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Abstract: 

Evaluating multi-center molecular integrals with Cartesian Gaussian-type basis sets has been a 

long-standing bottleneck in electronic structure theory calculation for solids and molecules. We 

have developed a vector-coupling and vector-uncoupling scheme to solve molecular Coulomb 

integrals with solid harmonics basis functions(SHGO). Solid harmonics are eigenstates of angular 

momentum, making it possible to factorize molecular integrals. By combining solid harmonic 

addition, differential and product rules, the computationally costly multi-center four-center 

integrals can be factored into an angular part and a radial component dependent on the atomic 

positions. The potential speed-up ratio in evaluating molecular nuclear Coulomb integrals in our 

method can reach up to four orders of magnitude for atomic orbitals with high angular momentum 

quantum numbers. The foundation underpinning the mathematical efficiency is the quantum 

angular momentum theory, where both vector-coupling and vector-uncoupling schemes 

correspond to unitary Clebsch-Gordan transformations that act on quantum angular momentum 

states, influencing their degree of entanglement. By incorporating quantum angular momentum 

through these transformations, the entanglement of the states can be reduced, and the less 

entanglement there is for a quantum system, the easier it is to simulate. The highly efficient method 

unveiled here opens new avenues for accelerated material and molecule design and discovery. 
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In the quantum mechanic description of atoms, orbitals, with well-defined energy levels, 

angular momentum and magnetic momentum, are the building blocks of the electronic structure 1. 

This conceptual framework laid the groundwork for contemporary computational chemistry 

methods such as Hartree-Fock and density-functional theory to characterize orbitals through 

mathematical wave functions. The wave functions are typically a product of a radial component, 

which defines the energy and an eigenfunction of the angular momentum operator for the angular 

part of the atomic orbitals 2-4. For systems with rotational symmetry, angular momentum plays a 

central role in simplifying complicated mathematical modelling into smaller factors5, 6. In general, 

these simple factors may be divided into two types. The first type is invariant under rotation, 

mainly determined by the precise physical characteristics of the quantum system under 

consideration. In contrast, the second type depends solely on the system's rotational properties. 

Therefore, the second type of factor can be precisely expressed as a function of angular momenta, 

laying the foundation for a general theory of angular momentum algebra. The elegant 

computational methods derived from this theory were widely applied to many problems, such as 

atomic, molecular, and nuclear spectroscopies, as well as nuclear reactions7, 8.  For computational 

quantum chemistry, the most popular method still relies on Cartesian Gaussian orbitals (CGOs). 

Unlike the CGOs, solid harmonic Gaussian orbitals (SHGO) can naturally describe the spatial 

dependence of wavefunctions for systems with spherical symmetry and separate the radial 

component from the angular part. There were some past developments for one-electron molecular 

integrals using SHGO9-11. However, to the best of our knowledge, efficient calculations of 

molecular Coulomb integrals with SHGOs have not yet been reported 12-14. In this paper, we 

present an approach for the efficient evaluation of molecular integrals with SHGOs using a 

combination of vector-coupling and vector-uncoupling schemes of angular momenta. We 
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demonstrate that the highly efficient calculation of molecular Coulomb integrals with SHGOs 

arises from simpler mathematical expressions and their quantum nature (the entanglement degree 

of orbital angular momentum states).  

Taking the overlap and nuclear Coulomb attraction integrals as paradigms in this paper, we 

show a detailed derivation of an efficient to evaluate expressions for molecular integrals using 

SHGOs and relevant vector-coupling and vector-uncoupling schemes of angular momenta. In 

general, SHGOs are defined as  

      
2

,a a

a a

r al a l
m a mr N l r a e     

      (1), 

where a


is the orbital atomic center, the Gaussian exponent,  ,aN l  the normalization constant, 

and  a

a

l
m r a   are solid harmonics (using the same notation from reference 6), a solution of the 

Laplace equation. Solid harmonics are related to the spherical harmonics as 6 

    4
,

2 1
l l
m lmr r Y

l

  


  (2), 

where  ,lmY   are the spherical harmonics with the phase convention of Condon and Shortley 8, 

l and m are the orbital angular momentum and magnetic quantum numbers, respectively. With the 

Hobson theorem of solid harmonics15 SHGOs can be further simplified using solid harmonic 

derivatives with respect to the orbital atomic center,  

      
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,
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 


   (3). 
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Without the normalization constants, the general expression for a molecular overlap integral is of 

the form 

      
2

21 1
,

2 2

ba

a b
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ll
r br al lab

a a b b m ma b
S l m l m e e d


 

 
               

  
    (4). 

Using the Gaussian product rule, 

 
 

22 22 a br b r Pr ae e e e


    
       

   
 (5), 

where 
a b

P
 
 




, and integration yields overlap integrals given by 

      
2

3
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,
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l lab
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

   
 

                       


    (6). 

The overlap integral in Eq. (6) can be evaluated by applying the differential and product rules of 

solid harmonic derivative9. This approach is similar to the previously derived vector-uncoupling 

scheme of angular momenta because there are no terms related to the a bl l quantum number. 

However, this is suboptimal in terms of computational efficiency, with too many harmonic 

derivatives acting on different atomic centers9, resulting in deep angular momentum entanglement 

of the atomic orbitals. Our new approach can eliminate the harmonics derivatives with the addition 

of angular momentum 6. With this addition, we shift orbital atomic centers a


and b


to the same 

center P


of Gaussian 
 

2
r P

e
   



, and obtain the following equation16 

    
1 1

1 1

1 1 1 1

1 1 10

( )
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a a a a

l ll l
l l l l
m l l m m m m m

l m l

r a a b r P
 

 





 

        
        (7). 

Here, the vector-coupling coefficients of angular momenta are given by 16 
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1 2 1 2

1 1 1 1

2 2 2 2
l l m m

l m l m

l m l m


               
 (8), 

and are also Clebsch-Gordan (CG) transformation coefficients9. Therefore, a two-center overlap 

integral is transformed into a single-center integral, 
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 (9). 

With the orthonormality of solid harmonics, we obtain  
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 (10). 

The summation in the second line of Eq. (10) is independent of orbitals and determined only by 

the rotational properties of angular momenta for an overlap integral. The last line in Eq. (9) is an 

elegant solution to demonstrate that quantum angular momenta of the same atomic center can not 

entangle with each other due to their orthonormality. It indicates that if a quantum system does not 

have much entanglement, it will be much easier to simulate. As a result, in the same way, the 

nuclear Coulomb attraction integrals can be directly calculated by simply introducing a nuclear 

Coulomb operator located at the center c


, into the integral of the last line in Eq. (9), 
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 (11). 

The last line of Eq. (11) clearly expresses the nuclear Coulomb attraction integral as the interaction 

between Gaussian distributed angular momenta at the center P


 and the nuclear Coulomb potential 

at the center c


. The well-known formula of two solid harmonic products may be applied to 

simplify the calculation, 
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 (12), 

where 
1 2

1 2

    p

p

l l l

m m m

     
is the Wigner 3-j symbol. Note that the only pl values on the right should satisfy 

1 2 evenpl l l   integers. Combining CG coefficients
1 1a al l m m ,

2 2b bl l m m ,  1

1

a

a

l l
m m a b

 
 and 

 2

2

b

b

l l
m m b a

 
  in Equation (11) with the Wigner 3-j symbols, we have a three-dimensional array 

 1 2 , ,
a a

b b

al m

p p bl m
l l l m



 , which is independent of orbitals. Thus, the nuclear Coulomb integral can be 

further simplified to 
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 (13), 

where 1 2

2
pl l l   

  
is a positive integer. Compared with all available integrals of the same type 

with either SHGOs or CGOs, Eq. (13) is the simplest expression for general nuclear Coulomb 

attraction integrals. The final expression combines Eqs. (11), (12) and (13) and contains three parts. 

The first one is a three-dimensional array  1 2 , ,
a a

b b

al m

p p bl m
l l l m



  and is independent of Gaussian 

exponents. By separating out the Gaussian exponents from this part, we can calculate it initially 

and reuse it during the later steps, and it can even be applied to the two-electron Coulomb integral. 

The second part involves  p

p

l

m c P
  , which is dependent on Gaussian orbitals. The third part is 

related to the Boys function,  
 

1 2 2212
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                 


 dependent on Gaussian 

exponents 17, which can be simplified as 
n xd e

dx x

    
. Table 1 shows a comparison of the 

computational cost of evaluating the nuclear Coulomb attraction integral with CGOs and SHGOs 

18, 19. The dominant computational cost with CGOs scales as L7P2 (L is the highest angular 

momentum number, and P is the number of primitive Gaussians). Previous SHGO methods with 

only the vector-uncoupling scheme of angular momentum, as implemented in the ParaGauss 
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package, have a similar computational cost of L6P2 14. This relatively high cost is the result of 

three-fold summations over angular momentum l and magnetic quantum m, respectively20. The 

interaction of two orbital angular momenta from different centers with a nuclear Coulomb potential 

can generate a lot of quantum entanglement under the vector-uncoupling scheme. As a result, the 

vector-uncoupling scheme of angular momenta is not suitable for multi-center molecular integrals. 

This can be the main reason why two-electron Coulomb integrals with SHGOs have not been 

implemented in earlier quantum chemistry packages. Figure 1 shows the potential computational 

overall speed-up ratio achieved using our approach with SHGOs. For calculations of CGOs using 

L=7 (h orbital) as the highest angular momentum number and P=10 for the number of primitive 

Gaussians, the speed-up ratio is roughly about 14,600 times, based on an estimate from Table 1. 

This represents a computational efficiency gain of 4 orders of magnitude.    

Table 1. The cost associated with computing nuclear attraction integrals     

Calculation steps with 
CGOs19 

Cost 
Calculation steps 

with SHGOs21 
Cost 

This work with 
SHGOs 

Cost 

Boys functions 
Hermite integrals 

Expansion coefficients 
Cartesian integrals 

Primitive Contraction 
Solid harmonics 

LP2 
L4P2 
L2P2 
L7P2 
L3P2 
L5 

Solid Harmonics 
Solid Harmonics 
Differential rule 

Product rule 
Boys functions 

L2 
L2P2 
L4P2 
L6P2 

LP2 

Solid harmonics 
Boys functions 

      L2P2 
LP2 

L is the highest orbital angular momentum number of the Gaussian orbitals and  
P is the number of primitive Gaussian functions. 
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Figure 1. Computational speed-up ratio in the calculation of nuclear attraction Coulomb integrals 
as a function of highest orbital angular momentum number. 

  

For a general two-electron Coulomb integral, there are four Gaussian exponents  ,  ,  , 

and  located at four atomic orbital centers a


, b


, c


, and d


 respectively. We can transform this 

two-electron, four-center Coulomb integral into a two-center one with the centres located at 

a b
P

 
 




and 

c d
Q

 
 




 in terms of four Gaussian distributed angular momenta based on 

Eq. (7). It leads to the simple expression as follows,  
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where     and     . Applying the same transformation used in Equation (12), we can 

rewrite equation 14 as:  
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             

 
 

 

     

 
 

   
22

21

1 2

1 2
1 2

  

p q

p q

r Qr Pl l

m mr P r Q e e
d d

r r



 
    

 
  

 
 

 (15) 

 In this simplified process, there are two three-dimensional arrays  1 2 , ,
a a

b b

al m

p p bl m
l l l m



 and 

 3 4 , ,
c c

d d

cl m

q q dl m
l l l m



 , which are independent of Gaussian orbitals and share all relevant integrals 

including nuclear Coulomb ones. As a result, we have the simple expression of 

 1 2,
p p

q q

l m

l m
I r P r Q




 

 
, 
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 

   

1 2 3 4

2 2

2 25 2 2
2

1 2

1m
2

0 0

1
, 2

2 1 !!
2

p q
p q

p p

q q

t

p q t

t

l l l l l l
l l

l m

l m

l
P Q ul l l

t
l

d d
I r P r Q

d d

l u e du






 

 
       

 


                 

   



                                
       



 

   

in( , )

  

p q

t
q t p t

p t p t q t q t q t p t

t t

l l

l
l l l l

l l m m l l m m m m m m
m l

P Q Q P   
 


 




  

 

 (16) 

Equation 16 involves two 5-dimensional array factors. The first array 

 1 2 3 4, , , ,
P

p q t Q
l l l l l l l




 



  corresponds to the first two lines in Equation (16). The second array 

 , , , ,
P

p p q q t Q
l m l m l



  is due to the summation over tm of the last line in Equation (16). The final 

expression of the general two-electron Coulomb integral is given by the summation of four array 

factors,  1 2 , ,
a a

b b

al m

p p bl m
l l l m



 ,  3 4 , ,
c c

d d

cl m

q q dl m
l l l m



 ,  , , , ,
P

p p q q t Q
l m l m l



 , and

 1 2 3 4, , , ,
P

p q t Q
l l l l l l l




 



 , with a scaling of 7 4L P where L is the highest angular momentum and 

P  is the number of the primitive Gaussian functions. The actual scaling may be much smaller 

when we apply the constraints where 1 2 pl l l   and 3 4 ql l l   must be even positive integers. 

The constraints also applies to the summation of the second line in Equation (16), together with

1 2 1 2pl l l l l    and 3 4 3 4ql l l l l    . Moreover, symmetry conditions for the Wigner 3-j 

symbol also reduce the number of nonzero terms in the array factors  1 2 , ,
a a

b b

al m

p p bl m
l l l m



 and 

 3 4 , ,
c c

d d

cl m

q q dl m
l l l m



 , resulting in significant computational savings. More importantly, calculations 

are all exact without any approximation. Compared with the dominant computational cost such as 
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L13P4, L9P4, and L6P4 associated with two-electron Coulomb integrals with CGOs19, the speed-up 

ratio may increase by several orders of magnitude.  

In conclusion, this paper presents the development of a framework to formulate and 

efficiently evaluate molecular integrals in Gaussian orbitals using the entanglement of angular 

momentum in quantum mechanics. The addition of solid harmonics and the Clebsch-Gordan 

transformation allows multi-center molecular integrals to be converted into one- or two-center 

integrals, independent of the original angular momenta of the Gaussian orbitals. Generally, the less 

entanglement in a quantum system, the easier it is to simulate. The Clebsch-Gordan transformation 

for the addition of solid harmonics can significantly reduce the entanglement degree of angular 

momentum of molecular integrals. Consequently, molecular integrals can be efficiently calculated 

with a computational speed-up of several orders of magnitude, depending on the highest orbital 

angular momentum quantum numbers. The formalism for efficient evaluation of molecular 

integrals with solid harmonic Gaussian orbitals developed in this paper could thus pave the way 

for quantum computational chemistry investigations of realistic systems on reasonable timescales. 

Finally, the computational approach developed in this paper may also be applied for simulations 

of complex forms of quantum entanglement, such as those arising from the interaction between 

orbital angular momenta of light described as Laguerre-Gaussian modes and quantum states of 

matter for the development of the photonic quantum computer22. As part of the future work, we 

plan to implement the developed calculation scheme into ParaGauss, a freely available package 

under the GNU General Public Licence, in which SHGOs are already used.. 
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