
On a vectorized basic linear algebra package for

prototyping codes in MATLAB

Alexej Moskovka1,5, Talal Rahman2, Jan Valdman3,5, and Jon
Eivind Vatne4

1Department of Mathematics, Faculty of Applied Sciences,
University of West Bohemia, Technická 8, 30100 Pilsen, Czechia,

alexmos@kma.zcu.cz
2Faculty of Engineering and Science, Western Norway University

of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway,
talal.rahman@hvl.no

3Department of Computer Science, Faculty of Science, University
of South Bohemia, Branǐsovská 31, 37005 Č. Budějovice, Czechia,

jvaldman@jcu.cz
4Department of Economics, BI Norwegian Business School, Kong

Christian Frederiks plass 5, 5006 Bergen, Norway,
jon.e.vatne@bi.no

5The Czech Academy of Sciences, Institute of Information Theory
and Automation, Pod Vodárenskou věž́ı 4, 18208 Prague, Czechia.

Abstract

When writing a high-performance code for numerical computation in
a scripting language like MATLAB , it is crucial to have the operations
in a large for-loop vectorized. If not, the code becomes too slow to be of
any use, even for a moderately large problem. However, in the process of
vectorizing, it often happens that the code loses its original structure and
becomes less readable. This is particularly true in the case of a finite ele-
ment implementation, even though finite element methods are inherently
structured. A basic remedy to this is the separation of the vectoriza-
tion part from the mathematics part in the code, which is easily achieved
through building the code on top of the basic linear algebra subprograms
that are already vectorized codes, an idea which has been used in a series
of papers over the last fifteen years, developing codes that are fast and still
structured and readable. We discuss the vectorized basic linear algebra
package, and introduce a formalism using multi-linear algebra to explain
and define formally the functions in the package, as well as MATLAB
’s pagetime functions. We provide examples from computations of vary-

1

ar
X

iv
:2

40
4.

16
03

9v
1

 [
cs

.M
S]

 1
5

M
ar

 2
02

4

ing complexity, including the computation of normal vectors, volumes,
and finite element methods. Benchmarking shows that we also get fast
computations. Using the library, we can write codes that closely follow
our mathematical thinking, making it easier to write, follow, reuse, and
extend the code.

Contents

1 Introduction 2

2 Background from linear algebra 4
2.1 Homomorphism spaces and tensor products 4
2.2 Indexing and page-wise operations 8
2.3 Determinants and inverses . 10
2.4 A vectorization library . 11

3 Prototype codes and performance comparison 13
3.1 Structures ’coords3D’ and ’vectors3D’ 14
3.2 Volumes and normals evaluation 15
3.3 Volume integrals . 17
3.4 ’GI’ function . 19
3.5 Surface integrals . 21
3.6 Finite element method . 23

3.6.1 Assemblies of stiffness and mass matrices in 2D and 3D . 28
3.6.2 Practical FEM computation 29
3.6.3 Related projects . 33

1 Introduction

MATLAB [1] is a popular computing platform with a library of built-in func-
tions and toolboxes provided by Mathworks Inc. (https://mathworks.com/),
to solve scientific and engineering problems in both academia and industry. It is
a scripting language that can be used to write structured and readable or under-
standable code. However, because the language is interpreted and not compiled,
MATLAB codes containing for loops become extremely slow compared to com-
piled languages such as C, C++, FORTRAN, etc. It is particularly evident in a
finite element calculation, since a finite element implementation is heavily based
on loops over its nodes, edges, and elements; cf. [2], making any large-scale sim-
ulation with finite elements practically useless even on a supercomputer. MAT-
LAB provides functionalities that allow basic arithmetic operations in a loop to
be executed in a precompiled fashion, also known as the vectorization or array
operation [1]. During the last 15 years, a number of finite element codes have
been developed in MATLAB using vectorization to speed up calculations; cf.
[7, 9]. Vectorized FE codes show a tremendous improvement in the performance
of their time to compute compared to their non-vectorized version. However, in

2

 https://mathworks.com/

a straightforward vectorized version, as the mathematics becomes interleaved
with the array operations, the code quickly loses its structure and readability,
making it hard to use it in a class room or in real applications to further develop
or extend. To retain readability and structure, one needs to think in a whole
new way, one of which is the separation of vectorization from the mathematics of
the problem, an idea which was first introduced for the implementation of finite
elements in the numerical simulation of the Electro-Rheological Fluid [12, 13],
and documented in [19]. In this idea, the vectorization was done by extending
the element-wise operations into matrix-wise or page-wise operations.

In Rahman and Valdman [20], the authors used the idea to further develop an
efficient and flexible assembly procedure for the FEM stiffness and mass matrices
for nodal elements in 2D and 3D. This resulted in a faster and more scalable
algorithm that led to a significant speed-up of the original codes (cf. [2]). The
same idea of vectorization was also used in the assembly of edge elements by
Anjam and Valdman in the [3] and C1 elements by Valdman [22]. The ability to
simultaneously create FEM matrices for problems formulated in Sobolev spaces
H1, H(div), H(curl), H2 resulted in additional MATLAB related computations,
including a posteriori functional estimates [3, 5] generalized eigenvalue problems
[18] and models in the continuum mechanics of solids [8, 11]. The idea of
original vectorization offers more features that were only partially explored.
An example is [15] that attempted simple iterative solvers for solutions of the
Laplace equation, completely avoiding the setup of stiffness and mass matrices.

The aim is to develop a mathematical framework for the library, the vector-
ized basic linear algebra package, to be able to formally define the functions in
the library, as well understand their constructions so as to be able to write better
code. We include some background material from the linear (and multilinear)
algebra, where the selection of what to include is based on the library functions,
MATLAB ’s page wise functions, and the applications we have in mind. In par-
ticular, tensors play a central role. The library contains a collection of page-wise
vectorized versions of functions which are Basic Linear Algebra Subprograms
(abbreviated as BLAS). The library enables us to separate the vectorization
from the mathematical method or algorithm, e.g. the FE or the geometry al-
gorithm, and hence make the final code readable and reusable. While we were
preparing examples for this paper, working with the linear algebra at a higher
level (i.e. above the BLAS level), the vectorization being implicit, we can make
a clearer and a much more structured code. We provide several examples in
detail. From geometry, these include computations of normal vectors and of
volume. From FEM, our main motivation, we provide examples for different
kinds of elements. In all cases, the code is strongly linked to a linear algebra
formulation. In most cases, we have left this implicit, but in some cases, as a
guide to the reader, we have made this explicit; see, e.g., Remarks 1 and 3.

All MATLAB codes used in this article can be downloaded at https://www.
mathworks.com/matlabcentral/fileexchange/130824. We note that the li-
brary itself is written in MATLAB , so it is possible to read and modify if one
desires.

3

https://www.mathworks.com/matlabcentral/fileexchange/130824
https://www.mathworks.com/matlabcentral/fileexchange/130824

2 Background from linear algebra

The present goal is to introduce the necessary tools of linear algebra to un-
derstand Matlab vectorization. We will make both natural and coordinate-
dependent constructions. When we describe the main functions of the library
in Section 2.4, we refer to the linear algebra construction underlying the func-
tions. Later, we will give examples of how to see the connection between on the
one hand the code using the library, and on the other hand the linear algebra;
see, for instance, Remarks 1 and 3. We make this connection explicit only in
select cases, though this reasoning permeates all our constructions.

Let U, V,W, ... be real vector spaces which we usually assume to be finite
dimensional. Let u ∈ U, v ∈ V, . . . denote arbitrary vectors in the given vector
spaces. As a general reference for linear algebra, we suggest [21]. See e.g. [14] for
a general exposition of tensor products, their connections with homomorphism
spaces and much more. Some of our constructions are usually formulated in a
more general setting, as in [14], but we have freely made the simplifications that
are possible since we work only with vector spaces.

2.1 Homomorphism spaces and tensor products

The linear space of the transformations from U to V is

Hom(U, V) = {linear transformations U → V }. (1)

For any vector space U , we have an isomorphism

Hom(R, U) ≃ U, ϕ 7→ ϕ(1). (2)

The dual space of U is
U∨ = Hom(U,R). (3)

There is a natural map

U → U∨∨, u 7→ evalu, evalu(ϕ) = ϕ(u). (4)

This map is an isomorphism if and only if U is finite-dimensional.
The adjoint linear transformation to ϕ ∈ Hom(U, V) is the map ϕT ∈

Hom(V ∨, U∨) given by
ϕT (f)(u) = f(ϕ(u)). (5)

In words: ϕT sends a map f from V to R to its precomposition with ϕ, thus
giving a map from U to R.
When U = V there is a special identity map IdU ∈ Hom(U,U) defined by
IdU (u) = u.

4

Basis

As we aim towards numerics, it is sensible to express vectors in terms of numbers.
This is typically achieved by choosing a basis for each vector space we consider.
A choice of basis determines several isomorphisms (again, keep in mind that
our vector spaces are finite dimensional). First some notation. If the vectors
f1, . . . , fn form a basis for the vector space U , we write

U =< f1, . . . , fn > . (6)

Let the standard basis for Rn be e1, . . . , en. Then a choice of basis for U
determines an isomorphism

U → Rn,
∑

aifi 7→
∑

aiei. (7)

It also determines a basis for the dual space U∨, namely

U∨ =< f1, . . . , fn > where f j
(∑

aifi

)
= aj , (8)

and an isomorphism

U → U∨,
∑

aifi →
∑

aif
i. (9)

Note that if we let U be an infinite dimensional vector space, U and U∨ are
not isomorphic.

The space of transformations from U =< f1, . . . , fn > to V =< g1 . . . , gm >
is isomorphic with the space of matrices of size m× n. If T is a linear transfor-
mation, it is identified with the matrix(

T (f1)|T (f2)| . . . |T (fn)
)
. (10)

Here the columns are the images of the basis vectors in U expressed in the
basis for V . If we express

∑
aifi as a column vector (ai), the image of this vector

under T is given by the matrix product
(
T (f1)|T (f2)| . . . |T (fn)

)
(ai). Also, the

adjoint from (5) corresponds to matrix transposition.

Tensor products

The tensor product of two vector spaces U and V is

U ⊗ V = {linear combinations of u⊗ v}/bilinear relations. (11)

We have isomorphisms

U ⊗ V ≃ V ⊗ U, u⊗ v 7→ v ⊗ u (12)

and
R⊗ V ≃ V, r ⊗ v 7→ rv. (13)

5

Choosing bases U =< f1, . . . , fn > and V =< g1 . . . , gm > determines the
basis

U ⊗ V =< fi ⊗ gj >, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. (14)

As a consequence, U ⊗ V is isomorphic to the space of matrices of size n ×m,
where ∑

i,j

aijfi ⊗ gj 7→ (aij)ij (15)

The map (12) corresponds to matrix transposition, and the map (13) to
considering a matrix of size 1 × m as a vector of size m, as in the MATLAB
command squeeze.

Connections between tensors and homomorphisms

Composition of linear transformations is a bilinear operation, so that there is a
natural map

Hom(U, V)⊗Hom(V,W) → Hom(U,W), ϕ⊗ ψ 7→ ψ ◦ ϕ. (16)

Given two maps ϕi ∈ Hom(Ui, Vi), i = 1, 2, we can form the tensor product
map ϕ1 ⊗ ϕ2 ∈ Hom(U1 ⊗ U2, V1 ⊗ V2) by defining

(ϕ1 ⊗ ϕ2)(u1 ⊗ u2) = ϕ(u1)⊗ ϕ(u2).

A case we will use repeatedly is when one of the two maps is the identity map.
An important connection between tensors and homomorphisms is adjunc-

tion:

Hom(U ⊗ V,W) ≃ Hom(U,Hom(V,W)), ϕ 7→ ψ,ψ(u)(v) = ϕ(u⊗ v). (17)

Here ϕ is a function of two variables, whereas ψ is a function of one variable,
whose value ψ(u) is again a function of one variable. In the special caseW = R,
combining (3) and (17) gives

(U ⊗ V)∨ ≃ Hom(U, V ∨). (18)

The following map gives an isomorphism (again, remember that we have as-
sumed finite dimension):

U ⊗ V ∨ ≃ Hom(V,U), u⊗ ϕ 7→ ψ,ψ(v) = ϕ(v)u. (19)

In particular, since any finite dimensional vector space is isomorphic to a dual
space, this allows any question about tensor products to be formulated using
homomorphisms, and vice versa. The matrix representations in (10) and (15)
are compatible under these reformulations. In the special case V = U , we find
that

U ⊗ U∨ ≃ Hom(U,U). (20)

The element in U⊗U∨ that corresponds to IdU under this isomorphism is called
the trace element. Its matrix representation is the identity matrix.

6

Bilinear forms

A linear map from U ⊗ U to R is called a bilinear form. It is customary to
write this as < −,− >∈ Hom(U ⊗ U,R), especially if it is non-degenerate. It
is seldom problematic that this notation looks similar to a vector space with a
basis of two vectors. Any bilinear form induces a map U → U∨ under the map
we get from (18):

(U ⊗ U)∨ ≃ Hom(U,U∨). (21)

Concretely, given < −,− >, the element u ∈ U is mapped to the function
< u,− >∈ U∨. This gives an isomorphism U ≃ U∨ precisely when the bilinear
form is non-degenerate. Even though there is much more to be said about this,
we will not need anything except simple special cases. In particular, if the
bilinear form is the standard inner product on Rn, and the standard basis is
used to identify Rn with its dual space, the isomorphism we get from (21) is the
identity map.

Diagonals

For any vector space U , there is a map ∆ ∈ Hom(U,U ⊗U) given by u 7→ u⊗u.
The image of this map can be thought of as a diagonal in U ⊗U . If we identify
U ⊗U with the space of n×n matrices, the image is exactly the set of diagonal
matrices. With a choice of basis U =< f1, . . . , fn >, we can also consider this
map

π ∈ Hom(U ⊗ U,U), fi ⊗ fi 7→ fi, fi ⊗ fj 7→ 0 if i ̸= j (22)

In the matrix representation of a tensor product, π picks out the diagonal as a
vector.

Higher tensors

Since tensor products and homomorphism spaces of vector spaces again are
vector spaces, everything we have talked about can be iterated to cover more
than two factors. For the applications we have in mind, we will usually need
three factors, but sometimes more. We will keep in mind the straight-forward
generalization, but focus on triple tensor products like

A = U ⊗ V ⊗W. (23)

By choosing bases for each factor, we can get a basis for the triple (or higher)
tensor product by triples (or higher) of basis elements. This allows for represent-
ing an element in A by its three-dimensional array of coefficients. In the special
case where one of the spaces is one-dimensional, we can use Equation (13) to
remove the one-dimensional space, and thus reduce the dimension of the array.
In MATLAB , this is handled by the squeeze-command.

In many cases, we will consider operations that are composed from simpler
maps only acting on two of the three factors, with the identity map used in

7

the third factor. We will also freely move between tensor formulations and
homomorphism space formulations, and mix these in spaces like U⊗Hom(V,W),
which is also represented by a three-dimensional array.

2.2 Indexing and page-wise operations

We will consider a number of maps, used in the implementation, in their abstract
setting. A common feature in many of these examples is that we want to consider
one tensor factorW as a method for indexing, and then perform ordinary matrix
operations on the other factors. When using array representations, we can think
of this as performing operations on layers of the array. Not much is lost if the
reader wishes to think about W = Rn, but we will sometimes need a different
interpretation of W .

Copying a vector space

Consider the map 1n ∈ Hom(R,Rn) that sends 1 to the vector (1, 1, . . . , 1)T .
For any vector space U , we get a map:

copy = Id⊗1n : U ≃ U ⊗ R → U ⊗ Rn. (24)

We can think of this as giving n copies of an element in U . E.g. if U ≃ Rm

consists of column vectors, each column vector is sent to the matrix all of whose
columns are equal to the original vector.
Similarly, we can extract the part corresponding to a given index by tensoring
with the map Rn → R that is given by the dual basis element in R∨. For
instance, the last part can be extracted by

last = Id⊗(0 0 . . . 0 1) : U ⊗ Rn → U ⊗ R ≃ U. (25)

Page-wise matrix multiplication

We will consider vector spaces A,B where

A = Hom(V,U)⊗W1, B = Hom(U,X)⊗W2. (26)

Using (12) and (16) we get a map

A⊗ B → Hom(U,X)⊗W1 ⊗W2 (27)

If the case where W =W1 =W2 and have a choice of basis for W , we can then
apply the map π defined in 22 to get a map

Hom(V,U)⊗W ⊗Hom(U,X)⊗W → Hom(V,X)⊗W. (28)

We will think about this as a page-wise matrix multiplication: For a fixed ba-
sis element of W , the corresponding map is just ordinary matrix multiplication,
which is then extended linearly. This interpretation is exactly what happens
when we represent A and B as three-dimensional arrays in MATLAB and use
the command pagemtimes.

8

Page-wise matrix transpose

This has two flavors, one with homomorphisms and one with tensors:

Hom(U, V)⊗W → Hom(V ∨, U∨)⊗W (29)

U ⊗ V ⊗W → V ⊗ U ⊗W (30)

By choosing bases and representing these structures by three-dimensional
arrays in MATLAB , this is the same as applying the command pagetranspose.

Page-wise scalar multiplication

As before, we considerW primarily to be a an indexing space with a fixed basis.
In a space U ⊗W , we want to perform scalar multiplication by some number in
each copy of U indexed by a basis element in W . The collection of these scalars
can be thought of as a vector in W , so the scalar multiplication is then really
the map

IdU ⊗π : U ⊗W ⊗W → U ⊗W. (31)

Here π is the map from (22). Whether the elements in U are represented as
vectors, matrices or higher tensors is immaterial here.

Page-wise bilinear form evaluation

The page-wise version of the map (21) induced from a bilinear form is a map
like

(U ⊗ U)∨ ⊗W ≃ Hom(U,U∨)⊗W. (32)

Page-wise evaluation of such a bilinear form means that we consider a map with
two vector-matrix multiplications, which we can think of as

Hom(R, U)⊗Hom(U,U∨)⊗Hom(U∨,R)⊗W → R⊗W ≃W.

Hadamard or element-wise operations

For any vector space U we can consider the map

U ⊗ U∨ ≃ U∨ ⊗ U ≃ Hom(U,R)⊗Hom(R, U) → Hom(U,U). (33)

If we have chosen a basis for U , we can identify U∨ and U , and also Hom(U,U)
with U⊗U . We can then compose the above map with π to get a map U⊗U →
U . If two vectors are expressed in the basis as a = (a1, . . . , an)

T and b =
(b1, . . . , bn)

T , the image of this pair of vectors is expressed as (a1b1, . . . , anbn)
T .

The reason that we introduce the decomposition above is that it shows naturally
the connection with matrix multiplication:

a⊗ b 7→ a⊗ bT =

a1...
an

⊗
(
b1 . . . bn

)
7→

a1b1 . . . a1bn
...

. . .
...

anb1 . . . anbn

 (34)

9

Finally, the map π extracts the vector of diagonal elements. Again, whether the
elements in U are represented as vectors, matrices or higher tensors is imma-
terial here, and also (after composing with π) the choice of order of a and b is
immaterial.

2.3 Determinants and inverses

We could present this theory in the framework of multilinear algebra and alter-
nating forms, but for the applications we have in mind, a more down-to-earth
approach will suffice. The cost is, though, that the linearity properties are less
obvious.

There are several equivalent ways to define determinants. The quickest is
maybe to define, for a linear transformation in HomC(U,U) over C, the deter-
minant as the product of the eigenvalues (with algebraic multiplicities). Then
we know that if the space is real, the determinant is a real number, even though
it can have complex eigenvalues. We will think of the determinant as a map

det : Hom(U,U) → R. (35)

With a choice of basis, this can be computed as ordinary for matrices, and
therefore can also be though of as a map from e.g. U ⊗ U to the real numbers.

Page-wise determinants

If we consider the space Hom(U,U)⊗W , where W has a chosen basis, we can
compute the determinant for each page and think of the determinant as a map

detW : Hom(U,U)⊗W →W. (36)

Inverses and page-wise inverses

The subset
GLU = det−1(R \ 0) ⊂ Hom(U,U) (37)

is a group under composition, the general linear group of U . The inverse is
the ordinary inverse of a matrix if we have a choice of basis. In the space
Hom(U,U)⊗W , whereW has a chosen basis, we can also compute inverses page
by page in the subset where the determinant is non-zero in each coordinate. This
subset is the inverse image det−1

W (W ∗) of the set W ∗ ⊂ W of elements which
are non-zero in each coordinate under the map (36). This yields a map (of sets
that can be represented as three-dimensional arrays)

inverseW : det−1
W (W ∗) → det−1

W (W ∗). (38)

In MATLAB , this map is given by the command pageinv.

10

Transforming normal vectors

Consider a normal vector n to a boundary component of a polyhedral domain,
and let v be any vector in (or parallel to) that boundary component, i.e. n·v = 0,
or as a matrix product, nT v = 0. Let A be an invertible matrix transforming
the domain to another domain, so that the vector Av lies in the corresponding
boundary component of the new domain. We want to transform n by a matrix
X so that Xn is again a normal vector. So we want:

(Xn) · (Av) = 0 ⇐⇒
(Xn)TAv = 0 ⇐⇒
nTXTAv = 0

We see that setting
X = (A−1)T (39)

works:
nTXTAv = nT ((A−1)T)TAv = nTA−1Av = nT v = 0

To conclude, the normal vector is multiplied by (A−1)T in order to get the new
normal vector. This can of course also be computed page-wise.

2.4 A vectorization library

The vectorized functions of the previous section are implemented in a dedicated
library. The multiplication is realized by the following functions:

amtam(amx,ama)

avtam(avx,ama)

avtav(ava,avb)

astam(asx,ama)

where: ’am’ stands for ’array of matrices’, ’av’ for array of vectors, ’as’ for array
of scalars and ’t’ for the transpose operator. For instance, the original function
’amtam(amx,ama)’ implements the page-wise of product of an array of ma-
trices ’amx’ and of the page-wise transpose of an array of matrices ’ama’. It
is overriden by a new function ’pagemtimes(amx,’transpose’,ama,’none’)’.
For each of these functions, we have a direct link to the underlying linear al-
gebra operations described earlier. When making this connections explicit, we
will always have chosen bases for the vector spaces considered, so there is now
no reason to distinguish between a space and its dual, and transposes can be
omitted.
As an example, consider astam(asx,ama), which implements page-wise scalar
multiplication as in (31). We can think of the two inputs as scalars and matrices
indexed in the same way. If there are n indices and the matrices have size k×m,
this means that in (31) we used W = Rn, U = Rk ⊗ Rm, astam is the map

IdRk⊗Rm ⊗π : Rk ⊗ Rm ⊗ Rn ⊗ Rn → Rk ⊗ Rm ⊗ Rn. (40)

11

Here the first three tensor factors on the left correspond to ama and the fourth
to asx. All the other functions in the library can be considered in a similar
manner.
Additionally, multiplications of arrays of vectors or matrices with a single object
(matrix of vector) are needed. We have the following functions:

amsm(ama,smx)

amsv(ama,svx)

smamt(smx,ama)

svamt(svx,ama)

where: ’sm’ stands for a single matrix and ’sv’ for a single vector. This is im-
plemented as creating copies of single objects and utilizing the functions above.
All these operations follow from similar linear algebra constructions, i.e. by
composing (24), (28) and (30) for suitable spaces. Formally, we also need to
permute factors before applying these maps, i.e. by (repeatedly) using (12).
Page-wise transpose and page-wise inverse are implemented by functions:

aminv(ama)

amt(ama)

identical to MATLAB functions pageinv, pagemtranspose. See also (38) and
(30), respectively. A page-wise determinant, as in (36), is implemented as

amdet(ama)

Finally, a page-wise evaluation of a bilinear form, see (2.2), is implemented as

avtamav(ava,ama,avb)

Historical development

The original MATLAB library was developed in 2003 in [19] and later exploited
in finite element assemblies [3, 20]. Some original library functions were op-
timized due to the implicit (also called arithmetic or broadcasting) expansion
feature in R2016b. The additional speedup was achieved due to new page-wise
functions in R2020b. For the convenience of the user, we provide three versions
of libraries containing the above-described functions:

• The original library ’library vectorization’.

• The updated library ’library vectorization implicitExpansion’ con-
tains the same functions using the MATLAB implicit expansion intro-
duced in R2016b.

• The newest library ’library vectorization pageOperations’ incorpo-
rate MATLAB functions ’pagemtimes’, ’pagetranspose’ and ’pageinv’ in-
troduced in R2020b.

12

Application of the latest library to existing codes can shorten evaluation times.

library
original impexp page

level K size K [s] K [s] K [s]
0 64 1.0e-02 1.1e-02 6.5e-03
1 343 3.7e-03 3.3e-03 2.4e-03
2 2197 1.5e-02 1.4e-02 9.8e-03
3 15625 1.4e-01 8.8e-02 7.3e-02
4 117649 1.0e+00 6.5e-01 5.0e-01
5 912673 1.3e+01 1.1e+01 7.3e+00

Table 1: 3D assembly of stiffness matrix K using P1 tetrahedral elements.
Recomputed from [20].

An example that recomputes Table 1 of [20] is provided in Table 1. The
utilization of the newest library provides a speedup factor of around 2. Assem-
bly times were obtained on a MacBook Air (M1 processor, 2020) with 16 GB
memory running MATLAB R2023a.

3 Prototype codes and performance comparison

We assume a three-dimensional (dim = 3) domain Ω approximated by its trian-
gulation T into closed tetrahedral elements in the sense of Ciarlet [6]. Elements
are geometrically specified by their nodes (or vertices) belonging to the set of
nodes N . Nodes are also clustered into elements’ edges and faces. Imported
meshes are provided by their own functions or created by a Partial Differen-
tial Equation Toolbox of MATLAB . As an example, we consider a sequence of
tetrahedral meshes corresponding to the discretization of the spherical domain
Ω of radius r = 1, see Figure 1.

Figure 1: Example of 3D uniformly refined tetrahedral meshes (levels 1, 2, 3)
of a sphere domain.

Using the script

13

paramsMesh . l e v e l = l e v e l ;
paramsMesh . r = 1 ;
[coords , elems] = mesh sphere (paramsMesh) ;

for a particular nonnegative integer level, nodes coordinates and tetrahedral
elements matrices ’coords’ and ’elems’ are extracted. Numbers of nodes and
elements are obtained by

nn = s i z e (coords , 1) ; % number o f nodes
ne = s i z e (elems , 1) ; % number o f e lements

Geometrical properties of spherical meshes are given in the second and third
column of Table 2.

3.1 Structures ’coords3D’ and ’vectors3D’

The first step is an assembly of two 3D matrices. An object

′coords3D′ of size dim× d× |T |

contains the nodes coordinates of every element. Here, dim denotes the space
dimension (2 or 3), d is the number of nodes of a single element (3 or 4), and
|T | denotes the number of elements. In case of 3D tetrahedra ’coords3D’ is of
size 3× 4× |T |. Alternatively, it can also be used for storing nodes coordinates
of boundary faces which are necessary for the evaluation of the surface integral
of a vector field over the domain boundary. In this case,

′coords3D′ of size 3× 3× |Fb| ,

where |Fb| denotes the number of boundary faces. The second object

′vectors3D′ of size dim× (d− 1)× |T |

stores for every element three vectors pointing from the last local node to the
first three local nodes. Similarly to ’coords3D’, it can also be used for storing
vectors of boundary faces which implies this matrix would be of size 3×2×|Fb|.
Both objects are generated by the function

1 f unc t i on [coords3D , vectors3D] = create coords3D (coords , elems)
2 dim = s i z e (coords , 2) ; % s p a t i a l dimension
3 d = s i z e (elems , 2) ;
4 ne = s i z e (elems , 1) ; % number o f e lements
5 coords3D = ze ro s (dim , d , ne) ; % 3D matrix o f c oo rd ina t e s
6 f o r j = 1 : d
7 coords3D (: , j , :) = coords (elems (: , j) , :) ’ ;
8 end
9 i f nargout==2

10 vectors3D = coords3D (: , 1 : end −1 , :) − coords3D (: , end , :) ;
11 end

Code 1: The structures ’coords3D’ and ’vectors3D’.

14

Remark 1. The assembly construction of ’coords3D’ from the matrices ’elems’
and ’coords’ does not really have a linear algebra interpretation, as the ma-
trix ’elems’ consists of indices. On the other hand, the operation producing
’vectors3D’ from ’coords3D’ can be cast in a linear algebra formulation.
First extract the last coordinate by using the map last from (25):

Id⊗ last⊗ Id : Rdim ⊗ Rd ⊗ R|T | → Rdim ⊗ R⊗ R|T | (41)

Then make copies of this using the map copy from (24):

Id⊗ copy⊗ Id : Rdim ⊗ R⊗ R|T | → Rdim ⊗ Rd ⊗ R|T | (42)

If we now compute
(Id− copy ◦ last)(coords3D), (43)

we will get an element in Rdim ⊗ Rd ⊗ R|T | where the last index in the second
factor consists only of zeroes (i.e. last coordinate minus last coordinate). Finally,
we extract everything but this last coordinate by the map (for d = 4)

Id⊗

1 0 0 0
0 1 0 0
0 0 1 0

⊗ Id (44)

to retain only the interesting part as an element ’vectors3D’ in Rdim⊗Rd−1⊗
R|T |.

3.2 Volumes and normals evaluation

A reference tetrahedron is defined by four nodes

N0
1 = (0, 0, 0), N0

2 = (1, 0, 0), N0
3 = (0, 1, 0), N0

4 = (0, 0, 1)

and shown in the left part of Figure 2 It has four faces with outer normals that
can be stored as columns of a matrix

normalsRef =

−1 0 0 1
0 −1 0 1
0 0 −1 1

 .

Example 1. For a tetrahedron with nodes

N1 =
(7, 3,−1)

4
, N2 =

(7,−2, 4)

4
, N3 =

(10, 3, 4)

4
, N4 =

(4, 3, 4)

4
,

shown in the right part of Figure 2, the structure ’vectors3D’ is represented
by a matrix (for a single tetrahedron)

1

4

 3 3 6
0 −5 0

−5 0 0

 . (45)

15

Figure 2: Normals of the reference tetrahedron (left) and normals of a single
regular tetrahedron (right).

The determinant of the matrix (45) divided by 6 is equal to −25/64 and the ab-
solute value of this number corresponds to the tetrahedron volume. To compute
normals of the tetrahedron (cf. (39)), the formula

normals3D = (vectors3D)
−T · normalsRef (46)

is applied and yields

normals3D =

 0 0 −2/3 2/3
0 4/5 −2/5 −2/5

4/5 0 −2/5 −2/5

 .

It should be noted that columns of normals3D are not normalized.

Given a general tetrahedral mesh and its corresponding structure ’vectors3D’
it is possible to obtain volumes of all tetrahedra at once by a simple script

dim=3; % space dimension
meass = amdet (vectors3D) / f a c t o r i a l (dim) ; % a l l volumes
meas = norm(meass , 1) ; % sum of volumes

and all normals by

vectors3D inv = aminv (vectors3D) ; % a l l i n v e r s e s
normals3D = amsm(amt(vectors3D inv) , normalsRef) ; % a l l normals

As an example, Table 2 provides times to evaluate the volume of a unit
sphere. We observe a quadratic convergence with respect to the mesh size to
the exact volume 4

3π ≈ 4.188790. Note that the last column ”time to evaluate”
also includes the times for the mesh generation. The table can be generated by
the script

16

benchmark1_volumes_sphere

Consequently, the script

benchmark2_normals

evaluates normals for all faces of the same sphere domain for different levels of
mesh refinement. Table 3 provides the corresponding computational times.

mesh
level

number of
elements

number of
nodes

volume error time to
evaluate

1 384 125 3.932819 2.56e-01 1.31e-02
2 3072 729 4.123099 6.57e-02 3.12e-03
3 24576 4913 4.172259 1.65e-02 7.22e-03
4 196608 35937 4.184651 4.14e-03 3.94e-02
5 1572864 274625 4.187755 1.04e-03 3.32e-01
6 12582912 2146689 4.188531 2.59e-04 4.42e+00

Table 2: Volume evaluation of a sphere domain.

mesh
level

number of
elements

number of
nodes

number of
all faces

number of
boundary

faces

time to
evaluate
all faces

1 384 125 864 192 1.76e-02
2 3072 729 6528 768 2.99e-03
3 24576 4913 50688 3072 7.29e-03
4 196608 35937 399360 12288 7.67e-02
5 1572864 274625 3170304 49152 7.35e-01
6 12582912 2146689 25264128 196608 1.09e+01

Table 3: Normals evaluation of a sphere domain.

Finally, the script

example_normals

generates a 3D mesh of the pyramid, sphere, and torus together with outer
normals, whose pictures are shown in Figure 3. There is an option to compute
either normals to all faces (including internal element faces) or only normals
corresponding to boundary faces.

3.3 Volume integrals

Provided a domain Ω and a mass density function ρ : Ω → R it is practical to
compute an integral

m =

∫
Ω

ρ(x) dx

17

Figure 3: Examples of 3D meshes and underlying outer normals.

denoting the total mass of Ω. Given the matrices ’coords’ and ’elems’ for a
specific triangulation of Ω and the mass density function, one can evaluate the
total mass of the body using the code below

1 gqo = 3 ; % a quadrature order
2 [ip ,w] = Gauss po ints (gqo , dim) ; % ba ryc en t r i c coo rd ina t e s o f

quadr . po in t s and weights
3 coords3D = create coords3D (coords , elems) ;
4 X ip = amsm(coords3D , ip) ; % 3 x nip x ne
5 rho = @(X) X(1 , : , :) . ˆ2 + X(2 , : , :) . ˆ 2 ; % mass dens i ty
6 mass = GI(rho (X ip) ,w, volumes) ; % the t o t a l mass

Code 2: Gauss quadrature for a volume integral.

The procedure consists of the following steps:

• (line 1) the choice of (Gauss) quadrature order which in general depends
on the mass density function;

• (line 2) a setup of quadrature points and their weights on a reference
element;

• (line 3) a construction of a 3D matrix ’coords3D’ introduced in Sec. 3.1;

• (line 4) a construction of a 3D matrix ’X ip’ of size dim×nip×|T | which
for the k-th element stores the coordinates of all Gauss nodes (nip denotes
their number);

• (line 5) definition of a mass density function ρ(x) = x21 + x22;

• (line 6) Gauss integration performed by the function ’GI’ explained further
in Sec. 3.4.

Remark 2. Given the code above, one can also easily evaluate the first and
the second moment of the area given by

Mi =

∫
Ω

xi ρ(x) dx, Mij =

∫
Ω

xi xj ρ(x) dx. (47)

18

It can be done by modifying the last line above (e.g.) with one of the lines
below:

M1 = GI(rho (X ip) .∗ X ip (1 , : , :) ,w, volumes) ;
M11 = GI(rho (X ip) .∗ X ip (1 , : , :) . ˆ 2 ,w, volumes) ;
M12 = GI(rho (X ip) .∗ X ip (1 , : , :) .∗ X ip (2 , : , :) ,w, volumes) ;

The moments are used for the computation of the mass center coordinates

xc1 =M1/m, xc2 =M2/m, xc3 =M3/m

or the moments of inertia to express the rotational energy of a domain. A
benchmark

benchmark3_volume_integral

performs several evaluations of the moment of inertia around the x-axis

I1 =

∫
Ω

ρ(x)(x22 + x23) dx =M22 +M33 (48)

for a torus domain shown in Fig. 4. Assuming a torus domain given by

x1 = (R+ r cos v) cosu,

x2 = r sin v,

x3 = (R+ r cos v) sinu

for parameters u, v ∈ (0, 2π), r ∈ (0, 1/4) and R = 1 and the mass density
ρ(x, y, z) = x2 + y2 one can evaluate

I1 =
2645

131072
π2 ≈ 0.199166.

Table (4) provides evaluation times for different levels of mesh refinement using
the third order of the Gauss quadrature.

3.4 ’GI’ function

The key tool of the code above is the ’GI’ function which evaluates an integral
of a function or a vector field using Gauss quadrature. It is given by the code
below

1 f unc t i on value = GI(f ip ,w, s i z e s , normals)
2 f e l ems = reshape (amsv(f ip ,w) , s i z e (f i p , 1) , s i z e (f i p , 3)) ’ ;
3 i f narg in==4
4 f e l ems = sum(f e l ems .∗ normals , 2) ; % s c a l a r product
5 end
6 value = sum(s i z e s .∗ f e l ems) ; % the i n t e g r a l va lue

Code 3: The ’GI’ function.

19

Figure 4: A torus domain rotating around x-axis.

mesh
level

number of
elements

number of
nodes

value of I1 error time [s]

0 96 64 0.108588 9.06e-02 6.11e-03
1 576 216 0.169520 2.96e-02 1.33e-03
2 4992 1300 0.191582 7.58e-03 2.68e-03
3 38400 8100 0.197217 1.95e-03 1.29e-02
4 307200 57800 0.198677 4.89e-04 5.23e-02
5 2482176 439956 0.199044 1.22e-04 6.03e-01
6 19759104 3396900 0.199136 3.05e-05 1.31e+01

Table 4: Evaluation of I1 for a torus domain using volume integration.

mesh
level

number of
bnd. faces

number of
bnd. nodes

value of I1 error time [s]

0 128 64 0.108565 9.06e-02 1.23e-02
1 384 192 0.169514 2.97e-02 1.07e-02
2 1664 832 0.191581 7.58e-03 6.53e-03
3 6400 3200 0.197217 1.95e-03 6.79e-03
4 25600 12800 0.198677 4.89e-04 2.10e-02
5 103424 51712 0.199044 1.22e-04 6.17e-02
6 411648 205824 0.199136 3.05e-05 2.68e-01

Table 5: Evaluation of I1 for a torus domain using a surface integration.

20

and has the following inputs:

• ’fip’ is a 3D matrix of size d × nip × |T | storing for every element the
values of f(x) in all Gauss points;

• ’w’ is a vector of Gaussian quadrature weights;

• ’sizes’ is a vector of elements’ sizes (lengths for 1D, areas for 2D, volumes
for 3D);

• ’normals’ is a matrix of size |T | × dim storing outer normals of all el-
ements. It must be provided for the integration of a vector field over a
hyperplane.

The body of this function consists of the following steps:

• (line 2) evaluating a matrix ’f elems’ of size |T | × d which for every
element and every component of f(x) stores its averaged value over the
Gauss points with respect to the corresponding weights;

• (line 4) if f(x) is a vector field, the scalar products with the corresponding
normals are calculated and summed over the components of f(x). In this
case the relation d = dim holds;

• (line 6) the final value of the integral is given by the scalar product of
’f elems’ and ’sizes’. At this stage, ’f elems’ is always of size ne× 1.

The main advantage of this function lies in the ability to integrate both scalar
and vector functions in any spatial dimension.

3.5 Surface integrals

Given a domain Ω with a piecewise smooth boundary ∂Ω and a vector field

F (x) =
(
F1(x), F2(x), F3(x)

)
, x ∈ ∂Ω ,

one can use boundary normals of Section 3.2 to evaluate∫
∂Ω

F (x) · −→n dS . (49)

Since the divergence theorem reforms (49) by∫
∂Ω

F (x) · −→n dS =

∫
Ω

∇ · F (x) dx (50)

it is possible to recompute all volume integrals of Sec. 3.3 by surface integrals.
For a vector field (see Fig. 5)

F (x) =
(x31 (x22 + x23)

3
,
x52
5
,
x22 x

3
3

3

)
(51)

21

1

0.5

0

-0.5

-1

0.2
0 -1

-0.5

-0.2

0

0.5

1

Figure 5: Vector field (51) depicted on a torus domain.

one can easily show

∇ · F (x) = (x21 + x22) (x
2
2 + x23) = ρ(x) (x22 + x23).

Therefore the integral (49) for F (x) from (51) corresponds to the moment of
inertia I1 of (48). The code below evaluates (49):

1 gqo = 3 ; % a quadrature order
2 [ip ,w] = Gauss po ints (gqo , dim−1) ; % baryc en t r i c coo rd ina t e s o f

quadr . po in t s and weights
3 coords3D = create coords3D (coords , facesB) ;
4 X ip = amsm(coords3D , ip) ;
5 F=@(X) [X(1 , : , :) . ˆ 2 ; X(2 , : , :) . ˆ 2 ; X(3 , : , :) . ˆ 2] ; % vector f i e l d
6 value = GI(F(X ip) ,w, areasB , normals) ;

Code 4: Gauss quadrature for a surface integral.

Here, boundary faces ’facesB’ together with their areas ’areasB’ are used.
The evaluation of I1 over a surface of a torus is done in benchmark

22

benchmark4_surface_integral

Evaluation times are provided in Tab. 5. Clearly, the numerical values of
I1 as well as the corresponding errors are the same as in Tab. 4. However,
evaluation of the surface integral is significantly faster than the corresponding
volume integral.

3.6 Finite element method

The finite element method (FEM) is a numerical tool for the solution of partial
differential equations [6]. We can easily apply our vectorization concepts to
the class of iso-parametric elements. A reference element in local coordinates
ξ = (ξ1, ξ2, ξ3) is transformed to a real finite element in global coordinates
x = (x1, x2, x3) with use of shape functions {φi}. Then mapping between
the global and the reference coordinate systems can be given by the following
relation called the iso-parametric property,

x1 =
∑
i

φi(ξ)x1,i , x2 =
∑
i

φi(ξ)x2,i , x3 =
∑
i

φi(ξ)x3,i .

Here, xi = (x1,i, x2,i, x3,i) is the i-th point on a general element in the global
coordinate system corresponding to the shape function φi. The formula above
is defined in three-dimensional space only but can be easily reduced to two-
dimensional space as well. Consequently, the same codes are going to work
both in two- and three-space dimensions unless stated otherwise.

The shape functions are defined on reference elements. We consider lin-
ear (known as P1) and quadratic (known as P2) shape functions {φi} defined
on a reference triangle or a reference tetrahedron. The reference triangle is
given by three vertices ξ1 = (0, 0), ξ2 = (1, 0), ξ3 = (0, 1). For the construc-
tion of quadratic shape functions, additional vertices ξ4, . . . , ξ6 located at the
midpoints of the edges are needed. The reference tetrahedron is given by four
vertices ξ1 = (0, 0, 0), ξ2 = (1, 0, 0), ξ3 = (0, 1, 0), ξ4 = (0, 0, 1) with additional
vertices ξ5, . . . , ξ10 for the construction of quadratic shape functions. All shape
functions {φi} satisfy the pointwise equality φi(ξ

j) = δji , where δ denotes the
Kronecker symbol. A function

shape = shapefun (point,etype)

evaluates value of all shape functions in any number of points ’points’ in the
reference coordinates system. Similarly, a function

dshape = shapeder (point,etype)

evaluates values of their derivatives. An option ’etype’ specifies whether linear
’etype=’P1’’ or quadratic ’etype=’P2’’ shape functions are considered.
Derivatives with respect to the global coordinates are easily calculated from the
derivatives with respect to the reference coordinates using the Jacobian matrix.
It is performed in the following function:

23

1 f unc t i on [dphi , det j , j a c] = phider (coords3D , ip , etype)
2

3 [dim , nlb , ne] = s i z e (coords3D) ;
4 nip = s i z e (ip , 2) ; % number o f i n t e g r a t i o n po in t s
5

6 dshape = shapeder (ip , etype) ; % l o c a l d e r i v a t i v e s
7

8 dphi = ze ro s (dim , nlb , nip , ne) ; % a l l d e r i v a t i v e s
9 de t j = ze ro s (nip , ne) ; % a l l Jacobians

10 j a c = ze ro s (dim , dim , nip , ne) ; % a l l Jacobi matr i ce s
11

12 f o r i = 1 : nip
13 t j a c = smamt(dshape (: , : , i) , coords3D) ; % dim x dim x ne
14 [t j a c inv , t j a cd e t] = aminv (t j a c) ; % i nv e r s e s and dets
15 dphi (: , : , i , :) = amsm(t j a c inv , dshape (: , : , i)) ;
16 de t j (i , :) = abs (t j a cd e t) ;
17 j a c (: , : , i , :) = t j a c ;
18 end

Code 5: The function ’phider’ evaluating derivatives of shape functions on all
elements. Works both in 2D/3D.

The input is provided as the array of matrices ’coords3D’. Additionally, the
integration points’ values ’ip’ are specified by positions in the local coordinate
system and ’etype’ the type of element considered. The output objects are:

• ’dphi’ is a 4D array containing derivatives of all shape functions in all
integration points in all elements;

• ’detj’ is a matrix storing Jacobians in all integration points on every
element;

• ’jac’ is a 4D array containing Jacobi matrices in all integration points in
all elements.

Remark 3. The loop in Code 5 is only over the relatively low number of
integration points, and is therefore not so costly. We could in principle, however,
also dispose of this loop using the linear algebra setup. Here is a brief sketch
of how to do this. Start from ’dshape’, considered as an element in Rdim ⊗
Rnlb ⊗ Rnip, and ’coords3D’, considered as an element in Rdim ⊗ Rnlb ⊗ Rne.
By permuting tensor factors (the map from (30) used repeatedly) and applying
page-wise matrix multiplication (the map from (27) with W1 = Rnip, W2 =
Rne), we get the page-wise construction of ’jac’. To compute ’jacinv’ and ’detj’,
we use the page-wise inverse (38) and determinant (36) with W = Rnip ⊗ Rne.
Finally, ’dphi’ is computed from ’dshape’ and ’jacinv’ by permuting tensor
factors, performing page-wise matrix multiplication, and using the diagonal map
(22), also in a page-wise manner. The resulting ’dphi’ is then an element in
Rdim ⊗ Rnlb ⊗ Rnip ⊗ Rne.

24

Since the loops in the coming code listings are of a similar nature, we will not
make the linear algebra connection explicit.

We explain how to assemble bilinear forms in the discretization of second-
order elliptic problems. Then we typically need to construct a stiffness matrix
K and a mass matrix M defined as

Kij =

∫
Ω

cK(x)∇Φi · ∇Φj dx, (52)

Mij =

∫
Ω

cM (x)Φi Φj dx, (53)

where ∇ denotes the gradient operator and scalar coefficient functions cK , cM :
Ω → R. This extends the functionality of [20], where no coefficients (eg. cK =
cM = 1) were considered. The vectorized implementation is shown below:

1 f unc t i on [K,K3D] = s t i f f n e s s ma t r i xP1 (elems , coords , c o e f f s f u n)
2

3 dim = s i z e (coords , 2) ; % problem dimension
4 ne = s i z e (elems , 1) ; % number o f e lements
5 nn = s i z e (coords , 1) ; % number o f nodes
6

7 gqo = 2 ; [ip ,w, nip] = intquad (gqo , dim) ;
8 c o e f f s = c o e f f s i n i p (coords , elems , c o e f f s f u n , gqo) ; % nip x ne
9

10 coords3D = create coords3D (coords , elems) ; % dim x nlb x ne
11 [dphi , d e t j] = phider (coords3D , ip ’ , ’P1 ’) ;
12

13 nlb = dim +1; % number o f l o c a l ba s i c f unc t i on s
14

15 K3D = ze ro s (nlb , nlb , ne) ;
16 f o r i =1: nip % loop over a l l IPs
17 dphi3D = squeeze (dphi (: , : , i , :)) ; % in one IP
18 gradTgrad i = amtam(dphi3D , dphi3D) ; % b i l i n e a r form

without c o e f f i c i e n t
19 i n t e g r and i = astam (c o e f f s (i , :) , gradTgrad i) ; % b i l i n e a r

form with c o e f f i c i e n t
20 K3D = K3D + w(i) ∗astam (de t j (i , :) , i n t e g r and i) ;
21 end
22

23 Y3D = reshape (repmat (elems , 1 , nlb) ’ , nlb , nlb , ne) ;
24 X3D = amt(Y3D) ;
25 K = spar s e (X3D(:) ,Y3D(:) ,K3D(:) ,nn , nn) ;

Code 6: Scalar stiffness matrix for P1 elements.

Code 6 works for both triangular and tetrahedral elements. The order of inte-
gration ’gqo’ can be specified in line 7. The corresponding integration (Gauss)
points ’ip’ and weights ’w’ are then evaluated automatically for a reference
element. If a coefficient function cK provided by the handle ’coeffs fun’ is

25

globally constant, element-wise constant, or element-wise linear, it is enough
to choose ’gqo=1’. Then only one integration point is enough to ensure the
exact integration of the stiffness matrix. In other cases, ’gqo’ should be chosen
as 2 or higher. The only loop of the code starting at line 16 runs over the
number of integration points ’nip’. It sums up the local matrices evaluated at
each integration point. The local matrices are assembled in all elements at once
and stored in a 3D array ’K3D’ which can be extracted as the second function
output. A straightforward modification of the code provides extensions to P2
elements and to mass matrices.

1 f unc t i on [M,M3D] = mass matrixP2 (elems , coords , c o e f f s f u n)
2

3 dim = s i z e (coords , 2) ; % problem dimension
4 ne = s i z e (elems , 1) ; % number o f e lements
5 nn = s i z e (coords , 1) ; % number o f a l l nodes
6 nnP1 = max(max(elems (: , 1 : dim+1))) ; % number o f nodes exc lud ing

midedges
7

8 gqo = 4 ; [ip ,w, nip] = intquad (gqo , dim) ;
9 c o e f f s = c o e f f s i n i p (coords (1 : nnP1 , :) , e lems (: , 1 : dim+1) ,

c o e f f s f u n , gqo) ; % nip x ne
10

11 s i z e s = s i z e s o f e l em e n t s (coords (1 : nnP1 , :) , e lems (: , 1 : dim+1)) ;
12 de t j ab s = s i z e s ∗ f a c t o r i a l (dim) ; % nip x ne
13

14 nlb = (dim+1) + nchoosek (dim+1 ,2) ; % number o f l o c a l ba s i c
f un c t i on s

15

16 phiRef = shapefun (ip ’ , ’P2 ’) ;
17 M3D = ze ro s (nlb , nlb , ne) ;
18 f o r i =1: nip % loop over a l l IPs
19 phi2D = phiRef (: , i) ∗phiRef (: , i) ’ ; % in one IP
20 ph iTphi i = repmat (phi2D , 1 , 1 , ne) ; % b i l i n e a r form without

c o e f f i c i e n t
21 i n t e g r and i = astam (c o e f f s (i , :) , ph iTph i i) ; % b i l i n e a r

form with c o e f f i c i e n t
22 M3D = M3D + w(i) ∗astam (det j abs , i n t e g r and i) ;
23 end
24

25 Y3D = reshape (repmat (elems , 1 , nlb) ’ , nlb , nlb , ne) ;
26 X3D = amt(Y3D) ;
27 M = spar se (X3D(:) ,Y3D(:) ,M3D(:) ,nn , nn) ;

Code 7: Scalar mass matrix for P2 elements.

Assembly of mass matrix for P2 elements in Code 7 has similar structure as the
Code 6. It works for both triangular and tetrahedral elements as well. In this
case the minimum ’gqo=2’ is required even for a globally constant, element-
wise constant, or element-wise linear coefficient function cK . In other cases,
’gqo’ should be chosen as 4 or higher. The only loop starting at line 18 running

26

over the number of integration points has the same structure as in Code 6. Here
bilinear forms are given by the multiplication of basis functions instead of their
gradients. Therefore, ’phi2D’ in line 19 is two-dimensional, while ’dphi3D’ in
line 17 of 6 is three-dimensional. Moreover, jacobians denoted by ’detj’ in line
22 are constant on every element, and therefore are one-dimensional.
Altogether, we have two pairs of functions:

[K, K3D] = stiffness_matrixP1(elems,coords,coeffs_fun);

[M, M3D] = mass_matrixP1(elems,coords,coeffs_fun);

[K, K3D] = stiffness_matrixP2(elems,coords,coeffs_fun);

[M, M3D] = mass_matrixP2(elems,coords,coeffs_fun);

The performance of the above assemblies is further discussed for triangulations
of a 2D unit square domain and a 3D unit cube domain shown in Figure 6.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0
1

0.2

0.8

0.4

1

0.6

0.6 0.8

0.8

0.60.4

1

0.4
0.2 0.2

0 0

Figure 6: Domains and their triangulations. The edges middlepoints (black
color) are important in the construction of P2 shape functions.

Additionally, we evaluate quadratic forms

IK :=

∫
Ω

cK(x)
(
∇v(x) · ∇v(x)

)
dx , IM :=

∫
Ω

cM (x)
(
v(x)

)2
dx (54)

for given coefficient functions cK(x), cM (x) and a given testing function v(x).
The above values are approximated by discretized quadratic forms

IK ≈ ṽTKṽ, IM ≈ ṽTMṽ, (55)

where ṽ is a vector of coefficients representing v(x) in P1 or P2 basis. The error
of such approximation is measured by absolute errors

eK =
∣∣ṽTKṽ − IK

∣∣ , eM =
∣∣ṽTMṽ − IM

∣∣ . (56)

27

level K, M size eK eM K [s] M [s]
7 33025 7.30e-04 7.05e-05 8.64e-02 3.96e-02
8 131585 1.83e-04 1.76e-05 2.48e-01 1.20e-01
9 525313 4.56e-05 4.41e-06 9.53e-01 5.25e-01
10 2099201 1.14e-05 1.10e-06 4.82e+00 2.78e+00
11 8392705 2.85e-06 2.75e-07 2.98e+01 1.46e+01

Table 6: Assembly times of P1 stiffness and mass matrices in 2D.

level K, M size eK eM K [s] M [s]
6 33025 5.87e-08 8.49e-09 1.04e-01 3.17e-02
7 131585 3.67e-09 5.31e-10 2.46e-01 1.19e-01
8 525313 2.12e-10 3.32e-11 1.10e+00 5.16e-01
9 2099201 8.10e-11 2.07e-12 4.94e+00 2.95e+00
10 8392705 1.07e-10 1.28e-13 2.96e+01 1.28e+01

Table 7: Assembly times of P2 stiffness and mass matrices in 2D.

level K, M size eK eM K [s] M [s]
3 729 2.70e-01 5.04e-02 3.22e-02 1.49e-02
4 4913 6.82e-02 1.31e-02 7.76e-02 1.92e-02
5 35937 1.71e-02 3.30e-03 3.72e-01 1.18e-01
6 274625 4.28e-03 8.28e-04 3.99e+00 1.88e+00
7 2146689 1.07e-03 2.07e-04 6.66e+01 2.04e+01

Table 8: Assembly times of P1 stiffness and mass matrices in 3D.

level K, M size eK eM K [s] M [s]
2 729 6.84e-03 5.75e-03 6.69e-02 1.84e-02
3 4913 4.00e-04 3.88e-04 5.86e-02 2.18e-02
4 35937 2.46e-05 2.48e-05 3.64e-01 1.04e-01
5 274625 1.53e-06 1.55e-06 4.91e+00 2.36e+00
6 2146689 9.53e-08 9.73e-08 8.76e+01 1.64e+01

Table 9: Assembly times of P2 stiffness and mass matrices in 3D.

3.6.1 Assemblies of stiffness and mass matrices in 2D and 3D

The script

benchmark5_assembly_2D

performs assemblies of K and M for nested uniform mesh refinements of the unit
square domain and computes approximate values of IK , IM and their absolute
errors eK , eM . The results are shown in Tables 6 and 7. As a benchmark, we
take cK(x) = cM (x) = e(x1+x2), v(x) = sin(x1) sin(x2) corresponding to the

28

exact values

IK =
4π4 (e− 1)2 (1 + 2π2)

(1 + 4π2)2
≈ 14.5610739535 ,

IM =
4π4 (e− 1)2

(1 + 4π2)2
≈ 0.7021036382 .

The errors eK , eM displayed in the last two columns decrease quadratically with
respect to the mesh size h for P1 elements and with the 4th order for P2 ele-
ments.

The script

benchmark6_assembly_3D

performs tests for the unit cube domain. Here we consider cK(x) = cM (x) =
e(x1+x2+x3), v(x) = cos(x1) cos(x2) cos(x3) and can compute that

IK =
6π4 (e− 1)3 (1 + 2π2)2

(1 + 4π2)3
≈ 19.2286024907 ,

IM =
(e− 1)3 (1 + 2π2)3

(1 + 4π2)3
≈ 0.6823216700 .

Tables 8 and 9 show assembly times together with the corresponding errors.

3.6.2 Practical FEM computation

We focus on solving the full diffusion-reaction boundary value problem

−∇ ·
(
cK(x)∇u(x)

)
+ cM (x)u(x) = f(x) in Ω ,

u(x) = uD(x) on ΓD ⊂ ∂Ω ,

∂u

∂n
(x) = 0 on ΓN ⊂ ∂Ω .

(57)

We consider an L-shaped domain Ω given by the union of rectangles

(0, 0.25)× (0, 0.25) , (0, 0.25)× (0.25, 1) , (0.25, 1)× (0, 0.25)

and shown with its triangulation on the left part of Figure 7. A non-homogeneous
Dirichlet boundary condition is assumed on the upper edge ΓD (red nodes) and a
zero Neumann boundary condition on the remaining part of the domain bound-
ary ΓN = ∂Ω \ ΓD. One can show that the function

u(x) = cos(4π x1) cos(4π x2) (58)

is the solution of (57) for coefficient functions cK(x) = 1 + x21 − x2 , cM (x) =
1− x1 + x22 , the right-hand side

f(x) = 8πx1 sin(4πx1) cos(4πx2) + cos(4πx1)
(
− 4π sin(4πx2)+

+
(
1− x1 + 32π2(1 + x21 − x2) + x22

)
cos(4πx2)

) (59)

29

Figure 7: The computational mesh for P2 elements (left) with |T | = 112 and
|N | = 257 (including mid-edge points) and the solution of (57) (right).

and the Dirichlet boundary condition uD(x) = cos(4πx1), x1 ∈ [0, 0.25], x2 = 1.

The script

benchmark7_BVP_2D

evaluates numerical solutions uh(x) (represented by vectors ũ of coefficients in
a finite element basis) of the boundary value problem (57) for different mesh
refinements using P1 or P2 finite elements. An example of a P2 solution is
shown on the right part of Figure 7. Practically, a linear system of equations

(K +M) ũ = b (60)

is assembled in which entries of the right-hand size vector b are given by

bi =

∫
Ω

f(x) Φi(x) dx , i ∈ {1, . . . , |N |} . (61)

Then it is solved for free entries of ũ, i.e., to those not corresponding to the
Dirichlet boundary conditions.

Evaluation of the right-hand side vector

One can evaluate (61) by b =M0 f̃ , whereM0 is the mass matrix corresponding
to cM (x) = 1 and f̃ is a vector of coefficients representing the approximation
of f(x) in a finite element basis. However, this approach is computationally
too expensive as long as an additional global mass matrix has to be assembled.
Instead, we calculate scalar products of f(x) and local basis functions (nlb
denotes their number)∫

Tk

f(x)φj(x) , k ∈ {1, . . . , |T |} , j ∈ {1, . . . , nlb} , (62)

30

on each element. Consequently, any bi from (61) is given as a sum of particular
contributions from (62).

1 f unc t i on [b , b2D] = rhs vectorP1 (elems , coords , f f u n)
2

3 dim = s i z e (coords , 2) ; % problem dimension
4 ne = s i z e (elems , 1) ; % number o f e lements
5

6 gqo = 2 ; [ip ,w, nip] = intquad (gqo , dim) ;
7 c o e f f s = c o e f f s i n i p (coords , elems , f fun , gqo) ; % nip x ne
8

9 s i z e s = s i z e s o f e l em e n t s (coords , elems) ;
10 de t j ab s = s i z e s ∗ f a c t o r i a l (dim) ; % nip x ne
11

12 nlb = s i z e (elems , 2) ;
13

14 phiRef = shapefun (ip ’ , ’P1 ’) ;
15 b2D = ze ro s (nlb , ne) ;
16 f o r i =1: nip % loop over a l l IPs
17 phi1D = phiRef (: , i) ; % in one IP
18 i n t e g r and i = c o e f f s (i , :) .∗ phi1D ;
19 b2D = b2D + w(i) ∗ det j abs ’ . ∗ i n t e g r and i ;
20 end
21

22 elems = elems ’ ;
23 b = accumarray (elems (:) ,b2D (:)) ;

Code 8: The right-hand side vector b.

The code 8 evaluates the right-hand side vector b from (61) for P1 elements.
The only loop starting at line 16 running over the number of integration points
evaluates the scalar products (62) that are stored in a matrix ’b2D’.

Evaluation of (local) energies

An alternative to solve the boundary value problem (57) is to minimize a
quadratic energy functional (see [16] for details related to efficient minimiza-
tion of nonlinear functionals)

J(v) =

∫
Ω

(
1

2
cK(x)∥∇v(x)∥2 + 1

2
cM (x) v(x)2 − f(x) v(x)

)
dx (63)

among all testing functions v(x) satisfying the Dirichlet boundary condition
v(x) = uD(x) on ΓD ⊂ ∂Ω. The minimal value of the energy J(v) is achieved
for v(x) = u(x), where the exact solution u(x) is given by (58) and reads

J(u) = J1(u) + J2(u) + J3(u) ≈ −14.90302171 .

31

Its gradient, reactive and linear parts are

J1(u) =
1

2

∫
Ω

cK(x) ∥∇u(x)∥2 dx =
289π2

192
≈ 14.85581079 ,

J2(u) =
1

2

∫
Ω

cM (x)u(x)2 dx =
578π2 + 21

12228π2
≈ 0.04721091674 ,

J3(u) = −
∫
Ω

f(x) v(x) dx = −578 (32π4 + π2) + 21

6144π2
≈ −29.80604342 .

Using the global matrices K,M and the global vector b, values of all three parts
are approximated by

J1(u) ≈
1

2
ũTKũ , J2(u) ≈

1

2
ũTMũ , J3(u) ≈ −bT ũ . (64)

For any element Tk, k ∈ {1, . . . , |T |}, we can also define the local (element-wise)
contributions to the energy parts above by formulas

J1,k(u) =
1

2

∫
Tk

cK(x) ∥∇u(x)∥2 dx ,

J2,k(u) =
1

2

∫
Tk

cM (x)u(x)2 dx ,

J3,k(u) = −
∫
Tk

f(x)u(x) dx

and it holds

Ji(u) =

|T |∑
k=1

Ji,k(u) , i = 1, 2, 3.

Since our implementation also provides local (element-wise) contributions of
K3D, M3D, b2D, it is possible (similarly to (64) to evaluate the approximations
of J1,k, J2,k, J3,k for all elements Tk, k ∈ {1, . . . , |T |}, at once by

J1,k(u) ≈ 1

2
ũTk Kk ũk , J2,k(u) ≈ 1

2
ũTk Mk ũk , J3,k(u) ≈ −bTk ũk . (65)

Here, Kk and Mk are the local stiffness and mass matrices on the k-th element,
respectively. Similarly, bk and ũk are restrictions of b and ũ on the k-th element,
respectively. Fig. 8 depicts the approximations of energy components (65) for
level 4 computational mesh.

32

Figure 8: Approximations of the contributions of J1, J2 and J3 corresponding to
the solution (58) of the problem (57) with P2 elements and the computational
mesh with 7168 elements.

3.6.3 Related projects

The linear and quadratic functions described above are the simplest of the so-
called Lagrange-type shape functions and are the main focus of our paper. Other
available implementations that use the vectorization library include:

• edge shape functions on triangles or tetrahedra known as Raviart-Thomas
and Nedelec elements [3],

• nodal shape functions on rectangles ensuring the continuity of the first
gradient along edges [22] known as Bogner–Fox–Schmitt element,

• nodal hierarchical-type functions on rectangles [17] allowing an arbitrary
order of a polynomial shape function.

Another attempt to avoid the setup of sparse matrices and to work com-
pletely with a multidimensional array in terms of iterative solvers is documented
in [15].

Acknowledgement

A. Moskovka and J. Valdman were supported by the project grant 23-04766S
(GAČR) on Variational approaches to dynamical problems in continuum me-
chanics.

References

[1] The MathWorks Inc.: MATLAB version 9.13.0 (R2022b), Natick, Mas-
sachusetts, https://www.mathworks.com .

33

[2] J. Alberty, C. Carstensen, S. A. Funken: Remarks around 50 lines of
Matlab: short finite element implementation, Numer. Algorithms 20(2-3),
117–137, (1999).

[3] I. Anjam, J. Valdman: Fast MATLAB assembly of FEM matrices in 2D
and 3D: edge elements, Applied Mathematics and Computation 267, 252-
263, (2015).

[4] B. W. Bader, T. G. Kolda: Algorithm 862: MATLAB tensor classes for
fast algorithm prototyping, ACM Transactions on Mathematical Software,
32(4), 635-653 (2006).

[5] F. Bozorgnia, J. Valdman: A FEM approximation of a two-phase obstacle
problem and its a posteriori error estimate, Computers & Mathematics
with Applications 73, No. 3, 419-432, (2017).

[6] P.G. Ciarlet: The Finite Element Method for Elliptic Problems, SIAM,
Philadelphia, (2002).

[7] F. Cuvelier, C. Japhet, G. Scarella: An efficient way to assemble finite ele-
ment matrices in vector languages, BIT Numer. Math., 56, 833-864 (2016).

[8] M. Friedrich, M. Kruž́ık, J. Valdman: Numerical approximation of von
Kármán viscoelastic plates, Discrete and Continuous Dynamical Systems,
Series S 14(1): 299-319, (2021).

[9] J. Koko: Vectorized Matlab codes for linear two-dimensional elasticity, Sci-
entific Programming, 15(3), 157-172 (2007).

[10] T. G. Kolda, B. W. Bader: Tensor Decompositions and Applications, SIAM
Review, 51(3), 455–500 (2009).

[11] S. Krömer, J. Valdman: Global injectivity in second-gradient Nonlinear
Elasticity and its approximation with penalty terms, Mathematics and Me-
chanics of Solids 24, No. 11, 3644-3673, (2019).

[12] W. Litvinov, T. Rahman, and R. Hoppe: Problems of stationary flow of
electro-rheological fluids in the cylindrical coordinate system, SIAM J. Appl.
Math., 65(5), 1633–1656 (2005).

[13] W. Litvinov, T. Rahman, and R. Hoppe: Model of an electro-rheological
shock absorber and coupled problem for partial and ordinary differential
equations with variable unknown domain, Europ. J. Appl. Math., 18, 513-
536 (2007).

[14] S. MacLane: Homology. Die Grundlehren der mathematischen Wis-
senschaften, Band 114. Springer-Verlag, Berlin-New York, (1963).

[15] L. Marcinkowski, J. Valdman: MATLAB Implementation of Element-based
Solvers, In: I. Lirkov and S. Margenov (eds): LSSC 2019, LNCS 11958,
601–609, (2020).

34

[16] A. Moskovka, J. Valdman: Fast MATLAB evaluation of nonlinear ener-
gies using FEM in 2D and 3D: nodal elements, Applied Mathematics and
Computation 424, 127048, (2022).

[17] A. Moskovka, J. Valdman: MATLAB implementation of hp finite elements
on rectangles using hierarchical basis functions, PPAM 2022, Lecture Notes
in Computer Science (LNCS) 13827, 287-299, (2023).

[18] D. Pauly, J. Valdman: Friedrichs/Poincare Type Constants for Gradient,
Rotation, and Divergence: Theory and Numerical Experiments, CAMWA
79, No. 11, 3027-3067, (2020).

[19] T. Rahman: SERF2D-MatLab (Ver 1.1) - Documentation, University of
Augsburg, (2003).

[20] T. Rahman, J. Valdman: Fast MATLAB assembly of FEM matrices in
2D and 3D: nodal elements, Applied Mathematics and Computation 219,
7151-7158, (2013).

[21] D.A. Simovici: Linear Algebra Tools for Data Mining, World Scientific,
(2012).

[22] J. Valdman: MATLAB Implementation of C1 finite elements: Bogner-Fox-
Schmit rectangle, In: Wyrzykowski R., Deelman E., Dongarra J., Kar-
czewski K. (eds) Parallel Processing and Applied Mathematics. PPAM
2019. Lecture Notes in Computer Science, vol 12044. Springer, Cham, 256-
266, (2020).

35

	Introduction
	Background from linear algebra
	Homomorphism spaces and tensor products
	Indexing and page-wise operations
	Determinants and inverses
	A vectorization library

	Prototype codes and performance comparison
	Structures 'coords3D' and 'vectors3D'
	Volumes and normals evaluation
	Volume integrals
	'GI' function
	Surface integrals
	Finite element method
	Assemblies of stiffness and mass matrices in 2D and 3D
	Practical FEM computation
	Related projects

