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Abstract. MAG7 is a Multiparty, Asynchronous and Generalised -
calculus that introduces timeouts into session types as a means of reason-
ing about failure-prone communication. Its type system guarantees that
all possible message-loss is handled by timeout branches. In this work,
we argue that the previous is unnecessarily strict. We present MAG~!, an
extension serving as the first introduction of replication into Multiparty
Session Types (MPST). Replication is a standard m-calculus construct
used to model infinitely available servers. We lift this construct to type-
level, and show that it simplifies specification of distributed client-server
interactions. We prove properties relevant to generalised MPST: subject
reduction, session fidelity and process property verification.
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1 The Tale of the MAG(pie/ )

The magpie is a bird with deep ties to British folklore. The first known mention
of their counting for fortune telling dates back to 1780, where John Brand writes
what is thought to be one of the original versions of the magpie rhyme [6]:

“One for sorrow, Two for mirth, Three for a funeral, And four for a birth.”

We can imagine that the natural reaction of a person who spots a solitary magpie
is to scan the surrounding area for its companion. Alas, if no one is immediately
visible, the person desperately waits—hoping a second magpie comes their way.
But how long should one wait? The reality is that it is impossible to know the
difference between no magpie and a magpie that has not yet arrived. To computer
scientists, this is a well known impossibility result [2]. In the study of distributed
systems and fault tolerance, mechanisms must be employed to approximate the
impossibility result of determining whether a message has been lost or delayed—
e.g. by using a timeout. Hence, the computer scientist who spots a lonely magpie
knows to only wait some fixed amount of time before assuming that no other
magpie is coming and accepting their sorrowful faith. This philosophy is the
core principle of the process calculus MAG~ [I7], a language designed to model
communication failures (via message loss) with a generic type system aiming to
provide configurable runtime guarantees.
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MAG is a Multiparty, Asynchronous and Generalised m-calculus, modelling
distributed communication over n-participant sessions. Its key features include
non-deterministic failure injection into the runtime of a program, asynchronous
communication via bag buffers (allowing for total message reordering), and a
generic type system capable of providing guarantees of runtime properties via
session types. Session types [IBI25I13] are behavioural type systems allowing for
formal specification of communication protocols—their main benefit being that
they provide correctness guarantees on both protocol design and implementation.
Multiparty session types (MPST) [16J5l24] are a branch of session type theory
that aims to support protocols involving any number of participants with inter-
leaving communication. MAGr builds upon a generalised form of MPST [24/4],
where protocols are defined by a collection of local types—the communication
patterns of individual participants’ perspectives—which should be exhaustively
checked (e.g. via model checking) to determine any properties they observe.
Novelties of MAGm stem from how it embraces the impossibility result of dis-
tinguishing between dropped or delayed messages; its language and type system
use non-deterministic timeouts to model the assumption of failures. The type
system guarantees that all failure-prone communication is handled by a timeout
branch. In this work, we argue that the previous approach can, in some sce-
narios, be unnecessarily strict—resulting in needlessly more complex protocols.
Some configurations may wish to leave the handling of failures up to senders, as
opposed to recipients; these usually take the form of client-server interactions
where servers are designed to remain infinitely available. E.g. if a request to a
web-server were to drop, it is the client’s responsibility to re-issue that request.
We present an extension to MAG7 that better models infinitely available servers
and simplifies failure-handling for client-server interactions.

In the 7-calculus [23], a standard construct often used for representing infinite
behaviour is that of replication. A replicated process is one which can be infor-
mally described as infinitely available. Naturally, the use of replicated processes
lends itself well to the modelling of client-server interactions. We demonstrate
how the use of replication in MAG# can, not only better model infinitely avail-
able servers, but also simplify their protocols by relaxing the requirement of
failure-handling branches from every receive to only linear receives.

Ezample 1 (Type-level replication). We evolve the motivating example pre-
sented in [I7, Ex. 1], the ping protocol. Consider three participants: client c,
server s, and result channel r. Communication between c and r is reliable; whereas
with s is unreliable. The session types for a three-attempt ping in MAGn! are:

Sy = &{c:ok.end, c:ko.end}
s:pong. &r:ok.end,
s:pong. @r:ok.end,

o s:pong.@r:ok.end,
@.@s.pmg.&{ ®.@r:ko.end

Sc =®s:ping.& ®.&s: ping.&

Ss =lc: ping. @ c: pong.end

Client c sends a message with label ping to server s (&s : ping) and waits for
a pong response (&s : pong). If successful, an ok message is sent to results role
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r and the session is terminated for the client (end). Since communication with
the server is unreliable, receipt of the pong message is not guaranteed, and must
be handled by a timeout branch ®. The client attempts to reach the server 3
times—if all attempts fail, it sends a ko message to r. The result role r waits for
either of the reliable responses from c, thus no timeout is defined. Server s is
defined as the replicated receive !c : ping. @ c : pong.end, denoting its constant
availability to receive a ping request and send a pong response. We highlight the
absence of a failure-handling timeout branch in Ss; the server does not need to
change its behaviour if a client request fails. Furthermore, if the pong reply fails,
the server remains available to handle any number of retries from the client.
Thus, the use of replication has offloaded the handling of failures entirely onto
the client-side, has made the protocol more modular (since the type for s is now
agnostic of a client’s retry limit), and is simpler w.r.t. to the original specification
in MAGn (a full comparison is made in appendix [Al).

Contributions. Concretely, our contributions are as follows:

1. MAG~! Language: We present MAGr! (section[2), an extension of MAGw
that does away with recursion in favour of replication as a better means of
modelling client-server interactions.

2. MAGT! Types: We lift replication to type-level in section Bl To the best
of our knowledge, this work serves as the first introduction of replication
into MPST. We improve upon the theory of MAGn and show how three
type contexts (unrestricted, linear and affine) can be used to type—and
simplify—failure-prone communication in client-server interactions.

3. MAG~! Meta-Theory: Section [ expounds upon the meta-theory of our
type system. We prove subjection reduction and session fidelity, and demon-
strate how they can be used for property verification. MAG=! provides a
failure handling guarantee, ensuring all failure-prone communication is han-
dled by a timeout branch—a responsibility which servers offload to clients.

In section [5] we conclude and give an account of related and future work.

On delegation and language simplification. This work builds upon a sub-
set of MAGr [I7] as our language only considers communication over a single
session. Reasons for this are: () to simplify notation for better readability due
to limited space; and (7) to remove session fidelity assumptions. On the latter,
generalised MPST theory assumes communication over a single session to prove
session fidelity (a.k.a. protocol compliance) [24] Def. 5.3]. This is to remove dead-
locks that can occur due to incorrect interleaving of multiple sessions. Effectively,
the language subset we consider syntactically abides by the assumptions of ses-
sion fidelity by assuming all communication happens over a single session and
by removing delegation. We foresee no issues with extending MAG~! to multiple
sessions, although this will only improve the number of safe protocols that can
be expressed and has no effect on verification of other properties. Lastly, repli-
cation in MAG! is a top-level construct only. This simplifies our type-system
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at the cost of sacrificing expressivity of nested replication. The type system can
still express meaningful examples (e.g. load balancers), and we intend to explore
hidden and nested replication in future work.

2 Bird Songs

We present MAG~!, an extension of MAGm that replaces recursion with repli-
cated processes as its preferred means of reasoning about infinite behaviour.
Programs in MAG! represent distributed networks, consisting of concurrent
and parallel processes running on machines connected over some failure-prone
medium. We discuss how networks of various topologies are defined in section[2.1]
Section details the syntax and semantics of processes.

2.1 Topology

Distributed protocols typically consist of a number of participants (or roles)
representing physically separated devices, communicating over a failure-prone
network. We model such a setting by associating processes to uniquely identifi-
able roles, which communicate asynchronously through a bag buffer allowing for
total message reordering. Roles are related through a notion of reliability, mod-
elling physical locations of processes—i.e., reliable roles are ones that live on the
same physical device and thus are not susceptible to communication errors. A
formal account of networks, buffers and reliability is given below.

Networks. A program in MAG#! models some distributed network A/. These
networks consist of a parallel composition of processes, each representing specific
roles in the network. The formal description of a network is given by definition [Tl

Definition 1 (Networks). A network N is given by the following grammar:
N:u=p<aP | N||N | B
where B is a message buffer; P is the process instruction; and p is a role name.

A process p < P consists of a uniquely identifying role name p, and process in-
structions P. It is key to note that all processes, i.e., participants, of a network
are syntactically defined—thus, MAGn! assumes a finite network size where all
participants are statically known. The || constructor denotes parallel composi-
tion of processes within a network, and B is its message buffer.

Buffers. MAG#! models asynchrony through a bag buffer (semantics discussed
in section 2.2)). The buffer, definition 2] serves two purposes. Firstly, it allows
for non-blocking (fire and forget) sends by acting as an intermediary where
messages wait until recipients are ready to consume them. Second, and important
to distributed communication, is that it models messages in transit over the
network and is thus the point-of-failure in our system.
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Definition 2 (Buffers). A message M is defined as M ::= (p — q,m(0)),
i.e., a tuple identifying the source and destination of the message (p — q),
along with a message label and payload contents (m(0)). A buffer B is a multiset
of messages M. Concatenating a message M with a buffer B, written B - M
corresponds to the multiset sum of B+ {M}.

Reliability. A network is initialised with a reliability relation R (definition []),
defining roles which may communicate sans failure. All communication outwith
the reliability relation is considered failure-prone; this may be used to simulate
physical topologies, or to study a protocol at various degrees of reliability.

Definition 3 (Reliability). Given a network N, and set of roles p acting in
N, the reliability relation R is a subset of (or equal to) {{p,q} :p,a €p A p #
q}. We write N :: R to denote a network N governed by reliability relation R.
We use shorthand N :: F to denote a fully reliable network, and N :: 0 to denote
a fully unreliable network.

Ezample 2 (Load Balancer: Network). Consider a load balancer network with
server s, workers wi, wo, and client c. Assuming server-worker communication
to be reliable, the network may be configured as below:

S<APs || wi <Py, || woa Py, || caPe || B {{s,w;}, {s,w>}}

2.2 Processes

Definition 4 (Process syntax). The syntazx for defining process instructions
P is given by the following grammar:

P o= licrpi s mi(d) . Py | :—7_7_|_75—: | P
P:=0 ‘ &iejp,j:mi(,fi).Pi[,@.Pl] ‘ EBp:m(é).P

ci=x ’ v v ::= basic values

All branching terms assume I # () and all couples p; : m; to be pairwise distinct.
Receiving constructs act as binders on their payloads.

A process P can either be a replicated server or a linear process. Replicated re-
cetwe lierp; : m;(Z;) . P; denotes a server constantly available to receive any of
a set of messages from roles p; with labels m;. The received payload is bound
to z; before pulling out a copy of P; to run in parallel with the server. Par-

allel composition | is a [rﬁhgi;n_e—: only construct at the process-level. It is

used to denote composition _o_f_li_n_ez;r continuations pulled out of a replicated
receive. Linear processes (P, Q,...) consist of: (i) the empty process 0; (ii) lin-
ear recewes &;crp; : mi(£;). P [, ®. P'], where a role waits for one of a set of
messages from some other roles p; with labels m;, binding the received pay-

load to Z; before proceeding according to P;; (i) an optional nondeterministic
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Process semantics |

P-SEND
p<dg@®m(0).P||B—rp<aP||B-{(p— q,m(Dd))

P-REcv
Jk € Ist.r,=qand mg =1and |[§x] = |7

p<1&,-61r,- : m,(y,) . P; [, @.P,] || B- <q — p7|<17>> —R pQPk{ﬁ/gk} || B

P-IRECV
P = !ieIri : m,(gjl) P dk el st rp= q and my = | and |17k| = |’l7|

pPaP | B-(a—=p,(8) —=p<aP | Pu{"/5,} || B

N-| P- |
NN NllpaP > N'|[paP
NN = N[N NlpaP|P" =N ||paP | P”

| Failure semantics |

F-Dror

F-TiMEOUT
, R
{P q}g qd&iefrl:mi(gji).Pi,G).P/ —)qupl

B-{p—dq,m(t)) —r B

Fig. 1. Network semantics.

timeout branch [, ©. P'] attached to linear receives to handle possible failure of
messages, instructing the process to proceed according to P’; and (i) linear
sends @ p : m(¢) . P which sends a message towards p with label m and payload
¢ before continuing according to P. A payload c is either a variable (x,y,...)
or some assumed basic value (integers, reals, strings, ...). We omit conditional
branching constructs such as if-then-else and case statements as they are routine
and orthogonal to our work (we assume them in examples).

Definition 5 (Network Semantics). Reduction on networks is parametric
on a reliability relation R. The reduction relation —r is inductively defined by
the rules listed in fig. [ up-to congruence (appendiz D).

Network dynamics (fig. ) are divided into process and failure semantics.
A process sends a message via rule [[P-Send]| which places the message in the
network buffer and advances the sending process to its continuation. Conversely,
processes receive messages (rule by consuming a message from the
buffer, advancing the process to its continuation and substituting bound payloads
with the received data. In a similar manner, servers may consume messages
from the buffer using rule instead of advancing the process, a copy
of its continuation is pulled out and placed in parallel. This allows servers to
concurrently handle and receive client requests.
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Message failure is modelled through rule We recall that buffers
model messages in transit, thus this rule may—at any time—drop a message
from the buffer if it is unreliable. It is key to note that failure in these seman-
tics is nondeterministic. A client may consume a message before it is dropped,
representing a successful transmission; or the message may be dropped before
consumed, representing the failure case. Reduction of timeout branches is also
nondeterministic since it is impossible to distinguish between dropped messages
(no magpie) and delayed messages (the magpie that has not yet arrived). There-
fore, rule [F-Timeout|| can at any time reduce a waiting process to its timeout
branch, modelling either the handling of message failure or an incorrect assump-
tion of failure (i.e., message delay).

Ezample 3 (Load Balancer: Processes). We present the processes of our load
balancer. An output role o, which is reliable w.r.t. the client, has been added.

heads — ®w; : req(z)

.0
Ic - :
s<lc:req(z).case flip() of {tails s Pws - req(z) . 0

w; <ls:req(d). @c:ans(f(d)).0
wo <ls:req(d). @c:ans(f(d)).0
wi :ans(y). @ o : output(y).0
caPs :req(42). & < wo :ans(y). @ o : output(y).0
O. @ o: err(“Request timed out”) .0

0<&{c : output(out) . 0,c : err(msg) . 0}

Ezample 4 (Interactions with Failure: Processes). Now we demonstrate interac-
tions unique to our language which result from the use of timeouts as imperfect
failure detectors. Consider the following network snippet Ny :: §):

pa®q:m{42). P || qa&{p:m(x). P, ©.P"} || {{p = q,m(“Life is"))}

These processes denote communication between two roles (p and q), where a
message labelled m with the string “Life is” has already been sent, and a second
message also labelled m is to be sent with payload 42. There are four possible
immediate reduction steps for this network: (i) role q consumes the message
in the buffer via [[P-Recv]| (the intended behaviour); (i) role p places message
(p — q,m({42)) in the buffer via this may possibly result in message
reordering due to the bag buffer semantics; (47) message (p — g, m(“Life is”)) is
dropped from the buffer Via then q may either correctly assume failure
through a timeout, or if the sender is quick enough the message (p — ¢, m(42))
could still be received in its place; and (iv) role q can incorrectly assume a failure
and timeout via [[F-Timeout]| even though message (p — q, m(“Life is”)) is in
the buffer. It is not difficult to see how items|(4)|to may lead to errors. Our
types and meta-theory mitigate the occurrence of these possibly unsafe networks
by enforcing a safe design of protocols.
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3 Harmonisation

We now present the multiparty, asynchronous, and generalised type system for
MAGT!. To the best of our knowledge, this is the first work to introduce repli-
cation and parallel composition for local types in MPST. We show how these
constructs lend themselves well to typing distributed client-server interactions.

3.1 Types

The syntax for MAGm! types are given in definition [l Our type system does
away with tail-recursive binders (as is standard in MPST), instead opting for
a replicated receive type. The syntax distinguishes between different classes of
types. Namely, we present replicated-, session-, message- and basic-types—each
of which are used differently by the type contexts (definition [T]).

Definition 6 (Types). The syntax for MAGr! types is given by:

~1)S1 ‘ &ielp,,':mi(éi).Si [,@S/] ‘ réT_S_: ‘ end

R = !Z'e]p,j : ml(é
S = @ierpi : my(

M = (p — q,m(B))
B ::=1Int, Real, String,... (basic types)

Branching constructs assume I # () and couples p; : m; to be pairwise distinct.
Replicated types R assume a pool of labels distinct from their continuations.

A replicated type R defines the protocol of a server. Type licrp; : mi(B;) . S;
denotes the receipt of requests labelled m; from p; carrying payload types B;
having continuation types 5;. Replicated types never appear guarded and always
have linear continuations.

Session types S describe the protocol of a linear process. The selection and
branching types (& and &) detail possible sends and receives, indicating direc-
tion and content of payloads. Branching types may optionally include a failure-
handling timeout branch ©.S, where S details the protocol to employ upon

. . . . r-- _._ -0
assuming a failure. As in processes, types also have a notion of ' runtime ' only

parallel composition, identifying the protocols of continuations pu_ll_ec_l_o_th of a

replicated receive. The end type denotes termination of a party’s protocol.
Message types M are used to type messages in a buffer. They record the

direction of communication, as well as the chosen branching label and types of

its payload. Lastly, B represents a range of assumed basic types.

Definition 7 (Contexts). Context I' is unrestricted and maps variables to
basic types and roles to replicated types. Context A is linear and maps roles to
session types. Context @ is affine and holds a multiset of message types M.

Ir:=90 ’ p: R, T ’ z:B, T An=10 ‘ p:S,A O :={M,...,M,}
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Context update

A4+ A=A
_— L i if p&dom(Aq)
A+®:A A1+A2,pZS:A3,pZS
A+ Ay = Az

A17p:Sl+A27p:52:A37p251|SQ

Context splitting

A=A A A=A A
@I(D@ A,p:S:Ahp:S-Az A,p:S:A1~A27p:S

A=A Ay
A7p:5'1|52:A17p:Sl~A27p:SQ

Fig. 2. Context addition and splitting.

Updating and splitting operations are defined for A by the rules in fig. [2.
Context composition I', I (resp. A, A') is defined iff dom(I") Ndom(I”) = ()
(resp. dom(A) Ndom(A") =0).

Figure [ defines two relations on A. Context addition joins two contexts by
performing a union on their contents (in the case that there are no conflicts
in their domains). If their domains are not unique, then the types are placed
in parallel, indicating a role employing multiple active session types (this is
explained in more detail after introducing context reduction cf. definition []).
Context splitting extracts a piece of a larger context. Notably, types placed
in parallel may be split using this operation; in other cases splitting functions
similar to context composition.

Definition 8 (Context Reduction). An action « is given by
a = pdg:m ] p,g:m ‘ ®Op

read as (left to right) output, communication, and timeout. Context tran-
sition = is defined by the Labelled Transition System (LTS) in fig. [3 Conteat
reduction I' ; A; © =T ; A ; @ isdefined iff I'; A; © 5T ; A ©
for some a. We write I' ; A; © — 4ff A, 0" st. I'; A; © -1 ; A 6

and —* for its transitive and reflexive closure.

Context reduction (definition B) models type-level communication by means
of the LTS in fig. Bl Transition allows a role p with a defined timeout to
transition to the timeout continuation by firing a ®p action. Transition
is a synchronisation action between a selection type and the type buffer ©.
Effectively, a role with a send type can transition to its continuation by firing
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r; A~p:&ie1q,,:mi(éi).Si,®.S'; @&)F; A+p:S5 ;0

S = @ierqi : mi(By). S; kel
I's A-p: S, QMF; A+p:Sk; @-(p—>q;,;,mk(B~k))

S:&iejq,, : mL(BZ)SZ[,®S’] kel
r; A-p:S; 9~(qk—>p,mk(B~k))m>F; A+p:S,; ©

R:!iqu,- : mZ(BZ)SZ kel
Ip:R; A; ©-(qr = p,me(By)) 225 Mp:R; A+p:Si; ©

Fig. 3. Type LTS

any of the paths indicated in the selection (p&qj:my) and adding the message
into the buffer context. On the receiving end, a role with a branch type can
consume a message from the type buffer to model a communication action via
transition [A-C]l Communication with replicated servers is handled seperately
by transiti This rule allows a communication action to be fired when
a replicated type in I can receive a message in the buffer. This transition has
no effect on I' (since it is an unrestricted context) and instead updates the
linear context A with the continuation of the replicated receive. This is why
types require runtime parallel composition, and context updating and splitting
operations (fig. 2)), as multiple requests may be made to a replicated receive.

3.2 Typing Rules

Protocols defined in MAGr! types are used in type judgements (definition [@) to
check whether network implementations conform to their specifications.

Definition 9 (Typing Judgement). Type contexts are used in judgements as
I'; A; ©F N, inductively defined by the rules in fig.[§} To improve readability,

empty type contexts are omitted from rules.
Definition 10 (End Predicate). A context A is end-typed, by:

Viel.n:S; =end
end(p; :S1-...-pn:Sn)

Typing rules || T-S|| |[T-Varl, [[T-Val]| are auxiliary judgements typing linear
roles, variables and values. A role p of type S is typed by a linear context
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T-S T-VARr T-VaAL T-0
) I'(z)=1B veEDB end(A)
I';p:SkEp: S I'+x:B I'+v:B I';ARO

T-®
I';AFp:®ierdi - mi(Biy, ..., Bin) . Ss
kel Vi€ln:I'Fcj: By I';p:Sp P

I';AFp<qgr ®mgler,...,cn). P

T-&
F;A}_pi&ig]qzZmi(Bil,...,Bin).Si[,@.S/]
Viel: Iy :Bit,. . Yin: Bin; p:SiH P [[;p:S + P
T'; AFp<a&icrqi: mi(Yigs - Yin) - Pif, ©. P']

T-!
I'(p) = Licrqi : mi(Bi1, ..., Bin).Si
Viel: Iy Bi1,...,Yin : Bin; p:SiF P

I'tpalicrqi i mi(Yiys---, Yiy,) - Bi

T-| 1 T-] 2
' A; 0N I;0;©+B I'; AL E M I ;A = N>
F;A;@FNHB F;A1,A2F./\/‘1||./\/‘2
T- |
[iAFpaPr [ AskpaPo T-EmPTY
I';Ay-Asbp<aPy | P ;0,00
T-Bur

Viel.n:I'Fuv;:Bj r;o;,ers
Fy wvg(p—)(Lm(Bh7Bn))}_8<p—>q7m<v177'vn>>

Fig. 4. Typing rules.

containing exactly a mapping of p to S; variables are typed to a basic type
if that mapping is held by I'; and values are typed to a basic type if they belong
to their sets. The empty process 0 is typed by if the linear context is
end-typed (definition [IQ), i.e., A only contains roles mapped to end.

The send process p <q; @ mg{cy,...,c,). P is well typed by if: A can
map p to a selection type containing the path chosen by the process; I verifies
all payloads with their types indicated in the session type; and the continuation
type can check the continuation process.

The receive process p<4&icrqi : M;(Yiqs - - -, Yin) - Pil, ©. P'] is well typed by
if: A maps p to a branch with all the same paths contained in I; the
payloads and continuation types of every path in the branch can type all process
continuations P;; and if a timeout process P’ is defined, then it must be typed
under a timeout branch in the session type.
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Replicated receive p < licrqi @ mi(yiq,---,¥ip,) - P is typed using in a
similar manner to the type of p instead lives in the unrestricted context.

Network composition is typed by |[T- || 1]|and [[T- || 2]l The former separates
the linear context to be used on processes and the buffer context to be used on
the network buffer; the latter splits context domains to type different roles in the
network. Process-level composition is typed via|T- | || which utilises the context
splitting operation (fig. 2]) to separate parallel session types.

Network buffers are typed by repeated applications of which removes
messages from the buffer one at a time if they match a message type in the type
buffer. The empty buffer is typed under allowing for possible leftover
types in @. It is key to note that the buffer context is affine, as any message
that gets dropped at runtime will result in an unused message type.

Ezample 5 (Interactions with Failure: Types). Due to the generalised nature of
the type system, the type judgement alone is not enough to detect the errors
that may occur in Ay. This is because the type-system does not provide syntactic
guarantees, but rather should be used in conjunction with exhaustive verification
techniques post protocol design (this is standard in generalised MPST [24/1714]).
In fact, network Ny can be typed under the following contexts:

I';p:®q:m(N).S,q:&{p: m(String).S’, ®.5"}; ©-(p — q,m(String))

for some I',0,5,5’,S"” assuming that P, P’ and P” are well typed using S,
S" and S” respectively. Note that I" and © can be non-empty since the former
is unrestricted and the latter is affine. In contrast, the linear context must be
exactly as stated above. We now need a way to determine this protocol as unsafe.

4 Songs About Songs

Unlike most session type theories, generalised MPST do not syntactically guar-
antee any properties on the processes they type. Rather, they provide a frame-
work for exhaustively checking runtime properties on the type context, from
which process-level properties may be inferred. This seemingly unconventional
approach to session types was discovered to be more expressive than its syntactic
counterpart w.r.t. the amount of well-typed programs it can capture [24]. Fur-
thermore, its generalised nature allows for fine-tuning based on specific require-
ments of its applications. Informally, generalisation of the type system works
by proving the meta-theory parametric of a safety property; i.e., all theorems
proved and presented assume that the type contexts are safe (section {]). With
this assumption we present our main results in section

4.1 Type Safety

The technical definition of safety refers to the minimal requirements on types to
guarantee subjection reduction (cf. section .2 theorem[I]). But what does safety
even mean for a distributed network with message loss, delays and reordering?
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It is impossible for our type system to adopt standard notions of safety which
may guarantee properties such as no unexpected messages or correct ordering of
messages, since the failures experienced at runtime can mitigate such guarantees.
Hence, the minimal guarantee of safety (definition [[1]) in MAG~! ensures that:

1. timeout branches are always (and only) defined for failure-prone communi-
cation between linear processes; and

2. if a message eventually reaches its destination, then the expected types of the
payload from the recipient should match the data carried on the message.

Definition 11 (Safety Property). g is a safety property on contexts iff:
P-R1 ~
or(; A-p:&icrq;:mi(B;).S;; O) impliesVieI:{q;,p} €R

¥-R2
QDR(F s Ap: &ie]qi : mi(éi).5i7 0.8 ; @) implies Ik € I : {q;l.,p} Q/ R

p-C
er(I; A-p:&ierai i mi(By) . Sif, ©.5; 0+ (4 — p, mi(B)))
and k € I implies |By| = |B'| and ¥j € 1..|By| : By; = B';

p-lc
er(I,p : licrqi : mi(B;) . S;; A © - (ar — p,my(B')))
and k € I implies |By| = |B'| and Vj € 1..|By| : By; = B';

o-—
VA :or(I'; A O)andl' ; A; © — ' A" © implies or(I'; A' 5 O)

Conditions |[¢-11 || and [[p-ra]| ensure that timeouts are only omitted (resp. de-
fined) when communication is reliable (resp. unreliable). [[¢-c]| and [[¢-!c]| require
payload types to match for any communication; note that no message is ever

incorrectly delivered to a linear channel instead of a replicated (and wvice versa)
because we assume that message labels for replicated receives are not reused in
their continuations. The last condition, requires all possible reductions
of safe contexts to also be safe.

Ezample 6 (Interactions with Failure: Safety). The type contexts presented in
example [f] do not abide by the conditions of ¢y and thus are not safe. The types

do meet conditions|[¢-11 | to|¢-!c|, but fail {[p-—|| We observe the following traces
of the LTS:

I';p:®q:mN).S,q:5 ;6

I';p:S,q9:&{p: m(String). 5", ©.5"};
© - (p — q,m(String)) - (p — q,m(N))

X

I';p:®q:mN).S,q:5"; ©-(p— q,m(String))
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The transition over label p&q:m yields contexts in violation of This exam-
ple highlights the impact of message labels in protocol design, as reusing labels
may lead to nondeterministic receipt of messages. However, this does not mean
that messages with the same label can never be reused—it is possible for this
nondeterminism to still be safe w.r.t. definition [Il E.g. consider the types in
example[Il the types reuse labels ping and pong. This is safe because the protocol
has no dependency on receiving messages with the same label in a specific order.

Ezample 7 (Load Balancer: Types). We type our load balancer using the protocol
below in a judgement as s: Rs,w; : Ry, ,wo: Ry, ; €:5,0:S5,; 0N || 0
where A contains the processes from example[3l The protocol observes the safety
property w.r.t. the reliability relation defined in example

Rs=lc:req(N). @ {Wl : rqug).end

wo : req(N) . end
Ry, =!s:req(N). @ c: ans(Real).end
Ry, =!s:req(N). @ c: ans(Real).end
wi : ans(Real). @ o : output(Real).end
Sc = @s :req(N). & ¢ wo : ans(Real). @ o : output(Real).end
®. @ o:err(String) . end
So = &{c : output(Real) . end, c : err(String).end}

4.2 Type Properties

Our main results are presented below (proof details are given in appendix [C]).
Subject reduction (theorem/[I]) states that any process typed under a safe context
remains well-typed and safe after reduction (even in the presence of failures).
From this we obtain corollary [I] stating that timeout branches are only omit-
ted from linear receives if communication is reliable; hence certifying that all
processes typed by safe contexts guarantee that no linear failure-prone commu-
nication goes unhandled. A key contribution of our work is that this corollary
is relaxed to linear processes instead of all processes, since we do not wish for
replicated servers to handle dropped client requests.

Theorem 1 (Subject Reduction). IfI'; A; O N with or(I"; A ; O)
and N =g N, then AA", 0" st. ' ; A; © =*T'; A" ; @ and I'; A’ ; O+
N with or(I"; A" 5 O').

Corollary 1 (Failure Handling Guarantee). If I ; A ; © = N with
or(I; Ay O) and N =5 p<a&erq; : mi(&). P | P || N, then Vi € I :

Session fidelity (theorem [2]) states the opposite implication w.r.t. subjection
reduction, i.e., processes typed under a safe context can always match at least
one reduction available to the context.
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Theorem 2 (Session Fidelity). IfI"'; A; © = and I' ; A; © - N with
or(I'; Ay O), then IA O N st. I'; A; O -1 ; A'; O and N =% N/
and I'; A5 @' = N with pr(I'; A ).

Using this result we can verify properties other than just safety. This is the
benefit of the generalised approach to MPST, where instead of forcing protocols
to abide by specific properties, types can be checked a posteriori to determine any
properties they observe. We demonstrate for deadlock freedom (definition [[2)).

Definition 12 (DF: Networks). A network N is deadlock free, written df(N),
iff N —=* N 4 implies either

1. N"=0|| B; or

2. N/ = Nl/ || cee || erl || Bst.Viel.n :./V;/ =p;d !je(]qj : mj(fj) PJ
A deadlock free network is one that only gets stuck when all processes reach
0, or when the only non-0 processes left in the network are servers. (Note, the
buffer is allowed to be non-empty because of message delays.) We define deadlock
freedom on types in definition [I3] stating that type contexts are deadlock free if
they only get stuck when the linear context is end-typed.

Definition 13 (DF: Types). Contexts I' ; A ; O are deadlock free, written
df(l’'; A; 0), iff I'; A; © =T A" O A implies end(A’).

Proposition 1 (Property Verification: DF). If ' ; A ; © + N with
or(; A; O), then dfI; A; ©) implies diN).

Lastly, in proposition [l we state that deadlock free contexts imply deadlock
freedom in the networks they type, a result which follows from theorem

Decidability. Asynchronous generalised MPST are known to be undecidable
in general [24]T7]. This stems from the fact that session types with asynchronous
buffers can encode Turing machines [3| Theorem 2.5]. However, we note that this
simulation relies on buffers with queue semantics and tail-recursion; whereas our
type system uses bag buffers and replication. Comparing the expressive power
of recursion and replication, previous studies show that for m-calculi with com-
munication of free names the two are equally as expressive [2I]; whereas without
communication of free names (e.g. CCS) recursion is strictly more expressive
than replication [7]. Thus, we raise the question: “What is the expressive power
of asynchronous session types with bag buffers and replication?”, which we aim
to answer in future work.

For now, we present a predicate on type contexts which can be used to deter-
mine decidable subsets of the type system. This predicate, which we call trivially
terminating (definition [I4)), is decidable and implies decidability of safety (and
subsequently property verification).

Definition 14 (Trivially Terminating). We say I ; A ; O are trivially
terminating, written tt(I"; A; O), iff Vp € dom(I") : I'(p) = licrq: : mi(B;) . S;
where Vi € I : q; & dom(I).

Proposition 2 (Decidable Subset). For any contexts, tt(I" ; A ; O) is
decidable and tt(I"; A; ©) implies checking pr(I"; A; O) is decidable.
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5 Encore

Modelling of failures and distributed communication is increasingly becoming
a more relevant and widely researched topic within the area of programming
languages. We highlight below some key related work, identifying the main dif-
ferences w.r.t. MAGr!.

Affine session types [T9T4IT0] use affine typing to allow sessions to be pre-
maturely cancelled in the event of failure. They may be used in a similar fashion
to try-catch blocks, where a main protocol is followed until a possible failure
is met and handled gracefully. Similar in approach to MAG~! is work by Bar-
well et al. [4], where generalised MPST theory is extended to reason about
crash-stop failures. Where MAGm! uses timeouts, the previous uses a “crash”
message label which can be fed to a receiving process via some assumed failure
detection mechanism. Viering et al. [26] present an event-driven and distributed
MPST theory, where a central robust node is assumed and is capable of restart-
ing crashed processes. Chen et al. [II] remove the dependency on a reliable
node, instead using synchronisation points to handle failures as they are de-
tected. Adameit et al. [I] consider session types for link failures where default
values act as failure-handling mechanism to substitute lost data. MAGx! models
lower-level failures than all of these works. Most of the aforementioned assume
some perfect failure-detection mechanism, whereas MAGm! embraces timeouts as
a weak failure detector to show that some degree of safety can still be achieved.
Our theory is designed to operate at a lower level of abstraction, thus often pro-
viding weaker guarantees (e.g. consider our minimal definition of type safety) in
exchange for modeling a wider set of communication failures.

The adoption of replication in MPST theory is a novel contribution of this pa-
per. Replication in broader session types research has been utilised on numerous
accounts [T2I822], specifically in work pertaining to Curry-Howard interpreta-
tions of linear logic as session types, where the exponential modality from linear
logic 1A is typically linked to replication from the m-calculus. Disregarding our
modeling of failure, the largest difference between these works and ours is that
we focus on a multiparty setting, whereas these theories are all based on binary
communication. Furthermore, we did not opt to approach our problem from a
logic-perspective, as is the main motivation behind this line of research. Instead,
we build upon already-standard generalised MPST theory, adapting it towards
our problem domain. We do note, however, that exploring a logical approach to
replication in MPST (and, in turn, to failures in session types) is an interest-
ing direction for future work. A more related use of replication in types is by
Marshall and Orchard [I8], where the authors discuss how non-linear types can
be used in a controlled fashion to type behaviours such as repeatedly spawning
processes. This resembles the semantics of our type system and dynamic defini-
tion of replication in our language, where replicated processes (resp. types) can
be reused as necessary to pull out linear copies of their continuations. The men-
tioned work focuses on how to control the use of non-linear types and how this
can be utilised with session types in a functional programming language. Our
work, on the other hand, uses replication as a means of better modeling client-
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server interactions and distinguishing between failure-prone communication that
should be handled by the recipient or the sender.

On session types for client-server communication, research largely takes the
approach of linear-logic correspondences [22]2018/27]. The topology these works
target are of binary sessions between a pool of clients and a single server. In Qian
et al. [22] a logic is developed, called CSLL (client-server linear logic), utilising
the coexponential modality jA. The subtle difference between this modality and
the exponential !A is that the latter represents an unlimited number of a type
A, while the former serves type A as many times as required according to client
requests, in a sequential yet still unordered manner. This is very similar to how
our type system operates, given that replicated receives only pull out copies of
continuations upon communication. Multiple requests induce non-determinism
into further reductions, in our work this is seen in the extension of parallel
types, which in Qian et al. [22] is observed through hyper-environments. The
difference in goal between the work of [22] (followed up by [20]) and ours, is that
the mentioned works focus on providing fixed static guarantees on the processes
they type (the former work with a focus on deadlock freedom, the latter on
weak termination) whilst we take a generalised approach. Our type system does
not force programs to be deadlock-free or terminating, but rather requires a
less restrictive safety property and allows verification of deadlock freedom and
termination to be done a posteriori—the trade-off being our weaker form of type
safety given the failure-prone nature of our setting.

To conclude, we presented MAGw!, an extension to MAGw made to use
replication (instead of recursion) to express infinite computation—both at the
language and type levels. We did so with the aim of better modelling multi-
party client-server interactions, where servers are designed to remain infinitely
available. Specifically, we find type-level replication to be a clean mechanism
for offloading the handling of certain failures from the recipient to the sender—a
practical procedure for client-server interactions. We have generalised our theory
by proving our meta-theoretic results parametric of the largest safety property,
allowing for more specific properties to be instantiated and used to verify run-
time behaviours. As future work, we plan to investigate more specific properties
for verification through our general type system. We aim to explore in detail
the decidability of type-level properties and if/how they may be restricted to
obtain decidable bounds in cases where they are not. Lastly, we wish to conduct
a foundational study of the use of replication in MPST—we anticipate their use
for modelling client-server interactions to have further benefit outwith a failure-
prone setting.

Acknowledgements. Supported by the UK EPSRC New Investigator Award
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ecosystems, by construction”.
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A Simplification via Replication

We compare session types for the ping protocol written in MAGr [I7, Ex. 1] with our extension, MAGm!.
The example consists of three participants (or roles): the client p, server q, and a result channel r. Client
side communication between p and r is reliable, as we assume these are processes on a single machine.
Communication with the server q is unreliable, thus failures must be handled through timeouts. The
client-side session types are defined as S, and S, below.

Sy = &{p:ok.end, p:ko.end}
q:pong. dr:ok.end,
q:pong. &r:ok.end,

q:pong.dr:ok.end,

Sp=®q:ping.&
®.0q: plng-&{@.@r:ko.end

®.®q:ping.&

Client p begins by sending a message with label ping to server q (®q : ping) and then waits for a
pong response (&q : pong). If successful, an ok message is sent to the results role r and the session is
terminated for the client (end). Since communication with the server is unreliable, receipt of the pong
message is not guaranteed, and thus must be handled by a timeout branch ©. The client attempts to
reach the server 3 times—if all attempts fail, it sends a ko message to r. The result role r waits for
either of the reliable responses from p, thus no timeout is defined.

Now we consider the server-side protocol. One possible definition of the server session type could be
Sq below (as show in [I7, Ex. 1]).

p : ping. & p : pong.end
p:ping. & p: pong.end
0. & @ &4 PiPing. @ p : pong.end
®.end

Sq =&

However, although this is a safe definition, it does not cater for all possible scenarios. The above
definition only allows for up to three failures of the initial ping, and not the pong reply. If any pong
reply were to fail, then the result would always be ko, even though the client may try again. If we were
to also cater for three attempts from the server-side, then the server session type in MAG# could be
defined as Sj.

. ) p: ping. & p: pong.end
p:ping. @p.pong.&{G).end

p:ping. ®p:pong.& o )
@_&{p.pmg. @ p : pong.end

®.end
. ) p:ping. & p: pong.end
- p: ping. @p.pong.&{®_end
’ O.& p:ping. & p: pong.end
' ®.end

The key difference here is that the server must listen for a ping even after its pong reply, since
pong could fail and the client will reattempt the request. In practice, servers avoid these cumbersome
definitions by doing away with a specific retry count. Retries (and the handling of failures in general), is
left up to the client; servers instead opt to listen for requests for as long as they are available. Hence, no
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matter the direction in which a message is dropped, servers will always attempt to respond to requests
(unlike S;). We demonstrate this approach using replication at type-level in MAG!.

S; =Ip: ping. & p : pong.end

The replicated receive !p : ping denotes the server’s constant availability to receive a ping request. Upon
receiving a message from the client, the pong response is issued, but the server remains available to
receive further requests. We highlight the absence of a failure-handling timeout branch in S E]; the server
does not need to change its behaviour if a client request fails. Furthermore, if the pong reply fails,
the server remains available to handle any number of retries from the client. Thus, SE] handles all the
failures covered by S f] whilst also being agnostic to the client-side implementation (i.e., can handle any
number of retries) and reducing complexity of the server-side protocol.

B Structural Congruence

The full list of congruence rules used in MAG~! is given in definition below. Note that, different
to most standards, no congruence rules are used for replication—extracting processes out of replicated
receives is treated as an irreversible action and is handled by reduction (fig. [IJ).

Definition 15 (Structural Congruence).

N[ No =N || M (N1 I AN2) (| Ns = N || (Vs || AG) N[ p<0 =N if p & roles(\)

Pi|Pe=P2| P1 (P1|P2) [ P3=P1| (P2 | Ps) PlOo=P

C Subject Reduction and Session Fidelity

Theorem 1 (Subject Reduction) If I' ; A; © & N with or(I" ; A; ©) and N —x N, then
AN O st T'; A; 0@ =T A5 0 and I'; A5 O =N with or(I'; A ©).

Proof (Sketch). The proof is by induction on the derivation of N'—x N”. For most cases, we infer the
shape of relevant types in the contexts by inversion of typing rules and the assumptionof I ; A; © - N.
Any message in the network buffer being used for reduction (by sending or receiving) is present in the
type buffer—recall the affine nature of type buffers, and the fact that failures only drop network level
messages. Therefore, the contexts can match the network reduction, and we already know that the
reduced contexts can type the process continuations from the typing rules. The last thing to show is
that the reduced contexts are also safe, which is obtained via 0 or more applications of

For the case where A reduces via the network reduction is typed under the same context
as the assumption, because © is affine and will allow for an unused message type in the type buffer. 0O

Theorem 2 (Session Fidelity) If I'; A; © — and I' ; A ; O F N with or(I" ; A ; O), then
AN st. T Ay © =T A 0 and N -5 N and I'; A’ O =N with pr (L7 ; A" ©).

Proof (Sketch). The proof begins by induction on the derivation of I ; A ; © —, for which we observe
4 possible cases from fig. Bl Case [[A- T is straight forward. From the assumption I'; A; © - N and

rule [[A-C)]} using action % we may infer the shape of N to at least contain process p with a top
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level linear receive with a defined timeout branch. Therefore the context action can be matched by the
network via an application of

For the sending case, we infer the shape A/ by inversion of the typing rule From this we obtain
a network that can match exactly one of the paths identified in the type-level selection. Receiving cases
are similar to each other. By ¢ we know that any receive without a timeout is reliable, thus the network
is guaranteed to not drop the messages required to match the type-level reduction. If the receive is
unreliable, then the process can always, at the very least, match the timeout action. The remaining
case is an unreliable communication to a replicated receive, as there is no guarantee that the message
used for type-level reduction still exists in the network. In this case, if the message towards the replicated
receive has already failed, then by ¢, either the continuation of the replicated receive is end-typed; or
there is at least one other reduction possible by the contexts which the network can match. a

D Property Verification

To demonstrate how our generalised meta-theory can verify configurable runtime properties, we (i) de-
fine two sample properties on networks (deadlock freedom and termination); (i) present their equivalent
on type contexts; and (74) prove the context property implies the network property.

Definition 16 (Network Properties).

1. A network N is deadlock free, written df(N), iff N —* N’ 4 implies either
(a) N'=0]| B; or
(b) Nl Nll || || erl || B s.t.Viel.n Z./\/;-I = Pp; <l!jeJq./' . mj(fj) PJ
2. A network N is terminating, written term(N), iff df(N) and Jk finite s.t. Vn >k : N = Ny —
Ny = -+ = N, either
(a) No =01| B; or
(b) Nl = Nll || || erl || Bs.t.Viel.n Z./\/;-I = pP; <l!jeJq./' . mj(fj) PJ

Note that our definitions of deadlock freedom and termination (definition [I6]) differ from standard
definitions in the m-calculus. Specifically, it is typical for a process to only be considered deadlock free if
it only stops reducing because of reaching the inactive process. Our definition, on the other hand, allows
for leftover replicated receives. In the domain of client-server interactions where servers are designed to
be infinitely available, a server will never reach 0. This is an intended design choice of the calculus, as
replicated receives are meant to model servers which do not terminate and may occasionally get stuck
waiting in an idle state. Definition [10] reflects this design choice.

Definition 17 (Type Properties).

1. Contexts I' ; A ; © are deadlock free, written df(I" ; A O), iff I'; A; © =*T'; A" @ A
implies end(A").

2. A context I' ; Ag ; Op is terminating, written term (" ; Ag ;5 Oo), iff df(I"; Ay ; O) and Ik finite
st.Nn>k:I; Ay; Og— - =1 A, ; O, implies end(4,,).

The type-level equivalents of the process properties are given in definition [[7 above. Concretely, a
context is considered deadlock free iff it only stops reducing because its linear part is end-typed. A
context is terminating iff it is deadlock free and it reaches the state in which it can no longer reduce
within a finite number of reduction steps.
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Theorem 3 (Property Verification: df and term). IfI"; A; O b N with or(I"; A; O), then
o(I; A O) implies p(N), for ¢ € {df, term}.

Proof. Theorem [3 follows directly from theorem 2l We know that if a context can reduce, then the
network can match at least one reduction. Hence to prove property verification, we infer the shape of a
network typed under the definition of ¢ on types, and show that this fits the definition of ¢ described
for networks. We elaborate the case of df below, the other case is similar.

From df(I"; A; ©) it follows that there are two subcases:

1. Consider I' ; A ; © can reduce, i.e., I'; A; ® —. Then from I' ; A ; @ - N and theorem 2 we
infer that N can reduce, which satisfies df(N) trivially.

2. Consider I' ; A ; © cannot reduce, i.e., I' ; A; @ . Then, from the definition of df we know
end(A). If the linear context is end-typed then we can infer the shape of the entire network to be
at most some composition of replicated receives with the network buffer. This shape of N fits the

definition of df in definition [[G, and thus we can conclude df(/N).
O
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