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1 Introduction

The question under which circumstances stably free modules over commutative
rings are actually free has stimulated a wealth of research over many decades
and has led to the development of the basic calculus of unimodular rows in the
second half of the last century (cf. [L, Chapter III]). Indeed, if R is any com-
mutative ring with unit and n ≥ 0 an integer, a unimodular row of length n+1
is a row vector (a0, .., an) of length n + 1 with ai ∈ R, 0 ≤ i ≤ n, such that
〈a0, ..., an〉 = R; any such row vector corresponds to an epimorphism Rn+1 → R
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whose kernel is a stably free R-module of rank n. This stably free R-module is
free if and only if the corresponding unimodular row is the first row of an in-
vertible (n+1)× (n+1)-matrix over R. Therefore it became of interest to find
general criteria for a unimodular row to be completable to an invertible matrix.
As a highlight of this development, Suslin proved the following beautiful and
remarkable result on the completability of unimodular rows (cf. [S1, Theorem
2]):

Theorem (Suslin). Let R be a commutative ring, n ≥ 0 an integer and
(a0, ..., an) be any unimodular row of length n + 1 over R. Furthermore, let
r0, ..., rn ≥ 1 be integers such that n! divides r0 · ... · rn. Then the unimodular
row (ar00 , ..., a

rn
n ) is the first row of an invertible matrix ϕ ∈ GLn+1(R).

This result is now known as Suslin’s n!-theorem (cf. [L, Chapter III, §4]). The
theorem was substantially used in the proofs of celebrated results on stably free
modules (cf. [S1, Theorem 1], [FRS, Theorem 7.5]). The special case n = 2 of
Theorem 1 was already proven before by Swan and Towber in [SwT] and was
also crucially used in seminal work on stably free modules (cf. [F3]).
Now unimodular rows of even length play an analogous role for stably trivial
symplectic modules as unimodular rows of arbitrary length for stably free mod-
ules. Indeed, any unimodular row of length 2n+ 2 for some integer n ≥ 0 has
an associated stably trivial symplectic R-module of rank 2n; this symplectic R-
module is trivial if and only if the corresponding unimodular row of even length
can be completed to a symplectic matrix (cf. [F1, Section 3]). It is therefore
natural to ask whether there exists an analogue of Suslin’s n!-theorem on the
completability of unimodular rows of even length to symplectic matrices. In
this paper, we prove the following symplectic version of Suslin’s n!-theorem (cf.
Theorem 3.1 in the text):

Theorem 1. Let R be an algebra over a quadratically closed perfect field
of characteristic 6= 2, n ≥ 0 an integer and (a0, ..., a2n+1) be any unimodular
row of length 2n+ 2 over R. Furthermore, let r0, ..., r2n+1 ≥ 1 be integers such
that

• (2n+ 1)! divides r0 · ... · r2n+1 and n is even or

• 2 · (2n+ 1)! divides r0 · ... · r2n+1 and n is odd

Then the unimodular row (ar00 , ..., a
r2n+1

2n+1 ) is the first row of a symplectic matrix
ϕ ∈ Sp2n+2(R).

Our proof shows that the divisibility assumptions on the product r0 · ... · r2n+1

in Theorem 1 cannot be weakened even for algebras over algebraically closed
fields of characteristic 6= 2 and that the statement of Theorem 1 fails to be
true without these assumptions (cf. Remark 3.3). Moreover, the methods in
the proof of Theorem 1 also enable us to prove similar results for algebras over
finite fields of characteristic 6= 2 and for algebras over perfect fields containing
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a square root of −1 with characteristic 6= 2 under slightly stronger divisibility
assumptions (cf. Theorem 3.2 in the text):

Theorem 2. Let R be an algebra over a finite field k of characteristic 6= 2
or an algebra over a perfect field k of characteristic 6= 2 with −1 ∈ (k×)

2
, n ≥ 0

an integer and (a0, ..., a2n+1) be any unimodular row of length 2n + 2 over R.
Furthermore, let r0, ..., r2n+1 ≥ 1 be integers such that

• 2 · (2n+ 1)! divides r0 · ... · r2n+1 and n is even or

• 4 · (2n+ 1)! divides r0 · ... · r2n+1 and n is odd

Then the unimodular row (ar00 , ..., a
r2n+1

2n+1 ) is the first row of a symplectic matrix
ϕ ∈ Sp2n+2(R).

Our proofs make substantial use of A1-homotopy theory: The main idea is
to show that it suffices to prove the statement in the theorem only for the ”uni-
versal” k-algebra S2n+2 parametrizing unimodular rows of length 2n+2 with a
chosen section and only ”up to A1-homotopy”; as the algebra S2n+2 is smooth
over k and its associated scheme has the A1-homotopy type of a punctured affine
space, one may then apply techniques from A1-homotopy theory involving com-
putations with contracted A

1-homotopy sheaves in order to prove the theorems.
We remark that it could still be possible to prove the statement of Theorem
1 for arbitrary algebras over fields of characteristic 6= 2 or even for arbitrary
commutative rings in the future; however, this is currently out of reach and
completely open.
Unsurprisingly, Theorem 1 has immediate considerable applications: As a direct
consequence of Theorem 1, we can prove that every unimodular row of length
d+1 over a reduced affine algebraR of odd dimension d ≥ 3 over an algebraically
closed field of characteristic 6= 2 is the first row of a symplectic matrix over R
(cf. Theorem 4.1); furthermore, we prove that any unimodular row of length d
over a normal affine algebra of even dimension d ≥ 4 over an algebraically closed
field k with (d − 1)! ∈ k× is the first row of a symplectic matrix (cf. Theorem
4.2). These results can be considered symplectic versions of the main results in
[S1] and [FRS] and were proven with a lot of technical efforts for smooth affine
algebras in [Sy2]; Theorem 1 allows us to drop the smoothness assumption and
to give very simple proofs.
Finally, Theorem 1 also allows us to prove results on stably free modules over
affine algebras over algebraically closed fields: Recall that classical results of
Bass and Suslin imply that stably free modules of rank ≥ d over affine algebras
of dimension d over algebraically closed fields are always free (cf. [HB, Chapter
IV, Theorem 3.4], [S1, Theorem 1]). The main result in [FRS] shows that stably
free modules of rank d − 1 over normal affine algebras of dimension d ≥ 4 over
an algebraically closed field k with (d−1)! ∈ k× are always free; the same state-
ment is proven for smooth k-algebras of dimension 3 (cf. [FRS, Theorem 7.5]).
Theorem 1 enables us deduce the following criterion for general (not necessarily
smooth) affine algebras of dimension 3 (cf. Theorem 4.3):
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Theorem 3. Let R be an affine algebra of dimension 3 over an algebraically
closed field k with characteristic 6= 2. Then all stably free R-modules of rank 2
are free if and only if WSL(R) = 0.

The abelian group WSL(R) is a Hermitian K-theory group and was introduced
in [SV, §3]. Theorem 3 provides a precise cohomological criterion for all stably
free modules of rank 2 over 3-dimensional affine algebras to be free and is the
first of its kind in this generality. In case of a smooth affine algebra of dimension
3, stably free modules of rank 2 are always free by [AF, Corollary 6.8] and there-
fore the group WSL(R) has to be trivial in this situation; the question whether
the same holds for non-smooth algebras is completely open.
While it was well-known for a long time that stably free modules of rank d− 2
over smooth affine algebras of dimension d ≥ 4 over algebraically closed fields
need not be free (cf. [NMK]), we can prove the following precise cohomological
criterion for all stably free modules of rank 2 over a normal affine algebra of
dimension 4 to be free (cf. Theorem 4.4):

Theorem 4. Let R be a normal affine algebra of dimension 4 over an al-
gebraically closed field k with 6 ∈ k×. Then all stably free R-modules of rank
2 are free if and only if WSL(R) = 0.

This is yet another consequence of Theorem 1 and generalizes the main re-
sult of [Sy1], where the same statement was proven for smooth affine algebras
of dimension 4 over an algebraically closed field k with 6 ∈ k×. Again, Theorem
4 is the first result of its kind in this generality.
The paper is structured as follows: We recall basic definitions and facts about
unimodular rows in Section 2.1. Then we give a brief introduction to motivic
homotopy theory as needed for this paper in Section 2.2. We prove the main
results of this paper in Section 3. In Section 4, we discuss several applications
of our main results.
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2 Preliminaries

2.1 Unimodular rows

Let R be a commutative ring. For any integer n ≥ 1, a unimodular row of length
n over R is a row vector (a1, ..., an) of length n such that ai ∈ R, 1 ≤ i ≤ n, and
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〈a1, ..., an〉 = R. We denote by Umn(R) the set of unimodular row vectors of
length n over R. By definition, if a = (a1, ..., an) ∈ Umn(R), then there exists a
row vector b = (b1, ..., bn) with bi ∈ R, 1 ≤ i ≤ n, such that abt =

∑n
i=1 aibi = 1;

we call any such row vector b a section of a. Clearly, the groupGLn(R) of invert-
ible n×n-matrices over R acts on the right on Umn(R) by matrix multiplication.
In particular, the subgroup SLn(R) of matrices with determinant 1 and the sub-
group En(R) generated by elementary matrices act on the right on Umn(R) by
restriction. If n is even, then the subgroup Spn(R) of symplectic matrices and
its subgroup ESpn(R) generated by elementary symplectic matrices act on the
right on Umn(R) by restriction as well.

2.2 Motivic homotopy theory

In this section, we give a short introduction to motivic homotopy theory as
needed for this paper; our main reference is [MV]. For this purpose, let k be a
fixed perfect field.
We denote by Smk the category of smooth separated schemes of finite type over
Spec(k) and by Spck the category of spaces, i.e., the category of simplicial Nis-
nevich sheaves on Smk. Similarly, we denote by Spck,∗ the category of pointed
spaces, i.e., the category of pointed simplicial Nisnevich sheaves on Smk. We
will refer to objects of Spck (resp. Spck,∗) as spaces (resp. pointed spaces).
Note that any (pointed) simplicial set and also any (pointed) smooth k-scheme
X ∈ Smk define a (pointed) space.
We denote by H(k) the unstable A

1-homotopy category over k, which is the
homotopy category of a model structure on Spck; the weak equivalences of this
model structure are called A1-weak equivalences. Analogously, we denote by
H∗(k) the pointed unstable A1-homotopy category over k, which is the homo-
topy category of the corresponding model structure on Spck,∗; the weak equiva-
lences of this model structure are called pointed A1-weak equivalences. We refer
the reader to [MV] for details and to [Ho] for background on model categories.
If X ,Y are spaces, the set of morphisms from X to Y in H(k) will be denoted by
[X ,Y]A1 . Analogously, if (X , x), (Y, y) are pointed spaces, the set of morphisms
from X to Y in H∗(k) will be denoted by [(X , x), (Y, y)]A1 ,∗.
There is a forgetful functor f : H∗(k) → H(k), (X , x) 7→ X . As in topol-
ogy, one can define a smash product (X , x) ∧ (Y, y) of two pointed spaces
(X , x), (Y, y) ∈ Spck,∗. For any pointed space (X , x) ∈ Spck,∗, one obtains
a functor (X , x) ∧ − : H∗(k) → H∗(k). If (X , x) = (S1, ∗) is the simplicial 1-
sphere with canonical basepoint, then this functor is called simplicial suspension
and denoted Σ1

s = (S1, ∗) ∧ − : H∗(k) → H∗(k); we usually omit the basepoint
in the notation. Similarly, we usually view Gm as a pointed space with canonical
basepoint 1.
For a pointed space (X , x) and integers i, j ≥ 0, we define πA

1

i,j (X , x) as the

Nisnevich sheaf associated to the presheaf U 7→ [S1∧i
∧G

∧j
m ∧U+, (X , x)]A1,∗ on

Smk. The sheaves πA
1

i (X , x) := πA
1

i,0(X , x) are called A1-homotopy sheaves of
the pointed space (X , x); these sheaves are sheaves of sets for i = 0, of groups
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for i = 1 and of abelian groups for i ≥ 2.
We say that a sheaf of abelian groups A on Smk is strictly A1-invariant if the
map Hi

Nis(X,A) → Hi
Nis(X×A1,A) induced by the projection X×A1 → X is

a bijection for all X ∈ Smk and i ≥ 0. A theorem of Morel asserts that the A1-
homotopy sheaves πA

1

i (X , x) of a pointed space (X , x) are strictly A
1-invariant

if i ≥ 2 (cf. [Mo, Corollary 5.2]). The category of strictly A1-invariant sheaves
of abelian groups AbA1(k) is abelian (cf. [Mo, Corollary 5.24]).
There is an exact functor ()

−1 : AbA1(k) → AbA1(k),A 7→ A−1 called con-
traction functor (cf. [Mo, Lemma 6.33]). For an integer n ≥ 1, we denote by
()

−n : AbA1(k) → AbA1(k),A 7→ A−n the iteration of this contraction functor.
There are canonical isomorphisms

πA
1

i,j (X , x)
∼= πA

1

i (X , x)
−j

for i ≥ 2, j ≥ 0 and any pointed space (X , x) with πA
1

0 (X , x) = ∗ (cf. [Mo,
Theorem 5.13]).
For n ∈ Z, we denote byKMW

n the n-th unramified Milnor-WittK-theory sheaf,
by KM

n the n-th unramified Milnor K-theory sheaf and by In the unramified
sheaf of the n-th power of the fundamental ideal described in [Mo, §2]. These
sheaves are strictly A1-invariant and linked by a canonical short exact sequence

0 → In+1 → KMW
n → KM

n → 0.

of strictly A1-invariant sheaves. The contractions of these sheaves are given as
(KMW

n )
−1 = KMW

n−1 , (K
M
n )

−1 = KM
n−1 and (In)

−1 = In−1 and the canonical
short exact sequence is compatible with these identifications.
The groupKMW

0 (k) can be identified with the Grothendieck-Witt groupGW (k)
of non-degenerate symmetric bilinear forms over k; if we let I(k) be the fun-
damental ideal of k, i.e., the kernel of the rank homomorphism W (k) → Z/2Z
modulo 2 from the Witt ring of non-degenerate symmetric bilinear forms over
k to Z/2Z, then, for n ≥ 1, the groups In(k) can be identified with n-th powers
In(k) the fundamental ideal I(k).
Now let n ≥ 1 be an integer and let Q2n−1 be the smooth affine scheme
Spec(k[x1, ..., xn, y1, ..., yn]/〈

∑n

i=1 xiyi − 1〉) ∈ Smk. It is well-known that the
projection morphism p2n−1 : Q2n−1 → A

n \ 0 on the coefficients x1, ..., xn is an
A1-weak equivalence. In particular, if we equip An\0 with (1, 0, .., 0) and Q2n−1

with (1, 0, .., 0, 1, 0, .., 0) as basepoints, we obtain a pointed A1-weak equivalence

Q2n−1 ≃A1 An \ 0.

As indicated, we usually omit these canonical basepoints in the notation. Now
let R be any k-algebra, X = Spec(R) and Schk be the category of schemes over
Spec(k). Then there is a canonical bijection

Umn(R) ∼= HomSchk
(X,An \ 0).

In other words, unimodular rows of length n over R correspond exactly to
morphisms X → A

n \0 of schemes over Spec(k). Similarly, it follows easily that
there is a canonical bijection

6



{(a, b)|a, b ∈ Umn(R), ab
t = 1} = HomSchk

(X,Q2n−1),

So unimodular rows of length n over R with a chosen section correspond exactly
to morphisms X → Q2n−1 of schemes over Spec(k).
Now assume furthermore that R is smooth, k perfect with char(k) 6= 2 and
n ≥ 3. As a direct consequence of [Mo, Remark 7.10] and [F2, Theorem 2.1],
one concludes that the bijection above descends to a bijection

Umn(R)/En(R) ∼= [X,An \ 0]A1 .

It is well-known that there are pointed A1-weak equivalences

An \ 0 ≃A1 Σn−1
s G∧n

m ,

for n ≥ 1, where Gm has 1 as a canonical basepoint. For n ≥ 3, by [Mo,
Theorem 5.40], one has isomorphisms

πA
1

i (An \ 0, ∗) ∼=

{

0 if i ≤ n− 2

KMW
n if i = n− 1.

In particular, by [Mo, Corollary 5.43], there is a canonical group isomorphism

πA
1

n−1,n(A
n \ 0)(k) = [An \ 0,An \ 0]A1,∗

∼= KMW
0 (k) = GW (k)

called the motivic Brouwer degree. It follows directly from [AFH, Proposition
2.1.9] that the morphism Ψr : An \ 0 → A

n \ 0, (x1, ..., xn) 7→ (x1, ..., x
r
n) corre-

sponds to

rǫ =
∑r

i=1〈(−1)
i−1

〉 ∈ GW (k)

under the identification [An \ 0,An \ 0]A1,∗
∼= GW (k) above.

3 Proof of the main result

In this section we prove the main results of this paper:

Theorem 3.1. Let R be an algebra over a quadratically closed perfect field of

characteristic 6= 2, n ≥ 0 an integer and (a0, ..., a2n+1) be any unimodular row

of length 2n+ 2 over R. Furthermore, let r0, ..., r2n+1 ≥ 1 be integers such that

• (2n+ 1)! divides r0 · ... · r2n+1 and n is even or

• 2 · (2n+ 1)! divides r0 · ... · r2n+1 and n is odd

Then the unimodular row (ar00 , ..., a
r2n+1

2n+1 ) is the first row of a symplectic matrix

ϕ ∈ Sp2n+2(R).

7



Proof. There is nothing to prove if n = 0: Any unimodular row of length 2 is the
first row of a matrix with determinant 1 and any 2×2-matrix with determinant
1 is symplectic. So let n ≥ 1.
Furthermore, we only have to prove that the row (a0, ..., a

r0·...·r2n+1

2n−1 ) is the first
row of a symplectic matrix: By [V, Theorem], there is an elementary matrix
E such that (a0, ..., a

r0·...·r2n+1

2n−1 )E = (ar00 , ..., a
r2n+1

2n−1 ). Then it follows from [G,
Theorem 3.9] that there is also a matrix E′ ∈ ESp2n(R) ⊂ Sp2n(R) such
that (a0, ..., a

r0·...·r2n+1

2n−1 )E′ = (ar00 , ..., a
r2n+1

2n−1 ). In particular, once we prove that

(a0, ..., a
r0·...·r2n+1

2n−1 ) is the first row of a symplectic matrix, the same holds for
the row (ar00 , ..., a

r2n+1

2n−1 ).

Moreover, let S4n+3 = k[x1, ..., x2n+2, y1, ..., y2n+2]/〈
∑2n+2

i=1 xiyi − 1〉 and note
that Spec(S4n+3) = Q4n+3 by definition. Then it suffices to prove the statement
in the theorem only for the unimodular row (x0, ..., x

r0·...·r2n+1) of length 2n+2
over S4n+3: Indeed, the unimodular row a = (a0, ..., a2n+1) over R and some
chosen section b = (b0, ..., b2n+1) correspond to a homomorphism

ϕa,b : S4n+3 → R

of k-algebras. This homomorphism induces a homomorphism

ϕ∗

a,b : Sp2n+2(S4n+3) → Sp2n+2(R).

If M ∈ Sp2n+2(S4n+3) is a symplectic matrix with first row (x1, ..., x
r0·...·r2n+1

2n+2 ),

then ϕ∗

a,b(M) is clearly a symplectic matrix with first row (a0, ..., a
r0·...·r2n+1

2n+1 ),
as desired.
So let us now prove the statement of the theorem for the unimodular row x =
(x1, ..., x

r0·...·r2n+1

2n+2 ) of length 2n+2 over S4n+3. For this, we choose some section
y of x. This choice determines a morphism

ϕx,y : Q4n+3 → Q4n+3

of schemes over Spec(k). Furthermore, we have a morphism

π : Sp2n+2 → A2n+2 \ 0

of schemes over Spec(k) corresponding to the projection onto the first row of a
symplectic matrix. It now suffices to find a lift in H(k) in the diagram

Sp2n+2

π

��
Q4n+3 ϕx,y

//

44

Q4n+3
// A2n+2 \ 0

where the morphism Q4n+3 → A2n+2 \ 0 is the projection onto the coordinates
x1, ..., x2n+2: Indeed, the space Sp2n+2 is A1-naive by [AHW, Theorem 4.2.12],
so any morphism Q4n+3 → Sp4n+3 in H(k) comes from an actual morphism
Q4n+3 → Sp4n+3 of schemes over Spec(k). If there is a lift in diagram above
in the category H(k), this means that, in particular, there exist a symplectic
matrix M ∈ Sp2n+2(S4n+3) whose first row equals (x1, ..., x

r0,...,r2n+1

2n+2 ) in

8



[Q4n+3,A
2n+2\]A1

∼= Um2n+2(S4n+3)/E2n+2(S4n+3).

In other words, the first row of M is xE for some E2n+2(S4n+3). But since
xE2n+2(S4n+3) = xESp2n+2(S4n+3) by [G, Theorem 3.9], there is a matrix
E′ ∈ ESp2n+2(S4n+3) with xE = xE′; then, by construction, the first row of

ME′−1
∈ Sp2n+2(S4n+3) is precisely x, as desired. So it indeed suffices to find

a lift in H(k) in the diagram above.
Now we realize that it actually suffices to find the desired lift in H∗(k): All
the morphisms in the diagram are actually pointed, when we equip Q4n+3 and
A2n+2\0 with their canonical basepoints and Sp2n+2 with the identity matrix as
its basepoint; once we have found a lift in H∗(k), applying the forgetful functor
yields a lift in H(k).
By using the canonical pointed A

1-weak equivalence Q4n+3 ≃A1 A
2n+2 \ 0, we

may equivalently look for a lift in the diagram

Sp2n+2

π

��
A2n+2 \ 0

Ψr
//

88

A2n+2 \ 0

in the category H∗(k), where Ψr : A2n+2 \ 0 → A
2n+2 \ 0, (x1, ..., x2n+2) 7→

(x1, ..., x
r
2n+2) with r = r0 · ... · r2n+1. Therefore it is left to show that Ψr lies

in the image of the map

π∗ : [A2n+2 \ 0, Sp2n+2]A1,∗ → [A2n+2 \ 0, A2n+2 \ 0]A1,∗.

We can identify this map with the map

πA
1

2n+1,2n+2(π) : π
A

1

2n+1,2n+2(Sp2n+2)(k) → πA
1

2n+1,2n+2(A
2n+2 \ 0)(k) ∼= KMW

0 (k)

and Ψr with the element rǫ ∈ GW (k).
Following [AF, Section 3], we first define

T ′

2n+2 := coker(πA
1

2n+1(Sp2n+2)
πA

1

2n+1(π)
−−−−−−→ πA

1

2n+1(A
2n+2 \ 0)).

The sheaf πA
1

2n+1(A
2n+2 \ 0) is canonically isomorphic to the Milnor-Witt K-

theory sheaf KMW
2n+2. Composing πA

1

2n+1(π) with the canonical epimorphism

KMW
2n+2 → KM

2n+2, we obtain a new morphism

πA
1

2n+1(Sp2n+2)
πA

1

2n+1(π)
′

−−−−−−→ KM
2n+2.

Again following [AF, Section 3], we define

S′

2n+2 := coker(πA
1

2n+1(Sp2n+2)
πA

1

2n+1(π)
′

−−−−−−→ KM
2n+2).

Then it follows from [AF, Lemma 3.1] that the canonical exact sequence of
strictly A

1-invariant sheaves

0 → I2n+3 → KMW
2n+2 → KM

2n+2 → 0

9



induces an exact sequence of strictly A1-invariant sheaves of the form

I2n+3 → T ′

2n+2 → S′

2n+2 → 0.

Contracting this exact sequence 2n+2 times and evaluating at the base field k,
we obtain an exact sequence of abelian groups of the form

I(k) → (T ′

2n+2)−(2n+2)
(k) → (S′

2n+2)−(2n+2)
(k) → 0,

where (T ′

2n+2)−(2n+2)
(k) → (S′

2n+2)−(2n+2)
(k) is induced by the canonical epi-

morphism GW (k) → K0(k) ∼= Z (i.e., the rank homomorphism).
Now it follows directly from [AF, Lemmas 7.1 and 7.2] that

(S′

2n+2)−(2n+2)
(k) ∼=

{

Z/(2n+ 1)!Z if n even

Z/2(2n+ 1)!Z if n odd

as quotients of K0(k) ∼= Z. In particular, since r = r0 · ... · r2n+1 is divisible by
(2n+ 1)! if n is even and by 2(2n+ 1)! if n is odd by assumption, the class of
rǫ in (T ′

2n+2)−(2n+2)
(k) is mapped to 0 in (S′

2n+2)−(2n+2)
(k).

Finally, since k is quadratically closed, the fundamental ideal I(k) over k is
trivial, i.e., I(k) = 0, and hence the epimorphism

(T ′

2n+2)−(2n+2)
(k) → (S′

2n+2)−(2n+2)
(k)

is in fact an isomorphism. In particular, the class of rǫ in

(T ′

2n+2)−(2n+2)
(k) = coker(πA

1

2n+1,2n+2(π))

is equal to 0; in other words, rǫ ∈ GW (k) ∼= π2n+1,2n+2(A
2n+2 \ 0) lies in the

image of the map πA
1

2n+1,2n+2(π), as desired. This finishes the proof.

Theorem 3.2. Let R be an algebra over a finite field k of characteristic 6= 2 or

an algebra over a perfect field k of characteristic 6= 2 with −1 ∈ (k×)
2
, n ≥ 0

an integer and (a0, ..., a2n+1) be any unimodular row of length 2n + 2 over R.
Furthermore, let r0, ..., r2n+1 ≥ 1 be integers such that

• 2 · (2n+ 1)! divides r0 · ... · r2n+1 and n is even or

• 4 · (2n+ 1)! divides r0 · ... · r2n+1 and n is odd

Then the unimodular row (ar00 , ..., a
r2n+1

2n+1 ) is the first row of a symplectic matrix

ϕ ∈ Sp2n+2(R).

Proof. All steps in the proof of Theorem 3.1 except the last paragraph work
over any perfect field with characteristic 6= 2. We use the assumption that
k is quadratically closed only in the last paragraph in order to conclude that
I(k) = 0. Now it is well-known (cf. [Sch, Chapter II, §3]) that if k is a finite
field of characteristic 6= 2, then
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W (k) ∼=

{

Z/2Z× Z/2Z if |k| ≡ 1 mod 4

Z/4Z if |k| ≡ 3 mod 4

In the second case, the rank homomorphism W (k) → Z/2Z modulo 2 then
corresponds to the projection Z/4Z → Z/2Z. Furthermore, if k is any perfect

field of characteristic 6= 2 with −1 ∈ (k×)
2
, then the element h = 〈1〉+ 〈−1〉 of

the Grothendieck-Witt ring GW (k) defined by the hyperbolic form will be equal
to 〈1〉+ 〈1〉 and therefore the Witt ring W (k) will automatically be 2-torsion as
it is the quotient of GW (k) by the ideal generated by h.
It follows directly from the observations in the previous paragraph that in all
relevant cases I(k) is 2-torsion. In particular, the kernel of the map

(T ′

2n+2)−(2n+2)
(k) → (S′

2n+2)−(2n+2)
(k)

is 2-torsion as it is a quotient of I(k).
If we then use the stronger assumption that r = r0 · ... · r2n+1 is divisible by

2 · (2n+1)! if n is even and 4 · (2n+1)! if n is odd, then the class of rǫ = 2 · (
r

2
)
ǫ

in (T ′

2n+2)−(2n+2)
(k) will be a 2-fold multiple of an element of the kernel of the

map

(T ′

2n+2)−(2n+2)
(k) → (S′

2n+2)−(2n+2)
(k)

and hence 0 in (T ′

2n+2)−(2n+2)
(k) as this kernel is 2-torsion. This finishes the

proof.

Remark 3.3. The proof of Theorem 3.1 also shows that the unimodular row

(x1, ..., x
r0·...·r2n+1

2n+2 ) of length 2n + 2 over S4n+3 cannot be the first row of a

symplectic matrix if r = r0 · ... · r2n+1 is not divisible by (2n+1)! and n is even

or if r is not divisible by 2 · (2n + 1)! and n is odd. Indeed, in these cases,

the class of rǫ in (T ′

2n+2)−(2n+2)
(k) cannot be 0 as it is not mapped to 0 in

(S′

2n+2)−(2n+2)
(k). Hence the divisibility assumptions in Theorem 3.1 cannot be

weakened. However, it might still be possible to prove the statement of Theorem

3.1 for arbitrary algebras over fields or even for arbitrary commutative rings.

4 Applications

In this final section, we discuss several applications of the main results of this
paper. As a first application, we prove symplectic versions of the celebrated
results on stably free modules in [S1] and [FRS]. Note that some symplectic
versions were already proven for smooth affine algebras in [Sy2], but Theorem
3.1 enables us to prove these results for affine algebras which are not necessarily
smooth over k:
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Theorem 4.1. Let R be a reduced affine algebra of odd dimension d ≥ 3 over an

algebraically closed field k of characteristic 6= 2. Then Spd+1(R) acts transitively
on Umd+1(R).

Proof. The proof of [S2, Theorem 1] shows that any unimodular row (a1, ..., ad+1)
of length d+1 over R can be transformed via elementary matrices to a unimodu-
lar row of the form (b1, ..., b

2·d!
d+1) (see also [Sy2, Theorem 3.1]). By [G, Theorem

3.9], (a1, ..., ad+1) can also be transformed via a matrix E ∈ ESpd+1(R) to
(b1, ..., b

2·d!
d+1), i.e., (a1, ..., ad+1)E = (b1, ..., b

2·d!
d+1). By Theorem 3.1, there is a

symplectic matrix M ∈ Spd+1(R) with first row (b1, ..., b
2·d!
d+1). Then ME−1 has

first row (a1, ..., ad+1).

Theorem 4.2. Let R be a normal affine algebra of even dimension d ≥ 4 over

an algebraically closed field k with (d− 1)! ∈ k×. Then Spd(R) acts transitively
on Umd(R).

Proof. The proof of [FRS, Theorem 7.5] shows that any unimodular row (a1, ..., ad)
of length d over R can be transformed via elementary matrices to a unimodular

row of the form (b1, ..., b
2·(d−1)!
d ) (see also [Sy2, Theorem 3.3]). Hence we can

repeat the reasoning of the proof of Theorem 4.1.

Finally, recall that the abelian group WSL(R) of a commutative ring R was
defined in [SV, §3]. A brief introduction to this group can also be found in [Sy1,
Section 2.B]. For the purpose of this paper, we just recall some basic facts about
the group WSL(R): For n ∈ N and any commutative ring R, let A2n(R) denote
the set of invertible alternating matrices of rank 2n over R with Pfaffian 1. One
has embeddings A2n(R) → A2n+2m(R),M 7→ M ⊥ ψ2m for m,n ∈ N and the
abelian group WSL(R) can then be defined as the set of equivalence classes

WSL(R) :=
⋃

n∈N
A2n(R)/∼

where two matrices M1 ∈ A2n(R),M2 ∈ A2m(R) are equivalent if

M1 ⊥ ψ2m+2s = ϕt(M2 ⊥ ψ2n+2s)ϕ

for some s ∈ N and ϕ ∈ SL2n+2m+2s(R). It follows from [SV, §3] that the direct
sum of matrices equips this set with the structure of an abelian group. Any ring
homomorphism R → S induces a group homomorphism WSL(R) →WSL(S).
Now recall from [Sy1] that there exists a map called generalized Vaserstein
symbol modulo SL

Vθ0 : Um3(R)/SL3(R) →WSL(R)

associated to the isomorphism θ0 : R
∼=
−→ det(R2), 1 7→ e1 ∧ e2, where e1 =

(1, 0), e2 = (0, 1) ∈ R2. The orbit space Um3(R)/SL3(R) was studied by means
of this map in [Sy1]. In particular, the following criterion for the triviality
of Um3(R)/SL3(R) was proven as a special case of [Sy1, Corollary 3.7]: For
a Noetherian ring R of dimension ≤ 4 such that SLi(R) acts transitively on
Umi(R) for i = 4, 5, the orbit space Um3(R)/SL3(R) is trivial if and only if
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WSL(R) is trivial and Sp4(R) acts transitively on Um4(R).
It is well-known that stably free modules of rank 2 over smooth affine algebras
of dimension 3 over algebraically closed fields with characteristic 6= 2 are free
(cf. [F3], [FRS]). For general (not necessarily smooth) affine algebras over
algebraically closed fields of characteristic 6= 2, no such theorem was proven so
far. The following theorem gives a precise criterion for such algebras:

Theorem 4.3. Let R be an affine algebra of dimension 3 over an algebraically

closed field k with characteristic 6= 2. Then all stably free R-modules of rank 2
are free if and only if WSL(R) = 0.

Proof. Let us first assume that R is reduced. Then the statement follows from
Theorem 4.1 and the preceding paragraphs as SLi(R) clearly acts transitively
on Umi(R) for i = 4, 5 as a consequence of [S1, Theorem 1] and [HB, Chapter
IV, Theorem 3.4].
Now assume that R is a general (not necessarily reduced) affine algebra of
dimension 3 over an algebraically closed field k with characteristic 6= 2. Let J
be the nilradical of R and set R = R/J . Then SL5(R) still acts transitively
on Um5(R) by [HB, Chapter IV, Theorem 3.4]; so the generalized Vaserstein
symbol

Vθ0 : Um3(R)/SL3(R) →WSL(R)

is surjective by [Sy1, Theorem 3.2]. In particular, if all stably free R-modules of
rank 2 are free, the orbit space Um3(R)/SL3(R) is trivial and hence the group
WSL(R) is trivial.
Conversely, assume WSL(R) is trivial. Then we claim that also WSL(R) is triv-
ial; indeed, the homomorphism WSL(R) → WSL(R) induced by the projection
R → R is surjective: If M is an invertible alternating matrix of rank 2n over
R with Pfaffian 1, it is easy to see that there is an alternating 2n× 2n-matrix
M ′ over R which agrees with M modulo J . In particular, the Pfaffian of the
matrix M ′ will be of the form 1 + x, where x ∈ J is a nilpotent element; hence
1 + x is a unit and M ′ is invertible. Then the matrix

M = ((1 + x)−1 · id1 ⊥ id2n−1)
t
M ′((1 + x)−1 · id1 ⊥ id2n−1)

will be invertible alternating with Pfaffian 1 and will still agree with M modulo
J . Altogether, any invertible alternating matrix with Pfaffian 1 over R has a
lift to an invertible alternating matrix with Pfaffian 1 over R and hence the
homomorphism WSL(R) →WSL(R) is indeed surjective and WSL(R) is indeed
trivial as soon as WSL(R) is trivial, as claimed.
In particular, all stably free R-modules of rank 2 are then free by the first
paragraph of this proof. If P is then a stably free R-module of rank 2, we have

an isomorphism P ⊗R R ∼= R
2
. But then it is a well-known fact (e.g., cf. [L,

Chapter I, Corollary 1.6]) that there is also an isomorphism P ∼= R2. So all
stably free R-modules of rank 2 are free. This completes the proof.

The following result extends [Sy1, Theorem 3.19] to normal affine algebras:
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Theorem 4.4. Let R be a normal affine algebra of dimension 4 over an alge-

braically closed field k with 6 ∈ k×. Then all stably free R-modules of rank 2
are free if and only if WSL(R) = 0.

Proof. This follows from Theorem 4.2 and the paragraph preceding Theorem
4.3 as a consequence of [FRS, Theorem 7.5] and [S2, Theorem 1].
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