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According to traditional balance theory, individual social actors avoid establishing triads with
an odd number of negative links. Generalising, mesoscopic balance is realised when the nodes of a
signed graph can be grouped into positively connected subsets, mutually connected by negative links.
If this prescription is interpreted rigidly without allowing for statistical noise, it quickly dismisses
most real graphs as frustrated. As an alternative, a relaxed, yet qualitative, definition of balance
has been advanced. After rephrasing both variants in statistically testable terms, we propose an
inference scheme to unambiguously assess if a signed graph is traditionally or relaxedly balanced.

Introduction. The interest towards signed net-
works dates back to the balance theory (BT), firstly
proposed by Heider as a theory of behaviour [1]. The
choice of adopting signed graphs to model it has, then,
led Cartwright and Harary [2] to introduce its structural
version [2–6]. As the name suggests, BT deals with
the concept of balance: a complete, signed graph is
said to be balanced if all triads have an even number
of negative edges, i.e. either zero (in this case, the
three edges are all positive) or two. The so-called
structure theorem states that a complete, signed graph is
balanced if and only if its set of nodes can be partitioned
into k = 2, disjoint subsets whose intra-modular links
are all positive and whose inter-modular links are all
negative. Cartwright and Harary extended the definition
of balance to incomplete graphs [2] by including cycles
of length larger than three: a network is, now, said
to be balanced if all cycles have an even number of
negative edges (although the points of each subset are
no longer required to be connected). Taken together, the
criteria above define the so-called strong balance theory
(SBT). Such a framework has been further extended
by Davis [7], who introduced the concept of k-balanced
networks, according to which signed graphs are balanced
if their set of nodes can be partitioned into k ≥ 2,
disjoint subsets with positive, intra-modular links and
negative, inter-modular links. This generalised definition
of balance has led to the formulation of the weak balance
theory (WBT), according to which triads whose edges
are all negative are balanced as well, since each node can
be thought of as a group on its own. From a mesoscopic
perspective, however, both versions of the BT require
the presence of positive blocks along the main diagonal
of the adjacency matrix (k = 2, according to the strong
variant; k > 2, according to the weak variant) and of
negative, off-diagonal blocks. Taken together, the SBT
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and the WBT define what will be called traditional
balance theory (TBT): hence, k-balanced networks are
traditionally balanced.

Setting up the formalism. Each edge of a signed
graph can be positive, negative or missing : as we
will focus on binary, undirected, signed networks, a
generic entry of the signed adjacency matrix A will be
assumed to read aij = −1, 0,+1, with aij = aji, ∀ i < j.
To ease mathematical manipulations, let us employ
Iverson’s brackets (a notation ensuring all quantities
of interest to be non-negative - see Appendix A) and
define the quantities a−ij = [aij = −1], a0ij = [aij = 0],

a+ij = [aij = +1]: the new variables are mutually

exclusive, sum to 1 and induce the two matrices A+ and
A−, satisfying A = A+ − A− and |A| = A+ + A−.
The number of positive and negative links is defined

as L+ =
∑N

i=1

∑
j(>i) a

+
ij and L− =

∑N
i=1

∑
j(>i) a

−
ij ,

respectively.

Traditional Balance Theory. The top-down for-
mulation of the TBT leads quite naturally to the defi-
nition of a score function for quantifying the ‘degree of
compatibility’ of a given partition with the TBT itself.
It is named frustration1 and reads

F (σ) =

N∑
i=1

∑
j(>i)

a−ijδσi,σj +

N∑
i=1

∑
j(>i)

a+ij(1− δσi,σj )

= L−
• + L+ − L+

•

= L−
• + L+

◦ (1)

where σ ≡ {σi} stands for a vector of labels characteris-
ing a generic partition and δσi,σj

is the Kronecker delta

1More formally, line index of imbalance [8].
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(i.e. δσi,σj
= 1 if σi = σj and 0 otherwise). In words,

F (σ) counts the amount of misplaced links according
to the TBT, i.e. the number of negative links within
modules plus the number of positive links between mod-
ules. The simplest, operative criterion for singling out a
k-balanced partition is based upon the following theorem.

Theorem I. F (σ) = 0 ⇐⇒ the partition σ is k-
balanced.

Proof. Sufficiency condition: F (σ) = 0 =⇒ the partition
σ is k-balanced. Since L+

◦ ≥ 0 and L−
• ≥ 0, F (σ) = 0

implies that L+
◦ = 0 and L−

• = 0; hence, the definition
of k-balanced partition is satisfied. Necessity condition:
the partition σ is k-balanced =⇒ F (σ) = 0. Since
a k-balanced partition is defined by the presence of
a clustering with k subsets, no negative links within
modules and no positive links between modules, L−

• = 0
and L+

◦ = 0; hence, F (σ) = 0. □

In words, the bare, numerical value F (σ) can be
thought of as acting in a threshold-like fashion, clas-
sifying the configurations characterised by F (σ) = 0
as balanced and the configurations characterised by
F (σ) > 0 as frustrated, according to the TBT. The
criterion embodied by the F -test is, however, too strict
for real-world networks, which are hardly (if ever) found
to obey it: as table I shows, in fact, none of the listed
configurations passes it.

Softening frustration. As noticed by Doreian and
Mrvar [9], the block-structure defining the TBT is overly
restrictive, dooming the vast majority of real-world,
signed networks to be quickly dismissed as frustrated:
in order to overcome what was perceived as a major lim-
itation of the TBT, they proposed to replace F (σ) with
its softened variant

G(σ|α) = αL−
• + (1− α)L+

◦ , (2)

allowing i) the misplaced, positive links to be weighted
more upon choosing 0 ≤ α < 1/2; ii) the misplaced,
negative links to be weighted more upon choosing
1/2 < α ≤ 1. Even ignoring the ambiguity due to the
lack of a principled way for selecting α (the so-called ‘α
problem’ in [8]), the criterion embodied by the G-test is
still too strict: as table I shows, in fact, none of the listed
configurations passes it either. This is rigorously stated
by the following theorem, whose proof is immediate.

Theorem II. If 0 < α < 1, F (σ) = 0 ⇐⇒ G(σ|α) = 0,
i.e. the partition σ is k-balanced.

Notice that the values α = 0 and α = 1 would,
respectively, lead to the trivially balanced partition
characterised by a single community gathering all nodes
together and N single-node communities (or singletons).

F (σ) G(σ|α)
α = 0.2 α = 0.8

Fraternity [10] 1 0.2 0.4
N.G.H. Tribes [10] 2 1.4 0.4
Slovenian Parliament [11] 2 0.4 0.8
Monastery [10] 5 2.4 1.8
US Senate [10] 247 166.8 56

CoW, 1946-49 [12] 12 3.8 5.8
CoW, 1950-53 [12] 11 5.6 5.4
CoW, 1954-57 [12] 27 7 12.2
CoW, 1958-61 [12] 25 6.4 14.6

EGFR [10] 189 51.2 46.8
Macrophage [10] 316 91.4 77.2

Bitcoin Alpha [13] 1399 337.9 585.6
Bitcoin OTC [13] 3259 540.4 800.4

TABLE I: Empirical amount of frustration, detected by
searching for the partition minimising F (σ), that charac-
terises the listed, real-world networks: according to the
F -test, none of them turns out to satisfy the TBT. The
same result holds true even when employing the gen-
eralised definition of the frustration index (here, imple-
mented by posing α = 0.2 and α = 0.8).

Relaxed Balance Theory. In the light of the
previous results, the second attempt pursued by Doreian
and Mrvar to overcome the perceived limitations of the
TBT was more radical, as they proposed to relax it by
allowing for the presence of positive, off-diagonal blocks
and negative, diagonal blocks - a generalisation that has
gained the name of relaxed balance theory (RBT) [9].
Such a formulation of the RBT, however, lacks a proper
mathematisation, as a score function such as F (σ), or
G(σ|α), cannot be easily individuated. Besides, it is
affected by the problem highlighted in [14]: ‘[. . . ] if the
number of clusters is left unspecified a priori, the best
partition is the singletons partition (i.e. each node in its
own cluster) [. . . ] ’.

Statistical Balance Theory. Re-casting the theory
of balance within a statistical framework solves all the
aforementioned problems at once, allowing us to define
an inference scheme to unambiguously assess if a signed
graph is traditionally or relaxedly balanced - hence, over-
coming the limitations of the F -based and G-based tests
while providing a proper mathematisation of the RBT.

In order to turn the TBT into a statistical theory of
balance, let us suppose the presence of a probabilistic
model behind the appearance of any, signed configura-
tion: the TBT can be, then, rephrased by posing p−rr = 0,
r = 1 . . . k and p+rs = 0, ∀r < s. The starting point of our
approach is that of softening these positions, replacing
them with the milder relationships sgn[p+rr − p−rr] = +1,
r = 1 . . . k and sgn[p+rs−p−rs] = −1, ∀r < s which amount
at requiring that p+rr > p−rr, r = 1 . . . k and p+rs < p−rs,
∀ r < s. A configuration satisfying these relationships
will be claimed to obey the statistical variant of the TBT:
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FIG. 1: Consistency checks on four, synthetic configurations (positive links are coloured in blue; negative links are
coloured in red): minimising BIC always leads to recover the planted partition, be it homogeneous, balanced according
to the TBT (first panel); homogeneous, balanced according to the RBT (second and third panel); heterogeneous,
balanced according to the statistical variant of the RBT (fourth panel).

specifically, its strong variant if k = 2 and its weak vari-
ant if k > 2; otherwise (because p+rr ≤ p−rr for some, di-
agonal blocks or p+rs ≥ p−rs for some, off-diagonal blocks),
it will be claimed to obey the statistical variant of the
RBT. Additionally, we define a partition homogeneous if
either p+rs = 0 or p−rs = 0, ∀ r ≤ s; otherwise, it will be
defined heterogeneous (see Appendix B).

Tuning the aforementioned parameters on a given,
signed network requires a generative model to be spec-
ified: here, we will adopt the Signed Stochastic Block
Model (SSBM), defined by the likelihood function

LSSBM =

k∏
r=1

(p+rr)
L+

rr (p−rr)
L−

rr (1− p+rr − p−rr)
(Nr

2 )−Lrr

k∏
r=1

∏
s(>r)

(p+rs)
L+

rs(p−rs)
L−

rs(1− p+rs − p−rs)
NrNs−Lrs

(3)

where Nr is the number of nodes constituting block
r, L+

rr (L−
rr) is the number of positive (negative) links

within block r, L+
rs (L−

rs) is the number of positive (neg-
ative) links between blocks r and s, ∀ r < s and the
probability coefficients read p+rr = 2L+

rr/Nr(Nr − 1),
p−rr = 2L−

rr/Nr(Nr − 1), r = 1 . . . k and p+rs = L+
rs/NrNs,

p−rs = L−
rs/NrNs, ∀ r < s. As maximising the bare like-

lihood is a recipe known to be affected by a number of
limitations [8], we have opted for the minimisation of

BIC = κSSBM lnn− 2 lnLSSBM, (4)

named Bayesian Information Criterion and embodying
a trade-off between parsimony (accounted for by the first

addendum, with κSSBM being the number of parameters
of the model2 and n = N(N − 1)/2 proxying the system
dimensions) and accuracy (accounted for by the second
addendum, i.e. the log-likelihood term).

Results. First, let us test our prescription on a num-
ber of synthetic configurations. As fig. 1 shows, BIC
minimisation always leads to recover the planted par-
tition, irrespectively from the values of the sets of co-
efficients {p+rr}, {p−rr}, {p+rs}r<s, {p−rs}r<s, i.e. be it a
homogeneous partition balanced according to the weak
variant of the TBT (more precisely, a 4-balanced parti-
tion); two, homogeneous partitions, balanced according
to the RBT (e.g. the third adjacency matrix is defined
by p+11 = p+22 = p+33 = 0 and p−12 = p−13 = p−23 = 0); an
heterogeneous partition, balanced according to the sta-
tistical variant of the RBT (i.e. the fourth adjacency
matrix, defined by p+11 < p−11, p

+
22 > p−22, p

+
33 > p−33 and

p+12 < p−12, p
+
13 < p−13, p

+
23 < p−23).

Second, let us compare our recipe with that prescrib-
ing to minimise F (σ). As fig. 2 shows, implementing
the latter does not lead to recover the planted partition
(in this case, a homogeneous one, compatible with the
RBT): instead, it leads to a traditionally balanced con-
figuration where the planted, negative cliques have been
fragmented into singletons. More in general, minimising
F (σ) can lead to a number of ambiguous situations, such

2To avoid confusion with the number of modules, k, charac-
terising k-balanced networks, we have indicated the number of a
model parameters as κ: naturally, κSSBM = k(k+1) since we need
to estimate two parameters per module.
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FIG. 2: Partitions recovered upon minimising F (σ) (left
panel) and upon minimising BIC (right panel): while
minimising F (σ) leads to recover a partition that is
compatible with the TBT even if there is none ‘by de-
sign’, minimising BIC leads to recover the homogeneous
planted partition, compatible with the RBT. Positive
links are coloured in blue; negative links are coloured
in red.

as i) returning configurations that are neither tradition-
ally nor relaxedly balanced; ii) returning more than one
frustrated configuration (see Appendix B).

Let us, now, apply our recipe to a number of real-
world, signed configurations, i.e. four snapshots of the
‘Correlates of Wars’ (CoW) dataset [12], providing a
picture of the international, political relationships over
the years 1946-1997 and consisting of 13 snapshots of 4
years each: a positive edge between any two countries
indicates an alliance, a political agreement or the
membership to the same governmental organisation;
conversely, a negative edge indicates that the two
countries are enemies, have a political disagreement or
are part of different, governmental organisations. As fig.
3 shows, minimising BIC leads to recover partitions that
obey the statistical variant of the RBT (a blue block is
characterised by a majority of positive links; a red block
is characterised by a majority of negative links); other
real-world, signed configurations, instead, are found to
obey the statistical variant of the TBT (see Appendix
B). All such partitions are heterogeneous.

Discussion. The present paper proposes a statisti-
cal approach to the theory of balance, assuming that any
real-world, signed configuration is the result of a gener-
ative process, probabilistic in nature. As some degree of
statistical noise is expected to affect a network structure,
the criterion adopted to deem if it obeys the TBT or the
RBT can be re-cast in terms of the signs of the differences
of the block-wise probabilities to observe a positive and
a negative link, i.e. p+rs − p−rs, ∀ r ≤ s. Estimating these
coefficients by minimising BIC allows one to unambigu-
ously assess which variant of the theory is obeyed, from
a statistical perspective, by any, signed configuration.

On the contrary, minimising F (σ) is practically equiv-

alent at carrying out a sort of one-sided test of hypoth-
esis, allowing one to state if a given partition does not
obey the TBT (as a matter of fact, practically always)
but incapable of providing a univocal classification for a
generic, signed configuration. Moreover, it ‘works’ even
with configurations generated by the Signed Random
Graph Model (SRGM), i.e. a model carrying no infor-
mation about a network modular structure, hence over-
fitting (i.e. misinterpreting statistical noise as a genuine
signal - see Appendix B).
Under this respect, maximising the signed modularity

Q(σ) is of no help, being defined as

Q(σ) =

N∑
i=1

∑
j(>i)

[(a+ij − p+ij)− (a−ij − p−ij)]δσi,σj

= −F (σ) + ⟨F (σ)⟩+ L+ − ⟨L+⟩ (5)

with obvious meaning of the symbols (the addendum
L+ − ⟨L+⟩ is just an offset not depending on the spe-
cific partition and amounting at zero for any model re-
producing the total number of positive links) [15]. In
words, the signed modularity compares the empirical
amount of frustration of a given, signed configuration
with the one predicted by a properly-defined reference
model: one may, thus, define a partition as statistically
balanced if satisfying the relationship F (σ) < ⟨F (σ)⟩,
i.e. Q(σ) > 0. Although reasonable, such a criterion
does not differ (much) from the one embodied by the F -
test: more formally, it can be proven that the relationship
L+ ≫ L− (often, if not always, found to hold true for
real-world, signed networks) favours the fragmentation
of the negative cliques into singletons, hence leading to
recover traditionally balanced configurations even when
there is none ‘by design’ (see fig. 2 and Appendix C).
Existing works have completely overlooked the issue

of harmonising the request of having balanced configu-
rations with that of having modular configurations, in
most of the cases verifying either the ‘degree of balance’
of modular structures or the ‘degree of modularity’ of
balanced structures a posteriori. Ignoring the interplay
between the signs and the density of connections, solely
accounting for the information carried by the first ones,
may, in fact, lead to ‘resolution errors’, i.e. i) splitting
modules (even fully-connected ones) into finer regions; ii)
misinterpreting adjacent modules, characterised by the
same, dominant sign, as single, coarser regions.
BIC, instead, is sensitive to the ‘signed density’ of the

modules ‘by design’, hence capable of spotting the pres-
ence of groups of nodes as well as attributing to each of
them the sign of the majority of its constituting links:
beside lying the basis of a more comprehensive theory of
balance, grounded on probability theory, such a desirable
feature reconciles the generally contradictory results one
gets when combining a purely structure-based commu-
nity detection with a purely sign-based one.
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(a) CoW 1946-49 (b) CoW 1950-53

(c) CoW 1954-57 (d) CoW 1958-61

FIG. 3: Partitions recovered upon minimising BIC on four snapshots of the CoW dataset [12], providing a picture of
the international, political relationships over the years 1946-1997. A generic block, indexed as rs, is coloured in blue
if L+

rs > L−
rs, in red if L+

rs < L−
rs and in white if L+

rs = L−
rs: as blue blocks do not appear only on the diagonal and

red blocks do not appear only off-diagonal, the considered configurations obey the statistical variant of the RBT.
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APPENDIX A.
REPRESENTING BINARY, UNDIRECTED, SIGNED NETWORKS

The three functions a−ij = [aij = −1], a0ij = [aij = 0] and a+ij = [aij = +1] have been defined via the Iverson’s

brackets notation. Iverson’s brackets work in a way that is reminiscent of the Heaviside step function, i.e. Θ[x] =
[x > 0]; in fact,

a−ij = [aij = −1] =

{
1, if aij = −1

0, if aij = 0,+1
(6)

(i.e. a−ij = 1 if aij < 0 and zero otherwise),

a0ij = [aij = 0] =

{
1, if aij = 0

0, if aij = −1,+1
(7)

(i.e. a0ij = 1 if aij = 0 and zero otherwise),

a+ij = [aij = +1] =

{
1, if aij = +1

0, if aij = −1, 0
(8)

(i.e. a+ij = 1 if aij > 0 and zero otherwise). These new variables are mutually exclusive, i.e. {a−ij , a0ij , a
+
ij} =

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} and sum to 1, i.e. a−ij + a0ij + a+ij = 1. The matrices A+ ≡ {a+ij}Ni,j=1 and A− ≡ {a−ij}Ni,j=1

remain naturally defined, inducing the relationships A = A+ −A−, i.e. aij = a+ij − a−ij , ∀ i ̸= j and |A| = A+ +A−,

i.e. |aij | = a+ij + a−ij , ∀ i ̸= j.
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APPENDIX B.
MINIMISATION OF THE BAYESIAN INFORMATION CRITERION

Signed Stochastic Block Model (SSBM) and Bayesian Information Criterion (BIC)

FIG. 4: Three, ideal partitions recoverable upon minimising BIC: one compatible with the strong balance theory
(k = 2 with p+11 > p−11, p

+
22 > p−22 and p+12 < p−12 - left panel), one compatible with the weak balance theory (k > 2

with p+rr > p−rr, r = 1 . . . 5, p+rs < p−rs, r, s = 1 . . . 5, ∀ r < s - middle panel), one compatible with the relaxed balance
theory (p+rr ≤ p−rr for some, diagonal blocks and p+rs ≥ p−rs for some, off-diagonal blocks - right panel).

Let us, first, recall the derivation of the SSBM. It is defined by the Hamiltonian

H(A) =
∑
r≤s

[αrsL
+
rs(A) + βrsL

−
rs(A)]

=
∑
r≤s

αrs

 N∑
i=1

∑
j(>i)

δgirδgjsa
+
ij

+ βrs

 N∑
i=1

∑
j(>i)

δgirδgjsa
−
ij


=

N∑
i=1

∑
j(>i)

[αgigja
+
ij + βgigja

−
ij ] (9)

leading to

Z =
∑
A∈A

e−H(A) =
∑
A∈A

N∏
i=1

∏
j(>i)

e−[αgigj
a+
ij+βgigj

a−
ij ] =

N∏
i=1

∏
j(>i)

∑
aij=−1,0,+1

e−[αgigj
a+
ij+βgigj

a−
ij ]

=

N∏
i=1

∏
j(>i)

[1 + e−αgigj + e−βgigj ]. (10)

As a consequence,

PSSBM(A) =
e−H(A)

Z
=

∏N
i=1

∏
j(>i) e

−[αgigj
a+
ij+βgigj

]∏N
i=1

∏
j(>i)[1 + e−αgigj + e−βgigj ]

≡
N∏
i=1

∏
j(>i)

x
a+
ij

gigjy
a−
ij

gigj

1 + xgigj + ygigj

≡
N∏
i=1

∏
j(>i)

(p+gigj )
a+
ij (p0gigj )

a0
ij (p−gigj )

a−
ij (11)

having posed e−αgigj ≡ xgigj , e
−βgigj ≡ ygigj , p

+
ij ≡ xgigj/(1 + xgigj + ygigj ), p

−
ij ≡ ygigj/(1 + xgigj + ygigj ), p

0
ij ≡

1/(1 + xgigj + ygigj ); let us notice that
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FIG. 5: Top panels: partitions recovered upon minimising F (σ). Bottom panels: partitions recovered upon minimising
BIC (orange links would be classified as misplaced according to the F -test). Minimising BIC leads us to find a
community structure whose definition depends on the ‘signed density’ of connections: such a structure coincides with
the one recovered upon minimising F (σ) only if the former is k-balanced, i.e. satisfies the relationships p−rr = 0,
r = 1 . . . k and p+rs = 0, ∀ r < s.

PSSBM(A) =

N∏
i=1

∏
j(>i)

k∏
r=1

∏
s(≥r)

[(p+rs)
a+
ij (p0rs)

a0
ij (p−rs)

a−
ij ]δgirδgjs

=

k∏
r=1

∏
s(≥r)

N∏
i=1

∏
j(>i)

[(p+rs)
δgirδgjsa

+
ij (p0rs)

δgirδgjsa
0
ij (p−rs)

δgirδgjsa
−
ij ]

=

k∏
r=1

∏
s(≥r)

[(p+rs)
∑N

i=1

∑
j(>i) δgirδgjsa

+
ij (p0rs)

∑N
i=1

∑
j(>i) δgirδgjsa

0
ij (p−rs)

∑N
i=1

∑
j(>i) δgirδgjsa

−
ij ]

=

k∏
r=1

(p+rr)
L+

rr (p0rr)
L0

rr (p−rr)
L−

rr ·
k∏

r=1

∏
s(>r)

(p+rs)
L+

rs(p0rs)
L0

rs(p−rs)
L−

rs

=

k∏
r=1

(p+rr)
L+

rr (p−rr)
L−

rr (1− p+rr − p−rr)
(Nr

2 )−Lrr ·
k∏

r=1

∏
s(>r)

(p+rs)
L+

rs(p−rs)
L−

rs(1− p+rs − p−rs)
NrNs−Lrs

=

k∏
r=1

x
L+

rr
rr y

L−
rr

rr

[1 + xrr + yrr]
(Nr

2 )
·

k∏
r=1

∏
s(>r)

x
L+

rs
rs y

L−
rs

rs

[1 + xrs + yrs]NrNs
(12)

where p+rr = xrr/(1 + xrr + yrr), p−rr = yrr/(1 + xrr + yrr), r = 1 . . . k and p+rs = xrs/(1 + xrs + yrs), p−rs =
yrs/(1 + xrs + yrs), ∀ r < s. Its log-likelihood reads
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FIG. 6: Minimising F (σ) can lead to a number of ambiguous situations, such as returning configurations that are
neither traditionally nor relaxedly balanced (orange links are classified as misplaced according to the F -test; however,
they can neither be arranged into homogeneous blocks). Within our, novel, statistical framework these configurations
are unambiguously classified as balanced according to the statistical variant of the TBT.

lnLSSBM =

k∑
r=1

[
L+
rr(A) lnxrr + L−

rr(A) ln yrr −
(
Nr

2

)
ln[1 + xrr + yrr]

]

+

k∑
r=1

∑
s(>r)

[L+
rs(A) lnxrs + L−

rs(A) ln yrs −NrNr ln[1 + xrs + yrs]] (13)

and its maximisation leads to recover the conditions p+rr = 2L+
rs(A)/Nr(Nr − 1), p−rr = 2L−

rs(A)/Nr(Nr − 1),
r = 1 . . . k and p+rs = L+

rs(A)/NrNs, p
−
rs = L−

rs(A)/NrNs, ∀ r < s.

Let us, now, recall that BIC is defined as

BIC = κ lnn− 2 lnL (14)

where L is a model likelihood and κ indicates the number of parameters entering into its definition. Here, we have
posed L ≡ LSSBM, κ ≡ κSSBM = k(k+1) (i.e. k+ k(k− 1)/2 parameters to be tuned on the set of values L+

rs, ∀ r ≤ s
and k + k(k − 1)/2 parameters to be tuned on the set of values L−

rs, ∀ r ≤ s) and n = N(N − 1)/2.
Figure 4 shows three, ideal partitions: one compatible with the strong balance theory, one compatible with the

weak balance theory and one compatible with the relaxed balanced theory.

Comparing BIC minimisation with F minimisation

Let us, now, carry out another comparison between the recipe prescribing to minimise F (σ) and the one prescribing
to minimise BIC. As fig. 5 shows. the partitions that are recovered upon minimising BIC match the planted ones,
a result confirming that BIC is sensitive to the ‘signed density’ of the modules. As a consequence, the partitions
recovered upon minimising it coincide with the ones recovered upon minimising F (σ) only if the former ones are
k-balanced, i.e. satisfy the relationships p−rr = 0, r = 1 . . . k and p+rs = 0, ∀ r < s.
Minimising F (σ) can lead to a number of ambiguous situations, such as i) returning configurations that are neither

traditionally nor relaxedly balanced; ii) returning more than one frustrated configuration.
Figure 6 depicts the first situation. Nodes of the same colour are those put together as a consequence of minimising

F (σ): although the presence of negative links between and within modules makes the recovered partitions ‘tradition-
ally’ frustrated, the original formulation of the RBT would lead us to conclude that they are ‘relaxedly’ frustrated as
well; only within our, novel, statistical framework these configurations can be unambiguously classified as balanced
according to the statistical variant of the TBT.

Figure 7 depicts the second situation: the minimisation of F (σ) can return more than one frustrated configuration;
our BIC-based test, however, ‘prefers’ the one on the left, classifying it as balanced according to the statistical variant
of the TBT.
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FIG. 7: Minimising F (σ) can lead to a number of ambiguous situations, such as returning more than one configuration
in correspondence of which F (σ) attains its minimum. In this, particular case, the Slovenian Parliament admits two,
different arrangements of nodes characterised by F (σ) = 2 (orange links are classified as misplaced according to
the F -test). Our BIC-based test, however, ‘prefers’ the one on the left, classifying it as balanced according to the
statistical variant of the TBT.

Minimising BIC on configurations generated by the Signed Random Graph Model (SRGM)

Let us, first, recall the derivation of the SRGM. It is defined by the Hamiltonian

H(A) = αL+(A) + βL−(A) =

N∑
i=1

∑
j(>i)

[αa+ij + βa−ij ] (15)

leading to

Z =
∑
A∈A

e−H(A) =
∑
A∈A

N∏
i=1

∏
j(>i)

e−[αa+
ij+βa−

ij ] =

N∏
i=1

∏
j(>i)

∑
aij=−1,0,+1

e−[αa+
ij+βa−

ij ]

=

N∏
i=1

∏
j(>i)

[1 + e−α−β ] = [1 + e−α−β ](
N
2 ). (16)

As a consequence,

PSRGM(A) =
e−H(A)

Z
=

e−[αL+(A)+βL−(A]

[1 + e−α−β ](
N
2 )

≡ xL+(A)yL
−(A)

[1 + x+ y](
N
2 )

≡ (p−)L
−(A)(p0)L

0(A)(p+)L
+(A) (17)

where p+ = x/(1 + x+ y), p− = y/(1 + x+ y) and p0 = 1/(1 + x+ y). Its log-likelihood reads

lnLSRGM = L+(A) lnx+ L−(A) ln y −
(
N

2

)
ln[1 + x+ y] (18)

and its maximisation leads to recover the conditions p+ = 2L+(A)/N(N − 1), p− = 2L−(A)/N(N − 1).
Figure 8 shows three configurations generated by the SRGM. As such a model does not carry any information about

a network modular structure, no groups of nodes should be recognised. This is precisely the output of our BIC-based
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FIG. 8: Three configurations generated by the SRGM (positive links are coloured in blue; negative links are coloured
in red). Since this model does not carry any information about a network modular structure, no groups of nodes should
be detected: minimising BIC, in fact, always returns a single community gathering all nodes together, irrespectively
from the choice of the parameters.

recipe, returning a single community gathering all nodes together (i.e. k = 1), irrespectively from the choice of the
parameters (i.e. be p+ < p−, p+ ≃ p− or p+ > p−). Minimising F (σ) (or maximising Q(σ) - see Appendix C),
instead, leads to recover a number of modules k ≥ 1 (in the case L+ < L−, kF = 25 and kQ = 13; in the case
L+ ≃ L−, kF = 6 and kQ = 5; in the case L+ > L−, kF = kQ = 1).

Minimising BIC on negative and positive cliques

Let us, now, consider a negative clique composed by N nodes; evaluating BIC on the partition defined by k modules
returns the value k(k+1) ln[N(N − 1)/2]; since N ≥ k ≥ 1, keeping all nodes together is the most convenient choice.
The same result holds true if we consider a positive clique composed by N nodes, the reason lying in the completely
symmetric role played by negative and positive links, both contributing to the density of the (potential) network
modules.

Minimising BIC on complete, signed graphs

When dealing with complete graphs, the signs come into play in a quite peculiar fashion. Let us, in fact, consider a
complete graph of size N = N1 +N2, constituted by two, negative cliques having, respectively, N1 and N2 nodes and
such that each node of a clique is connected to each node of the other via a positive link. Let us, now, pose k > 2
and consider the following inequality

k(k + 1) ln

(
N

2

)
− 2 lnLSSBM > 6 ln

(
N

2

)
(19)

stating that evaluating BIC on a generic partition defined by k > 2 modules returns a value that is strictly larger
than the value of BIC calculated on the bi-partition whose modules coincide with the cliques themselves (in fact,
N ≥ k > 2 and lnLSSBM > 0).

Let us, now, compare the bi-partition induced by the negative cliques with the partition induced by imposing the
presence of just one module: in this, last case, evaluating BIC returns the value

BIC(k = 1) = 2 ln

(
N

2

)
− 2 ln

[
(p+)L

+

(p−)L
−
]

= 2 ln

(
N

2

)
− 2 ln

[(
2N1N2

N(N − 1)

)N1N2
(
N1(N1 − 1) +N2(N2 − 1)

N(N − 1)

)(N1
2 )+(

N2
2 )

]

= 2 ln

(
N

2

)
− 2 ln

[(
2N1(N −N1)

N(N − 1)

)N1(N−N1) (N1(N1 − 1) + (N −N1)(N −N1 − 1)

N(N − 1)

)(N1
2 )+(

N−N1
2 )

]
(20)
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FIG. 9: Plotting the difference between BIC(k = 1) and the value of BIC characterised by the bi-partition whose
modules coincide with the cliques themselves, as a function of 2 < N1 < N − 2, reveals it to be always positive. This
result confirms that such a bi-partition is the one in correspondence of which BIC attains its minimum value.

where we have used the relationship N2 = N −N1. As depicted in fig. 9, splitting nodes according to the partition
induced by the signs is always ‘more convenient’ than partitioning them in a different way, a result suggesting that
signs keep playing a role as long as the information embodied by the network density becomes irrelevant.

The same reasoning can be repeated for any number of cliques, the last relationship becoming

c(c+ 1) ln

(
N

2

)
< 2 ln

(
N

2

)
− 2 ln

[(
2
∑

i<j NiNj

N(N − 1)

)∑
i<j NiNj (∑

i Ni(Ni − 1)

N(N − 1)

)∑
i (

Ni
2 )

]
, (21)

i.e. the partition defined by c modules coinciding with the cliques is the one characterised by the minimum value of
BIC (see also fig. 10).

FIG. 10: Results of testing BIC minimisation on four, complete, signed graphs balanced according to the TBT (second
panel: a 3-balanced configuration; fourth panel: a 6-balanced configuration) and maximally frustrated according to
the TBT but perfectly balanced according to the RBT (first panel: k = 2; third panel: k = 4). Minimising BIC leads
to the partition induced by signs, since always ‘more convenient’ than any, other partition. Positive links are coloured
in blue; negative links are coloured in red.
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(a) Fraternity (b) N.G.H. Tribes

(c) Slovenian Parliament (d) Monastery

FIG. 11: Partitions recovered upon minimising BIC on the Fraternity, N.G.H. Tribes, Slovenian Parliament and
Monastery datasets. A generic block, indexed as rs, is coloured in blue if L+

rs > L−
rs, in red if L+

rs < L−
rs and in white

if L+
rs = L−

rs. Minimising BIC leads to recover partitions that obey the statistical variant of the TBT in most of the
cases. Positive links are coloured in blue; negative links are coloured in red.

Minimising BIC on more, real-world configurations

Let us, now, apply our recipe to a number of real-world, signed configurations, i.e. Fraternity, N.G.H. Tribes,
Monastery and [10] and Slovenian Parliament [11]: as fig. 11 shows, minimising BIC leads to recover partitions that
obey the statistical variant of the TBT (either in its strong or weak form) in most of the cases (a blue block is
characterised by a majority of positive links; a red block is characterised by a majority of negative links).

On the other hand, US Senate, EGFR, Macrophage, Bitcoin Alpha and Bitcoin OTC datasets [13] are characterised
by k = 1 (either because p+ ≃ p− or because p+ ≫ p−).
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APPENDIX C.
MORE ON SIGNED MODULARITY

A deterministic theory of balance can be turned into a statistical theory of balance by answering the following
question: is it possible to define a reference level of misplaced links by means of which discerning frustrated graphs
from balanced ones? The answer is affirmative and calls for comparing the empirical amount of frustration of a given,
signed configuration with the one predicted by a properly-defined reference model: in formulas, one may define a
partition as statistically balanced if satisfying the relationship F (σ) < ⟨F (σ)⟩.
A quantity embodying such a comparison already exists: it is the signed modularity, reading

Q(σ) =

N∑
i=1

∑
j(>i)

[(a+ij − p+ij)− (a−ij − p−ij)]δσi,σj

= L+
• − ⟨L+

• ⟩ − (L−
• − ⟨L−

• ⟩)
= (L+ − L+

◦ )− ⟨L+ − L+
◦ ⟩ − (L−

• − ⟨L−
• ⟩)

= −(L+
◦ + L−

• ) + ⟨L+
◦ + L−

• ⟩+ L+ − ⟨L+⟩
= −F (σ) + ⟨F (σ)⟩+ L+ − ⟨L+⟩ (22)

with obvious meaning of the symbols (the addendum L+−⟨L+⟩ is just an offset not depending on the specific partition
and amounting at zero for any model reproducing the total number of positive links) [15]. Since the total number of
positive links is preserved under any model considered in the present paper, we obtain

Q(σ) = −F (σ) + ⟨F (σ)⟩. (23)

Q(σ) has been widely employed to spot communities on signed networks, with the positions p+ij = k+i k
+
j /2L

+ and

p−ij = k−i k
−
j /2L

−, ∀ i < j. Such a recipe, instantiating the Chung-Lu (CL) model, is applicable only in case p+ij ≤ 1

and p−ij ≤ 1, ∀ i < j: these conditions, however, do not hold in several cases of interest, an example of paramount

importance being provided by sparse networks whose degree distribution is scale-free [16]. In order to overcome the
aforementioned limitation, a different framework is needed.

One may follow the analytical approach introduced in [17] and further developed in [18], aimed at identifying the
functional form of the maximum-entropy probability distribution that preserves a desired set of empirical constraints,
on average. Specifically, this approach looks for the graph probability P (A) that maximises Shannon entropy S =
−
∑

A∈A P (A) lnP (A), under constraints enforcing the expected value of a chosen set of properties. The formal

solution to this problem is the exponential probability P (A) = e−H(A)/Z where the Hamiltonian H(A) is a linear
combination of the constrained properties and the partition function Z =

∑
A∈A e−H(A) plays the role of normalising

constant, the sum running over the set A of all binary, undirected, signed graphs whose cardinality amounts to

|A| = 3(
N
2 ). Two examples of models of the kind are the Signed Random Graph Model (SRGM) and the Signed

Configuration Model (SCM) [19].
According to the TBT, several ways exist in which a given configuration can be frustrated. Let us, now, analyse

them in detail.

1. Evaluating frustration due to negative links

Positive subgraphs connected by negative links. In order to understand how a Q-based test would work, let us
consider two subgraphs with, respectively, m and n nodes, positive intra-modular links and negative inter-modular
links. Let us denote with V• = m(m− 1)/2 + n(n− 1)/2 the total number of intra-modular pairs of nodes and with
Q0 the value of modularity associated to the partition of the entire graph, except our, two subgraphs; let us also call
L+
• the total number of positive links within modules and L−

◦ the total number of negative links between modules.
Then,

QA = Q0 + [L+
• − p+V•]− [0− p−V•], (24)

QB = Q0 + [L+
• − p+(V• +mn)]− [L−

◦ − p−(V• +mn)] (25)
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FIG. 12: Partitions recovered upon maximising the signed modularity on three rings of cliques, i.e. a set of 10 (left),
20 (middle), 30 (right) cliques, constituted by 5 nodes each, internally connected by positive links and inter-connected
by negative links.

with QA being the SRGM-induced modularity of the configuration identifying our subgraphs as two, separate com-
munities and QB being the SRGM-induced modularity of the configuration identifying our subgraphs as a single
community. In order to be fully consistent with the TBT, one should require

QA > QB = QA − L−
◦ − (p+ − p−)mn, (26)

a condition that it is satisfied whenever L−
◦ > (p−−p+)mn, i.e. whenever the probability p−◦ ≡ L−

◦ /mn of establishing
a negative link within modules is larger than p− − p+ = 2(L− − L+)/N(N − 1). This condition sheds light on the
role played by the signed variant of the resolution limit, naturally re-interpretable as a threshold-based criterion for
discerning if a given, signed configuration is balanced or not: in words, the ‘acceptable’ level of frustration, according
to which our subgraphs can be safely interpreted as a single community, is represented by (p− − p+)mn.

2. Evaluating frustration due to positive links

Positive subgraphs connected by positive links. Let us, now, consider two subgraphs with, respectively, m and n
nodes, positive intra- and inter-modular links; let us also call L+

• the total number of positive links within modules
and L+

◦ the total number of positive links between modules. Then,

QA = Q0 + [L+
• − p+V•]− [0− p−V•], (27)

QB = Q0 + [L+
• + L+

◦ − p+(V• +mn)]− [0− p−(V• +mn)] (28)

with QA being the SRGM-induced modularity of the configuration identifying our subgraphs as two, separate com-
munities and QB being the SRGM-induced modularity of the configuration identifying our subgraphs as a single
community. In order to be fully consistent with the TBT, one should require

QB = QA + L+
◦ − (p+ − p−)mn > QA, (29)

a condition that it is satisfied whenever L+
◦ > (p+−p−)mn, i.e. whenever the probability p+◦ ≡ L+

◦ /mn of establishing
a positive link between modules is larger than p+ − p− = 2(L+ − L−)/N(N − 1). The threshold-based criterion
for discerning balance represented by the signed variant of the resolution limit, now, sets the ‘acceptable’ level of
frustration, according to which our subgraphs can be safely interpreted as two, separate communities, at (p+−p−)mn.

3. Evaluating frustration in real-world networks

Interestingly enough, when studying real-world, signed networks, the relationship L+ ≫ L− is often (if not always)
found to hold true: as a consequence, the condition
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FIG. 13: Top panels: partitions recovered upon maximising Q(σ). Bottom panels: partitions recovered upon min-
imising BIC. Left panels: minimising BIC returns partitions that coincide with those returned upon maximising the
signed modularity only in case they are k-balanced. Middle and right panels: minimising BIC (bottom panels) leads
to recover the planted partitions, balanced according to the RBT; maximising Q(σ) (top panels), instead, leads to
the fragmentation of the subgraphs constituted by negative links into singletons. In other words, the Q-based test
seeks to recover a configuration obeying the TBT even when there is none ‘by design’ (orange links are classified as
misplaced according to the F -test).

L−
◦ > (p− − p+)mn < 0 (30)

is trivially satisfied. Such an evidence has several consequences. In order to discuss them, let us focus on i) the case
of negative subgraphs connected by negative links; ii) the case of negative subgraphs connected by positive links.

Negative subgraphs connected by negative links. Let us consider two subgraphs with, respectively, m and n nodes,
negative intra- and inter-modular links; let us also call L−

• the total number of negative links within modules and L−
◦

the total number of negative links between modules. Then,

QA = Q0 + [0− p+V•]− [L−
• − p−V•], (31)

QB = Q0 + [0− p+(V• +mn)]− [L−
• + L−

◦ − p−(V• +mn)] (32)

with QA being the SRGM-induced modularity of the configuration identifying our subgraphs as two, separate com-
munities and QB being the SRGM-induced modularity of the configuration identifying our subgraphs as a single
community. In order to limit the number of links that would be deemed as misplaced according to the TBT, one
should require

QA > QB = QA − L−
◦ − (p+ − p−)mn, (33)
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a condition that it is satisfied whenever L−
◦ > (p−−p+)mn, i.e. whenever the probability p−◦ ≡ L−

◦ /mn of establishing
a negative link between modules is larger than p− − p+ = 2(L− − L+)/N(N − 1) < 0. Hence, it is always convenient
to separate negatively connected modules and, if such a line of reasoning is repeated in a hierarchical fashion, it is
always convenient to separate negatively connected nodes. Otherwise stated, one should not expect the presence
of negative links within blocks since negatively connected modules will always lead to singletons: in this sense, the
signed modularity is resolution limit-free.

Negative subgraphs connected by positive links. Let us, now, focus on the case of negative subgraphs connected by
positive links and consider two subgraphs with, respectively, m and n nodes, negative intra-modular links and positive
inter-modular links; let us also call L−

• the total number of negative links within modules and L+
◦ the total number

of positive links between modules. Then,

QA = Q0 + [0− p+V•]− [L−
• − p−V•], (34)

QB = Q0 + [L+
◦ − p+(V• +mn)]− [L−

• − p−(V• +mn)] (35)

with QA being the SRGM-induced modularity of the configuration identifying our subgraphs as two, separate com-
munities and QB being the SRGM-induced modularity of the configuration identifying our subgraphs as a single
community. In order to limit the number of links that would be deemed as misplaced according to the TBT, one
should require

QB = QA + L+
◦ − (p+ − p−)mn > QA, (36)

a condition that it is satisfied whenever L+
◦ > (p+−p−)mn, i.e. whenever the probability p+◦ ≡ L+

◦ /mn of establishing
a positive link between modules is larger than p+ − p− = 2(L+ − L−)/N(N − 1). Now, as a consequence of eq. (30),
it is convenient to fragment negatively connected modules into singletons; hence, according to the TBT, frustration
can only occur because of misplaced, positive links appearing between blocks.

Figure 12 depicts the results of the signed modularity maximisation on three rings of cliques: since the relationship
L+ ≫ L− holds true, one should not expect the presence of negative links within blocks (as we said, the signed
modularity is resolution limit-free, in this sense). Notice that our exercise is defined in such a way that the numerical
value of the generic addendum (a+ij − p+ij) − (a−ij − p−ij) is fixed, once and for all, by the choice of the benchmark
to be solved: in other words, the definition of modularity does not change with the level of aggregation, being just
recomputed (as any other score function) as the partition changes [19].

As fig. 13 shows, minimising BIC returns partitions that coincide with those returned by maximising modularity,
or minimising F (σ), solely in case they are k-balanced (i.e. obey the TBT). In case subgraphs constituted by negative
links are, instead, present, minimising BIC leads to the planted partition induced by gathering such nodes together
while maximising Q(σ) leads to their fragmentation, hence recovering singletons. In other words, the Q-based test
(exactly as the F -based test and the G-based test) seeks to recover traditionally balanced configurations even when
there is none ‘by design’.

From a purely numerical perspective, partitioning nodes by minimising BIC is accomplished as described in Algo-
rithms 1 - 3.
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Algorithm 1: Pseudocode to partition nodes by minimising BIC - step I

1: function BICBasedCommunityDetectionStepI (N,A)
2: C ← array of labels of length N , initialised as (1, 2 . . . N);
3: BIC← UpdateBIC (A, C);
4: E ← randomly sorted edges;
5: for (u, v) ∈ E do
6: C0 ← C;
7: BIC0 ← BIC;
8: if C(u) ̸= C(v) then
9: C1 ← C;
10: for node w ∈ C(u) do
11: C1(w)← C(v);
12: end for
13: BIC1 ← UpdateBIC (A, C1);
14: end if
15: if BIC1 < BIC0 then
16: C ← C1;
17: BIC← BIC1

18: else
19: C ← C0;
20: BIC← BIC0

21: end if
22: end for
23: ⇒ repeat the for-loop to improve the chance of finding the best partition

Algorithm 2: Pseudocode to partition nodes by minimising BIC - step II

1: function BICBasedCommunityDetectionStepII (N,A)
2: C ← BICBasedCommunityDetectionStepI(N,A);
3: BIC← UpdateBIC (A, C);
4: E ← randomly sorted edges;
5: for (u, v) ∈ E do
6: C0 ← C;
7: BIC0 ← BIC;
8: if C(u) ̸= C(v) then
9: C1 ← C;
10: C1(u)← C(v);
11: BIC1 ← UpdateBIC (A, C1);
12: C2 ← C;
13: C2(v)← C(u);
14: BIC2 ← UpdateBIC (A, C2);
15: else if C(u) = C(v) then
16: C1 ← C;
17: C1(u)← randomly sorted community different from C(v);
18: BIC1 ← UpdateBIC (A, C1);
19: C2 ← C;
20: C2(v)← randomly sorted community different from C(u);
21: BIC2 ← UpdateBIC (A, C2);
22: end if
23: i← argmin{BIC0,BIC1,BIC2};
24: C ← Ci;
25: BIC← BICi;
26: end for
27: ⇒ repeat the for-loop to improve the chance of finding the best partition
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Algorithm 3: Pseudocode to update BIC

1: function UpdateBIC (A, C)
2: k ← number of modules, i.e. number of distinct labels in C;
3: P− ← k × k matrix whose entry (c1, c2) is the probability that a node u ∈ C(u) = c1 is linked

via a −1 to a node v ∈ C(v) = c2;
4: P+ ← k × k matrix whose entry (c1, c2) is the probability that a node u ∈ C(u) = c1 is linked

via a +1 to a node v ∈ C(v) = c2;
5: L− ← k × k matrix whose entry (c1, c2) is i) the number of −1s between c1 and c2, if c1 ̸= c2;

ii) the number of −1s within c1, otherwise;
6: L+ ← k × k matrix whose entry (c1, c2) is i) the number of +1s between c1 and c2, if c1 ̸= c2;

ii) the number of +1s within c1, otherwise;
7: n← k × 1 array whose c-th entry is the number of nodes belonging to c;
8: L ← 1;
9: for c = 1 . . . k do

10: L = L ·P−(c, c)L
−(c,c)P+(c, c)L

+(c,c)(1−P−(c, c)−P+(c, c))(
n(c)
2 )−L−(c,c)−L+(c,c);

11: for d = c+ 1 . . . k do

12: L = L ·P−(c, d)L
−(c,d)P+(c, d)L

+(c,d)(1−P−(c, d)−P+(c, d))n(c)n(d)−L−(c,d)−L+(c,d);
13: end for
14: end for
15: BIC = k(k + 1) ln

(
N
2

)
− 2 lnL
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