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Abstract

This paper studies continuous-time risk-sensitive reinforcement learning (RL) under the
entropy-regularized, exploratory diffusion process formulation with the exponential-form ob-
jective. The risk-sensitive objective arises either as the agent’s risk attitude or as a distribu-
tionally robust approach against the model uncertainty. Owing to the martingale perspective
in Jia and Zhou (2023), the risk-sensitive RL problem is shown to be equivalent to ensuring
the martingale property of a process involving both the value function and the q-function,
augmented by an additional penalty term: the quadratic variation of the value process, captur-
ing the variability of the value-to-go along the trajectory. This characterization allows for the
straightforward adaptation of existing RL algorithms developed for non-risk-sensitive scenarios
to incorporate risk sensitivity by adding the realized variance of the value process. Additionally,
I highlight that the conventional policy gradient representation is inadequate for risk-sensitive
problems due to the nonlinear nature of quadratic variation; however, q-learning offers a solution
and extends to infinite horizon settings. Finally, I prove the convergence of the proposed algo-
rithm for Merton’s investment problem and quantify the impact of temperature parameter on
the behavior of the learning procedure. I also conduct simulation experiments to demonstrate
how risk-sensitive RL improves the finite-sample performance in the linear-quadratic control
problem.

Keywords: risk-sensitive control, continuous-time reinforcement learning, exponential martingale, quadratic

variation penalty, q-learning

1 Introduction

Continuous-time reinforcement learning (RL) has drawn considerable attention owing to its practical sig-

nificance in modeling systems that necessitate or benefit from high-frequency or real-time interaction with the

environment, such as in financial trading (Wang et al., 2023a), real-time response systems (Andersson et al.,
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2015), and robotics (Kober et al., 2013). Furthermore, its theoretical development serves to bridge the gap

between the conventional stochastic control and the discrete-time, Markov decision process (MDP)-based

RL theory.

Existing literature on RL largely focuses on optimizing the expectation of a flow of time-additive re-

wards. Here, the instantaneous reward can be interpreted as a utility within the time-additive von Neu-

mann–Morgenstern expected utility framework. Though utility functions can reflect the agent’s attitude

towards risk in a one-off setting, economic literature has long recognized that such an additive form inad-

equately captures intertemporal preferences on the uncertainty (Epstein and Zin, 1989). Moreover, empiri-

cally measuring and incorporating an agent’s risk preference via a simple additive utility function is notorious

difficult.

An alternative approach is the risk-sensitive control (which can be traced back to Jacobson 1973), and

it later becomes popular, particularly in financial asset management, e.g., in Bielecki and Pliska (1999). In

contrast to solely considering the expectation, risk-sensitive objective accounts for the whole distribution of

the accumulated reward. Moreover, the risk-sensitive objective function in the exponential form is well-known

to be closely related to the robustness within a family of distributions measured by the Kullback–Leibler

(KL) divergence, which is also known as the robust control problems (Hansen and Sargent, 2001). Such

uncertainty on the distribution of a random variable (not just its realization whose uncertainty can be

statistically quantified) is often regarded as the Knightian uncertainty or ambiguity, which often occurs due

to the lack of knowledge or historical data (LeRoy and Singell Jr, 1987). From this perspective, an RL

agent often encounters the similar situation, in which the agent lacks information about the environment,

and hence, has difficulty formulating a probabilistic model to quantify the associated risk. Therefore, it is

natural to consider the risk sensitivity in the RL setting.

In this paper, I consider the risk-sensitive objective in the exponential form that is used in Bielecki and Pliska

(1999) and study this problem from RL perspective, i.e., in a data-driven and model-free (up to a controlled

diffusion process) approach. Specifically, I adopt the entropy-regularized continuous-time RL framework

proposed in Wang et al. (2020) and aim to find a stochastic policy that maximizes the entropy-regularized

risk-sensitive objective. It is noticeable that, in this paper, the entropy regularization term is added inside

the exponential form. This is motivated by regarding the regularizer as an extra source of reward for ex-

ploration, and hence, it should be treated similarly as the reward. Such choice is also made in Enders et al.

(2024), who numerically document the improvement over the counterpart without entropy regularization.

However, the benefits of having entropy regularization have not been theoretically investigated, even for

simple cases.

The primary contribution of this paper lies in the establishment of the q-learning theory for the continuous-

time risk-sensitive RL problems. The conventional Q-function for the discrete-time, MDP-based risk-sensitive

RL often relies nonlinear recursive relations, such as “exponential Bellman equation” (Fei et al., 2021) or

the “distributional robust Bellman equation” (Wang et al., 2023b). However, in continuous-time scenarios,
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the complicated structure gets simplified and clarified. This simplification stems from two key observa-

tions: firstly, a risk-sensitive control problem can be equivalently transformed into its non-risk-sensitive

counterpart augmented with a quadratic variation (QV) penalty (Skiadas, 2003); secondly, the conventional

Q-function has to be properly decomposed and rescaled into the value function and q-function in continuous

time (Jia and Zhou, 2023), and the latter does not have nonlinear effect. In particular, the definition and

characterization of the risk-sensitive q-function is almost parallel to that for the non-risk-sensitive q-function

established in Jia and Zhou (2023), and they only differ by an extra term involving the QV of the value-to-go

process (the value function applying on the state variables). Consequently, explicit computation of exponen-

tial forms becomes unnecessary, and the derived martingale condition is linear in the risk-sensitive q-function,

albeit still nonlinear in the value function. This linearity facilitates the application of algorithms aimed at

enforcing the martingale property of a process, as discussed in Jia and Zhou (2022a), to risk-sensitive RL

problems.

As a side product, I show that in the risk-sensitive problems, the relation between q-learning and policy

gradient established in Schulman et al. (2017) and Jia and Zhou (2023) for the non-risk-sensitive RL does

not hold anymore. The reason why this relation fails is because the associated Bellman-type (Feynman-

Kac-type) equation is no longer linear in the value function (Nagai, 1996). This observation adds to one

of the advantages of q-learning over policy gradient methods. In addition, I show how the risk-sensitive

q-learning theory for finite-horizon episodic tasks can be extended to infinite-horizon ergodic tasks, thereby

encompassing the original problem formulation in Bielecki and Pliska (1999).

The second contribution is to analyze the proposed RL algorithm in Merton’s investment problem with

power utility, which can be viewed as the risk-sensitive objective of the log-return of the portfolio. This

problem has been solved only in theory, in which the model for stock price is given and known. In contrast,

I study how agent can learn the policy with no prior knowledge. Specifically, I investigate the role of

the temperature parameter in the entropy-regularized RL. While many have suggested intuitively that the

temperature parameter governs the tradeoff between exploitation and exploration, its algorithmic impact

has yet to be formally studied. To the author’s best knowledge, there is no clear guidelines on how to

choose the temperature parameter endogenously, except for some theoretical results on the convergence or

asymptotic expansion of the exploratory problem to the classical problem in the non-risk-sensitive setting,

e.g., Wang et al. (2020); Tang et al. (2022); Dai et al. (2023b). These papers all consider the difference

between the difference between the total reward under the optimal deterministic/stochastic policy by ignoring

the estimation error of optimal policy incurred in a specific learning procedure. Therefore, from their analysis,

it seems that randomization and entropy regularization always cause inefficiency but have no clear benefits.

I highlight that the virtue of entropy regularization lies on the algorithmic aspect via boosting the esti-

mation accuracy of the optimal policy. Within the framework of stochastic approximation algorithms, this

study reveals that the temperature parameter functions analogously to the learning rate: Higher tempera-

tures correspond to faster learning because data collected spans larger space and contains more information
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(interpreted as exploration) but also entail higher noise in the data and lower expected reward (due to a

lack of exploitation). The convergence and convergence rate are determined by the combined schedule of

the step size and the temperature parameter in each iteration. I give two possible conditions to ensure the

proposed learning algorithm converges at the optimal rate that matches the state-of-the-art in terms of the

number of episodes.

Furthermore, I conduct another numerical study to examine the choice of the risk sensitivity coefficient

when the sample size is finite in a off-policy learning task for the linear-quadratic problem (with both drift

and volatility control). The results confirm the intuition about the inherent robustness of the risk-sensitive

RL. It is demonstrated that employing risk-sensitive RL with finite datasets yields reduced estimation errors

for the optimal policy compared to non-risk-sensitive approaches. Moreover, the optimal choice of the risk

sensitivity coefficient diminishes as the sample size increases, suggesting a delicate relationship between risk

sensitivity and data availability.

Related literature

Previous literature on risk-sensitive control problems in continuous time studies their theoretical prop-

erties and economic implications, for example, the well-posedness (Fleming and McEneaney, 1995; Nagai,

1996; Dupuis et al., 2000; Fleming and Sheu, 2002; Menaldi and Robin, 2005), and how risk sensitivity ex-

plains the equity premium puzzle (Maenhout, 2004; Glasserman and Xu, 2013). However, in the conventional

paradigm, agents have risk-sensitive objectives, but they know a benchmark distribution (or a model) and

also know the forms of the reward functions. RL perspective contrasts the conventional settings in not

knowing a benchmark distribution (i.e., being model-free), and even not the forms of reward functions. The

latter may not be a concern for applications in trading and pricing as the reward is simply the return or

profit, whereas could be critical in general RL context in which the agent has to execute a certain action to

figure out the associated reward. For the former, one way to specify the benchmark distribution is to fit a

simple model within a parametric family, e.g., geometric Brownian motions. However, due to the restriction

of the KL divergence, this approach implicitly assumes that the ground truth model is absolutely continuous

with respect to the estimated model. This could still wrongly specify a family of models. Moreover, RL is

sometimes conducted in an online fashion, where no past data is available and data needs to be collected as

part of the solution. In such scenarios, it is even more difficult to specify a benchmark model.

The continuous-time RL framework adopted in this paper is developed1 in Wang et al. (2020), who

introduce stochastic policies and entropy regularization to the standard stochastic control problems to for-

mulate RL in continuous-time, and to embed RL into relaxed control problems (Fleming and Nisio, 1984;

Zhou, 1992) for theoretical analysis. Moving from the theoretical framework to general principles to devise

1It is worthwhile pointing out that prior literature on continuous-time RL has been largely restricted to deter-
ministic system, such as Baird (1994); Doya (2000); Tallec et al. (2019); Lee and Sutton (2021); Kim et al. (2021).
To the author’s knowledge, Wang et al. (2020) is the first paper to approach stochastic control problems from an RL
perspective rather than a computational method.
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data-driven RL algorithms, Jia and Zhou (2022a) propose the unifying martingale perspective in the policy

evaluation stage and suggest the loss function and orthogonality conditions to approximate the martingale

properties. Jia and Zhou (2022b) further derive the representation for the policy gradient for stochastic

policies. Moreover, Jia and Zhou (2023) clarify the notion of “q-function” in the continuous-time system,

and reveal the relation between the q-function in RL and Hamiltonian in control literature. In particular,

Jia and Zhou (2023) show that the q-function and the value function can be learned jointly via martingale

conditions, thus, the principles proposed in Jia and Zhou (2022a) can be applied to devise q-learning algo-

rithms. Based on this framework, there have been extensive studies and applications, such as Guo et al.

(2022); Frikha et al. (2023); Wei and Yu (2023) for mean-field interactions, Dai et al. (2023a) for time-

inconsistency, Wang and Zhou (2020); Szpruch et al. (2024) for linear-quadratic controls, and Wang et al.

(2023a) for optimal execution. However, all the above has been done only for the ordinary, non-risk-sensitive

RL. This paper focuses on the risk-sensitive objective, to see how the martingale perspective can be adopted

and applied here and how to design algorithms based on it.

The important observation on the link between a robust control problem and the QV penalty is made by

Skiadas (2003). Note that the risk-sensitive objective in the exponential form naturally connects to the KL

divergence that is used in the robust control problems, and the exponential martingale is closely related to

the QV process. Thus, a risk-sensitive RL problem can also be transformed to an ordinary, non-risk-sensitive

RL problem plus an extra QV penalty on the value function along the trajectory. Therefore, it becomes

a stochastic differential utility or recursive utility maximization problem (Duffie and Epstein, 1992), and

hence, the martingale optimality principle still applies to characterize the optimal policy. Based on the

framework in Jia and Zhou (2023), I develop a martingale characterize of the optimal policy and the optimal

value function, also involving the QV penalty term. Consequently, q-learning algorithms can be designed

to approximate martingale processes based on ideas in Jia and Zhou (2022a). Recall that, despite that q-

function is defined as the combination of the value function’s up to second-order derivatives and nonlinear

terms, q-function can be approximated as a whole independently of the value function. Thus, the high-order

derivatives and nonlinear terms do no cause difficulty.

The same risk-sensitive objective in the exponential form has also been studied in the discrete-time,

tabular MDP-based RL settings, e.g., Borkar (2002); Fei et al. (2020, 2021); Wang et al. (2023b). The ap-

proaches adopted are via “exponential Bellman equation” or “distributional robust Bellman equation”, both

of which involve nonlinear recursive relation. The best regret bound in terms of the number of episodes is

at the square-root order, ignoring the logarithm factor. But these works do not include entropy regular-

izations. In the continuous-time, the resulting martingale condition is still nonlinear in the value function

while becomes linear in q-function. Numerically, it avoids computation of exponential forms and reduces the

sampling noises. In the Merton’s investment problem, the same convergence rate in terms of the number

of episodes, matching the state-of-the-art, can also be proved when the underlying stock price follows the

geometric Brownian motion.
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Structure of the paper

The rest of the paper is organized as follows. Section 2 describes the problem setup and motivates

this formulation. Section 3 is devoted to introducing the definition of q-function for risk-sensitive problems

and showing the martingale characterization of the optimal q-function and value function. The difference

between q-learning and policy gradient, and the extension to ergodic problems are presented in Section 4.

I demonstrate the performance of the risk-sensitive q-learning algorithm on two applications in Section 5.

In particular, the theoretical guarantee for Merton’s investment problem is shown in Section 5.1.2. Finally,

Section 6 concludes. All proofs are in the Appendix.

2 Problem Formulation

Throughout this paper, by convention all vectors are column vectors unless otherwise specified, and Rk is

the space of all k-dimensional vectors (hence kˆ 1 matrices). Given two matrices A and B of the same size,

denote by A ˝B their inner product, by |A| the Eculidean/Frobenius norm of A, by AJ the A’s transpose. I

denote by N pµ, σ2q the probability density function of the multivariate normal distribution with mean vector

µ and covariance matrix σ2. Finally, for any stochastic process X “ tXs, s ě 0u, I denote by tFX
s usě0

the natural filtration generated by X and by xXyptq its quadratic variation (QV) between r0, ts. I use a

bold-faced letter π to denote a policy, and a plain letter π « 3.14 to denote the mathematical constant.

2.1 Classical model-based formulation

For readers’ convenience, I first review the classical, model-based risk-sensitive stochastic control formu-

lation.

Let d, n be given positive integers, T ą 0, and b : r0, T s ˆ Rd ˆ A ÞÑ Rd and σ : r0, T s ˆ Rd ˆ A ÞÑ Rdˆn

be given functions, where A Ă Rm is the action/control set. The classical stochastic control problem is

to control the state (or feature) dynamics governed by a stochastic differential equation (SDE), defined on

a filtered probability space
`
Ω,F ,PW ; tFW

s usě0

˘
along with a standard n-dimensional Brownian motion

W “ tWs, s ě 0u:
dXa

s “ bps,Xa

s ,asqds ` σps,Xa

s ,asqdWs, s P r0, T s, (1)

where as stands for the agent’s action at time s. The agent’s total reward is
şT
0
rps,Xa

s , asqds ` hpXa

T q,
where r : r0, T s ˆ Rd ˆ A Ñ R is the expected instantaneous rate of the reward, and h : Rd Ñ Rn is the

lump sum reward at the end of the planning period.

I make the standard assumptions in the ordinary, non-risk-sensitive stochastic control problems (Yong and Zhou,

1999). Note that these conditions are regularity conditions and growth conditions imposed on the state pro-

cess and the reward function, and cannot be verified without knowing the model. Moreover, they alone do

not entail the well-posedness of the problem, and have to be combined with suitably defined control (policy).
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Assumption 1. The following conditions for the state dynamics and reward functions hold true:

(i) b, σ, r, h are all continuous functions in their respective arguments;

(ii) b, σ are uniformly Lipschitz continuous in x, i.e., for ϕ P tb, σu, there exists a constant C ą 0 such

that

|ϕpt, x, aq ´ ϕpt, x1, aq| ď C|x´ x1|, @pt, aq P r0, T s ˆ A, @x, x1 P Rd;

(iii) b, σ have linear growth in x, i.e., for ϕ P tb, σu, there exists a constant C ą 0 such that

|ϕpt, x, aq| ď Cp1 ` |x|q, @pt, x, aq P r0, T s ˆ Rd ˆ A;

(iv) r and h have polynomial growth in px, aq and x respectively, i.e., there exist constants C ą 0 and µ ě 1

such that

|rpt, x, aq| ď Cp1 ` |x|µ ` |a|µq, |hpxq| ď Cp1 ` |x|µq, @pt, x, aq P r0, T s ˆ Rd ˆ A.

The risk-sensitive objective studied in literature2 (e.g., Bielecki and Pliska (1999); Davis and Lleo (2014),

and many others) refers to
1

ǫ
logEPW

”
eǫr

ş
T

0
rps,Xa

s ,asqds`hpXa

T qs
ı
, (2)

for some risk sensitivity coefficient ǫ ‰ 0.

There are several motivations for this objective function and explanations for why (2) reflects the sen-

sitivity of risk. First of all, the risk sensitivity is in contrast to simply considering the expectation of the

total reward E

”şT
0
rps,Xa

s , asqds ` hpXa

T q
ı
, and (2) is the cumulant-generating function divided by the risk

sensitivity coefficient, which reflects the properties of the full distribution of the total reward, rather than

simply its mean. In a special case, it is well-recognized that when ǫ Ñ 0, (2) can be expanded as

1

ǫ
logEPW

”
eǫr

ş
T

0
rps,Xa

s ,asqds`hpXa

T qs
ı

«EPW

«ż T

0

rps,Xa

s ,asqds ` hpXa

T q
ff

` ǫ

2
VarP

W

«ż T

0

rps,Xa

s ,asqds ` hpXa

T q
ff
.

(3)

Hence, when ǫ ă pąq0, it penalizes (incentivizes) the variability of the total reward.

Second, the form of the objective function (2) can be viewed as applying an exponential utility function

on the total reward, where ´ǫ measures the absolute risk aversion. Whereas, the risk sensitivity should not

be confused with the commonly used notion of risk-aversion in the additive utility functions in economics

literature, in which the risk-aversion may be represented via the concavity of the function r and h.

Third, the risk sensitivity also stems from the ambiguity and robustness in the sense of Hansen and Sargent

2The long-run average of version of it will be discussed later in Section 4.2.
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(2011), or sometimes called the control under model misspecification (Hansen and Sargent, 2001) or robust

control (Dupuis et al., 2000). From this perspective, the agent is still maximizing the expected total re-

ward whereas is uncertain about the true distribution, hence the agent forms “multi-prior” in the sense of

Gilboa and Schmeidler (1989) and considers the worse distribution:

min
QPQ

EQ

«ż T

0

rps,Xa

s , asqds` hpXa

T q
ff
, (4)

where Q is a collection of probability distributions specified by the agent. When it is specified as

Q “ tQ : DKLpQ,PW q ď δu,

where DKLpQ,PW q is the Kullback–Leibler divergence from PW to Q, defined as
ş
log dQ

dPW dQ, and δ ą 0 is

the radius of this set, then (4) can be reformulated as (2) due to the well-known Donsker and Varadhan’s

variational formula (Donsker and Varadhan, 1983), for suitable ǫ ď 0, which is the Lagrange multiplier to

relax the constraint of Q P Q.

From the above justification, note that in (2), ǫ ă 0 reflects the extra uncertainty aversion and may be

plausible in most applications, however, in this paper, there is no such restriction. Admittedly, there are

other forms of risk-aware objective, e.g., CVaR (Chow et al., 2015), certainty-equivalency (Xu et al., 2023),

general utility functions (Wu and Xu, 2023), and many others, I would like to focus on solving the problem

(2), given its rich interpretation from various aspects mentioned above, as well as its tractability that will be

introduced as follows. Another important issue that I do not include in my discussion is the determination

of the risk sensitivity coefficient ǫ. On one hand, the risk sensitivity coefficient can be interpreted as part

of the agent’s preference and should be given exogenously. On the other hand, the formulation under

the robust control framework like (4) regards ǫ as the Lagrange multiplier that needs to be determined

endogenously (e.g., the approach in Wang et al. 2023b), while such formulation requires an exogeneously

specified uncertainty set characterized by an additional coefficient δ. To the author’s best knowledge, the

data-driven way to determine ǫ and/or δ has only been studied in special, static setting, e.g., Blanchet et al.

(2022), and remains an open question in general, dynamic settings.

The classical model-based problem is to find the optimal control (policy) to maximize (2) subject to

the state dynamics (1), with the knowledge of the forms of functions b, σ, r, h, for a given risk sensitivity

coefficient ǫ ‰ 0. To solve such problems, there are many standard approaches, and the predominant one is

via dynamic programming to deduce Hamilton-Jacobi-Bellman (HJB)-type of equations.3 I will not repeat

on these approaches but present an alternative martingale characterization of the optimal control and the

optimal value function to problem (2) to conclude this subsection.

3They are slightly different from the standard HJB equations in the ordinary stochastic control problems because
the objective function is not additive in the risk-sensitive control, but their forms are similar, see, e.g., Nagai (1996).
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Lemma 1. Suppose that there is a continuous function V ˚pt, x; ǫq, satisfying V ˚pT, x; ǫq “ hpxq and

E

”
e

ǫ2

2
xV ˚aypT q

ı
ă 8 for any admissible a. If there exists a control a˚, such that for any initial condi-

tion pt, xq,

(i)
şs
t

!
rpu,Xa

˚

u , a˚
uqdu` ǫ

2
dxV ˚a

˚

ypuq
)

` V ˚ps,Xa
˚

s ; ǫq is an ptFW
s usět,PW q- (local) martingale; and

(ii) for any a,
şs
t

 
rpu,Xa

u , auqdu` ǫ
2
dxV ˚aypuq

(
`V ˚ps,Xa

s ; ǫq is an ptFW
s usět,PW q- (local) supermartin-

gale,

where xV ˚ay is the QV of the process V ˚ps,Xa

s ; ǫq. Then a˚ is the optimal solution to (2) and V ˚pt, x; ǫq is

the optimal value function.

Typically, such martingale-based characterization of the optimality is slightly weaker than or sometimes

equivalent to the HJB-type of characterization, because the martingale process is often involved in the

standard verification argument. Moreover, the benefit of martingale optimality principle generalizes to

many other contexts, and is the key concept that motivates the seminal works in reinforcement learning by

Jia and Zhou (2022a,b, 2023). A particular feature in Lemma 1 is that the exponential form is removed but

a new term, the QV of value function process, is introduced. This is due to the fundamental connection

between an exponential martingale and the QV process incurred in applying Itô’s lemma. Hence, QV can

be reviewed as an extra penalty term on the variability of the value process to induce the policy to be less

risk sensitive. The rigorous statement can be found in Appendix B.

Notably, two recently proposed approaches in the discrete-time risk-sensitive problems are via attacking

either the “exponential Bellman equation” (Fei et al., 2021) or the “distributional robust Bellman equation”

(Wang et al., 2023b). It remains unclear what the continuous-time counterpart to them is because they both

involve nonlinear recursive equations. In contrast, QV is also a nonlinear functional of the value function in

Lemma 1, however, such dependency is in a much more explicit form that stands for the variability of the

value function along the trajectory.

2.2 Reinforcement learning formulation

I now present the exploratory formulation in the sense of Wang et al. (2020) of the problem to be

studied in this paper, which is regarded as the mathematical model for analyzing continuous-time RL.

Mathematically, it means to generalize the classical problem to allow relaxed control (Fleming and Nisio,

1984; Zhou, 1992), where the actions are randomized generated from a probability distribution. Intuitively,

what an agent can do is to try a (randomly generated) sequence of actions a “ tas, t ď s ď T u4, observe the
resulting state process Xa “ tXa

s , t ď s ď T u, and the realized reward trps,Xa

s , asq, t ď s ď T u. Meanwhile,

4Arguably, it is not possible to sample continuously in practice, I keep to this continuous-time sequence for the
ease of the development of algorithms. In principle, one can use simple process to approximate it (Szpruch et al.,
2024), or argue the existence via suitable measure-theory-based techniques (Sun, 2006).
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the agent gradually adjusts actions based on these observations.5 An agent can only do trial-and-error in

the RL context because the agent has no knowledge about the environment (i.e. the functions b, σ, r, h) and

cannot even form an HJB equation or any mathematical tool in the classical stochastic control methodology.

To be consistent with the common practice of RL literature, I restrict to the feedback relaxed control,

known as the stochastic policy. In particular, let π : pt, xq P r0, T s ˆ Rd ÞÑ πp¨|t, xq P PpAq be a given

(feedback) policy, where PpAq is a suitable collection of probability density functions (or probability mass

function for finite space). At each time s, an action as is generated or sampled from the distribution

πp¨|s,Xsq.

Fix a stochastic policy π and an initial time–state pair pt, xq. Consider the following SDE

dXπ

s “ bps,Xπ

s , a
π

s qds` σps,Xπ

s , a
π

s qdWs, s P rt, T s; Xπ

t “ x, (5)

defined on pΩ,F ,P; tFsusě0q, where aπ “ taπs , t ď s ď T u is an tFsusě0-progressively measurable action

process generated from π. The solution to (5), Xπ “ tXπ

s , t ď s ď T u, is the sample state processes

corresponding to aπ. (Xπ also depends on the specific copy aπ sampled from π)

Note that (5) should be interpreted as the sampled process in the learning procedure, where both aπ

and Xπ processes can be generated and observed. In particular, marginally, Xπ has the same distribution

as the solution to a different SDE (Wang et al., 2020):

dX̃s “ b̃
`
s, X̃s,πp¨|s, X̃sq

˘
dt ` σ̃

`
s, X̃s,πp¨|s, X̃sq

˘
dWs, s P rt, T s; X̃t “ x, (6)

where

b̃
`
s, x, πp¨q

˘
“
ż

A

bps, x, aqπpaqda, σ̃σ̃J`s, x, πp¨q
˘

“
ż

A

σσJps, x, aqπpaqda.

When the expectation is taken with respect to only Xπ under P, it can be equivalently written as the

expectation respect to X̃π under PW . When the expectation involves aπ under P, then it can be integrated

out by conditioning on Xπ using the policy π.6

Based on the same spirit as in Wang et al. (2020), I add an entropy regularizer to the reward function to

encourage exploration (represented by the stochastic policy), hence the risk-sensitive objective (2) becomes

Jpt, x;π; ǫq “1

ǫ
logEP

”
eǫr

ş
T

t
rrps,Xπ

s ,a
π

s q´λ logπpaπs |s,Xπ

s qsds`hpXπ

T qs
ˇ̌
ˇXπ

t “ x
ı
, (7)

where EP is the expectation with respect to both the Brownian motion and the action randomization.

5This procedure applies to both the offline and online settings. In the former, the agent can repeatedly try different
sequences of actions over the same time period r0, T s and record the corresponding state processes and payoffs. In
the latter, the agent updates the actions as she goes, based on all the up-to-date historical observations.

6In Wang et al. (2020), this result is derived using the law-of-large-number type of argument to integrate over
the randomization of a. More discussions on the relation between (5) and (6) can be found in Jia and Zhou (2022b,
2023).
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Note that in (7), the entropy regularizer is added inside the exponential form. This is because the

regularizer can be regarded as a fictitious reward for taking random actions, and hence, should be added

to the actual reward r. Moreover, λ ě 0 is a given weighting parameter on exploration, also known as the

temperature parameter. It is assumed to be known or chosen by the agent. In this paper, I first leave it as

exogenous, and revisit it when conducting analysis for a specific algorithm for a simple problem in Section

5.1 to understand better how it affects the learning performance. In short, the intuition is, as λ rises, there

exists a tradeoff: It incentivizes more exploration, and hence, accelerates the convergence, however it incurs

larger noise in sampling, which reduces efficiency and exploitation.

The following gives the precise definition of admissible policies.

Definition 1. A policy π “ πp¨|¨, ¨q is called admissible if

(i) πp¨|t, xq P PpAq, suppπp¨|t, xq “ A for every pt, xq P r0, T s ˆ Rd, and πpa|t, xq : pt, x, aq P r0, T s ˆ
Rd ˆ A ÞÑ R is measurable;

(ii) the SDE (6) admits a unique weak solution (in the sense of distribution) for any initial pt, xq P
r0, T s ˆ Rd;

(iii)
ş
A

|rpt, x, aq ´ γ logπpa|t, xq|πpa|t, xqda ď Cp1 ` |x|µq, @pt, xq where C ą 0 and µ ě 1 are constants;

(iv) πpa|t, xq is continuous in pt, xq and uniformly Lipschitz continuous in x in the total variation distance,

i.e., for each fixed a,
ş
A

|πpa|t, xq´πpa|t1, x1q|da Ñ 0 as pt1, x1q Ñ pt, xq, and there is a constant C ą 0

independent of pt, aq such that

ż

A

|πpa|t, xq ´ πpa|t, x1q|da ď C|x´ x1|, @x, x1 P Rd.

The collection of admissible policies is denoted by Π.

I conclude this subsection by stating the counterpart to Lemma 1 for the exploratory problem.

Theorem 1. Suppose that there is a function J˚pt, x; ǫq P C1,2
`
r0, T q ˆ Rd

˘
X C

`
r0, T s ˆ Rd

˘
, satisfying

J˚pT, x; ǫq “ hpxq and E

”
e

ǫ2

2
xJ˚πypT q

ı
ă 8 for any π P Π. Consider a policy defined as

π˚pa|t, xq “
exp

!
1
λ

”
LaJ˚pt, xq ` rpt, x, aq ` ǫ

2
|σpt, x, aqJ BJ˚

Bx pt, xq|2
ı)

ş
A
exp

 
1
λ

“
LaJ˚pt, xq ` rpt, x, aq ` ǫ

2
|σpt, x, aqJ BJ˚

Bx pt, xq|2
‰(

da
, (8)

where La is the infinitesimal generator associated with the diffusion process (1):

Laϕpt, xq :“ Bϕ
Bt pt, xq ` b

`
t, x, a

˘
˝ Bϕ

Bx pt, xq ` 1

2
σ2

`
t, x, a

˘
˝ B2ϕ

Bx2 pt, xq, a P A.

Here, Bϕ
Bx P Rd is the gradient, and B2ϕ

Bx2 P Rdˆd is the Hessian.
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If for any initial condition pt, xq,

ż s

t

!”
rpu,Xπ

˚

u , aπ
˚

u q ´ λ logπ˚paπ˚

u |u,Xπ
˚

u q
ı
du` ǫ

2
dxJ˚π

˚

ypuq
)

` J˚ps,Xπ
˚

s ; ǫq

is an ptFX
s usět,Pq- (local) martingale; where xJ˚πy is the QV of the process J˚ps,Xπ

s ; ǫq. Then π˚ is the

optimal solution to (7) and J˚pt, x; ǫq is the optimal value function.

It is interesting to notice that the requirement piiq in Lemma 1 now reduces to one martingale con-

dition under the exploratory formulation, and the “supermartingale” requirement is gone. In fact, due to

the entropy-regularization, such “supermartingale” condition is replaced by the requirement of the entropy-

maximizing policy, which takes a more explicit form of Gibbs measure (8), also known as the Boltzmann

exploration scheme. Recall that in the typical martingale optimality principle as in Lemma 1, the “martin-

gale” condition piq is an equality condition that needs to be satisfied only for the optimal policy, however,

the “supermartingale” condition piiq needs to be satisfied by all polices, which includes an infinitely many

constraints. In contrast, the entropy-regularization resolves such difficulty by solving the optimal policy

explicitly.

3 Risk-sensitive q-Learning

3.1 Definition of q-function

The notion of the Q-function in the discrete-time risk-sensitive RL problem is less standard and less

tractable to work with, and hence, different variatants of Q-function have been proposed, e.g., in Fei et al.

(2021). I would like to introduce the notion of (little) “q-function” for the continuous-time risk-sensitive

RL problem based on a different motivation – by recalling the fundamental relation between the q-function

and the ordinary, non-risk-sensitive stochastic control problems revealed in Jia and Zhou (2023). In short,

the q-function should be the properly scaled advantage function by taking the limit of time-discretization to

zero.

More precisely, for a given policy π, and pt, x, aq P r0, T q ˆ Rd ˆ A, consider a “perturbed” policy of π

as follows: It takes the action a P A on rt, t ` ∆tq where ∆t ą 0, and then follows π on rt ` ∆t, T s. Then

12



the advantage function is

1

ǫ
logEP

”
eǫr

ş
t`∆t

t
rps,Xa

s ,aqds`
ş
T

t`∆t
rrps,Xπ

s ,a
π

s q´λ log πpaπs |s,Xπ

s qsds`hpXπ

T qs
ˇ̌
ˇXt “ x

ı

´ Jpt, x;π; ǫq

“1

ǫ
logEP

”
eǫr

ş
t`∆t

t
rps,Xa

s ,aqds`Jpt`∆t,Xa
t`∆t;π;ǫq´Jpt,x;π;ǫqs

ˇ̌
ˇXa

t “ x
ı

“1

ǫ
logE

«
1 ` ǫ

ż t`∆t

t

eǫr
ş
s

t
rpu,Xa

u,aqdu`Jps,Xa
s ;π;ǫq´Jpt,x;π;ǫqs

ˆ
„
rps,Xa

s , aq ` LaJps,Xa
s ;π; ǫq ` ǫ

2
|σps,Xa

s , aqJ BJ
Bx ps,Xa

s ;π; ǫq|2

ds
ˇ̌
ˇXa

t “ x

ff

“
„
rpt, x, aq ` LaJpt, x;π; ǫq ` ǫ

2
|σpt, x, aqJ BJ

Bx pt, x;π; ǫq|2

∆t` op∆tq.

(9)

After properly being scaled by ∆t and taking limit, the expansion in (9) motivates the following definition

for the q-function.

Definition 2. The q-function associated with a given policy π P Π is defined as

qpt, x, a;πq “LaJpt, x;π; ǫq ` rpt, x, aq ` ǫ

2
|σpt, x, aqJ BJ

Bx pt, x;π; ǫq|2,

pt, x, aq P r0, T s ˆ Rd ˆ A.

(10)

Note that the form of q-function coincides with the optimal policy in (8), which leads to the optimal

q-function:

q˚pt, x, a; ǫq “ LaJ˚pt, x; ǫq ` rpt, x, aq ` ǫ

2

ˇ̌
ˇ̌σpt, x, aqJ BJ˚

Bx pt, x; ǫq
ˇ̌
ˇ̌
2

. (11)

3.2 Martingale characterization of the optimal q-function

In most applications, only the optimal policy is of the interest. Hence, I will focus on the characterization

of the optimal q-function in this subsection, and how such martingale characterization can facilitate q-learning

algorithm in both on-policy and off-policy settings.7

First of all, I present a necessary condition for the optimal q-function and optimal policy. This is a

parallel result to Jia and Zhou (2023, Proposition 8).

Proposition 1. It holds that ż

A

expt 1
λ
q˚pt, x, a; ǫquda “ 1, (12)

7It is possible to establish parallel results as in Jia and Zhou (2023) for the q-function associated with any policy,
but these results are omitted in this paper. On-policy and off-policy stand for two different learning settings. On-
policy learning updates the policy currently in use to generate data, whereas off-policy learning aims to estimate
a policy of interest (called target policy), typically the optimal policy, using the data collected from a different,
possibly sub-optimal policy (called behavior policy). For example, learning playing Go from existing human players
is off-policy, whereas learning via self-play is likely on-policy.
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for all pt, xq, and consequently the optimal policy π˚ is

π˚pa|t, xq “ expt 1
λ
q˚pt, x, a; ǫqu. (13)

Given (12) and the terminal condition for the value function as constraints, the optimal value function

and the optimal q-function can be characterized via martingale conditions.

Theorem 2. Let a function xJ˚ P C1,2
`
r0, T q ˆ Rd

˘
X C

`
r0, T s ˆ Rd

˘
with polynomial growth in its all

derivatives and a continuous function xq˚ : r0, T s ˆ Rd ˆ A Ñ R be given, satisfying

xJ˚pT, xq “ hpxq,
ż

A

expt 1
λ
xq˚pt, x, aquda “ 1, @pt, xq P r0, T s ˆ Rd. (14)

Then

(i) If xJ˚ and xq˚ are respectively the optimal value function and the optimal q-function, then for any π P Π

and all pt, xq P r0, T s ˆ Rd, the following process

xJ˚ps,Xπ

s q `
ż s

t

!”
rpu,Xπ

u , a
π

u q ´ xq˚pu,Xπ

u , a
π

u q
ı
du` ǫ

2
dxxJ˚π

ypuq
)

(15)

is an ptFsusět,Pq-martingale, where tXπ

s , t ď s ď T u is the solution to (5) under π with Xπ

t “ x.

(ii) Suppose stronger regularity condition E

”
e

ǫ2

2
xyJ˚

πypT q
ı

ă 8 for any π P Π holds. If there exists

one π P Π such that for all pt, xq P r0, T s ˆ Rd, (15) is an ptFsusět,Pq-martingale, then xJ˚ and

xq˚ are respectively the optimal value function and the optimal q-function. Moreover, in this case,

xπ˚pa|t, xq “ expt 1
λ
xq˚pt, x, aqu is the optimal policy.

Theorem 2 is the parallel result to Jia and Zhou (2023, Theorem 9), where the only difference is that the

integral term in (15) now involves an extra QV term. Because the extra QV term is always increasing, when

ǫ ă 0 (corresponding to the typical situation), the process J˚ps,Xπ

s q `
şs
t

rrpu,Xπ

u , a
π

u q ´ q˚pu,Xπ

u , a
π

u qsdu
is a sub-martingale. Its expectation is increasing because the planning period is shorten and hence becomes

less uncertain. In contrast to the non-risk-sensitive counterpart, such a process ought to be a martingale.

This reflects the intertemporal preference on uncertainty that the agent is no longer indifferent between when

the uncertainty is resolved as time goes by.

3.3 Risk-sensitive q-Learning

Note that based on the martingale characterization of the optimal q-function, it is possible to device

various algorithms that either aim to minimize a suitable loss function, or to solve a system of moment

conditions, as evidenced in Jia and Zhou (2023). Then one may use either stochastic gradient decent or

stochastic approximation algorithm to numerically find the solutions.
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I highlight that since (14) includes a constraint on the integration of the approximated q-function, and

hence, is difficult to compute in general. I refer to the discussion in Jia and Zhou (2023) on the case in which

such integration cannot be explicitly calculated and another approximation is required. In the following,

I restrict to the case in which such integration is easy to compute, e.g., when q-function is a quadratic

function in the action a. Algorithm 1 describes a simple risk-sensitive q-learning algorithm based on the

theoretical results in the previous subsections. This algorithm sets up moment conditions and uses stochastic

approximation to iterate the parameters to be learned. Note that the constraint on the terminal value of

the approximated value function in (14) is not critical, because the terminal payoff function at any sample

point hpXπ

T q can be observed directly, and only the terminal values of the approximated value function at

those sample points are concerned in the algorithm. Moreover, the q-learning algorithm can be applied to

both on-policy and off-policy settings.

4 Extensions

4.1 Contrast with policy gradient

As an alternative method to solve RL problems, the policy gradient is one of the most commonly used

algorithms. In the continuous-time, exploratory diffusion process setting, Jia and Zhou (2022b) obtain the

representation of policy gradient for the non-risk-sensitive problems by studying the associated Feynman-

Kac-type partial differential equation (PDE) for the value function, such that the value function can be

identified as an implicit function of the policy.

In the above discussion, I have turned the risk-sensitive RL problems to a martingale problem that only

differs from the non-risk-sensitive counterpart by a QV penalty term. Does it mean the policy gradient

representation can be achieved in parallel by simply adding an extra QV penalty term as well?

In this subsection, I follow the same derivation for the policy gradient in Jia and Zhou (2022b), and

show that such representation is not valid for the risk sensitive RL problems. Thus, it highlights the benefit

of considering q-function and sheds light upon the relation between policy gradient and q-learning.

Consider a policy πφ, parameterized by φ. From the definition (7), notice that

e
ǫ
”
Jpt,Xπ

φ

t ;πφ;ǫq`
ş
t

0
rrps,Xπ

φ

s ,aπ
φ

s q´λ logπ
φpaπφ

s |s,Xπ
φ

s qsds
ı

is a martingale. Applying Itô’s lemma, I obtain a PDE characterization of the value function Jp¨, ¨;πφ; ǫq,
which satisfies ż

A

„
LaJpt, x;πφ; ǫq ` rpt, x, aq ´ λ logπφpa|t, xq

` ǫ

2
|σpt, x, aqJ BJ

Bx pt, x;πφ; ǫq|2

πφpa|t, xqda “ 0,

(16)

for all pt, xq P r0, T s ˆ Rd, with terminal condition JpT, x;π; ǫq “ hpxq.
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Algorithm 1 Offline–Episodic Risk-sensitive q-Learning Algorithm

Inputs: initial state x0, horizon T , time step ∆t, number of episodes N , number of mesh grids
K, initial learning rates αθ, αψ and a learning rate schedule function lp¨q (a function of the num-
ber of episodes), functional forms of parameterized value function Jθp¨, ¨q and q-function qψp¨, ¨, ¨q
satisfying (14), functional forms of test functions ξpt, x¨^t, a¨^tq and ζpt, x¨^t, a¨^tq, temperature
parameter λ, and risk sensitivity parameter ǫ.
Required program (on-policy): environment simulator px1, rq “ Environment∆tpt, x, aq that
takes current time–state pair pt, xq and action a as inputs and generates state x1 at time t`∆t and
instantaneous reward r at time t as outputs. Policy πψpa|t, xq “ expt 1

λ
qψpt, x, aqu.

Required program (off-policy): observations tatk , rtk , xtk`1
uk“0,¨¨¨ ,K´1 Y txtK , hpxtK qu “

Observationp∆tq including the observed actions, rewards, and state trajectories under the given
behavior policy at the sampling time grids with step size ∆t.
Learning procedure:

Initialize θ, ψ.
for episode j “ 1 to N do

Initialize k “ 0. Observe initial state x0 and store xtk Ð x0.
Ź On-policy case

while k ă K do
Generate action atk „ πψp¨|tk, xtkq.
Apply atk to environment simulator px, rq “ Environment∆tptk, xtk , atkq, and observe new

state x and reward r as outputs. Store xtk`1
Ð x and rtk Ð r.

Update k Ð k ` 1.
end while

Ź Off-policy case
Obtain one observation tatk , rtk , xtk`1

uk“0,¨¨¨ ,K´1 Y txtK , hpxtK qu “ Observationp∆tq.
Ź After getting a trajectory

For every i “ 0, 1, ¨ ¨ ¨ ,K ´ 1, compute and store test functions ξti “
ξpti, xt0 , ¨ ¨ ¨ , xti , at0 , ¨ ¨ ¨ , atiq, ζti “ ζpti, xt0 , ¨ ¨ ¨ , xti , at0 , ¨ ¨ ¨ , atiq.

Compute

δti “ Jθpti`1, xti`1
q ´ Jθpti, xtiq ` rti∆t´ qψpti, xti , atiq∆t` ǫ

2

”
Jθpti`1, xti`1

q ´ Jθpti, xtiq
ı2

for every i “ 0, 1, ¨ ¨ ¨ ,K ´ 1, and define

∆θ “
K´1ÿ

i“0

ξtiδti , ∆ψ “
K´1ÿ

i“0

ζtiδti .

Update θ and ψ by
θ Ð θ ` lpjqαθ∆θ.
ψ Ð ψ ` lpjqαψ∆ψ.

end for
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Note that, unlike the usual Feynman-Kac-type PDE (with ǫ “ 0), which is a linear parabolic equation,

(16) contains a nonlinear term | BJ
Bx pt, x;πφ; ǫq|2 that arises from the QV of the value process. Therefore,

differentiating with respect to φ in (16) (as in Jia and Zhou (2022b)) does not yield a linear PDE for

Gpt, x;πφ; ǫq “ B
BφJpt, x;πφ; ǫq. More precisely, Gpt, x;πφ; ǫq satisfies

0 “
ż

A

#
B logπφpa|t, xq

Bφ

„
LaJpt, x;πφ; ǫq ` rpt, x, aq ´ λ logπφpa|t, xq

` ǫ

2
|σpt, x, aqJ BJ

Bx pt, x;πφ; ǫq|2


`
„
LaGpt, x;πφ; ǫq ` ǫ

BG
Bx pt, x;πφ; ǫqσpt, x, aqσpt, x, aqJ BJ

Bx pt, x;πφ; ǫq
+
πφpa|t, xqda.

Hence the gradient can be represented by

Gpt, x;πφ; ǫq “ E

« ż T

t

B logπφpaπφ

s |s,Xπ
φ

s q
Bφ

„
dJπ

φ

s ` rps,Xπ
φ

s , aπ
φ

s qds

´λ logπφpaπφ

s |s,Xπ
φ

s qds ` ǫ

2
dxJπ

φypsq


` ǫdxJπ
φ

, Gπ
φypsq | Xπ

φ

t “ x

ff
.

(17)

In the above expression, note that dJπ
φ

s ` rps,Xπ
φ

s , aπ
φ

s qds´ λ logπφpaπφ

s |s,Xπ
φ

s qds is the usual “tem-

poral difference” (TD) term, and it is augmented by the QV ǫ
2
dxJπ

φypsq due to the QV penalty. It is

remarkable that the policy gradient is no longer the gradient of the log-likelihood of the policy multiplied

by the (augmented) TD error, instead, an extra term arises because of the nonlinear nature. Furthermore,

this extra term ǫdxJπ
φ

, Gπ
φypsq is the cross-variation between the value process and its gradient process,

and remains uncomputable directly. Therefore, it is difficult to obtain an unbiased estimate of the policy

gradient in the risk-sensitive RL. In contrast, q-learning does not have this problem since the universal mar-

tingale property. Example 1 provides a simple illustration of the bias caused by ignoring this extra term in

estimating the policy gradient, and such bias is proportional to the risk sensitivity coefficient ǫ.

Example 1. Consider the following state process:

dXπ
φ

t “ aπ
φ

t dt` dWt, X
π

φ

t “ x, aπ
φ

t |Xπ
φ

t „ πφ “ N p´φXπ
φ

t , 1q,

with φ ą 0. Then the distribution of Xπ
φ

t is the same as an Ornstein–Uhlenbeck process X̃t that satisfies

dX̃t “ ´φX̃tdt` dWt, X̃t “ x.

Therefore, the marginal distribution of X̃T , or equivalently, Xπ
φ

T is N
´
xe´φpT´tq, 1

2φ

`
1 ´ e´2φpT´tq˘¯. For
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simplicity, I ignore the running rewards and the entropy terms and consider the risk-sensitive value function:

Jpt, x;πφ; ǫq “ 1

ǫ
logE

„
eǫX

π
φ

T | Xπ
φ

t “ x


“ xe´φpT´tq ` ǫ

4φ

´
1 ´ e´2φpT´tq

¯
.

By direct calculation, the true policy gradient with respect to φ is

B
BφJp0, x;πφ; ǫq “ ´xe´φTT ` ǫT

2φ
e´2φT ´ ǫ

4φ2
p1 ´ e´2φT q.

However, if the extra term xJπ
φ

, Gπ
φy is ignored, then (17) becomes

E

«ż T

0

Bπφpaπφ

s |Xπ
φ

s q
Bφ

”
dJps,Xπ

φ

s ;πφ; ǫq ` ǫ

2
dxJπ

φypsq
ı

| Xπ
φ

0 “ x

ff

“E

«ż T

0

´paπφ

s ` φXπ
φ

s qXπ
φ

s e´φpT´sqpaπφ

s ` φXπ
φ

s qds | Xπ
φ

0 “ x

ff

“ ´ e´φT
ż T

0

eφsE
”
Xπ

φ

s | Xπ
φ

0 “ x
ı
ds “ ´xe´φTT.

It is clearly different from B
BφJp0, x;πφ; ǫq.

4.2 Ergodic tasks

Next, I extend the q-learning to ergodic tasks. That is, the risk-sensitive objective is

lim inf
TÑ8

1

ǫT
logEP

”
eǫr

ş
T

t
rrpXπ

s ,a
π

s q´λ logπpaπs |Xπ

s qsdss
ˇ̌
ˇXπ

t “ x
ı
.

The q-function in such ergodic task can be similarly defined as in Definition 2 except that the associated

value function Jp¨;π; ǫq becomes time-invariant, and is only unique up to a constant. In addition, there is a

number βpπ; ǫq that is associated with the policy. This number stands for the objective function value (the

long-term average) and it is also part of the solutions.

I state the parallel results to Theorem 2 for the ergodic tasks about the characterization of the optimal

value function, q-function, and the optimal value in Theorem 3.

Theorem 3. Let a function xJ˚ P C2
`
Rd

˘
with polynomial growth in its all derivatives, a continuous function

xq˚ : Rd ˆ A Ñ R, and a constant xβ˚ be given, satisfying

lim
TÑ8

E

”
e

ǫ2

2
xyJ˚

πypT q
ı

ă 8, for any π P Π,

ż

A

expt 1
λ
xq˚px, aquda “ 1, @x P Rd. (18)

Moreover, assume there exists δ ą 0 such that limTÑ8
1
T
logEP

”
e´ǫp1`δqyJ˚pXπ

T q
ı

“ 0 under any probability

measure P̂ that is equivalent to the original probability P, for all π P Π.

18



If there exists one π P Π such that for all initial state x P Rd, the following process

xJ˚pXπ

t q `
ż t

0

!”
rpXπ

u , a
π

u q ´ xq˚pXπ

u , a
π

u q ´ xβ˚
ı
du` ǫ

2
dxxJ˚πypuq

)
(19)

is an ptFtutě0,Pq-martingale. Then xJ˚, xq˚, xβ˚ are respectively the optimal value function, the optimal

q-function, and the optimal value. Moreover, in this case, xπ˚pa|xq :“ expt 1
λ
xq˚px, aqu is the optimal policy.

As a consequence of Theorem 3, one may similarly make use of the martingale conditions to approximate

the optimal q-function by stochastic approximation algorithm. Notice that for ergodic tasks, they are learned

typically based on a single trajectory, and hence the algorithm is online. Algorithm 2 describes such an

algorithm that can be applied both on-policy and off-policy.

5 Applications

I illustrate our methods on two applications with synthetic data sets. To avoid the confusion between

the time-index of a process and the number of iteration used in an algorithm, I write Xptq to denote the

time-t value of a process X in this section.

5.1 Merton’s investment problem with power utility

I consider the well-knownMerton’s investment problem (without consumption) with power utility (Merton,

1969). The problem is formulated as follows: Consider a market with one (for simplicity) risky asset (stock)

and one risk-free asset (bond). The price of the stock follows a geometric Brownian motion

dSptq
Sptq “ µdt` σdW ptq,

and the bond price follows dS0ptq
S0ptq “ rdt.

There is an agent with investment horizon r0, T s who determines the investment allocation between the

stock and the bond. The proportion of wealth allocated to the stock is denoted by aptq, and I use Xptq to

represent the value of a self-financing portfolio. Then Xptq satisfies the wealth equation:

dXptq “XptqaptqdSptq
Sptq `Xptqp1 ´ aptqqdS

0ptq
S0ptq

“rr ` pµ ´ rqaptqsXptqdt `XptqaptqσdW ptq.
(20)

The objective function of the agent is to maximize the expected “bequest utility” on the terminal wealth:

E rU pXpT qqs, where the utility function U is assumed to take the form of a power function Upxq “ x1´γ

1´γ ,

with γ ą 0, γ ‰ 1. γ here stands for the relative risk aversion coefficient. It is well-known that the optimal

portfolio choice is to maintain a constant proportion of wealth in the risky asset with a˚ “ µ´r
γσ2 .
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Algorithm 2 Ergodic Risk-sensitive q-Learning Algorithm

Inputs: initial state x0, time step ∆t, initial learning rates αθ, αψ, αβ and learning rate schedule
function lp¨q (a function of time), functional forms of the parameterized value function Jθp¨q and
q-function qψp¨, ¨q satisfying (18), functional forms of test functions ξpt, x¨^t, a¨^tq, ζpt, x¨^t, a¨^tq,
temperature parameter λ, and risk sensitivity parameter ǫ.
Required program (on-policy): an environment simulator px1, rq “ Environment∆tpx, aq that
takes initial state x and action a as inputs and generates a new state x1 at ∆t and an instantaneous
reward r as outputs. Policy πψpa|xq “ expt 1

λ
qψpx, aqu.

Required program (off-policy): observations ta, r, x1u “ Observationpx;∆tq including the ob-
served actions, rewards, and state when the current state is x under the given behavior policy at
the sampling time grids with step size ∆t.
Learning procedure:

Initialize θ, ψ, β. Initialize k “ 0. Observe the initial state x0 and store xtk Ð x0.
loop

Ź On-policy case
Generate action a „ πψp¨|xq.
Apply a to environment simulator px1, rq “ Environment∆tpx, aq, and observe new state x1

and reward r as outputs. Store xtk`1
Ð x1.

Ź Off-policy case
Obtain one observation atk , rtk , xtk`1

“ Observationpxtk ;∆tq.
Ź After obtaining a pair of samples

Compute test functions ξtk “ ξptk, xt0 , ¨ ¨ ¨ , xtk , at0 , ¨ ¨ ¨ , atk q, ζtk “
ζptk, xt0 , ¨ ¨ ¨ , xtk , at0 , ¨ ¨ ¨ , atk q.

Compute

δ “ Jθpx1q ´ Jθpxq ` r∆t´ qψpx, aq∆t ´ β∆t` ǫ

2

”
Jθpx1q ´ Jθpxq

ı2
,

∆θ “ ξtkδ,

∆β “ δ,

∆ψ “ ζtkδ.

Update θ, β and ψ by
θ Ð θ ` lpk∆tqαθ∆θ,
β Ð β ` lpk∆tqαβ∆β,
ψ Ð ψ ` lpk∆tqαψ∆ψ.

Update x Ð x1 and k Ð k ` 1.
end loop
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The problem for an RL agent is, to find the optimal policy to this problem without the knowledge of

µ, σ. (γ is assumed to be known by the RL agent) At the first glance, the problem belongs to standard,

non-risk-sensitive RL, and prior studies have been done to attack this problem directly. However, they have

been largely restricted to log-utility, e.g., Dai et al. (2023a); Jiang et al. (2022) due to the tractability of

the associated exploratory stochastic control problems, which correspond to the limit of γ Ñ 1. Even for

general power utilities, the associated exploratory stochastic control problems have to be specifically design

to guarantee well-posedness and tractability, see discussions in Dai et al. (2023b).

However, this problem can be naturally embedded into a risk-sensitive RL framework by utilizing the

transformation: Upxq “ 1
1´γ e

p1´γq log x, so that a power utility can be reviewed as the risk-sensitive coun-

terpart of the log-returns of the portfolio, where 0 ‰ 1 ´ γ ă 1 is the risk sensitivity coefficient. This

connection has been noticed in the mean-variance analysis for the log-returns in Dai et al. (2021) due to

the close relation between a risk-sensitive problem and the mean-variance problem and their applications in

portfolio management (Bielecki and Pliska, 1999).

Therefore, our algorithm aims to solve

max
π

1

1 ´ γ
logE

”
ep1´γqrşT0 ´λ logπpaptq|t,Xptqqdt`logXpT qs

ı
, (21)

where the wealth process X follows (20), and the portfolio choices aptq is generated from aptq|t,Xptq „
π p¨|t,Xptqq.

5.1.1 Description of the algorithm

As the ingredient of the q-learning algorithms, I approximate the (optimal) q-function and (optimal)

value function by

qpt, x, a;ψq “ ´ pa´ ψ1q2
2ψ2

´ λ

2
log 2πλ´ λ

2
logψ2, V pt, x; θq “ log x` θpT ´ tq, (22)

where ψ P R ˆ R`, θ P R are parameters to be learned. Note that the parameterization forms (22) are

motivated by the ground truth solution, which corresponds to ψ˚
1 “ µ´r

γσ2 and ψ˚
2 “ 1

γσ2 . See Appendix A.1

for details. Since function q does not depend on pt, xq, I simplify the notation as qpa;ψq :“ qpt, x, a;ψq.
Moreover, qp¨;ψq satisfies

ş
R
expt 1

λ
qpa;ψquda “ 1 is one critical constraint in the q-learning algorithm.

Furthermore, given the learned q-function, it suggests the policy should be

πp¨|ψq “ expt 1
λ
qp¨;ψqu “ N pψ1, λψ2q.

Suppose at the beginning of the i-th iteration (i ě 0), I already have some guesses for the parameters,

denoted by θi,ψi which correspond to a policy πi “ N pψ1,i, λψ2,iq. Then the q-learning algorithm aims to

update them iteratively by incorporating the information implied in new observations. The increments for
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θ, ψ1, ψ2 are

2

T 2

ż T

0

BV
Bθ pt,Xiptq; θiq

„
dV pt,Xiptq; θiq ´ q paiptq;ψiqdt` 1 ´ γ

2
dxV p¨, Xip¨q; θiqy


, (23)

1

T

ż T

0

Bq
Bψ1

paiptq;ψiq
„
dV pt,Xiptq; θiq ´ q paiptq;ψiqdt ` 1 ´ γ

2
dxV p¨, Xip¨q; θiqy


, (24)

and

´ 1

T

ż T

0

Bq
Bψ´1

2

paiptq;ψiq
„
dV pt,Xiptq; θiq ´ q paiptq;ψiqdt ` 1 ´ γ

2
dxV p¨, Xip¨q; θiqy


, (25)

respectively, where taiptq, Xiptqu0ďtďT are sample trajectories satisfying (20) under policy πi, that is, aiptq „
πi. This setting is known as the on-policy learning because the agent can indeed determine which policy is

used to acquire new data. Across different i’s, I assume the trajectories are independent.

Besides the increments in (23), (24), and (25), I also need to incorporate a projection step to control the

change rate of these parameters and also to ensure certain parameters fall into a suitable range (e.g., ψ2 ą 0).

In particular, denote by tbiuiě0, tciuiě0 as two increasing, divergent sequences, by taθ,iuiě0, taψ,iuiě0 as the

step size sequences for updating θ and ψ, respectively, and denote by ΠBp¨q as the projection onto a closed-

convex set B. Then the new parameters θi`1,ψi`1 are defined via

θi`1 “Πr´ci`1,ci`1s pθi ` aθ,i ˆ sample (average) of (23)q ,

ψ1,i`1 “Πr´ci`1,ci`1s pψ1,i ` aψ,i ˆ sample (average) of (24)q ,

ψ2,i`1 “Πrb´1

i`1
,ci`1s pψ2,i ` aψ,i ˆ sample (average) of (25)q .

(26)

The full iterative procedure is summarized by Algorithm 3.

5.1.2 Convergence of the algorithm

The analysis of this algorithm falls into the scope of the general stochastic approximation algorithms8.

The implementation in Algorithm 3 essentially suggests that the time discretization is only necessary for

computing integrals in (23), (24), and (25) whose error is governed by the standard numerical analysis.

Hence our interest is mainly to analyze the expectation and variance (conditioned on θi,ψi) of (23), (24),

and (25), respectively, as in stochastic approximation algorithms. However, in our examples, the variance

of these increment is not uniformly bounded, but growing. Hence the projection is necessary to ensure the

variance does not grow too fast. The ideas of projection are borrowed from Andradóttir (1995), and the

convergence rate for the recursion is borrowed from Broadie et al. (2011).

Theorem 4. Suppose that the temperature parameter λ is a positive constant along the learning procedure

(26), and positive sequences taψ,iuiě0, tbiuiě0, tciuiě0 satisfy

8The development of stochastic approximation can be traced back to Robbins and Monro (1951) and Lai (2003).
More introduction can be found, e.g., in Kushner and Yin (2003).
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(i) bi Ò 8, ci Ò 8;

(ii)
ř8
i“1 aψ,ib

´1
i “ 8;

(iii)
ř8
i“1 a

2
ψ,ib

2
i c

4
i ă 8.

Then the learning procedure described by (26) will converge almost surely. Moreover, with suitable choices

of aψ,n „ 1
n
, bn, cn „ logn, the mean squared error (MSE) of the parameters in the policy converges to zero

at the rate Er|ψn ´ψ˚|2s “ Õp 1
n

q, where Õp¨q means the big O ignoring the logarithm factor.

The error analyzed in Theorem 4 is related to the statistical efficiency of the learned parameters, and

the order Õp 1
n

q almost matches the typical optimal convergence rate in any data-driven methods except for

some logarithm factor. The extra logarithm factor is necessary to overcome the unbounded variance in the

sampled process and the possible degeneracy of the q-function when the associated variance tends to zero.

From its proof, one can see that if a suitable range for the parameters is known ex ante, then such logarithm

factor can be avoided.

Next, I consider the error of the learned policy under a different metric: the suboptimal gap in terms of

its performance. I measure the performance gap using the notion of equivalent relative wealth loss (ERWL)

defined in the following.

Under the policy πp¨|ψq “ N pψ1, λψ2q, I denote the risk-sensitive objective function (21) less the entropy

regularization by

Jpx, ψ1, λψ2q “ 1

1 ´ γ
logE

”
ep1´γq logXpT q

ˇ̌
ˇXp0q “ x

ı

“ log x`
„
r ` pµ´ rqψ1 ´ γσ2

2
pψ2

1 ` λψ2q

T,

(27)

and denote the same quantity under the optimal (control) policy by J˚pxq.
Recall that in Merton’s problem, objective is to maximize the bequest utility on the terminal wealth.

Under the policy πp¨|ψq “ N pψ1, λψ2q, the associated value function at time 0 can be written as

E

”
UpXpT qq

ˇ̌
ˇXp0q “ x

ı
“ 1

1 ´ γ
log pp1 ´ γqJpx, ψ1, λψ2qq .

I denote the ERWL associated with the policy πp¨|ψq “ N pψ1, λψ2q by ∆pψ1, λψ2q, which is defined as

the solution to
1

1 ´ γ
log pp1 ´ γqJpx, ψ1, λψ2qq “ 1

1 ´ γ
log pp1 ´ γqJ˚pxp1 ´ ∆qqq .

The next theorem characterizes how fast the accumulated ERWL up to the first N episodes grows in N ,

depending on whether a deterministic policy can be executed. If ERWL is diminishing, then the accumulated

ERWL will grow in N at a sublinear rate. The slower it grows, the more efficient the algorithm is.

Theorem 5. The ERWL is upper bounded by the suboptimal gap in the risk-sensitive objective, i.e., ∆pψ1, λψ2q ď
J˚pxq ´ Jpx, ψ1, λψ2q, which is independent of x. Moreover, suppose in the i-th episode, λi is used in (22).
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(a) If the deterministic policy N pψ1,i, 0q is executed along the learning procedure (26), then with suitable

choices of sequences aψ,n „ 1
n
, bn, cn „ logn, λn “ λ, the expected accumulated ERWL satisfies

E

«
Nÿ

i“1

∆pψ1,i, 0q
ff

“ O
`
plogNq4

˘
.

(b) If the stochastic policy N pψi,1, λiψi,2q is executed along the learning procedure (26), then with suitable

choices of sequences aψ,n „ 1?
n
, bn “ Op1q, cn „ logn, λn „ 1?

n
, the expected accumulated ERWL

satisfies

E

«
Nÿ

i“1

∆pψ1,i, λiψ2,iq
ff

“ Õp
?
Nq.

The first part in Theorem 5 says that the ERWL is upper bounded by the suboptimal gap in terms of the

risk-sensitive objective, which is often known as the regret in the RL literature. Note that a stochastic policy

introduces more uncertainty into the state process, and hence, is detrimental to the performance metric.

If one has to execute a stochastic policy, to have diminishing ERWL, one has to tune λ appropriately and

enforce that the variance of the policy tends to zero. Based on the expression (27), one can see that the

ERWL depends on the squared error of pψ1´ψ˚
1 q2, but only linearly in λ. This difference implies the different

order in the accumulated ERWL. The square-root order for the stochastic policy case matches the optimal

regret bound for tabular, episodic Q-learning for MDP in Jin et al. (2018) and risk-sensitive Q-learning for

MDP in Fei et al. (2020).

5.1.3 Numerical results

In the numerical experiments, the model configurations are σ “ 0.3, µ “ 0.1, r “ 0.02, γ “ 2, T “ 1,

x0 “ 1, the time-discretization size is ∆t “ 0.01. The number of episodes in each simulation run is 105.

I use two sets of tuning parameters that correspond to two situations in Theorem 5 to illustrate. In the

first setting, the temperature parameter is fixed as λ “ 3, and the step size aψ,n decays as n´1 and bn, cn

grows at the rate logn. In the second setting, the temperature parameter decays as λn´1{2, and the step

size aψ,n decays as n´1{2, bn is a fixed small constant, and cn grows at the rate logn. I repeat the simulation

runs for 1000 times to estimate the mean squared error or the mean equivalent relative wealth of the learning

algorithm.

Figure 1 illustrates the performance of the algorithm under the first tuning parameters setup. This setup

satisfies the conditions in Theorem 4 and Theorem 5 (a). The left panel shows the convergence rate of MSE

almost match the theoretical results. The accumulated ERWL on the right panel (in the log-log scale) does

not grow linearly.

Figure 2 illustrates the performance of the algorithm under the first tuning parameters setup. This setup

satisfies the conditions in Theorem 5 (b). It is interesting to notice that here that the MSE of ψ1,n ´ψ˚
1 also
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decays almost at the rate of n´1, however, in the proof, this rate is only Õpn´1{2q.9 A faster convergence

rate in the mean of the learned policy cannot further improve the order of the accumulated ERWL because

the variance in the learned policy cannot be further reduced.

(a) The mean squared error of the learned param-
eters in the policy.

(b) The mean accumulated ERWL of the learned
deterministic policy.

Figure 1: The illustration of the learned policy. The left panel shows the convergence of the mean
squared error of the learned parameters in the policy, and the right panel shows the mean equivalent
relative wealth loss of the learned deterministic policy. Both panels are in the log-scales. The results
are based on simulated data with 1000 runs. The shaded area indicates twice the standard deviation
of the estimated expectation. The temperature parameter is taken as λ “ 3, and the learning rate
aψ,n “ p1 ` nq´1. The number of episode within each simulation run is 105.

5.2 Off-policy linear-quadratic control

I consider the commonly adopted linear-quadratic (LQ) control problem:

dXptq “ pAXptq `Baptqqdt ` pCXptq `DaptqqdW ptq, (28)

where Xptq stands for the state variable, and aptq stands for the control taken at time t. The ultimate goal

is to maximize the long term average quadratic payoff

lim inf
TÑ8

1

T
E

«ż T

0

rpXptq, aptqqdt|X0 “ x0

ff
, (29)

with rpx, aq “ ´pM
2
x2 `Rxa` N

2
a2 `Px`Qaq. The optimal solution to this classical problem can be found

in Appendix A.2, where the optimal (feedback) control is a linear function of the state that is time-invariant.

9Proving a faster convergence rate of MSE is possible by a more careful analysis on the variance of the increment
term, which would also decays in λ2

n.
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Algorithm 3 Offline–Episodic On-policy q-Learning Algorithm for Merton’s Investment Problem

Inputs: investment horizon T , time step size ∆t, number of episodes N , number of time grids
K, risk aversion coefficient γ, temperature parameter λ, learning rates schedules aθ,i, aψ,i Ó 0,
projection region schedules bi, ci Ò 8, j stands for the number of episodes.
Required program: observations under the behavioral policy taptkq, Rptkquk“0,¨¨¨ ,K´1YtRptKqu “
Obervationp∆tq that returns the observed actions and log-returns trajectories under the behavioral
policy at the sampling time grids with step size ∆t.
Learning procedure:

Initialize θ1,ψ1.
for episode i “ 1 to N do

Use policy πp¨|ψiq to obtain one observation taiptkq, Riptkquk“0,¨¨¨ ,K´1 Y tRiptKqu “
Obervationp∆tq.

Compute

δtk “ V ptk`1, Riptk`1q; θiq ´ V ptk, Riptkq; θiq ´ q ptk, Riptkq, aiptkq;ψiq∆t,

for k “ 0, ¨ ¨ ¨ ,K ´ 1.

∆θ “ 2

T 2

K´1ÿ

k“0

BV
Bθ ptk, Riptkq; θiq δtk ,

∆ψ1 “ 1

T

K´1ÿ

k“0

Bq
Bψ1

ptk, Riptkq, aiptkq;ψiq δtk .

∆ψ2 “ ´ 1

T

K´1ÿ

k“0

Bq
Bψ´1

2

ptk, Riptkq, aiptkq;ψiq δtk .

Update θ and ψ by
θi`1 “ Πr´ci`1,ci`1s pθi ` aθ,i∆θq .

ψ1,i`1 “ Πr´ci`1,ci`1s pψ1,i ` aψ,i∆ψ1q .
ψ2,i`1 “ Πrb´1

i`1
,ci`1s pψ2,i ` aψ,i∆ψ2q .

end for
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(a) The mean squared error of the learned param-
eters in the policy.

(b) The mean accumulated ERWL of the learned
stochastic policy.

Figure 2: The illustration of the learned policy. The left panel shows the convergence of the mean
squared error of the learned parameters in the policy, and the right panel shows the mean equivalent
relative wealth loss of the learned deterministic policy. Both panels are in the log-scales. The results
are based on simulated data with 1000 runs. The shaded area indicates twice the standard deviation
of the estimated expectation. The temperature parameter is taken as λn “ 3pn ` 1q´1{2, and the
learning rate aψ,n “ pn` 1q´1{2. The number of episode within each simulation run is 105.

The risk-sensitive RL counterpart to this LQ problem is to consider

max
π

lim inf
TÑ8

1

ǫT
logEP

”
eǫr

ş
T

0
rpXπpsq,aπpsqq´λ logπpaπpsq|Xπpsqqdss

ı
. (30)

Here λ ą 0 is the temperature parameter that determines the strength of randomization, and typically

ǫ ă 0 is the risk sensitivity coefficient. The optimal solution to the non-risk-sensitive RL problem (ǫ “ 0)

can be found in Jia and Zhou (2022b, Appendix B2), where the optimal policy is a Gaussian distribution,

whose mean coincides with the classical solution (λ “ 0), and whose variance is a constant. However, the

risk-sensitive RL problem cannot be solved analytically.

In this subsection, I assume that learning can only be conducted in the off-policy manner. Specifically, the

available data consists of observations of one trajectory of state, action and reward generated under a behavior

policy that is usually not optimal, denoted by πbp¨|xq. That is, the RL agent has access to a finite sequence

of observations: ttk, Xptkq, aptkq,Rptkqu0ďkďK at certain sampling times 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tK “ T , where

the state is generated by the behavior policy according to (28), aptq|Xptq „ πbp¨|Xptqq, and the observed

reward rptkq can be an unbiased but noisy realization of its expectation value, i.e., E rRptkq|aptkq, Xptkqs “
rpXptkq, aptkqq. Moreover, the RL agent does not have the knowledge about the environment (coefficients

A,B,C,D,M,N,R, P,Q, and even the LQ structure), nor the knowledge of the behavior policy πb.
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5.2.1 Description of the algorithm

The (optimal) q-function and (optimal) value function are approximated by

qpX, a;ψq “ ´ pa´ ψ1X ´ ψ2q2
2ψ3

´ λ

2
log 2πλ´ λ

2
logψ3,

V pX ; θq “θ2x2 ` θ1x,

(31)

The value function does not contain a constant term because it is only unique up to a constant. In addition,

one also needs to learn another scalar parameter, denoted by θ0. To sum-up, ψ P R2 ˆ R` and θ P R3 need

to be learned. The form (31) corresponds to a policy πp¨|X ;ψq “ N pψ1X ` ψ2, λψ3q.
I highlight several distinctions between the off-policy and on-policy learning, and to explain the moti-

vation for the choice of parameterzation and our performance metrics. In the off-policy setting, the data

is exogenously given by a behavioral policy πb. Hence, unlike the on-policy learning, the agent does not

interact with the environment and generate data, instead, the agent can only use existing data. Therefore,

in the off-policy learning is essentially a statistical problem to estimate the optimal policy. The ultimate goal

is still to solve the original LQ problem (29), and the risk sensitive objective (30) is a formulation that is

introduced to address the discrepancy between the limited data and the true environment distribution (e.g.,

recall the distributional robust interpretation for such formulation discussed in Section 2.1). The form (31)

is motivated by the analytical solution to the non-risk-sensitive RL problem, see in Jia and Zhou (2022b,

Appendix B2).

5.2.2 Numerical results

In the numerical experiments, the configurations are A “ ´2, B “ 1, C “ 0.25, D “ 1,M “ N “ Q “ 2,

R “ P “ 1. The behavior policy is taken as state-independent, i.e., πbp¨|Xq “ N p0, 1q, and the initial state

is x0 “ 0. The time discretization for the sample is ∆t “ 0.01. The sample reward is generated as

R|a,X „ N prpX, aq,∆tq. I mainly examine the effect of the sample size and the risk sensitivity coefficient.

Hence, I fix the temperature parameter λ “ 2, and generate sample with length T P t1, 10, 100u and choose

the risk sensitivity coefficient ǫ P t0,´0.1,´0.5,´1,´2,´5,´10,´20u. In each simulation run, I use the

behavior policy to generate sample with length T , and then conduct learning algorithms to obtain the

learned parameters ψ̂, θ̂, and finally compute its distance to the optimal policy to the problem (29). The

simulation runs are repeated for 104 times to evaluate the mean squared error (MSE).

The results are presented in Table 1. The top, middle, bottom panel stands for different sample sizes. In

each panel, notice that solving the non-risk-sensitive objective does not lead to the most accurate estimate

for the policy. With suitable values of ǫ, solving the risk-sensitive objective reduces MSE. As ǫ approaches 0,

the results get closer to the non-risk-sensitive objective, whereas overly large ǫ (in the absolute value) harms

the accuracy. Overall, as the sample size increases, the performance get significantly better. The optimal ǫ

is around ´5 when the sample size is small, and is around ´2 when the sample size is large. It confirms the
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intuition that large sample size provides a better approximation to the ground truth distribution, and hence

the agent does not have to be too risk sensitive.

Table 1: The mean squared error (MSE) of the estimated parameters in the policy. Each column
contains the MSE of different values of the risk-sensitive coefficient. Larger ǫ (in the absolute value)
means larger deviation from the sample distribution. ǫ “ 0 means non-risk-sensitive objective. The
top, middle, bottom panel stands for different sample sizes. The simulation runs are repeated for
104 times to evaluate MSE.

ǫ 0 ´0.1 ´0.5 ´1 ´2 ´5 ´10 ´20

T “ 1 MSE of ψ̂1 1.5874 1.5560 1.4129 1.2482 1.0099 0.7923 0.8638 0.9614

MSE of ψ̂2 0.3651 0.3984 0.2736 0.2413 0.2417 0.3384 0.5560 0.7940

MSE of ψ̂3 0.3980 0.4183 0.1968 0.1215 0.1141 0.1566 0.2705 0.3845

T “ 10 MSE of ψ̂1 0.1119 0.1003 0.0691 0.0640 0.1129 0.6625 1.8854 3.8925

MSE of ψ̂2 0.0341 0.0318 0.0266 0.0334 0.0957 0.6144 1.8258 3.8690

MSE of ψ̂3 0.0130 0.0064 0.0056 0.0055 0.0492 0.3054 0.8281 1.7897

T “ 100 MSE of ψ̂1 0.0083 0.0081 0.0076 0.0071 0.0064 0.0714 0.9555 5.7822

MSE of ψ̂2 0.0043 0.0042 0.0039 0.0037 0.0041 0.0675 0.9008 5.7014

MSE of ψ̂3 0.0003 0.0003 0.0003 0.0004 0.0006 0.0209 0.3404 2.2558

6 Conclusion

In this paper, I investigated the continuous-time risk-sensitive RL problems in the exponential form.

This formulation is linked to the mean-variance problems when the risk sensitivity coefficient is close to zero,

and is a relaxed formulation of the distributional robust RL when the uncertainty set is specified using KL

divergence. Using the properties of the exponential martingale, I turned the risk-sensitive objective into a

usual additive objective plus an extra penalty term on the QV of the value-to-go process. Thus, it becomes

a problem to solve a recursive utility maximization problem. Such an equivalent formulation exists in the

classical risk-sensitive control problems and also applies to the entropy-regularized RL problems. The benefit

of such transformation avoids the multiplicative Bellman equation analyzed in previous risk-sensitive MDP

literature, and numerically avoids the computation of exponential of a possibly large number.

I defined the q-function in this context which differs from the q-function in the non-risk-sensitive problems

(Jia and Zhou, 2023) by an extra term. However, the optimal q-function and the optimal value function can

still be jointly pinned down using the martingale characterization, which also involves in the QV of the value

function process. It also extends to ergodic tasks under stronger regularity conditions. Interestingly, I point

out that the connection between the q-learning and the policy gradient in the non-risk-sensitive problems

does not hold anymore in risk-sensitive problems, because the QV penalty is inherently a nonlinear term in

the value function.
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I demonstrate the proposed algorithm on two applications. For Merton’s investment problem with power

utility functions, it can be embedded to a risk-sensitive objective in terms of the log returns. When the stock

price follows the Black-Scholes model, I provide theoretical analysis on the proposed algorithm to show its

convergence and the convergence rate. In the off-policy learning for a linear-quadratic problem, numerically,

I illustrate that when the sample size is limited, incorporating the risk-sensitive objective to conduct learning

indeed improves the learning accuracy compared to that under the non-risk-sensitive objective. The best

choice of the risk sensitivity coefficient falls in the sample size. This result is consistent with the relation be-

tween the risk-sensitive RL and the distributional robust RL, in the sense that including extra risk sensitivity

concerns can address the discrepancy between a finite data set and its population distribution.

The analysis of RL algorithm in this paper is restricted to simple cases, but it sheds light on the role of the

temperature and the entropy regularization play in the learning procedure from the algorithmic perspective.

In Merton’s investment problem analyzed in this paper, I show that the product between the temperature

parameter and the step size in the iteration is equivalent to an “effective learning rate” under the stochastic

approximation framework. On one hand, low temperature slows down the equivalent learning rate, and in

particular, zero temperature implies that there are no effective learning signals to update the q-function.

On the other hand, low temperature induces less randomness in the policy, and hence, overall reduces the

noises in the learning signals and leverages more on the learned optimal decisions. Therefore, the tuning of

temperature parameter reflects the tradeoff between exploration (speed of learning) and exploitation. When

the temperature parameter and the step size decay at compatible rates, the desired convergence, convergence

rate, and regret (in terms of equivalent relative wealth loss) can be guaranteed.

The risk-sensitive objective in the exponential form considered in this paper is one special case of general

functional classes, and the associated KL divergence is one tractable metric to reflect the ambiguity in the

distributions. How to address the distributional robustness other than the KL divergence in the continuous-

time diffusion processes in a tractable way and to conduct RL still remains largely unclear. In addition,

alternative formulation to address risk sensitivity may lack time-consistency, and dynamic programming-

based RL methods cannot be applied therein. Even within the continuous-time risk-sensitive RL framework

presented in this paper, there are still many theoretical and practical questions open for future research.

For example, the analysis and applications of q-learning algorithms in general cases, and the comparison of

generalization error between risk-sensitive objective and non-risk-sensitive objective in the offline, off-policy

settings.

There are alternative formulations of risk sensitivity other than the exponential form proposed in discrete-

time systems, e.g., Xu et al. (2023); Wu and Xu (2023), however, it still seems unclear what the continuous-

time counterpart is and if any form of penalty can be introduced to transform the nonlinear objective to a

recursive utility maximization problem.
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A Ground Truth Solutions in Examples

A.1 Merton’s investment problem with power utility

In the classical Merton’s investment problem (without consumption) with power utility (Merton, 1969),

it is well-known that the optimal portfolio choice is to maintain a constant proportion of wealth in the risky

asset with a˚ “ µ´r
γσ2 . The proof of this statement is omitted.

I give the ground truth solution to the exploratory problem (21) as follows using a guess-and-verify

approach. I claim the optimal policy is π˚ “ N pµ´r
γσ2 ,

λ
γσ2 q, optimal q-function is q˚pt, x, aq “ ´γσ2

2
pa ´

µ´r
γσ2 q2 ´ λ

2
log 2πλ

γσ2 , and the optimal value function is J˚pt, xq “ log x ` pT ´ tqrr ` pµ´rq2
2γσ2 ` λ

2
log 2πλ

γσ2 s. To

see this, it suffices to verify the martingale conditions in Theorem 2. Applying Itô’s lemma, we obtain

dJ˚pt,Xπptqq ´ q˚pt,Xπptq, aπptqqdt ` 1 ´ γ

2
dxlogXπyptq

“
"

´
„
r ` pµ´ rq2

2γσ2
` λ

2
log

2πλ

γσ2


` r ` pµ ´ rqaπt ´ 1

2
paπptqq2σ2 ` 1 ´ γ

2
paπptqq2σ2

` γσ2

2
paπptq ´ µ ´ r

γσ2
q2 ` λ

2
log

2πλ

γσ2

*
dt` aπptqσdW ptq “ aπptqσdW ptq.

A.2 Ergodic linear-quadratic control

This solution has also been presented in Jia and Zhou (2022b, Appendix B2). It is repeated here for the

completeness.

Let the true model be given by (28) and one aims to maximize the long-term average reward (29).

Consider the associated HJB equation:

0 “ sup
a

rLaϕpxq ` rpx, aq ´ βs

“ sup
a

„
pAx `Baqϕ1pxq ` 1

2
pCx`Daq2ϕ2pxq ´ pM

2
x2 `Rxa` N

2
a2 ` Px`Qaq ´ β


.

Conjecturing ϕpxq “ 1
2
k2x

2 ` k1x and plugging it to the HJB equation, we get the first-order condition

a˚ “ rk2pB`CDq´Rsx`k1B´Q
N´k2D2 , assuming N ´ k2D

2 ą 0. The HJB equation now becomes

0 “ 1

2
rk2p2A ` C2q ´M sx2 ` pk1A ´ P qx´ β ` 1

2

trk2pB ` CDq ´Rsx` k1B ´Qu2
N ´ k2D2

.

This leads to three algebraic equations by matching the coefficients of x2, x and the constant term:

$
’’’’’’’&
’’’’’’’%

k2p2A` C2q ´M ` rk2pB ` CDq ´Rs2
N ´ k2D2

“ 0,

k1A ´ P ` rk2pB ` CDq ´Rspk1B ´Qq
N ´ k2D2

“ 0,

β “ pk1B ´Qq2
2pN ´ k2D2q .
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Note k2 is the negative solution to a quadratic equation, and after solving k2, k1, β can be directly computed.

B Proof of Statements

B.1 Proof Lemma 1

We state a useful lemma regarding the continuous martingale in the exponential form.

Lemma 2. Suppose tZs, s ě 0u is an ptFsusě0,Pq- adapted continuous semimartingale with Ere ǫ2

2
xZypsqs ă 8

for every s P r0, T s.

(i) If tZs ` ǫ
2

xZypsq, s ě 0u is an ptFsusě0,Pq-local martingale, then teǫZs ,ě 0u is also a ptFsusě0,Pq
martingale.

(ii) If ǫ ą 0, tZs` ǫ
2

xZypsq, s ě 0u is an ptFsusě0,Pq-local submartingale (supermartingale), then teǫZs , s ě
0u is also a ptFsusě0,Pq submartingale (supermartingale).

(iii) If ǫ ă 0, tZs` ǫ
2

xZypsq, s ě 0u is an ptFsusě0,Pq-local submartingale (supermartingale), then teǫZs , s ě
0u is also a ptFsusě0,Pq supermartingale (submartingale).

Proof. See Revuz and Yor (2013, Chapter VIII, Corollary 1.16, page 309) for its proof for part piq.

We only show the “submartingale” part when ǫ ą 0. The rest can be shown similarly. By Doob-Meyer

decomposition, we can write Zs` ǫ
2

xZypsq “ Ms`As, where tMs, s ě 0u is a local martingale and tAs, s ě 0u
is a predictable, increasing process starting from zero. Moreover, xMypsq “ xZypsq for all s P r0, T s because
both xZy and A are increasing process and have QV zero. Then Ere ǫ2

2
xMypsqs “ Ere ǫ2

2
xZypsqs ă 8. By part

piq of this statement, we conclude that teǫMs´ ǫ2

2
xMypsq, s ě 0u is a martingale, that is, teǫZs´ǫAs , s ě 0u is a

martingale. Therefore, for any 0 ď s ă s1 ď T , it holds that As1 ě As almost surely, hence,

1 “ E

”
eǫZs1 ´ǫZs´ǫpAs1 ´Asq

ˇ̌
ˇFs

ı
ď E

”
eǫZs1 ´ǫZs

ˇ̌
ˇFs

ı
.

That is, E
”
eǫZs1

ˇ̌
ˇFs

ı
ě eǫZs . This proves that teǫZs , s ě 0u is also a submartingale.

Now we are ready to prove Lemma 1.

Proof. Let Za

s “
şs
t
rpu,Xa

u , auqdu`V ˚ps,Xa

s ; ǫq, it satisfies E
”
e

ǫ2

2
xZaypsq

ı
ă 8. By Lemma 2 and condition

piq, we know

EPW

„
e
ǫ
”ş

T

t
rps,Xa

˚

s ,a˚
s qds`hpXa

˚

T q
ı ˇ̌
ˇXa

˚

t “ x



“EP
W

„
e
ǫ
”ş

T

t
rps,Xa

˚

s ,a˚
s qds`V ˚pT,Xa

˚

T q
ı ˇ̌
ˇXa

˚

t “ x


“ eǫV

˚pt,xq.
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Moreover, when ǫ ą păq0, for any a, By Lemma 2 and condition piiq, we have

EPW
”
eǫr

ş
T

t
rps,Xa

s ,asqds`hpXa

T qs
ˇ̌
ˇXa

t “ x
ı

“EPW
”
eǫr

ş
T

t
rps,Xa

s ,asqds`V ˚pT,Xa

T qs
ˇ̌
ˇXa

t “ x
ı

ď pěqeǫV ˚pt,xq.

Hence, as long as ǫ ‰ 0, we have

1

ǫ
logEPW

”
eǫr

ş
T

t
rps,Xa

s ,asqds`hpXa

T qs
ˇ̌
ˇXa

t “ x
ı

ď V ˚pt, xq.

This verifies that V ˚ is the optimal value function and a˚ is the optimal control.

B.2 Proof of Theorem 1

The next lemma about the entropy-maximizing distribution is useful to our proof. It is the same lemma

appeared in Jia and Zhou (2023, Lemma 13).

Lemma 3. Let γ ą 0 and a measurable function q : A Ñ R with
ş
A
expt 1

λ
qpaquda ă 8 be given. Then

π˚paq “ expt 1

λ
qpaquş

A
expt 1

λ
qpaquda P PpAq is the unique maximizer of the following problem

max
πp¨qPPpAq

ż

A

rqpaq ´ λ logπpaqsπpaqda. (32)

Proof. See the proof of Jia and Zhou (2023, Lemma 13).

We now turn to the proof of Theorem 1. To ease our notation, we use q˚ introduced in (10) in Definition

2. Even though it is defined after Theorem 1 in the main text, we simply use its notation here.

Proof. Since for any initial condition pt, xq,

ż s

t

!”
rpu,Xπ

˚

u , aπ
˚

u q ´ λ logπ˚paπ˚

u |u,Xπ
˚

u q
ı
du` ǫ

2
dxJ˚π

˚

ypuq
)

` J˚ps,Xπ
˚

s ; ǫq

is an ptFX
s usě0,Pq- (local) martingale, we have

0 “ lim
sÑt`

1

s´ t
EP

« ż s

t

!”
rpu,Xπ

˚

u , aπ
˚

u q ´ λ logπ˚paπ˚

u |u,Xπ
˚

u q
ı
du` ǫ

2
dxJ˚π

˚

ypuq
)

` J˚ps,Xπ
˚

s ; ǫq ´ J˚pt, x; ǫq
ˇ̌
ˇXπ

˚

t “ x

ff

“
ż

A

#
LaJ˚pt, x; ǫq ` rpt, x, aq ´ λ logπ˚pa|t, xq ` 1

2
ǫ

ˇ̌
ˇ̌σpt, x, aqJ BJ˚

Bx pt, x; ǫq
ˇ̌
ˇ̌
2
+

ˆ π˚pa|t, xqda.

(33)
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By the proof of Lemma 1, it suffices to show that for any admissible policy π, and any initial condition

pt, xq, ż s

t

!
rrpu,Xπ

u , a
π

u q ´ λ logπpaπu |u,Xπ

u qsdu ` ǫ

2
dxJ˚πypuq

)
` J˚ps,Xπ

s ; ǫq

is a supermartingale.

For any t ď s ă s1 ď T , consider the conditional expectation:

EP

« ż s1

s

!
rrpu,Xπ

u , a
π

u q ´ λ logπpaπu |u,Xπ

u qsdu ` ǫ

2
dxJ˚πypuq

)

` J˚ps1, Xπ

s1 ; ǫq ´ J˚ps,Xπ

s ; ǫq
ˇ̌
ˇXπ

t “ x

ff

“EPW

«ż s1

s

ż

A

„
rpu, X̃π

u , aq ´ λ logπpa|u, X̃π

u q

` ǫ

2
|σpu, X̃π

u , aqJ BJ˚

Bx pu, X̃π

u ; ǫq|2 ` LaJ˚pu, X̃π

u ; ǫq

πpa|u, X̃π

u qdadu
ˇ̌
ˇX̃π

t “ x

ff

ďEPW

«ż s1

s

ż

A

„
rpu, X̃π

u , aq ´ λ logπ˚pa|u, X̃π

u q

` ǫ

2
|σpu, X̃π

u , aqJ BJ˚

Bx pu, X̃π

u ; ǫq|2 ` LaJ˚pu, X̃π

u ; ǫq

π˚pa|u, X̃π

u qdadu
ˇ̌
ˇX̃π

t “ x

ff
“ 0,

where the last inequality is due to Lemma 3 and the definition (8), i.e., π˚pa|t, xq “ expt 1

λ
q˚pt,x,a;ǫquş

A
expt 1

λ
q˚pt,x,a;ǫquda P

PpAq, and the last equality is by (33).

B.3 Proof of Proposition 1

Proof. As a side product, in the proof of Theorem 1, we have recovered the associated exploratory HJB

equation (33). Together with the notation q˚ introduced in (10) in Definition 2, and the form of the optimal

policy (8), we can rewrite (33) as

0 “
ż

A

«
q˚pt, x, a; ǫq ´ λ log

expt 1
λ
q˚pt, x, a; ǫquş

A
expt 1

λ
q˚pt, x, a; ǫquda

ff
expt 1

λ
q˚pt, x, a; ǫquş

A
expt 1

λ
q˚pt, x, a; ǫqudada

“λ log
ż

A

expt 1
λ
q˚pt, x, a; ǫquda.

That is the desired relation (12). Furthermore, plugging (12) in (8) gives (13).
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B.4 Proof of Theorem 2

Proof. (i) Let xJ˚ “ J˚ and xq˚ “ q˚ be the optimal value function and optimal q-function respectively.

For any π P Π, applying Itô’s lemma to the process J˚ps,Xπ

s q, we obtain for 0 ď t ă s ď T :

J˚ps,Xπ

s ; ǫq ´ J˚pt, x; ǫq `
ż s

t

!
rrpu,Xπ

u , a
π

u q ´ q˚pu,Xπ

u , a
π

u ; ǫqsdu` ǫ

2
dxJ˚πypuq

)

“
ż s

t

«
La

π

u J˚pu,Xπ

u , a
π

u ; ǫq ` rpu,Xπ

u , a
π

u q ` ǫ

2

ˇ̌
ˇ̌σpu,Xπ

u , a
π

u qJ B
BxJ

˚pu,Xπ

u ; ǫq
ˇ̌
ˇ̌
2

´ q˚pu,Xπ

u , a
π

u ; ǫq
ff
du`

ż s

t

B
BxJ

˚pu,Xπ

u ; ǫq ˝ dWu

“
ż s

t

B
BxJ

˚pu,Xπ

u ; ǫq ˝ σpu,Xπ

u , a
π

u qdWu,

where the
ş

¨ ¨ ¨ du term vanishes due to the definition of q˚ in (11). Hence (15) is a local martingale.

To show it is a martingale, it suffices to show

E

«ż T

0

ˇ̌
ˇ̌σpu,Xπ

u , a
π

u qJ B
BxJ

˚pu,Xπ

u ; ǫq
ˇ̌
ˇ̌
2

du

ff
ă 8.

The finiteness of the above expectation follows from the polynomial growth in J˚’s all derivatives,

Assumption 1-(iv), Definition 1-(iii) and the moment estimate in Jia and Zhou (2022b, Lemma 2).

The form of the optimal policy follows from Proposition 1.

(ii) Define

r̂pt, x, aq :“BxJ˚

Bt pt, xq ` bpt, x, aq ˝ BxJ˚

Bx pt, xq ` 1

2
σσJpt, x, aq ˝ B2xJ˚

Bx2 pt, xq

` ǫ

2

ˇ̌
ˇ̌
ˇσpt, x, aqJ B pJ˚

Bx pt, xq
ˇ̌
ˇ̌
ˇ

2

.

Then

xJ˚ps,Xπ

s q `
ż s

t

!
´r̂pu,Xπ

u , a
π

u qdu` ǫ

2
dxxJ˚π

ypuq
)

is an ptFsusě0,Pq-local martingale, which follows from applying Itô’s lemma to the above process. As

a result,
şs
t
rrpu,Xπ

u , a
π

u q ´ xq˚pu,Xπ

u , a
π

u q ` r̂pu,Xπ

u , a
π

u qsdu is an ptFsusě0,Pq-local martingale.

By the same argument as in the proof of Jia and Zhou (2023, Theorem 6), we conclude

xq˚pt, x, aq “rpt, x, aq ` r̂pt, x, aq

“rpt, x, aq ` LaxJ˚pt, xq ` ǫ

2

ˇ̌
ˇ̌
ˇσpt, x, aqJ B pJ˚

Bx pt, xq
ˇ̌
ˇ̌
ˇ

2

,

for every pt, x, aq.

The second constraint in (14) implies that xπ˚pa|t, xq :“ expt 1
λ
xq˚pt, x, aqu is a probability density
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function, and xq˚pt, x, aq “ λ log xπ˚pa|t, xq. Therefore,

ż s

t

"”
rpu,Xy

π
˚

u , a
y
π

˚

u q ´ λ log xπ˚payπ˚

u |u,Xy
π

˚

u q
ı
du` ǫ

2
dx pJ˚

z
π

˚

ypuq
*

` pJ˚ps,Xy
π

˚

s q

“
ż s

t

"”
rpu,Xy

π
˚

u , a
y
π

˚

u q ´ xq˚pu,Xy
π

˚

u , a
y
π

˚

u q
ı
du` ǫ

2
dx pJ˚

z
π

˚

ypuq
*

` pJ˚ps,Xy
π

˚

s q

is an ptFsusě0,Pq- (local) martingale, which follows from applying Itô’s lemma to the above process.

Hence it is also an ptFX
s usě0,Pq- (local) martingale because FX

s is a sub-sigma field of Fs.

By Theorem 1, we conclude that xJ˚ is the optimal value function and xπ˚ is the optimal policy.

B.5 Proof of Theorem 3

Proof. By the same argument as in the proof of Theorem 2, we conclude that

xq˚px, aq “ rpx, aq ` LaxJ˚pxq ´ xβ˚ ` ǫ

2

ˇ̌
ˇ̌
ˇσpx, aqJ B pJ˚

Bx pxq
ˇ̌
ˇ̌
ˇ

2

.

The second constraint in (18) implies that xπ˚pa|xq “ expt 1
λ
xq˚px, aqu is a probability density function, and

xq˚px, aq “ λ log xπ˚pa|xq. Applying Itô’s lemma, we obtain

exp

#
ǫ

«
xJ˚pXy

π
˚

T q `
ż T

0

´
rpXy

π
˚

t , a
y
π

˚

t q ´ λ log xπ˚payπ˚

t |Xy
π

˚

t q
¯
dt

ff+

“eǫyJ˚pxq exp

#ż T

0

ǫ

ˆ
La

z
π

˚

t xJ˚pXy
π

˚

t q ` rpXy
π

˚

t , a
y
π

˚

t q ´ λ log xπ˚payπ˚

t |Xy
π

˚

t q
˙
dt ` Z

y
π

˚

t ˝ dWt

+

“eǫyJ˚pxq`ǫyβ˚T exp

#ż T

0

´1

2
|Zy

π
˚

t |2dt` Z
y
π

˚

t ˝ dWt

+
,

where Z
y
π

˚

t “ ǫσpXy
π

˚

t , a
y
π

˚

t q B
Bx

xJ˚pXy
π

˚

t q.

Based on the first condition in (18), and Girsanov theorem, we can define a change-of-measure dP̂
dP

|FT
“

exp
!şT

0
´ 1

2
|Zy

π
˚

t |2dt` Z
y
π

˚

t ˝ dWt

)
and P̂ is a new probability measure that is equivalent to the original

probability P. Therefore,

1

ǫT
logE

«
exp

#
ǫ

«ż T

0

´
rpXy

π
˚

t , a
y
π

˚

t q ´ λ log xπ˚payπ˚

t |Xy
π

˚

t q
¯
dt

ff+ff

“ 1

T
xJ˚pxq ` xβ˚ ` 1

ǫT
logE

«
exp

#
´ǫxJ˚pXy

π
˚

T q `
ż T

0

´1

2
|Zy

π
˚

t |2dt ` Z
y
π

˚

t ˝ dWt

+ff

“ 1

T
xJ˚pxq ` xβ˚ ` 1

ǫT
logEP̂

„
e´ǫyJ˚pX

z
π

˚

T q

.
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Under the extra regularity conditions in the statement, we obtain

lim
TÑ8

1

ǫT
logE

«
exp

#
ǫ

«ż T

0

´
rpXy

π
˚

t , a
y
π

˚

t q ´ λ log xπ˚payπ˚

t |Xy
π

˚

t q
¯
dt

ff+ff
“ xβ˚.

For any π P Π, repeat the above calculation, we obtain

1

ǫT
logE

«
exp

#
ǫ

«ż T

0

prpXπ

t , a
π

t q ´ λ logπpaπt |Xπ

t qq dt
ff+ff

“ 1

T
xJ˚pxq ` xβ˚ ` 1

ǫT
logEP

π

«
exp

#
´ǫxJ˚pXπ

T q ` ǫ

ż T

0

”
xq˚pXπ

t , a
π

t q ´ λ logπpaπt |Xπ

t q
ı
dt

+ff
,

where dPπ

dP
|FT

“ exp
!şT

0
´ 1

2
|Zπ

t |2dt ` Zπ

t ˝ dWt

)
, and Zπ

t “ ǫσpXπ

t , a
π

t q B
Bx

xJ˚pXπ

t q.

Recall that

ż

A

”
xq˚px, aq ´ λ logπpa|xq

ı
dπpa|xqda ď

ż

A

”
xq˚px, aq ´ λ log xπ˚pa|xq

ı
xπ˚pa|xqda “ 0

by Lemma 3 and the fact that xπ˚pa|xq “ expt 1
λ
xq˚px, aqu, we know if ǫ ą păq0,

EPπ

«
exp

#
ǫp1 ` δq

δ

ż T

0

”
xq˚pXπ

t , a
π

t q ´ λ logπpaπt |Xπ

t q
ı
dt

+ff
ď pěq0,

by Lemma 2.

By Hölder’s inequality, we obtain

1

ǫT
logEP

π

«
exp

#
´ǫxJ˚pXπ

T q ` ǫ

ż T

0

”
xq˚pXπ

t , a
π

t q ´ λ logπpaπt |Xπ

t q
ı
dt

+ff

ď 1

p1 ` δqǫT logEPπ

”
exp

!
´ǫp1 ` δqxJ˚pXπ

T q
)ı

` δ

p1 ` δqǫT logEPπ

«
exp

#
ǫp1 ` δq

δ

ż T

0

”
xq˚pXπ

t , a
π

t q ´ λ logπpaπt |Xπ

t q
ı
dt

+ff

ď 1

p1 ` δqǫT logEPπ

”
exp

!
´ǫp1 ` δqxJ˚pXπ

T q
)ı

Ñ 0,

as T Ñ 8. Hence, we have shown that under any π P Π, we have

lim sup
TÑ8

1

ǫT
logE

«
exp

#
ǫ

«ż T

0

prpXπ

t , a
π

t q ´ λ logπpaπt |Xπ

t qq dt
ff+ff

ď xβ˚.

This proves the optimality of the policy xπ˚. Consequently, xJ˚, xq˚, xβ˚ are respectively the optimal value

function, the optimal q-function, and the optimal value.
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B.6 Proof of Theorem 4

We first state a result about a recursive sequence.

Lemma 4. Suppose there are sequences of non-negative numbers teiuiě0, taiuiě0, tηiuiě0 such that ai P p0, 1q,
ei`1 ď p1´aiqei`a2i ηi for all i ě 0. If for all i ě 0, with ai ď ai`1p1`Aai`1q for some constant 0 ă A ă 1,

satisfying 1
1´A ě p1´a0qe0

a0η0
` a0, and ηi is non-decreasing in i, then ei`1 ď 1

1´Aaiηi for all i ě 0. In

particular, for any p P p1
2
, 1s, a sequence in the form of ai “ α

pi`βqp with suitable choice of α, β satisfies

ai ď ai`1p1 `Aai`1q for all i ě 0.

Proof. We prove by induction. For i “ 0, we have

e1 ď p1 ´ a0qe0 ` a20η0 ď 1

1 ´A
a0η0.

Suppose the conclusion holds for all i “ 0, ¨ ¨ ¨ , I ´ 1. Consider the case for I. By the recursive relation

and the induction, we have

eI`1 ďp1 ´ aIqeI ` a2IηI ď 1

1 ´A
p1 ´ aIqaI´1ηI´1 ` a2IηI

ď 1

1 ´A
p1 ´ aIqaIp1 `AaIqηI ` a2IηI

“ 1

1 ´A
aIηIp1 `AaI ´ aI ´Aa2Iq ` a2IηI

“ 1

1 ´A
aIηI ´ A

1 ´A
a3IηI ă 1

1 ´A
aIηI .

Finally, consider a sequence in the form of ai “ α
pi`βqp , then ai ď ai`1p1 `Aai`1q is equivalent to

pi` β ` 1qp ´ pi` βqp ď A
αpi` βqp

pi` β ` 1qp .

Note that the left-hand side is decreasing in i when p ď 1 and the right-hand side is increasing in i, it suffices

to have

pβ ` 1qp ´ βp ď A
αβp

pβ ` 1qp .

The above relation holds as long as α is sufficiently large, and β can be arbitrary.

B.6.1 Stage 1: Properties of the increment

We first calculate the conditional mean and variance of (23), (24), and (25). To ease notations, we

suppress the subscript i in this stage.

Among (23), (24), and (25), the common term is dV pt,Xptq; θq ´ q paptq;ψqdt` 1´γ
2

dxV p¨, Xp¨q; θqyptq,
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which is the temporal difference (TD) error in the continuous-time setting. By Itô’s lemma, we have

dV pt,Xptq; θq ´ q paptq;ψq dt` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

“d logXptq ´ θdt `
«

paptq ´ ψ1q2
2ψ2

` λ

2
log 2πλ` λ

2
logψ2

ff
dt` 1 ´ γ

2
dxlogXp¨qyptq

“
”
r ` pµ ´ rqaptq ´ γ

2
aptq2σ2

ı
dt` aiptqσdW ptq ´ θdt

`
«

paptq ´ ψ1q2
2ψ2

` λ

2
log 2πλ` λ

2
logψ2

ff
dt.

(34)

Recall here aptq „ N pψ1, λψ2q, hence, for a given θ,ψ,

E

«ż T

0

BV
Bθ pt,Xptq; θq

„
dV pt,Xptq; θq ´ q paptq;ψqdt ` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

ff

“E

«ż T

0

pT ´ tq
˜
r ` pµ ´ rqaptq ´ γ

2
aptq2σ2 ´ θ ` paptq ´ ψ1q2

2ψ2

` λ

2
log 2πλ` λ

2
logψ2

¸
dt

ff

“
ż T

0

pT ´ tq
ˆ
r ` pµ´ rqψ1 ´ γ

2

`
ψ2
1 ` λψ2

˘
σ2 ´ θ ` λ

2
` λ

2
log 2πλ` λ

2
logψ2

˙
dt

“T 2

2
hθpψ1, ψ2, θq,

where

hθpψ1, ψ2, θq “ r ´ θ ` λ

2
log 2πλ` λ

2
logψ2 ` pµ´ rqψ1 ´ γ

2

`
ψ2
1 ` λψ2

˘
σ2 ` λ

2
. (35)

E

«ż T

0

Bq
Bψ1

paptq;ψq
„
dV pt,Xptq; θq ´ q paptq;ψqdt` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

ff

“E

«ż T

0

aptq ´ ψ1

2ψ2

˜
r ` pµ ´ rqaptq ´ γ

2
aptq2σ2 ´ θ ` paptq ´ ψ1q2

2ψ2

` λ

2
log 2πλ` λ

2
logψ2

¸
dt

ff

“Thψ,1pψ1, ψ2, θq,

where

hψ,1pψ1, ψ2, θq “ λγσ2

2

ˆ
µ´ r

γσ2
´ ψ1

˙
“ λγσ2

2
pψ˚

1 ´ ψ1q . (36)

´ E

«ż T

0

Bq
Bψ´1

2

pt, Rptq, aptq;ψq
„
dV pt,Xptq; θq ´ q paptq;ψq dt` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

ff

“ ´ E

« ż T

0

˜
´ paptq ´ ψ1q2

2
` λ

2
ψ2

¸ˆ
r ` pµ ´ rqaptq ´ γ

2
aptq2σ2 ´ θ

` paptq ´ ψ1q2
2ψ2

` λ

2
log 2πλ` λ

2
logψ2

˙
dt

ff

“Thψ,2pψ1, ψ2, θq,
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where

hψ,2pψ1, ψ2, θq “ λ2

2

`
ψ2 ´ γσ2ψ2

2

˘
“ λ2γσ2

2
ψ2p 1

γσ2
´ ψ2q “ λ2γσ2

2
ψ2pψ˚

2 ´ ψ2q. (37)

Next, we estimate the variance of the increment. For a given θ,ψ, by Cauchy-Schwarz inequality and

Burkholder-Davis-Gundy inequality, we have

Var

«ż T

0

BV
Bθ pt,Xptq; θq

„
dV pt,Xptq; θq ´ q paptq;ψqdt` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

ff

ďE

»
–
˜ż T

0

BV
Bθ pt,Xptq; θq

„
dV pt,Xptq; θq ´ q paptq;ψqdt ` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

¸2
fi
fl

ď2E

»
–
ż T

0

pT ´ tq2
˜
r ` pµ ´ rqaptq ´ γ

2
aptq2σ2 ´ θ ` paptq ´ ψ1q2

2ψ2

` λ

2
log 2πλ` λ

2
logψ2

¸2

dt

fi
fl

` 2E

«ż T

0

pT ´ tq2aptq2σ2dt

ff

ďCpµ, r, σ, T, γq
“
1 ` ψ4

1 ` λ2ψ2
2 ` θ2 ` λ2plogλq2 ` λ2 ` λ2plogψ2q2

‰
.

Similarly,

Var

«ż T

0

Bq
Bψ1

paptq;ψq
„
dV pt,Xptq; θq ´ q paptq;ψqdt ` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

ff

ďE

»
–
˜ż T

0

Bq
Bψ1

paptq;ψq
„
dV pt,Xptq; θq ´ q paptq;ψqdt ` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

¸2
fi
fl

ď2E

»
–
ż T

0

ˆ
aptq ´ ψ1

2ψ2

˙2
˜
r ` pµ´ rqaptq ´ γ

2
aptq2σ2 ´ θ ` paptq ´ ψ1q2

2ψ2

` λ

2
log 2πλ` λ

2
logψ2

¸2

dt

fi
fl

` 2E

«ż T

0

ˆ
aptq ´ ψ1

2ψ2

˙2

aptq2σ2dt

ff

ďλCpµ, r, σ, T, γq
“
1 ` λ2 ` λ3ψ2 ` ψ´1

2 p1 ` θ2 ` ψ2
1 ` λ2plog λq2 ` λ2 ` λ2plogψ2q2q

‰
.

Var

«ż T

0

Bq
Bψ´1

2

pt, Rptq, aptq;ψq
„
dV pt,Xptq; θq ´ q paptq;ψqdt` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

ff

ďE

»
–
˜ż T

0

Bq
Bψ´1

2

pt, Rptq, aptq;ψq
„
dV pt,Xptq; θq ´ q paptq;ψqdt ` 1 ´ γ

2
dxV p¨, Xp¨q; θqyptq

¸2
fi
fl

ď2E

«ż T

0

˜
´ paptq ´ ψ1q2

2
` λ

2
ψ2

¸2ˆ
r ` pµ ´ rqaptq ´ γ

2
aptq2σ2 ´ θ

` paptq ´ ψ1q2
2ψ2

` λ

2
log 2πλ` λ

2
logψ2

˙2

dt

ff
` 2E

»
–
ż T

0

˜
´ paptq ´ ψ1q2

2
` λ

2
ψ2

¸2

aptq2σ2dt

fi
fl

ďλ2Cpµ, r, σ, T, γq
“
1 ` λ2ψ2

2

`
1 ` θ2 ` ψ2

1 ` λ2plogλq2 ` λ2 ` λ2plogψ2q2
˘

` λ3ψ3
2

‰
.
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B.6.2 Stage 2: Recursive relations

From the above calculation, and ignoring the error of approximating the integral (23), (24), and (25)

using finite sums, the recursive relation of the sequence in the learning procedure can be written as

θi`1 “Πr´ci`1,ci`1s pθi ` aθ,i phθpψ1,i, ψ2,i, θiq ` ζi`1qq ,

ψ1,i`1 “Πr´ci`1,ci`1s pψ1,i ` aψ,i phψ,1pψ1,i, ψ2,i, θiq ` ξ1,i`1qq ,

ψ2,i`1 “Πrb´1

i`1
,ci`1s pψ2,i ` aψ,i phψ,2pψ1,i, ψ2,i, θiq ` ξ2,i`1qq ,

(38)

where Erζi`1|θi,ψis “ 0, Erξ1,i`1|θi,ψis “ 0, Erξ2,i`1|θi,ψis “ 0, and Varrζi`1|θi,ψis, Varrξ1,i`1|θi,ψis,
and Varrξ1,i`1|θi,ψis satisfy the upper bounds provided in Stage 1.

We first show the convergence of ψi. Since tbiuiě0, tciuiě0 are two increasing, divergent sequence (con-

dition piq in the statement), there exists an I that depends on pµ, r, σ, T, γ, λq, such that ψ˚
1 P r´ci, cis and

ψ˚
2 P rb´1

i , cis for all i ě I. In addition, by conditions piiiq, we know aψ,ic
2
i Ñ 0, so does aψ,ici Ñ 0. Hence,

without loss of generality, we can take this Ipµ, r, σ, T, γ, λq large enough such that aψ,ib
´1
i ď aψ,ici ď 1

λ2γσ2

for all i ě I. In addition, by the conditions piq, piiq, piiiq in the statement, bi Ò 8,
ř8
i“1 aψ,ib

´1
i “ 8, and

ř8
i“1 a

2
ψ,ib

2
j ă 8, we know

ř8
i“1 aψ,i “ 8 and

ř8
i“1 a

2
ψ,i ă 8.

For any i ě I, by the property of the projection mapping as in the proof of Andradóttir (1995, Theorem

2), we have

E

”
pψ1,i`1 ´ ψ˚

1 q2 |θi,ψi
ı

ďE

”
pψ1,i ` aψ,i phψ,1pψ1,i, ψ2,i, θiq ` ξ1,i`1q ´ ψ˚

1 q2 |θi,ψi
ı

ďpψ1,i ´ ψ˚
1 q2 ` 2aψ,ipψ1,i ´ ψ˚

1 qhψ,1pψ1,i, ψ2,i, θiq ` a2ψ,ihψ,1pψ1,i, ψ2,i, θiq2 ` a2ψ,iVarrξ1,i`1|θi,ψis

“p1 ´ aψ,iλγσ
2qpψ1,i ´ ψ˚

1 q2 ` 1

4
a2ψ,iλ

2γ2σ4pψ1,i ´ ψ˚
1 q2 ` a2ψ,iVarrξ1,i`1|θi,ψis

ďp1 ´ 1

2
aψ,iλγσ

2q2pψ1,i ´ ψ˚
1 q2 ` a2ψ,iλC

`
1 ` λ2 ` λ3ci ` bip1 ` c2i ` λ2plogλq2 ` λ2 ` λ2plog ciq2q

˘
.

The almost sure convergence of tpψ1,i ´ ψ˚
1 q2uiě0 follows from Robbins and Siegmund (1971, Theorem 1)

and by the same argument as in Andradóttir (1995, Theorem 2), we can show ψ1,i ´ ψ˚
1 Ñ 0 almost surely.

Taking the expectation on both sides yield the recursive relation between two mean squared error:

ǫ1,i`1

ďp1 ´ 1

2
aψ,iλγσ

2q2ǫ1,i ` a2ψ,iλC
`
1 ` λ2 ` λ3ci ` bip1 ` c2i ` λ2plogλq2 ` λ2 ` λ2plog ciq2q

˘

ďp1 ´ 1

2
aψ,iλγσ

2qǫ1,i ` a2ψ,iλC
`
1 ` λ2 ` λ3ci ` bip1 ` c2i ` λ2plog λq2 ` λ2 ` λ2plog ciq2q

˘
,

(39)

where ǫ1,i “ E
“
pψ1,i ´ ψ˚

1 q2
‰
.
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By the similar calculation, we have

E

”
pψ2,i`1 ´ ψ˚

2 q2 |θi,ψi
ı

ďE

”
pψ2,i ` aψ,i phψ,2pψ1,i, ψ2,i, θiq ` ξ2,i`1q ´ ψ˚

2 q2 |θi,ψi
ı

ďpψ2,i ´ ψ˚
2 q2 ` 2aψ,ipψ2,i ´ ψ˚

2 qhψ,2pψ1,i, ψ2,i, θiq ` a2ψ,ihψ,2pψ1,i, ψ2,i, θiq2 ` a2ψ,iVarrξ2,i`1|θi,ψis

“p1 ´ aψ,iλ
2γσ2ψ2,iqpψ2,i ´ ψ˚

2 q2 ` 1

4
a2ψ,iλ

4γ2σ4ψ2
2,ipψ2,i ´ ψ˚

2 q2 ` a2ψ,iVarrξ2,i`1|θi,ψis

ďp1 ´ 1

2
aψ,iλ

2γσ2ψ2,iq2pψ2,i ´ ψ˚
2 q2 ` a2ψ,iλ

2C
`
1 ` λ2c2i

`
1 ` c2i ` λ2plogλq2 ` λ2 ` λ2plog biq2

˘
` λ3c3i

˘

ďp1 ´ 1

2
aψ,iλ

2γσ2b´1
i q2pψ2,i ´ ψ˚

2 q2 ` a2ψ,iλ
2C

`
1 ` λ2c2i

`
1 ` c2i ` λ2plogλq2 ` λ2 ` λ2plog biq2

˘
` λ3c3i

˘
,

where the last inequality holds when aψ,ib
´1
i ď aψ,ici ď 1

λ2γσ2 .

The almost sure convergence of tpψ2,i´ψ˚
2 q2uiě0 follows from Robbins and Siegmund (1971, Theorem 1)

and by the same argument as in Andradóttir (1995, Theorem 2), we can show ψ2,i ´ ψ˚
2 Ñ 0 almost surely.

Taking the expectation on both sides yield the recursive relation between two mean squared error:

ǫ2,i`1

ďp1 ´ 1

2
aψ,ib

´1
i λ2γσ2q2ǫ2,i ` a2ψ,iλ

2C
`
1 ` λ2c2i

`
1 ` c2i ` λ2plogλq2 ` λ2 ` λ2plog ciq2

˘
` λ3c3i

˘

ďp1 ´ 1

2
aψ,ib

´1
i λ2γσ2qǫ2,i ` a2ψ,iλ

2C
`
1 ` λ2c2i

`
1 ` c2i ` λ2plog λq2 ` λ2 ` λ2plog biq2

˘
` λ3c3i

˘
,

(40)

where ǫ2,i “ E
“
pψ2,i ´ ψ˚

2 q2
‰
.

Finally, by the recursive relations (39) and (40), and Lemma 4, we obtain that under suitable choices of

sequences such that aψ,n „ 1
n
, bn, cn „ logn, there are constants C1, C2 such that

ǫ1,i`1 ď C1aψ,ibic
2
i “ Õp 1

n
q, ǫ2,i`1 ď C1aψ,ib

2
i c

4
i “ Õp 1

n
q.

B.7 Proof of Theorem 5

From the definition of ERWL, we can solve

∆pψ1, λψ2q “ 1 ´ exp t´ rJ˚pxq ´ Jpx, ψ1, λψ2qsu ď J˚pxq ´ Jpx, ψ1, λψ2q,

where the inequality is due to the fact that e´x ě 1 ´ x. Moreover, from the expression (27), we have

J˚pxq ´ Jpx, ψ1, λψ2q “ γσ2T

2

“
pψ1 ´ ψ˚

1 q2 ` λψ2

‰
.
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B.7.1 Executing deterministic policies

In this case, our choice of tuning sequence taψ,iuiě0, tbiuiě0, tciuiě0, and λi “ λ is identical to that in

Theorem 4. Hence, we have

E

«
Nÿ

i“1

∆pψ1,i, 0q
ff

ďE

«
Nÿ

i“1

pJ˚pxq ´ Jpx, ψ1,i, 0qq
ff

“γσ2T

2

Nÿ

i“1

Erpψ1,i ´ ψ˚
1 q2s ď C1γσ

2T

2

Nÿ

i“1

plog iq3
i

“ O
`
plogNq4

˘
.

B.7.2 Executing stochastic policies

Suppose in the i-th episode, we use λi in (22). The derivation about the recursive relation in the proof

of Theorem 4 is still applicable by replacing constant λ by λi. Hence, with the choice of tuning sequences

aψ,n „ 1?
n
, bn “ Op1q, cn „ logn, λn „ 1?

n
, (39) becomes

ǫ1,i`1 ďp1 ´ 1

2
aψ,iλiγσ

2qǫ1,i ` a2ψ,iλiC
`
1 ` λ2i ` λ3i ci ` bip1 ` c2i ` λ2i plogλiq2 ` λ2i ` λ2i plog ciq2q

˘

“p1 ´ γσ2

2
aψ,iλiqǫ1,i ` a2ψ,iλiCp1 ` c2i q.

The convergence of ǫ1,i is guaranteed since
ř
aψ,iλi “

ř
1
i

“ 8, and
ř
a2ψ,iλic

2
i “

ř log i

i3{2 ă 8. Moreover,

by Lemma 4, we obtain ǫ1,i`1 “ O
´

plog iq2?
i

¯
.

Hence,

E

«
Nÿ

i“1

∆pψ1,i, λiψ2,iq
ff

ďE

«
Nÿ

i“1

pJ˚pxq ´ Jpx, ψ1,i, λiψ2,iqq
ff

ďγσ2T

2

Nÿ

i“1

Erpψ1,i ´ ψ˚
1 q2s ` γσ2T

2

Nÿ

i“1

λici

ďCγσ2T

2

Nÿ

i“1

ˆ plog iq2?
i

` log i?
i

˙
“ Op

?
NplogNq2q.
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