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Abstract

This paper aims to present objective methods for constructing new fuzzy sets
from known fuzzy or classical sets, defined over the elements of a finite universe’s
superstructure. The paper proposes rules for assigning membership functions
to these new fuzzy sets, leading to two important findings. Firstly, the property
concerning the cardinality of a power set in classical theory has been extended
to the fuzzy setting, whereby the scalar cardinality of a fuzzy set B̃ defined on

the power set of a finite universe of a fuzzy set Ã satisfies card(B̃) = 2card(Ã).
Secondly, the novel algorithms allow for an arbitrary membership value to be
objectively achieved and represented by a specific binary sequence.
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Binary sequence, ZFC axioms

1. Introduction

In classical set theory, an element is either contained in a set or not. There-
fore, a discrete indicator function, also known as a characteristic function IA(x) ∶
X → {0,1}, can be defined to indicate whether an element x belongs to a set A
or not:

IA(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1 if x ∈ A ,

0 if x ∉ A .
(1)

In 1965, Zadeh proposed the concept of a fuzzy set, which extends the classi-
cal notion of a set[1]. In fuzzy set theory, the characteristic function is replaced
by a membership function, which expresses the degree to which an element
belongs to a set in a continuous manner. Specifically, a membership function
µA(x) ∶ U → [0,1] assigns a value between 0 and 1 to an element x in a universe
U , indicating the degree to which x belongs to set A.

The membership function is a fundamental concept in fuzzy set theory, as
it uniquely characterizes any fuzzy set. Most concepts in fuzzy set theory, such
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as the support of a fuzzy set, alpha-level set, convex fuzzy set, and set-theoretic
operations, including the intersection, union, and complement of fuzzy sets,
are defined based on membership functions [2]. Thus, it is of great impor-
tance to specify the membership function in both the theory and practice of
fuzzy sets. Once the membership function is specified, the corresponding fuzzy
set is determined. Various approaches have been developed to obtain reason-
able membership functions[3–9], including the piecewise linear ones, such as the
commonly used triangular and trapezoidal membership functions [10–12]. For
applications, appropriate membership functions are usually selected based on
the subjective knowledge or perception of the observer [13]. Hence, many re-
searchers believe that the assignment of the membership function for a fuzzy
set is subjective [12, 14–17]. This motivates us to develop objective methods to
assign membership functions that generate fuzzy sets objectively. Our methods
are designed to be context-independent so that they can be applied generally,
regardless of the different perceptions of individuals. With our methods, mem-
bership functions rely solely on objective computations, enabling fuzzy sets to
be used in a broader range of applications without any subjective uncertainty.

Our methods have the advantage of objectivity from a different perspective:
they construct new fuzzy sets from existing ones. To achieve this, we can draw
from classical set theory and its construction of new sets from old ones. In
particular, the ZFC axiomatic system[18] provides a way to construct new sets
by defining them in terms of existing ones. ZFC stands for Zermelo–Fraenkel
set theory with the axiom of Choice included, and most of its axioms state
the existence of specific sets defined in relation to other sets. For instance, the
axiom of pairing says that given any two sets X and Y , there is a new set{X,Y } containing exactly X and Y . In the next section, we will explore the
ZFC axiomatic system from a fuzzy perspective. In the same way that ZFC
constructs new classical sets from existing ones, we will attempt to construct
new fuzzy sets from existing ones, and even from classical sets. This approach
will enable us to treat some of the axioms of ZFC as special cases of the fuzzy
setting, since classical sets are a subset of fuzzy sets with membership functions
that are identically equal to 0 or 1.

To achieve the goal outlined above, we will focus on exploring the concept
of cardinality. Cardinality is a measure of the size of a set, specifically, it counts
the “number of elements” in a set. For classical sets, the cardinality of set
A is typically denoted as ∣A∣ or card(A). A finite set has a finite number of
elements, and its cardinality is a natural number. A set A that has the same
cardinality as the set of all natural numbers is referred to as countably infinite,
which is denoted as card(A) = ℵ0. If a set has a cardinality greater than that
of a countably infinite set, it is considered uncountable.

The theory of cardinality for fuzzy sets is perhaps one of the most intriguing
and mysterious aspects of fuzzy set theory[19]. Various definitions for the cardi-
nality of a fuzzy set have been proposed and studied by many researchers[20–26].
Among these, the concept of scalar cardinality for fuzzy sets was initially in-
troduced by De Luca and Termini to better understand the measurement of
information for fuzzy sets[27]. In the 1980s, some researchers suggested that
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the cardinality of a fuzzy set should be a precise real number, while others
believed it should be a fuzzy integer[28–31]. Dubois and Prade attempted to
reconcile both definitions by combining them into a single framework[32]. This
paper focuses solely on scalar cardinality.

Consider a fuzzy set Ã, defined on a universe U with a membership function
µÃ ∶ U → [0,1]. The scalar cardinality of Ã is defined as the sum of the
membership values of all the elements in U , given by

card(Ã) = ∑
x∈U

µÃ(x). (2)

Two important concepts still need to be considered: the power set and its
representation. The power set of A consists of all subsets of A, including the
empty set ∅ and A itself, denoted by P(A). Another representation for the
power set is 2A because it includes all possible subsets of A, and the number of
subsets can be represented by 2card(A).

For instance, if A is a finite set with n elements, then the cardinality of P(A)
is 2n, as the number of subsets of A is 2n.

Another important concept is the superstructure over a set. In mathematics,
a universe refers to a collection that includes all the entities relevant to a given
situation. In fuzzy set theory, the universe of discourse or universe is used
to refer to the reference set. The superstructure over a universe X can be
defined through structural recursion, as follows: Let S0(X) =X , and Sn+1(X) =
Sn(X) ∪ P(Sn(X)). Then the superstructure over X , denoted as S(X), is
defined as

S(X) ∶= ∞⋃
j=0

Sj(X). (3)

The remainder of this paper is structured as follows: In Section 2, we provide
the fuzzy interpretations of some ZFC axioms and introduce four rules for con-
structing new fuzzy sets from existing ones. Building on these rules, we prove
an important theorem pertaining to power sets in the fuzzy setting. In Section
3, we introduce two additional rules for constructing new fuzzy sets from classi-
cal sets, and we prove a theorem that describes how to represent and generate
any membership value using our rules. Section 4 includes numerical examples.
Finally, in Section 5, we conclude the paper.

2. Constructing Fuzzy Sets from Existing Ones

The ZFC set theory consists of nine axioms. As classical sets can be seen
as a special case of fuzzy sets, where the membership function is equal to 0 or
1, certain axioms of ZFC can be reinterpreted using fuzzy set theory. These
interpretations serve as criteria for the methods of constructing new fuzzy sets
proposed in this paper, since these methods should be compatible with classical
cases. The following content discusses these details in depth.

1. The Axiom of Pairing states that for any two sets A and B, there exists
a set {A,B} that contains exactly A and B. The fuzzy interpretation of
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this axiom implies that if we are given two fuzzy sets Ã defined on X and
B̃ defined on Y , such that for any x ∈X and y ∈ Y , we have µÃ(x) = 1 and

µB̃(y) = 1, then there exists a fuzzy set C̃ defined on {X,Y } such that

µC̃(X) = µC̃(Y ) = 1. (4)

This means that the membership values of C̃ for the sets X and Y are
both equal to 1, indicating that C̃ contains both X and Y .

2. The Axiom of Union states that the union of elements in a set exists.
For any set X , there exists a set Y = ⋃X . We can interpret this axiom
in a more flexible manner. Given a fuzzy set Ã defined on X , satisfying
µÃ(x) = 1 for any x ∈X , a fuzzy set B̃ defined on Y exists such that:

µB̃(y) = 1 (5)

for any y ∈ Y . It is clear that y ∈ x for some x.

3. The power set axiom expresses the idea that a set exists which contains all
the subsets of another set. The corresponding fuzzy interpretation states
that if we have a fuzzy set Ã defined on X , with µÃ(x) = 1 for every x ∈ X ,

then there exists a fuzzy set B̃ defined on Y = P(X) such that

µB̃(y) = 1 (6)

for every y ∈ Y , and every x belongs to at least one y.

In this section, we will discuss how to construct new fuzzy sets using ZFC-
like methods. Let Ã be a fuzzy set defined on a universeX , and let Y be another
universe. We can construct a new fuzzy set, denoted by B̃, defined on Y , using
the following construction rules:

Rule 1. Set Y must be an element of the superstructure over X , meaning it
can be any classical set contained in the superstructure S(X).

Rule 2. The membership value µB̃(y) equals µÃ(x) if y = x, but the converse
is not always true.

Rule 3. If Y contains the empty set, then the membership function value at
the empty set is always equal to 1: µB̃(∅) ≡ 1.

Rule 4. The membership function of fuzzy set B̃ is defined by

µB̃(y) =∏
x∈y
(2µÃ(x) − 1) , (7)

where y is any element contained in Y .
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We can interpret the rules described above as follows:
Rule 1 defines the permissive universe of a new fuzzy set constructed from

an existing one. For instance, if the fuzzy set Ã is defined on the universe
X = {x1, x2}, we can create another fuzzy set B̃ from Ã on the universe
Y = {∅, x1,{x2},{x1,{x1, x2}}}. This is because the element x1 belongs to
S0(X), and the elements ∅,{x2},{x1, x2}, and {x1,{x1, x2}} belong to S1(X)
and S2(X), respectively.

Rule 2 indicates that the value of the membership function remains the same
for the same element using our method.

Rule 3 is reasonable because the empty set, which is the only set containing
no elements, is a subset of every set, and it cannot be divided into parts.

Rule 4 provides the formula for calculating the new membership values. It
is evident that Rule 3 is a special case of Rule 4 since it is the case of an empty
product. Even if the universe of the new fuzzy set is complex, we can apply
formula (7) repeatedly until the information of the original fuzzy set can be
directly substituted into this formula.

Next, we demonstrate the compatibility of the aforementioned rules with
certain axioms of ZFC, as we mentioned earlier.

The fuzzy interpretation of the axiom of pairing, given by formula (4), can
be derived using the rules presented above. Specifically, we have:

µC̃(X) = ∏
x∈X
(2µÃ(x) − 1) = ∏

x∈X
(21 − 1) = 1, (8)

and similarly,
µC̃(Y ) = ∏

y∈Y
(2µB̃(y) − 1) = ∏

y∈Y
(21 − 1) = 1. (9)

Likewise, we can derive the fuzzy interpretation of the axiom of power set,
as given by formula (6):

µB̃(y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, y = ∅;

∏
x∈y
(2µÃ(x) − 1) =∏

x∈y
(21 − 1) = 1, y ≠ ∅.

(10)

The derivation of the axiom of union is slightly different from the previous
two axioms. In this case, we use the membership function of the fuzzy set Ã, as
given by formula (5). Specifically, µÃ(x) = 1 holds if and only if for every y ∈ x,
we have µB̃(y) = 1.

Formula (7) is consistent with classical set theory, which holds that an el-
ement either belongs to a set or does not. If all x belong to a classical set,
denoted as Ã, i.e., µÃ(x) ≡ 1 for all x, then formula (7) implies that µB̃(y) ≡ 1
for any y. On the other hand, if µÃ(x) = 0 for some x, then formula (7) implies
that µB̃(y) = 0 for any expression of y that contains x. This result is reasonable
since a positive membership value cannot be obtained from null.
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Theorem 1. Let Ã be a fuzzy set defined on a finite set X , where each element
x ∈ X is paired with its membership degree µÃ(x). Let B̃ be a fuzzy set

constructed from Ã and defined on the power set of X , that is,

B̃ = {(y,µB̃(y))∣y ∈ P(X)} . (11)

Then the cardinality of the fuzzy set B̃ is given by:

card(B̃) = 2card(Ã). (12)

Proof. Let Xn = {x1,⋯, xn} be a finite set, and let Ãn be a fuzzy set defined on
Xn, where n is the cardinality of Xn. We will prove this theorem by induction
on n.

For the base case, suppose n = 1. Then X1 = {x1} is a single-point set, so
the power set of X1 is P(X1) = {∅,{x1}}. Using the construction rules, we can
create another fuzzy set B̃1 on P(X1) as follows:

B̃1 =
1

∅
+
µB̃1
({x1})
{x1} . (13)

Thus, the scalar cardinality of fuzzy set B̃1 is given by

card(B̃1) = 1 + µB̃1
({x1}) = 1 + 2µÃ1

(x1) − 1 = 2µÃ1
(x1) = 2card(Ã1). (14)

Now for the induction step, denoting the fuzzy set defined on the power set

of Xk to be B̃k, we assume that card(B̃k) = 2card(Ãk) if n = k and we must prove
that

card(B̃k+1) = 2card(Ãk+1). (15)

Since Xk+1 =Xk ∪ {xk+1}, we have

P(Xk+1)
=P(Xk) ∪ {{xk+1}}
∪ {{x1, xk+1},{x2, xk+1},⋯,{xk, xk+1}}
∪ {{x1, x2, xk+1},{x1, x3, xk+1},⋯,{xk−1, xk, xk+1}}
∪⋯

∪ {{x1, x2,⋯, xk, xk+1}}.

(16)

Thus, the cardinality of fuzzy set B̃k+1 can be calculated as

card(B̃k+1)
=2card(Ãk) + 2µÃk+1(xk+1) − 1

+(2µÃk+1 (x1)−1)(2µÃk+1(xk+1)−1)+(2µÃk+1(x2)−1)(2µÃk+1(xk+1)−1)
+⋯+ (2µÃk+1(xk)−1)(2µÃk+1(xk+1)−1)
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+(2µÃk+1 (x1)−1)(2µÃk+1(x2)−1)(2µÃk+1(xk+1)−1) +⋯
+(2µÃk+1 (xk−1)−1)(2µÃk+1(xk)−1)(2µÃk+1 (xk+1)−1) +⋯
+(2µÃk+1 (x1)−1)(2µÃk+1(x2)−1)⋯(2µÃk+1(xk)−1)(2µÃk+1(xk+1)−1)
=2card(Ãk) + card(B̃k) (2µÃk+1(xk+1) − 1)
=2card(Ãk)2µÃk+1 (xk+1) = 2card(Ãk+1).

This completes our proof.

3. Constructing Fuzzy Sets from Classical Sets

In this section, we focus on addressing a critical issue in the field of fuzzy
set theory: how to obtain an arbitrary membership value objectively? Elements
in the superstructure over a single point set play a crucial role in this context.
To simplify notation, a single element x and the corresponding single point set{x} are denoted by {x}(0) and {x}(1), respectively. Furthermore, if we have a
classical set {y} and let x = {y}, we denote the element y by {x}(−1). More
generally, an element x in nested braces is defined as {x}(n) ∶= {{x}(n−1)} and{x}(−n) ∶= {{x}(1−n)}(−1), where n ≥ 1. For instance, {x}(3) is shorthand for{{{x}}}, and {x}(−3) stands for {{{x}(−1)}(−1)}(−1). Obviously, setting y ={x}(−3), we obtain {{{y}}} = x.

We have a theorem related to sets that have nested braces:

Theorem 2. When constructing new fuzzy sets, the following three expressions
can replace one another for any element x in a classical set, where m and n are
integers: {{x}(m)}(n), {{x}(n)}(m), {x}(m+n). (17)

Proof. The statement is straightforward if m and n have the same sign, so we
only need to prove the case when they are of opposite signs. Without loss of
generality, assume that m > 0 and n < 0. Now, let Ã be a fuzzy set defined on
the universe X , with x ∈ X and µÃ(x) = u ∈ [0,1]. Another fuzzy set, B̃, can

be constructed from Ã by including {{x}(m)}(n), {{x}(n)}(m), and {x}(m+n) in
its universe.

By applying Rule 4 and Rule 5, we obtain the following equations:

µB̃
({{x}(m)}(n))

= log2
⎛⎜⎝log2

⎛⎜⎝⋯ log2

⎛⎜⎝
⎛⎜⎝2

2
⋰2u−1 −1 − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m times 2(⋅)−1

⎞⎟⎠ + 1
⎞⎟⎠⋯+ 1

⎞⎟⎠ + 1
⎞⎟⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times log

2
(⋅)+1
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u, if m + n = 0;

22
⋰2u−1

−1 − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+n times 2(⋅)−1

, if m + n > 0;

log2 (log2 (⋯ log2(u + 1)⋯+ 1) + 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣m+n∣ times log

2
(⋅)+1

, if m + n < 0

and

µB̃
({{x}(n)}(m))

=22
⋰2

log2 (log2 (⋯ log2 (u + 1)⋯+ 1) + 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times log

2
(⋅)+1 − 1

− 1 − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m times 2(⋅)−1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u, if m + n = 0;

22
⋰2u−1

−1 − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+n times 2(⋅)−1

, if m + n > 0;

log2 (log2 (⋯ log2(u + 1)⋯+ 1)+ 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣m+n∣ times log

2
(⋅)+1

, if m + n < 0.

In addition, Rule 2 can be applied to yield:

µB̃
({x}(m+n))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µB̃
({x}(0)) = µB̃(x) = µÃ(x) = u, if m = n;

22
⋰2u−1

−1 − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+n times 2(⋅)−1

, if m + n > 0;

log2 (log2 (⋯ log2(u + 1)⋯+ 1)+ 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣m+n∣ times log

2
(⋅)+1

, if m + n < 0.

These results demonstrate the substitution of the three expressions.

We can now explore the process of constructing fuzzy sets from classical sets.
To begin with, let us consider a binary sequence consisting of 1’s and 0’s,

represented by the notation:

a = (am∗ , am∗+1, am∗+2, . . . );m∗ ≤ 0. (18)

Here, we assume that am∗ ≡ 1, a0 ≡ 1, and other elements of a can be either 0 or
1. For each k ≥m∗, we construct a classical set Xa ∈ S(x) based on a as follows:
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if ak = 1, then the set x(k) is included in Xa, while if ak = 0, then it is not. It
is worth noting that Xa always includes the element x since a0 ≡ 1. To simplify
notation, we replace a0 with a vertical line and use finite binary sequences to
represent sequences with infinite 0’s. For instance, X(1,0 ∣1,0,1,1) denotes the set

{{x}(−2), x,{x}(1),{x}(3),{x}(4)} . (19)

To construct fuzzy sets from classical sets, it is essential to follow another
important rule.

Rule 5. A fuzzy set Ã can be constructed from any single point set {x} and
any binary sequence a generated by (18), defined on Xa. The scalar cardinality
of Ã is equal to that of the single point set {x}, which is one.

Rule 5 implies the conservation of cardinality. The explanation is that during
the constructing process of fuzzy set Ã, no other element except x has been
involved, thus essentially only the classical set {x} makes contribution to the
cardinality of Ã. Therefore, we believe that compared with {x}, the cardinality
of fuzzy set Ã neither increases nor decreases.

Actually, Rule 5 is more fundamental than other rules because other rules
can be adopted only when there already exists a fuzzy set. Thus the most im-
portant function of Rule 5 is to construct the first fuzzy set from a classical one.
So we claim that a variant version of formula (7) works well in the process of
constructing a fuzzy set from a classical single point set:

Rule 6. If we construct a fuzzy set Ã from a single point set {x} using Rule 5,
we can derive the following equations:

µÃ
({x}(m)) = 2µÃ({x}(m−1)) − 1, (20)

or equivalently,

µÃ
({x}(m)) = log2 (µÃ

({x}(m+1)) + 1) , (21)

where m is an arbitrary integer.

Formulas (20) and (21) contain an abuse of notation, as {x}(m) may not
be included in the universe of the fuzzy set Ã for some values of m. However,
this does not interfere with our objective, which is to calculate the membership
value using recurrence through (20) or (21). The notation {x}(m), which is not
included in the universe, only occurs in the intermediate calculation process.

We will now demonstrate how to represent and calculate an arbitrary mem-
bership value using our rules. The specific methods for this calculation are
presented in the proof of the following theorem.

Theorem 3. Given a binary sequence a defined by equation (18), there exists
exactly one fuzzy set Ã constructed from a single point set {x} and defined on
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Xa. Conversely, for any real number 0 < w ≤ 1, there exists a binary sequence
a such that the fuzzy set Ã constructed from {x} and defined on Xa satisfies
µÃ(x) = w.
Proof. Given a fuzzy set Ã, which is constructed from a single point set {x}.
This fuzzy set Ã is defined on Xa, where a = (am∗ , am∗+1, am∗+2, . . . ), m∗ ≤ 0.
Moreover, am∗ ≡ 1, a0 ≡ 1, and the remaining ak values are either 0 or 1. To
define recursive functions, we set

uk(t) = µÃ
({x}(k)) , u0(t) = µÃ (x) = t ∈ [0,1]. (22)

It is evident that uk(t) lies between 0 and 1 for any integer k.

(a) Given a binary sequence a, the scalar cardinality of the corresponding fuzzy
set Ã can be computed using the following series:

Ga(t) ∶= card(Ã) = ∞

∑
k=m∗

akuk(t). (23)

To demonstrate the first part of this theorem, we will divide the proof into
three distinct cases.

I. If a = (∣), that is, Xa = {{x}(0)} = {x}, then we have G(∣)(t) = t.
Thus by Rule 5, t = 1 is the only real number satisfying the equation
G(∣)(t) = 1. Hence Ã uniquely exists and degenerates into the classical
set {x}.

II. If a is finite, say, a = (am∗ , am∗+1, . . . , aN), N ≥ max(m∗ + 1,0). Then
the cardinality of fuzzy set Ã defined on Xa is

Ga(t) = N

∑
k=m∗

akuk(t). (24)

It is easy to verify that

(Ga(0) − 1)(Ga(1) − 1) = −M < 0, (25)

where M is the number of 1’s (not counting a0) in binary sequence a.
Moreover, we have

d

dt
(Ga(t) − 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
N

∑
k=1

ak(ln 2)k ⋅ 2u0(t)+⋯+uk−1(t) > 0, ifm∗ = 0;

1 +
−1

∑
k=m∗

ak(ln 2)k ⋅ 2−u−1(t)−⋯−uk(t) > 0, ifm∗ ≤ −1,N = 0;

1 +
−1

∑
k=m∗

ak(ln 2)k ⋅ 2−u−1(t)−⋯−uk(t)

+

N

∑
k=1

ak(ln 2)k ⋅ 2u0(t)+⋯+ uk−1(t) > 0,
ifm∗ ≤ −1,N ≥ 1.

(26)

10



Hence Ga(t) − 1 is strictly increasing on the interval [0,1]. Together
with (25), we see that Ga(0) − 1 = 0 has exactly one root between 0
and 1, which is just the value of µÃ (x).

III. If a is infinite, the cardinality of fuzzy set Ã defined on Xa is given by
a positive series

Ga(t) = ∞∑
k=0

ank
unk
(t), (27)

where n0 =m
∗ and the subsequence ank

consists of all ak = 1 in a. We
first need to prove that Ga(t) is convergent for any real t in the open
interval (0,1).
For fixed t ∈ (0,1), because positive uk(t) is strictly monotonically
decreasing on k, we have

lim
k→∞

unk
(t) = lim

k→∞
uk(t) = 0. (28)

Applying d’Alembert’s ratio test, one computes the limit

lim
k→∞

uk+1(t)
uk(t) = ln 2 < 1. (29)

Note that Ga(0) ≡ 0, thus series Ga(t), as a subseries of positive series

∑∞k=m∗ uk(t), converges for any binary sequence a and any real t ∈[0,1).
Next we show that Ga(t) is continuous at any point t0 in the open
interval (0,1). Without loss of generality, assume that m∗ < 0, and
observe that

∣uk(t) − uk(t0)∣ = u′k(ck) ⋅ ∣t − t0∣⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

=∣t − t0∣, if k = 0;

=2u0(ck)+⋯+uk−1(ck)(ln 2)k ⋅ ∣t − t0∣, if k > 0;

=2−u−1(dk)−⋯−uk(dk)(ln 2)k ⋅ ∣t − t0∣, if k < 0,

(30)

where both ck and dk are between t and t0. Let c∗k = u0(ck) + ⋯ +
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uk−1(ck), d∗k = −u−1(dk) −⋯− uk(dk), then we have

∣Ga(t) −Ga(t0)∣
= ∣ ∞∑

k=0
unk
(t) − ∞∑

k=0
unk
(t0)∣

≤
∞

∑
k=0
∣unk
(t) − unk

(t0)∣
≤
−1

∑
k=m∗
(ln 2)k ⋅ 2d∗k ⋅ ∣t − t0∣ + ∣t − t0∣ + ∞∑

k=1
(ln 2)k ⋅ 2c∗k ⋅ ∣t − t0∣

≤(P + ∞∑
k=0
(ln 2)k ⋅ 2c∗) ⋅ ∣t − t0∣

=(P + 2c
∗

1 − ln 2
) ⋅ ∣t − t0∣,

(31)

where P = ∑−1k=m∗(ln 2)k ⋅2d∗k +1 is bounded, and c∗ = sup{c∗nk
}. Hence

Ga(t) is continuous on [0,1).
Furthermore, the derivative of Ga(t)

d

dt
Ga(t) = 1 + −1

∑
k=m∗

ak(ln 2)k ⋅ 2−u−1(t)−⋯−uk(t)

+

∞

∑
k=1

ak(ln 2)k ⋅ 2u0(t)+⋯+uk−1(t) > 0.
(32)

Thus, Ga(t) is strictly increasing on the interval (0,1).
Now, because Ga(0)−1 ≡ −1 and Ga(t)−1→ +∞ as t→ 1, we can con-
firm that for any infinite binary sequence a, Ga(t) − 1 = 0 has exactly
one root between 0 and 1, which is just the value of µÃ (x).

(b) Conversely, we give an algorithm to show how to find the binary sequence
a for any given real number w ∈ (0,1] such that the fuzzy set Ã generated
from {x} and defined on Xa satisfies µÃ(x) = w.
If w = 1, the special binary sequence (∣) is just what we are seeking for.

If 0 < w < 1, the following algorithm gets the binary sequence

a = (am∗ , am∗+1, am∗+2, . . . ).
I. Find the initial nonzero term.

Define function s0(k) = uk(w) +w − 1, k ≠ 0. For any fixed w ∈ (0,1),
since s0(k) is strictly monotonically decreasing on k with limk→−∞ s0(k) =
w > 0 and limk→∞ s0(k) = w − 1 < 0, so there exists an integer n0 such
that s0(k) > 0 if k < n0 and s0(k) ≤ 0 if k ≥ n0. We set m∗ = n0 if
n0 < 0 and m∗ = 0 if n0 > 0. If s0(n0) = 0, this algorithm ends with
a finite a = (am∗ , . . . , ∣) if n0 < 0 or a = (∣, . . . , an0

) if n0 > 0. In both
cases except an0

= 1 and a0 = 1, all other ak’s (if there exist) in a are
set to 0. Otherwise if s0(n0) < 0, go to Step II.
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II. Find the second nonzero term.
Define function s1(k) = s0(n0)+uk(w), k > n0 and k ≠ 0. For any fixed
w ∈ (0,1), s1(k) is strictly monotonically decreasing on k as uk(w) is
strictly monotonically decreasing on k. Because

s1(n0+1)−s0(n0−1) = 22un0−1(w)−1
+2un0−1(w)−un0−1(w)−2 > 0 (33)

holds for any fixed w ∈ (0,1), we have

s1(n0 + 1) > s0(n0 − 1) > 0. (34)

Together with limk→∞ s1(k) = s0(n0) < 0, so there exists an integer n1

such that s1(k) > 0 if n0 < k < n1 and s1(k) ≤ 0 if k ≥ n1. Thus we
set ak = 0, n0 < k < n1 and an1

= 1, which is the second (not counting
a0) nonzero term in a . If s1(n1) = 0, this algorithm ends with a finite
a, which has one of the following forms depending on the positition of
a0:

i. (∣, . . . , an0
, . . . , an1

),
ii. (an0

, . . . , ∣, . . . , an1
),

iii. (an0
, . . . , an1

, . . . , ∣).
Except an0

= 1, an1
= 1 and a0 = 1, all other ak’s (if there exist) in a

are set to 0. Otherwise if s1(n1) < 0, go to Step III.

III. Find the j-th, j ≥ 2, nonzero term anj
.

Suppose that the (j−1)-th (not counting a0) nonzero term in a is anj−1
and functions sj(k) are defined recursively as

sj(k) = sj−1(nj−1) + uk(w), k > nj−1, k ≠ 0, (35)

satisfying that sj−1(k) > 0 if nj−2 < k < nj−1 and sj−1(k) < 0 if k ≥ nj−1.
For any fixed w ∈ (0,1), sj(k) is strictly monotonically decreasing
on k as uk(w) is strictly monotonically decreasing on k. To lighten
notations, we use ξ to denote unj−1−1(w). Because

sj(nj−1 + 1) − sj−1(nj−1 − 1) = 22ξ−1 + 2ξ − ξ − 2 > 0 (36)

holds for any ξ ∈ (0,1), we have

sj(nj−1 + 1) > sj−1(nj−1 − 1) > 0. (37)

Together with
lim
k→∞

sj(k) = sj−1(nj−1) < 0, (38)

so there exists an integer nj such that sj(k) > 0 if nj−1 < k < nj and
sj(k) ≤ 0 if k ≥ nj . Thus we set ak = 0, nj−1 < k < nj and anj

= 1,
which is the j-th (not counting a0) nonzero term in a. If sj(nj) = 0,
this algorithm ends with a finite a. Otherwise if sj(nj) < 0, repeat this
process to find the (j + 1)-th nonzero term anj+1 in a.
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Clearly, if a is infinite by this algorithm, then w satisfies the equation
Ga(w) = 1 and this completes our proof.

4. Numerical Examples

In this section, we will first provide an illustrative example to demonstrate
how membership values can be calculated using our construction rules. Then,
we will present several numerical examples to explain how to use Theorem 3

to achieve and represent any desired membership value.

Example 1. Consider a fuzzy set Ã defined on the universe X = {x1, x2, x3, x4}
as:

Ã =
0.2

x1

+
0.3

x2

+
0.5

x3

+
1

x4

. (39)

We can construct a new fuzzy set B̃ on the universe

Y =
⎧⎪⎪⎨⎪⎪⎩{∅, x1},{{x2},{x3}},{x1,{x2,{x3,{x4}}}}

⎫⎪⎪⎬⎪⎪⎭. (40)

from Ã by applying formula (7) repeatedly. The resulting values of µB̃(y) for
each y ∈ Y are:

µB̃
({∅, x1}) = (21 − 1)(2µÃ(x1)

− 1) = 20.2 − 1 ≈ 0.1487; (41)

µB̃({{x2},{x3}})
=(2(2µÃ

(x2)
−1)
− 1)(2(2µÃ

(x3)
−1)
− 1)

= (2(20.3−1) − 1)(2(20.5−1) − 1)
≈0.0364;

(42)

µB̃

⎛
⎝{x1,{x2,{x3,{x4}}}}⎞⎠

= (2µÃ(x1)
− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

(2µÃ
(x2)
−1)
⎛⎜⎜⎜⎜⎜⎜⎝
2

(2µÃ
(x3)−1)

⎛⎜⎜⎜⎝
2

(2µÃ
(x4)−1)−1

⎞⎟⎟⎟⎠
−1

⎞⎟⎟⎟⎟⎟⎟⎠
− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (20.2 − 1)(2(20.3−1)(2(20.5−1)−1) − 1)
≈0.0081.

(43)

14



Therefore, we can represent B̃ as:

B̃ =
0.1487

{∅, x1} +
0.0364

{{x2},{x3}} +
0.0081

{x1,{x2,{x3,{x4}}}} . (44)

Example 2. Given two finite binary sequences, a = (10∣01) and b = (∣01001),
we are tasked with finding the corresponding fuzzy sets, Ã and B̃, both of
which are constructed from a single point set {x} and defined on Xa and Xb,
respectively.

To find the values of µÃ(x) and µB̃(x), we need to solve the following two
equations:

log2(log2(ua + 1) + 1) + ua + 2
2ua
−1
− 1 = 1, (45)

ub + 2
2
ub−1
− 1 + 22

2
2
2
ub−1−1−1

−1
− 1 = 1, (46)

where ua and ub represent the values of µÃ(x) and µB̃(x), respectively.
Solving these equations gives us µÃ(x) ≈ 0.3222 and µB̃(x) ≈ 0.5087. There-

fore, the two fuzzy sets are:

Ã =
log2(log2(ua + 1)+ 1){x}(−2) +

ua

x
+
22

ua
−1
− 1

{x}(2)
=

0.4884

{x}(−2) +
0.3222

x
+
0.1894

{x}(2)
(47)

and

B̃ =
ub

x
+
22

ub−1
− 1

{x}(2) +
22

2
2
2
ub−1−1−1

−1
− 1

{x}(5)
=
0.5087

x
+
0.3405

{x}(2) +
0.1508

{x}(5) .
(48)

It is easy to verify that both Ã and B̃ have a cardinality of 1.

Example 3. Given two real numbers, wa and wb, where wa = 0.3 and wb = 0.8,
we need to find binary sequences a and b that correspond to fuzzy sets Ã and B̃,
respectively. These fuzzy sets are constructed from the set {x} and are defined
on Xa and Xb, respectively. Furthermore, we want the fuzzy sets to satisfy
µÃ(x) = wa and µB̃(x) = wb.

To determine the initial nonzero term of a, we first evaluate the expression:

log2(log2(log2(log2(log2(0.3 + 1) + 1) + 1) + 1)+ 0.3 − 1 ≈ 0.0061 > 0 (49)
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and

log2(log2(log2(log2(0.3 + 1) + 1) + 1) + 1) + 0.3 − 1 ≈ −0.0686 < 0, (50)

which indicates that the initial nonzero term in a is a−4. We repeat the same
steps for subsequent terms to obtain a5, a15, a20, and so on. Therefore, the
binary sequence a can be expanded as:

a = (1,000, ∣,000,010,000,000,001,000,010, . . .) (51)

Similarly, for wb = 0.8, the binary sequence b can be expanded as:

b = (∣000,000,001,000,100,010,000,000,000,010, . . .) (52)

5. Conclusion

In this contribution, we propose novel methods for constructing new fuzzy
sets from existing ones or classical sets. These methods consist of six interre-
lated rules that are compatible with classical sets. Our methods are objective,
meaning that both the essential problems of constructing new fuzzy sets and
achieving the values of membership functions are obtained through objective
calculations or by solving objectively constructed equations, without any sub-
jective assumptions.

The first result of our methods generalizes an important property of the
power set from classical settings to fuzzy settings. In addition, the second result
reveals deep connections between fuzzy sets and binary sequences, along with
a new algorithm. By studying the corresponding binary sequences, it becomes
possible to gain a more profound knowledge of fuzzy sets. This will be the
subject of our future research.
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