observation model g that converts the states
x to observations y: g(xt) = yt.

The left side of Fig. 2 illustrates the architecture and
operational workflow of the standard world model, composed
of a decoder and an encoder [6]. The encoder E extracts
useful features from images or sensor data yt at time t
to build a distribution over latent vectors: E(yt) = vt =

[v1
t ,v

2
t , ...,v

n
t ], where each pi is a one-dimensional Gaussian

distribution: N(µi
t, σ

i
t). After sampling a latent vector zt ∼

vt, the surrogate dynamical model P (or simply surrogate
model) predicts the future latent representation based on
the past data: P (zt:t+m,ut:t+m) = zt+m+1. The decoder
D reconstructs a predicted observation ŷ from the latent
representation: D(zt+1) = ŷt+1. The VAE and the surrogate
model are trained sequentially. The optimization target of
the VAE is to minimize the reconstruction error between the
true image yt and the reconstructed image ŷt, as well as
the KL divergence between the prior distribution and the
latent distribution [6]. In the surrogate model training, the
mean squared error (MSE) is commonly employed as the
loss function to minimize the error between the predicted
image and the true image. In summary, the goal of a world
model is to learn the following distribution:

p(yt+m+1 | yt:t+m;ut:t+m),

where m is the input length of known observations. Thus,
the world model W can be expressed as follows:

W (yt:t+m,ut:t+m, ϵ) = ŷt+m+1,

where ϵ is the source of randomness in the latent sampling.
There is no single agreed-upon metric to evaluate the

performance of a world model. In various applications
of world models, the controller-training tasks are usually
judged on how well the resulting controller performs
compared with traditional methods [1], [3] in terms of
reward. Traditionally, evaluation metrics like MSE are
commonly adopted as the standard measurement criteria
for quantifying the predictive capacity of world models.
Accordingly, we compute the MSE of the world model’s
predicted observation in a pixel-wise manner:

MSE(y, ŷ) =
1

LW

L∑
i=1

W∑
j=1

(ŷ(i,j) − y(i,j))2,

where L and W are the length and width of the image and
y(i,j) is the pixel value at the position (i, j).



Fig. 3. An example of segmentation matrices. Upper, from left to right: segmentation of the cart, pole, lower background, and upper background. Lower,
from left to right: segmentation of the lander, lander point flag, lower background, and upper background.

We also consider another standard metric for visual pre-
diction — the Structural Similarity Index Measure (SSIM):

SSIM(y, ŷ) =
(2µŷµy + C1)(2σyŷ + C2)

(µ2
y + µ2

ŷ + C1)(σ2
y + σ2

ŷ + C2)
,

where µ and σ2 are the mean and variance of an image
over all pixels, σyŷ is the covariance between images, and
C1 and C2 are stability constants used to avoid close-to-
zero values in the denominator. This metric takes brightness,
contrast, and structural differences into account. However,
MSE and SSIM are aggregation metrics because they cover
and summarize the whole image but ignore the more impor-
tant objects in the images. The next section will present our
improvement over these metrics.

B. Object-based Prediction Metric

Our insight, unused in earlier world models, is that the
observation can be split into multiple meaningful objects
by some segmentation algorithm Ω: Ω(y) = [ω1,ω2, ...].
Each ω is a segmentation matrix with True and False
pixels with the same size as y, as shown in Fig. 3 for two
example systems. The True elements reflect the position of
the segmented object. These objects in the observation are se-
mantically important elements of the world that are assumed
to have a causal relation to future positions. The prediction
of the objects’ positions will evaluated separately, unlike
e.g. the image-wise MSE that takes all pixels into account
and is affected by inconsequential entities like static ob-
jects/background that occupy most of the observation frame.

To tailor the evaluation to each object ω, we will calculate
its centroid ωc = (ωc

x,ω
c
y) (i.e., its center of mass) as:

ωc
x =

1

LW

L∑
i=1

W∑
j=1

j · ω[i][j]

ωc
y =

1

LW

L∑
i=1

W∑
j=1

i · ω[i][j]

Each prediction ω̂ of a true object ω will be quantified
using the centroid distance (CD) defined with some norm
L, which can be for instance an L1 or L2-norm:

CD(ω, ω̂) = ∥ω̂c − ωc∥L

For evaluating the image-level error between a prediction
ŷ and a ground truth y, we implement the segmentation
algorithm to split the image into several parts: Ω(y) =
[ω1,ω2, ...,ωn], Ω(ŷ) = [ω̂1, ω̂2, ..., ω̂n]. Then, we get a
vector of CDs [CD(ω1, ω̂1),CD(ω2, ω̂2), ...,CD(ωn, ω̂n)]
that precisely reflects how well each object is predicted,
rather than aggregating the errors of unrelated pixels. We
leave the cases of missing and ghost objects for future work.

C. Safety Prediction Problem

The safety predicate φ is a binary function of state xt

that determines the safety of the system at time t: φ(xt).
For example, it can indicate if the robot is dangerously
close to an obstacle. The safety prediction problem [5] is
defined as follows:

Given horizon k > 0, a safety predicate φ,
a sequence of m observations and actions from
a known a controller h: [yt,yt+1, ...,yt+m],
[ut,ut+1, ...,ut+m] from an unknown system s,
determine whether the system satisfies the follow-
ing logical formula for the future time moments:

φ(xt+m) ∧ . . . ∧ φ(xt+m+k)



Since safety prediction is binary, we use the F1 score to
balance the evaluation of precision and recall. False-positive
safety predictions are dangerous in safety-critical systems,
so the false positive rate (FPR) is also taken into account.

A significant challenge in standard world models is that the
safety is not straightforward to infer from high-dimensional
observations, so it necessitates an extra learning-based safety
evaluator (often a Convolutional Neural Network, CNN)
shown on the left of Fig. 2. This CNN safety evaluator (as
well as the controller) can suffer from distribution shift due to
distorted predictions ŷ of standard world models originating
in the decoder. Specifically, the conditional distribution of
safety is the same for training and test datasets ptrain(φ(x) |
y) = ptest(φ(x) | y), but the distribution of observations is
shifted: ptrain(y) ̸= ptest(y). This kind of distribution shift
is covariate shift [8], which influences the accuracy of the
CNN evaluator.

Algorithm 1 Prompt assembly for state prediction
Input: A series of observation yt:t+m, a segmentation model
Ω and corresponding actions (U = ut,ut+1, ...,ut+m), and
prompt fragment R: instruction fragment r1, input assembly
fragment r2, and prediction fragment r3.
Output: A full prompt π and predicted states z.
FUNCTION Assemble(yt:t+m,Ω, U,R):

1: z ← [ ] ▷ Initialize an empty list
2: π ← r1 ▷ Add instructions at the beginning
3: for i from t to t+m do
4: ωi ← Ω(yi)
5: for j from 1 to len(ωi) do
6: π ← π + r2 ▷ Add assembly prompt
7: zj

i ←(ωj
i )

c ▷ Get the centroid
8: π ← π + zj

i ▷ Add the centroid
9: π ← π + uM ▷ Add action

10: z ← z + zj
i

11: end for
12: end for
13: π ← π + r3 ▷ Add prediction order and specify the

required output format
14: return π,z

III. FOUNDATION WORLD MODELS

We propose foundation world models that incorporate (a) a
pre-trained foundation segmentation model into our proposed
architecture as an encoder and (b) a large language model
as a latent predictor. Specifically, we adopt the Segment
Anything model (SAM) [7] as the segmentation model to
split the observation into several objects: Ω(y) = [ω1,ω2, ...].
The extracted centroids ωc are used as latent representations
z, which are causally informative as future object positions
are caused (in part) by past object positions. Combining
the representations z with actions u and prompt fragments
R = {r1, r2, r3}, we adopt the Algorithm 1 to form1 a
complete prompt π. A Large Language Model takes prompt

1We use “+” to denote string concatenation and adding to a state vector.

π and returns a formatted prediction of P (π) = ẑ. Three
types of pre-prompts in R are used to assemble a full prompt:
the first r1 is to describe the whole task, e.g., “Suppose I
have a sequence of actions and states of a system, please
predict the next step’s state given the following information.”
Next, there’s a loop to fuse the state description r2 and
the corresponding values “The time, states and the action
for this step are:’. We will repeat to add r2 for m times
to add all the input information. Finally, we add the state
prediction instruction r3: “Can you predict the state for the
next moment? Please only give me your prediction values as
a list” at the end of the prompt to form the complete π.

To implement LLM-based prediction of latent states, we
choose two models: GPT 3.5 provided by OpenAI and
Gemma 7B-it based on the Gemini technology [9]. One
challenge is that not all segmented objects prove to be useful;
for instance, objects like the white background in the cart
pole system are uninformative by themselves. These non-
essential objects require more tokens in the inference of the
Large Language Model, which increases the computational
cost and also potentially reduces prediction accuracy. We
eliminate this redundant information before the step of
prompt assembly by removing objects whose centroids do
not change at any time in the past observations. Future work
can explore other causal techniques [10] to focus on the
prediction-relevant objects.

Algorithm 2 Output disassembly into observation
Input: Predicted state zt+m+1, current state zt+m, current
observation yt+m, and segmentation algorithm Ω.
Output: Predicted observation yt+m+1

FUNCTION
Disassemble (zt+m+1,yt+m, zt+m,Ω):

1: yt+m+1 ← yt+m ▷ Copy most recent observation
2: for i from 1 to len(zt+m+1) do
3: ωi ← Ω(yi)
4: δi ← zi

t+m+1 − zi
t+m ▷ Compute the displacement

of each object
5: for pixel = True in ωi do
6: px← pixel.x ▷ x position of the pixel
7: py ← pixel.y ▷ y position of the pixel
8: SWAP(yt+m+1[px][py], yt+m+1[px + δNx ][py +

δNy ]) ▷ Move the object into the predicted position
9: end for

10: end for
11: return yt+m+1

World models perform stochastic prediction to ensure
diverse outputs. In existing world models, this randomness is
implemented by sampling latent states in the VAE, the diver-
sity of which can be controlled with the prior. In our LLM-
based world model, we implement randomness with top-p
sampling [11], for which temperature and threshold are two
hyperparameters to control the diversity of the outputs. The
top-p sampling restricts the outputs to combinations of words
with a cumulative probability higher than the threshold p.



Horizontal position CD error Vertical position CD error

Method Input length k=10 k=20 k=30 k=40 k=50 k=60 k=10 k=20 k=30 k=40 k=50 k=60
VAE & MDN-LSTM 7.217 7.096 7.030 7.138 7.046 7.125 3.666 3.417 3.280 3.131 3.058 2.908
SAM & MLP .0910 .1698 .2670 .3840 .5017 .5975 .4230 .7957 .1092 .3905 .6713 .8780
SAM & LSTM m=1 .1305 .2558 .3594 .4983 .6096 .7356 .2586 .5135 .7338 .9390 .1772 .3371
SAM & GPT 3.5 3.122 1.175 5.985 3.738 4.793 3.905 2.969 1.195 2.147 4.572 4.794 6.292
SAM & Gemma .4955 .3124 .4827 .7379 .7316 .7568 .2385 .6611 8.739 5.199 5.191 5.736
VAE & MDN-LSTM 3.666 3.417 3.280 3.131 3.058 2.908 3.605 3.359 3.277 3.087 3.057 2.884
SAM & MLP .0799 .1444 .2075 .2689 .3363 .4206 .3107 .5970 .8939 .1624 .4233 .7062
SAM & LSTM m=2 .1262 .2461 .3435 .4253 .5065 .5829 .3536 .6680 .9888 .2648 .5389 .8033
SAM & GPT 3.5 .1495 .2244 1.088 1.057 3.014 2.730 1.853 4.176 2.256 3.359 3.401 4.404
SAM & Gemma .6474 6.449 3.146 .3081 5.564 3.261 .8410 7.952 3.193 .4780 4.426 8.634
VAE & MDN-LSTM 3.605 3.359 3.277 3.087 3.057 2.884 3.612 3.323 3.327 3.116 2.894 2.826
SAM & MLP .0684 .1333 .2039 .2795 .3313 .4124 .2481 .4197 .5750 .6773 .7743 .8921
SAM & LSTM m=4 .1396 .2654 .3928 .5002 .5980 .6748 .3145 .5833 .9137 .1572 .3273 .5452
SAM & GPT 3.5 .1011 .1654 1.438 1.012 3.704 2.924 1.167 .9396 5.967 2.723 2.396 6.000
SAM & Gemma .2000 .5749 .5357 .4636 .8839 .1608 .6410 .9549 1.9403 .1722 .2840 .9854
VAE & MDN-LSTM 3.612 3.323 3.327 3.116 2.894 2.826 3.622 3.390 3.216 2.973 2.880 2.866
SAM & MLP 4.938 7.279 9.578 27.14 45.94 29.42 2.290 75.62 51.35 30.91 54.48 93.20
SAM & LSTM m=8 .1892 .3761 .5760 .7560 .9665 .2009 .3077 .5708 .8250 .9926 .1637 .2818
SAM & GPT 3.5 .1001 .1374 2.412 1.180 4.247 5.231 .3391 .6566 3.298 2.180 3.143 7.534
SAM & Gemma .8003 .1471 .9705 .2189 .5253 .5808 .3354 .5219 .2950 .1237 .9888 .0901

TABLE I
STATE PREDICTION PERFORMANCE FOR THE LUNAR LANDER: THE HORIZONTAL AND VERTICAL CENTROID DISTANCE (CD) ERRORS. GRAY ROWS

INDICATE THE USE OF ADDITIONAL DATA. THE RANGE OF POSITION IS [0, 20].

Method Input length
Position CD error (pixel range: [-48, 48]) Angle (degree range [-180°, 180°])

Upright Falling Upright Falling

k=10 k=20 k=30 k=10 k=20 k=30 k=10 k=20 k=30 k=10 k=20 k=30
VAE & MDN-LSTM 3.767 3.628 4.807 9.083 9.046 11.93 25.48 24.16 25.88 36.76 37.26 37.72
SAM & MLP 1.301 2.750 4.304 3.248 5.501 9.101 4.638 8.784 14.54 16.05 21.89 29.40
SAM & LSTM m=1 1.276 2.541 4.141 4.391 4.891 3.976 4.557 7.836 9.555 19.31 20.38 8.489
SAM & GPT 3.5 1.983 3.008 3.604 5.401 8.537 10.02 6.187 8.270 9.022 20.97 30.18 31.47
SAM & Gemma 1.935 3.993 4.582 3.745 8.411 10.236 4.882 10.63 12.58 8.110 34.66 36.69
VAE & MDN-LSTM 3.627 3.932 4.747 9.052 9.045 11.87 26.29 25.43 24.50 37.44 36.39 36.77
SAM & MLP 2.264 3.767 6.527 3.662 4.074 7.453 8.276 17.64 36.89 19.16 27.03 50.79
SAM & LSTM m=2 2.571 4.815 6.490 5.777 8.626 9.332 8.226 16.61 29.53 22.51 33.27 45.33
SAM & GPT 3.5 1.685 3.704 5.778 2.790 5.455 10.40 6.330 13.27 18.33 13.14 23.49 36.25
SAM & Gemma 1.711 2.872 3.731 4.251 6.588 9.545 5.309 7.765 9.932 16.11 20.31 28.63
VAE & MDN-LSTM 2.807 3.713 4.368 9.054 9.031 11.90 26.58 24.69 25.86 37.34 37.42 37.58
SAM & MLP 2.366 3.435 4.321 5.491 8.426 10.46 8.344 13.26 23.39 20.69 28.30 37.27
SAM & LSTM m=4 2.835 4.876 6.700 5.545 9.418 14.42 9.004 14.11 24.51 21.98 30.71 51.05
SAM & GPT 3.5 1.683 3.769 6.398 2.498 6.307 30.50 5.970 12.10 19.37 10.99 23.84 39.76
SAM & Gemma 1.813 2.954 4.453 4.602 6.871 10.06 6.153 7.818 12.34 18.44 22.30 31.00
VAE & MDN-LSTM 3.682 3.584 4.893 9.000 9.074 12.00 24.94 25.36 25.01 37.30 37.47 36.75
SAM & MLP 2.208 3.610 5.012 5.307 7.989 11.32 19.87 11.77 18.82 14.73 27.05 36.12
SAM & LSTM m=8 2.485 5.008 7.701 5.134 10.42 16.16 8.853 17.69 31.12 21.04 34.97 59.24
SAM & GPT 3.5 1.826 4.150 7.904 2.842 6.451 11.34 6.010 13.08 16.55 11.38 25.77 35.57
SAM & Gemma 1.787 3.034 4.352 4.798 7.153 10.32 5.803 8.685 11.46 19.71 24.92 30.16

TABLE II
STATE PREDICTION PERFORMANCE FOR THE CART POLE: THE MEAN CENTROID DISTANCE (CD) AND THE MEAN ABSOLUTE ERROR (MAE) FOR THE

POLE’S ANGLE. GRAY ROWS INDICATE THE USE OF ADDITIONAL DATA.

After inputting our prompt π, we will receive a formatted
state prediction output ẑ based on which we evaluate the
safety. To continue the prediction sequence into the next
step, we need to generate an observation to feed into the
image-based controller h. This “output disassembly” step is
implemented with Algorithm 2, and describes the process
of rebuilding the observation for the controller. This kind of
rebuilding won’t cause object duplication and loss as shown
in Fig 4, which is a common distribution shift that occurs
in standard world models. This problem is brought about

by the inability of the decoder to construct an observation
for an out-of-distribution latent representation predicted by
the surrogate model. Our proposed models use meaningful
latent states, which are comparable based the CD metric,
on which safety predicates can be encoded directly and
evaluated without learning. This issue does not exist in the
foundation world models because safety can be interpreted
by the estimated states and the image reconstruction is
precise pixel movement.



F1 score ↑ FPR ↓

Method Input length k=10 k=20 k=30 k=40 k=50 k=60 k=10 k=20 k=30 k=40 k=50 k=60
VAE & MDN-LSTM .8610 .8280 .8159 .8099 .7912 .7963 1.000 1.000 1.000 1.000 1.000 1.000
SAM & MLP .0000 .0000 .0000 .0000 .0000 .0000 .3914 .2845 .2074 .1002 .0535 .0000
SAM & LSTM m=1 .0000 .0000 .0000 .0000 .0000 .0000 .0676 .0784 .0579 .0579 .0289 .0000
SAM & GPT 3.5 .9566 .9324 .8622 .7464 .5328 .6821 .0863 .2293 .3000 .2533 .1006 .2367
SAM & Gemma .9159 .6667 .7143 .3670 .5233 .6471 1.000 1.000 1.000 .2381 .7480 .6561
VAE & MDN-LSTM .8558 .8345 .8106 .8067 .7955 .7771 1.000 1.000 1.000 1.000 1.000 1.000
SAM & MLP .0000 .0000 .0000 .0000 .0000 .0000 .4456 .2692 .2161 .1320 .0400 .0000
SAM & LSTM m=2 .0000 .0000 .0000 .0000 .0000 .0000 .0685 .0802 .0536 .0606 .0000 .0000
SAM & GPT 3.5 .9280 .9094 .8371 .8624 .6479 .6695 .0078 .0443 .0338 .0248 .0353 .0206
SAM & Gemma .8850 .9038 .3000 1.000 .8651 .8329 .1441 .0000 .0000 .0000 .0221 .0375
VAE & MDN-LSTM .8535 .8466 .8013 .7995 .8088 .7897 1.000 1.000 1.000 1.000 1.000 1.000
SAM & MLP .0000 .0000 .0000 .0000 .0000 .0000 .5473 .4475 .3860 .3093 .2871 .2889
SAM & LSTM m=4 .0000 .0000 .0000 .0000 .0000 .0000 .0825 .0837 .0775 .0597 .0000 .0000
SAM & GPT 3.5 .9487 .9471 .7580 .8333 .4537 .5861 .0000 .0075 .0000 .0061 .0067 .0000
SAM & Gemma .9759 .9815 .9367 .7929 .8843 .8137 .1304 .0000 .1750 .6667 .2889 .6190
VAE & MDN-LSTM .8270 .8113 .8010 .8045 .7923 .7797 1.000 1.000 1.000 1.000 1.000 1.000
SAM & MLP .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
SAM & LSTM m=8 .0000 .0000 .0000 .0000 .0000 .0000 .0527 .0667 .0742 .0579 .0460 .0638
SAM & GPT 3.5 .9168 .9710 .6575 .8233 .3260 .6042 .0064 .0068 .0000 .0000 .0000 .0000
SAM & Gemma .9677 .7570 .9582 .6047 .5596 .7009 .1429 .2391 .1045 .2016 .0000 .2639

TABLE III
SAFETY PREDICTION PERFORMANCE FOR THE LUNAR LANDER: F1 SCORE AND FALSE POSITIVE RATE. GRAY ROWS INDICATE THE USE OF

ADDITIONAL DATA.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We use simulation environments from OpenAI gym [12]
as two cases in this paper: (i) a cart pole with a four-
dimensional physical state and (ii) a lunar lander with an
eight-dimensional physical state. For the cart pole, the safety
threshold θthre is defined as the angle between the pole and
the vertical line θ being less than π/4: |θ| < π/4. For the
lunar lander, safety means keeping the horizontal position dx
of the lander within the landing range: 8 < dx < 12. For the
cart pole, to evaluate safety from our predicted states, we
calculate the angle instead of showing the pole’s centroid
error. For the cart pole, given that the pole is upright most
of the time, to get a more detailed evaluation of our models,
we split the test experiment of the cart pole into two parts:
(i) upright and (ii) falling.

As supervised learning baselines, we train two additional
state prediction models: a Multilayer Perceptron (MLP) and
a Long Short-Term Memory (LSTM). They are combined
with our SAM-based representations. We also compare our
approach to the original world model based on VAE rep-
resentations and an MDN-LSTM state predictor. We test
for 10,000 sequences with varied input lengths m and
prediction horizons k in each case study. In the results tables,
we marked the results of the supervised models in gray
because these models take extra 30,000 sequences to train
and therefore impose a significant data burden compared to
our zero-shot foundation world models. This fact relaxes the
expectations of the performance of our proposed models.

B. Experimental Results

First, we discuss the state prediction results. For the
cart pole, in order to show the safety-related state more

Fig. 4. The observation of cart pole (upper) and lunar lander (lower). From
left to right, generated by: the true observation model, a foundation world
model, an existing world model without distribution shift, and an existing
world model with distribution shift.

intuitively, we calculate the angle by the centroids of the
cart and pole to substitute the CD of the pole. As depicted
in Table I and II, the errors of all methods are relatively low
on short prediction horizons. As the value of k increases,
the error generally increases, indicating that predicting states
further into the future is more difficult. Specifically, GPT
3.5 and Gemma alternately exhibit relatively low errors in
most settings, especially when predicting the falling status.
Table I shows the error for the lunar lander, where the
foundation models do not perform as well as supervised
learning methods on short inputs. Our investigation suggests
that this shortcoming is due to insufficiently long input
prompts, chosen due to cost constraints; accordingly, the
Gemma-based approach beats the rest in most cases for input
length 8.

Tables III and IV show the results of the safety prediction.
The standard world model performs well on short prediction
horizons. As the horizon becomes longer, SAM-based mod-



Method Input length
F1 score ↑ FPR ↓

Upright Falling Upright Falling

k=10 k=20 k=30 k=10 k=20 k=30 k=10 k=20 k=30 k=10 k=20 k=30
VAE & MDN-LSTM .9987 .9915 .9732 .9905 .9301 .8598 .0676 .4474 1.000 .0610 .4756 .9980
SAM & MLP .9964 .9763 .9317 .9729 .9113 .5915 .0000 .4328 1.000 .0000 .4167 1.000
SAM & LSTM m=1 .9964 .9789 .9646 .9729 .9382 .8636 .0000 .4328 1.000 .0000 .4167 1.000
SAM & GPT 3.5 .9886 .9909 .9871 .8837 .8636 .8857 .7857 1.000 1.000 .8407 1.000 1.000
SAM & Gemma 1.000 .9531 .9352 1.000 .6667 .6021 .0000 1.000 1.000 .0000 1.000 1.000
VAE & MDN-LSTM .9977 .9912 .9753 .9905 .9318 .8576 .1125 .4545 1.000 .0610 .4634 1.000
SAM & MLP .9987 .9941 .8075 .9870 .9459 .6551 .0704 .0666 .0641 .0833 .0833 .0833
SAM & LSTM m=2 .9994 .9860 .9670 .9866 .9295 .8529 .0000 .0000 .0641 .0000 .0000 .0833
SAM & GPT 3.5 .9924 .9768 .9711 .9398 .8981 .8662 .4667 .7333 .7692 .4182 .7167 .8333
SAM & Gemma .9926 .9906 .9873 .9473 .9444 .9167 .5625 1.000 1.000 .5000 1.000 1.000
VAE & MDN-LSTM .9992 .9910 .9778 .9861 .9324 .8556 .0429 .4730 .9877 .0854 .4593 .9980
SAM & MLP .9982 .9979 .9933 .9870 .9867 .9743 .0795 .0000 .1941 .0833 .0000 .1667
SAM & LSTM m=4 .9982 .9922 .9346 .9870 .9382 .5901 .0795 .4305 .3980 .0833 .4167 .4167
SAM & GPT 3.5 .9918 .9802 .9625 .9488 .8946 .8487 .3500 .7333 .8182 .3178 .7593 .8890
SAM & Gemma .9881 .991 .9765 .9062 .9230 .8955 .6440 1.000 1.000 .7500 1.000 1.000
VAE & MDN-LSTM .9992 .9919 .9773 .9895 .9324 .8579 .0484 .3750 1.000 .0671 .4593 .9980
SAM & MLP .9987 .9979 .9969 .9870 .9866 .9743 .0625 .0000 .1428 .0833 .0000 .1667
SAM & LSTM m=8 .9987 .9908 .9320 .9870 .9315 .7619 .0625 .1052 .0833 .0833 .0833 .0833
SAM & GPT 3.5 .9960 .9744 .9650 .9516 .8850 .8535 .2500 .8421 1.000 .2375 .8083 .8958
SAM & Gemma .9871 .9820 .9829 .9041 .8823 .9062 .6617 1.000 1.000 .7000 1.000 1.000

TABLE IV
SAFETY PREDICTION PERFORMANCE FOR THE CART POLE: F1 SCORE AND FALSE POSITIVE RATE. GRAY ROWS INDICATE THE USE OF ADDITIONAL

DATA.

els exhibit higher F1 and lower FPR. The foundation world
models have competitive results compared with supervised
learning despite being zero-shot. For the lunar lander, the
standard world model and supervised learning fail to predict
safety accurately. In the standard world model, the FPR is
1 for all predictions, which means that it predicts “safe”
at all times. This might be caused by the vulnerability of
generative ability [13] to distribution shifts [8] when the
model encounters unseen data, with examples shown in
Fig. 4. Another consideration is that, since the trajectory
of the lunar lander resembles the shape of a sine function,
this trajectory may exceed the safety bounds in intermediate
states. The supervised learning methods they forecast a
smoother trajectory without unsafe intermediate states, which
leads to poor safety prediction because safety is defined on
the whole sequence, but just on the last state.

The secondary results with SSIM and MSE of predicted
observations are shown in Tables V and VI. As mentioned
earlier, these metrics are not relevant enough to the dynamics
and safety predictions of safety-critical systems. Combining
with the metric of the state prediction, it shows that he
standard world model can only do well in the MSE and fails
in SSIM, which means it has a low quality of predicting and
reconstructing the observations.

V. RELATED WORK

A. Foundation Models and Applications

With the rise of large AI models that benefit from the avail-
ability of huge computing resources by using a considerable
amount of data and model parameters, foundation models
achieve high performance on multiple cross-domain tasks.
Many well-performing models like Generative Pre-trained

Transformer (GPT) [14], Bidirectional Encoder Representa-
tions from Transformers (BERT) [15], Contrastive Language-
Image Pre-Training (CLIP) [16] and Segment Anything
model (SAM) [7] extensively serve as the foundation for
downstream tasks. We extend the core idea of LLMs from
text prediction to complex sequence tasks such as safety
prediction, by exploiting the statistical patterns of language
learned from large text data.

Furthermore, one significant advantage of LLMs is
their extensive pre-training, making them easily adapted
to various domains such as robotics decision-making
tasks [17]. Another language-guided abstraction [18] can
transfer high-level task descriptions into task-relevant state
abstractions by using a pre-trained language model. Abstract
meaning representation also plays an important role in
LLMs and can improve their performance [19]. We believe
that LLNs can achieve better performance on complex
task sequences because the alignment between human and
robot representations is closer than that of human and robot
understanding [20].

As the internal structure of LLM is a generative pre-trained
transformer, it can be used for any prediction probelms.
Some researchers have tested LLM’s forecasting ability with
humans and it shows that the ability of LLM is approaching
the human level [21]. Some new foundation models like
Chronos [22] are specialized in non-dynamical prediction
tasks like traffic, weather, and energy consumption. Lan-
guage can also be the input of robotic systems [23] to
be trained for end-to-end language-controlled systems like
RT2 [24], which can perform basic semantic reasoning to
finish its tasks. The trustworthiness of robotic techniques
based on foundation models is still an area that has not been
widely explored [25]. Besides applying the foundation model



SSIM ↑ MSE ↓

Method Input length k=10 k=20 k=30 k=40 k=50 k=60 k=10 k=20 k=30 k=40 k=50 k=60
VAE & MDN-LSTM .6933 .6933 .6931 .6933 .6932 .6933 .1925 .1924 .1925 .1925 .1924 .1924
SAM & MLP .9922 .9901 .9896 .9892 .9890 .9888 .0013 .0021 .0023 .0024 .0025 .0025
SAM & LSTM m=1 .9930 .9914 .9905 .9900 .9897 .9894 .0010 .0016 .0020 .0021 .0022 .0023
SAM & GPT 3.5 .9923 .9911 .9905 .9903 .9909 .9891 .0015 .0019 .0022 .0022 .0020 .0026
SAM & Gemma .9950 .9892 .9896 .9893 .9902 .9889 .0007 .0024 .0027 .0024 .0022 .0026
VAE & MDN-LSTM .6933 .6933 .6932 .6933 .6932 .6932 .1924 .1924 .1924 .1925 .1925 .1924
SAM & MLP .9929 .9911 .9902 .9897 .9894 .9891 .0010 .0017 .0021 .0022 .0024 .0025
SAM & LSTM m=2 .9924 .9907 .9899 .9896 .9894 .9891 .0012 .0018 .0021 .0022 .0023 .0024
SAM & GPT 3.5 .9947 .9926 .9915 .9911 .9906 .9908 .0008 .0015 .0018 .0020 .0022 .0022
SAM & Gemma .9918 .9907 .9897 .9884 .9891 .9834 .0017 .0021 .0021 .0028 .0025 .0027
VAE & MDN-LSTM .6932 .6933 .6932 .6933 .6933 .6933 .1925 .1925 .1924 .1925 .1925 .1925
SAM & MLP .9936 .9921 .9910 .9904 .9901 .9898 .0008 .0014 .0018 .0020 .0021 .0023
SAM & LSTM m=4 .9927 .9913 .9904 .9900 .9896 .9894 .0011 .0016 .0020 .0021 .0022 .0023
SAM & GPT 3.5 .9954 .9932 .9908 .9884 .9900 .9862 .0006 .0012 .0020 .0021 .0023 .0021
SAM & Gemma .9920 .9930 .9909 .9908 .9905 .9890 .0016 .0013 .0020 .0020 .0021 .0026
VAE & MDN-LSTM .6932 .6933 .6932 .6932 .6932 .6932 .1925 .1924 .1924 .1924 .1925 .1925
SAM & MLP .9936 .9940 .9940 .9940 .9940 .9940 .0015 .0014 .0014 .0014 .0014 .0014
SAM & LSTM m=8 .9929 .9914 .9906 .9900 .9894 .9890 .0011 .0015 .0019 .0021 .0023 .0025
SAM & GPT 3.5 .9847 .9847 .9773 .9565 .9623 .9101 .0004 .0012 .0022 .0021 .0024 .0020
SAM & Gemma .9908 .9907 .9900 .9891 .9890 .9894 .0019 .0021 .0023 .0025 .0025 .0024

TABLE V
COMPARISON OF STRUCTURAL SIMILARITY INDEX MEASURE (SSIM) AND MEAN SQUARE ERROR (MSE) FOR LUNAR LANDER’S PREDICTED

OBSERVATIONS. GRAY ROWS INDICATE THE USE OF ADDITIONAL DATA.

to control and forecast, novel simulators also adopt LLMs to
generate various scenes for traffic simulations [26].

B. Safety Assurance of Autonomous Systems

Trajectory forecasting plays a key role within autonomous
systems for a variety of purposes, including safety assurance.
One tricky problem with safety assurance based on trajec-
tory prediction is the gap between high-dimensional input
and low-dimensional states. For sensors operating in high-
dimensional spaces, integrating physics models is crucial
for enhancing predictive accuracy. Works such as the Social
ODE [27] and Deep Kinematic Models [28] exemplify this
approach by merging deep learning techniques with physical
models to address issues related to data unreliability. Another
popular safety assurance method is reachability analysis.
Given the challenge of finding all reachable states in non-
linear dynamics and neural network controllers, specialized
verification tools [29], [30] are designed to develop accurate
overapproximations of these reachable sets. However, these
tools cannot work on high-dimensional controllers such as
image-input controllers. One tricky problem with safety
assurance based on trajectory prediction is the gap between
high-dimensional input and low-dimensional states. High-
dimensional verification processes could be tailored, for
instance, through the application of generative models [31],
and by approximating high-dimensional systems with their
lower-dimensional counterparts [32]. Unlike the cases above,
we apply SAM to bridge the gap between high-dimensional
and low-dimensional space, which requires no additional
training like LLNs and is easy to implement.

Finally, conformal prediction is also widely recognized for
establishing boundaries around time series forecasts within
a defined confidence level [33], [34], which could be used

to provide safety bounds for the trajectory with a specific
confidence.

VI. DISCUSSION

While our foundation world model demonstrates improved
performance in certain aspects and produces physically
meaningful states, its dynamic predictions essentially rely
on statistical correlations. Also, deploying foundation world
models may require human judgment about the relevance of
segmented classes; however, for many robotic systems, this
effort is dwarfed by the significant data collection required to
deploy standard world models or other supervised methods.

In our future work, we plan to delve deeper into the fine-
tuning of foundation models to enhance their performance on
particular robotic prediction tasks. Additional dynamic states,
such as speed and angular velocity, can be derived from the
observation sequence and integrated into state representation
to develop a more physics-specific surrogate model. In addi-
tion, other kinds of multimodal foundation models [16], [35]
may also help with building an comprehensive world model.
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