
Nonlinear dynamics of a hanging string with a freely pivoting attached mass

Filip Novkoskia, Jules Fillettea,b, Chi-Tuong Phamc, Eric Falcona,∗

aUniversité Paris Cité, CNRS, MSC, UMR 7057, Paris, F-75013, France
bLPENS, ENS, CNRS, UMR 8023, PSL Research University, Sorbonne Université, F-75005, Paris, France

cUniversité Paris-Saclay, CNRS, LISN, UMR 9015, Orsay, F-91405, France

Abstract

We show that the natural resonant frequency of a suspended flexible string is significantly modified (by one order of
magnitude) by adding a freely pivoting attached mass at its lower end. This articulated system then exhibits complex
nonlinear dynamics such as bending oscillations, similar to those of a swing becoming slack, thereby strongly modifying
the system resonance that is found to be controlled by the length of the pivoting mass. The dynamics is experimentally
studied using a remote and noninvasive magnetic parametric forcing. To do so, a permanent magnet is suspended
by a flexible string above a vertically oscillating conductive plate. Harmonic and period-doubling instabilities are
experimentally reported and are modeled using the Hill equation, leading to analytical solutions that accurately describe
the experimentally observed tonguelike instability curves.
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1. Introduction

The vibrational modes of a flexible and inextensible
hanging string in the gravitational field is a classical me-
chanical problem, and its solution dates back to Bernoulli
and Euler in the 18th century [1]. The case of the flexible
string with an additional mass at its lower end has been
considered only recently, both theoretically [2] and exper-
imentally [3], and its modes are found to be close to those
of a rigid pendulum [3]. Although such a mechanical sys-
tem involves a spatially dependent wave velocity (as for
acoustics in air ducts [4] or in granular media [5]), there
is little experimental data for such articulated pendulum
systems compared to those involving rigid limbs such as
the double pendulum [6].

Here, we study a system constituted of a flexible string
with a freely pivoting attached mass to its lower end. We
show that its natural resonant frequency is one order of
magnitude higher than the one of a single flexible string.
Such a two-component articulated system exhibits bend-
ing oscillations similar to those of a swing becoming slack,
thus strongly modifying its resonances. They are stud-
ied using an original technique based on noninvasive and
remote magnetic forcing. More precisely, we investigate
the dynamics of a permanent magnet, freely pivoting, sus-
pended by a flexible string above a vertically oscillating
conductive plate. Induced currents due to the moving con-
ductor generate remote forces on the magnet, giving rise
to a parametric forcing needed to study the nonlinear dy-
namics of the system. The main advantage of this forcing
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Figure 1: Left: Illustration of the experimental setup with the system
in motion. Right: Photo of the magnets suspended at the end of a
nylon cord, using the plastic holder of length ℓ+ a. L = 6 cm.

is to avoid the excitation of the string torsional modes and
the single pendulum mode unlike vertically oscillating the
top attachment point of the string. Note that parametric
instabilities [7], phase transitions [8], bifurcations [9] and
control of chaos [10] have been investigated with a rigid
pendulum with a magnet as their tip mass in an oscillat-
ing magnetic field [11, 12], or with a ferrofluid drop sus-
pended by a torsion pendulum [13]. For a flexible string,
with no tip mass and vertically vibrated, parametric reso-
nance, chaos, and self-knotting have been experimentally
evidenced [14].
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Figure 2: Spectrum of the magnet velocity showing the system fre-
quency response, fr, for different forcing frequencies, f . f0 is the
system’s natural resonant frequency. ℓ = 6 mm. A subharmonic re-
sponse, i.e., fr = f/2, occurs for frequencies around 2f0 (between the
dash-dotted lines). Note also the presence of the second harmonic
(i.e., fr = 2f) that is maximal around f0.

2. Experimental setup

The setup is shown in Fig. 1. It consists of a flexible ny-
lon cord suspended at its upper point and with a tip mass
attached at its lower end using glue. The cord has a 0.35-
mm diameter, linear mass density ρ = 1.24 mg/cm, and
length L = 6 cm. The tip mass consists of two neodymium
permanent magnets (square cuboid of size a× a× a

2 , with
a = 1 cm, total magnetic moment m = 0.8 ± 0.05 A/m2)
in which a 3D-printed thin plastic square plate is sand-
wiched with a length of ℓ ∈ [0, 2] cm protruding above
the magnets (see Fig. 1). The total tip mass is M = 8
g. The articulated system is thus constituted of a flexible
string (of length L) with a rigid pendulum (of length ℓ+a)
attached to its end. We force the system parametrically,
using a noninvasive and remote magnetic forcing, to study
its dynamics. To do so, the system is suspended above the
center of a circular copper plate. The plate is attached
to an electromagnetic shaker using a long aluminum shaft
to avoid any interference from the internal magnetic field
of the shaker. The plate is subjected to vertical oscilla-
tions, A sin(2πft), at a mean distance d0 ∈ [7, 9] mm from
the magnet center, with f ∈ [15, 40] Hz and A ∈ [0.07, 2]
mm, the frequency and amplitude of the vibrating plate,
respectively. The relative distance between the magnets
and the plate is d(t) = d0 + A sin(2πft). The horizon-
tal velocity of the magnet is measured either by a Poly-
tech laser vibrometer for small amplitude motions or by a
homemade copper wire coil, placed close to the magnet, for
large ones. The magnet motion is visualized by a Basler
camera (2048× 1536 px2, 120 fps) located in front of it.

3. Frequency response

We first determine the frequency response of the magnet-
string system. To do so, the forcing frequency f is varied

linearly in time, during 2 min, from 15 to 50 Hz, and the
horizontal velocity v(t) of the tip mass is recorded. We
compute its frequency spectrum Sv(ω) ∼ |v̂(ω)| [where
v̂(ω) is the Fourier transform of v(t)] as shown in Fig. 2.
The spectrum maxima correspond to the system frequen-
cies fr in response to different forcing frequencies f . We
clearly see that the response follows the forcing, fr = f ,
except in a region (see vertical dash-dotted lines), where
a subharmonic behavior, fr = f/2, is observed. In this
range, the magnet exhibits large-amplitude oscillations (in
the planar pendulum motion) in which the string swings
back and forth at half the driving frequency, correspond-
ing thus to a period-doubling instability [see the red region
and photos in Fig. 3, and a movie in the Supplemental Ma-
terial (see Appendix A)]. The system exhibits also small
rotations of the center of mass, around the equilibrium,
with deviations of the string from the vertical. Such mo-
tion is restricted to the vertical y−z plane and no rotation
around the vertical axis is found. Outside the red region in
Fig. 3, a low-amplitude motion is observed. Interestingly,
the magnetic damping of the conductive plate cancels any
torsional motion.

We now measure the natural resonant frequency f0 of
the magnet-string system. We move laterally the magnet
away (over the y-axis) from its equilibrium with a small
string flexion to excite only the mode observed in the inset
of Fig. 3 and not the unflexible pendulum one [occurring at
a much lower frequency

√
g/L/(2π) ≃ 2 Hz]. We record

the magnet velocity during its free-damped oscillations.
Through a Fourier transform, the resonant frequency is in-
ferred from the spectrum peak frequency, f0, and is noted
by a vertical dashed line in Fig. 2. The subharmonic region
in Fig. 2 occurs around 2f0, as expected for parametric
resonance [15], with the corresponding response fr = f/2,
i.e., a period-doubling motion. Figure 2 also shows that
no subharmonic instability occurs around f0, as expected,
whereas a second-harmonic instability, i.e., fr = 2f , is
observed.

4. Instability threshold

The threshold of the subharmonic instability depends
on the vibrating parameters f and A. It is experimen-
tally measured by slowly increasing A, for a given f , un-
til observing an exponential rise in the system oscillation
amplitude. The experimental data are shown in Fig. 3 to
collapse onto continuous curves in the nondimensional pa-
rameter space (A/d0, f/f0) which are suggestive of two
resonant curves around f0 (in blue) and 2f0 (in red). In
the zone above the red points, a period doubling of the os-
cillations of the bending string is observed, i.e., fr = f/2,
corresponding to the inset of Fig. 3. The tonguelike shape
of this marginality curve is reminiscent of parametric res-
onance. The instability is also found slightly hysteretic.
In the region above the blue points, the system responds,
as fr = f , corresponding to a harmonic instability. Note
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Figure 3: Dynamic behaviors of the articulated system in the nondi-
mensional forcing amplitude and frequency parameter space. Two
resonant tongues around f0 and 2f0 are observed, corresponding to
a harmonic instability and period doubling, respectively. Bullets:
experimental data. Solid lines: prediction of the resonant tongues
from Eq. (6) (red) and Eq. (C.9) (blue). Dashed lines: errors in the
predictions due to the estimation of q. Inset: Photos at different
times showing period-doubling instability and a strong deviation an-
gle of the magnet and correspondingly of the string. ℓ = 1 cm. L = 6
cm.

that, for frequencies slightly close and above f0, no exper-
imental data are indicated since we do not observe a clear
transition to the harmonic instability (see below).

5. Bending string description

The behavior of a hanging flexible string differs signif-
icantly from that of a rigid pendulum [1]. Let us consider
a flexible and inextensible string suspended from its fixed
upper point, subjected to gravity and tension forces, and
a maximal displacement of its end X0 at an initial time.
The string position X(s, t) is then described by Newton’s
law as [14]

ρ∂ttX = ∂s[T (s, t)̂s]− ρgẑ (1)

where s ∈ (0, L) is the curvilinear position along the string
taking its origin at its upper end [X(0, t) = 0], T (s) is the
tension acting in the string, ρ is the linear mass density,
and g = 9.81 m/s2. By applying additional boundary con-
ditions (BCs), T (L, t) = 0 (no tension acts on the free
end), and X(L, 0) = X0 (initial condition), the solutions
of Eq. (1), for no tip mass and small displacements from
the equilibrium configuration, are found as modes of the
zeroth-order Bessel function of the first kind J0 [1]. Nev-
ertheless, due to the added tip mass, our system is able
to rotate around its center of mass (in the planar pendu-
lum motion), and a significant modification of its resonant
frequencies is predicted [3]. Beyond BCs on the string po-
sition at its ends, forces, and torques on the tip mass need
to be theoretically considered leading to nontrivial BCs [3].

In that case, solutions of Eq. (1), for small displacements,
are that of a classical harmonic oscillator of frequencies
ωn, each corresponding to a system mode. Note that if
the string were elastic, one would recover a parametrically
excited buckling beam, most likely governed by a Duffing-
like equation [16].

By considering small motions around equilibrium, Eq. (1)
reads

ρ∂ttX = ∂z [(ρgz +Mg) ∂zX] , (2)

where X is the x-direction component of X. Through
separation of variables X = p(t)q(z) and assuming that
the hanging mass is much larger than the mass of the cord,
one finds

∂ttp = −ω2
np. (3)

The boundary conditions imposed on the cord determine
exactly the value of ωn. If we assume now that the hang-
ing mass experiences a time-dependent form, and that the
gravitational constant is thus given as g(t) = g[1 + a(t)],
we find through the same procedure as above

∂ttp = − [1 + a(t)]ω2
np, (4)

where a = F (t)/(Mg), and F is the unknown vertical force
exerted on the hanging mass M . An important assump-
tion was made above, namely that a separation of time
and space variables is possible, which is no longer the case
for large tip-mass displacements. Additionally, Eq. (4) is a
significant simplification considering the nontrivial BCs at
the lower end [3]. Ideally, one would have to also include
the remote force exerted by the plate on the magnet into
the bottom boundary condition, notably in the accelera-
tion of the center of mass.

6. Pivoting-mass length effects

We now measure experimentally the resonant frequen-
cies f0 for different lengths ℓ as shown in Fig. 4. A strong
dependence of f0 on ℓ is found, and f0 is significantly larger
(by one order of magnitude) than the corresponding usual
rigid pendulum mode (2 Hz) or the no-tip-mass flexible
string mode (2.4 Hz). The numerical computation of f0
using Eq. (1) and the BCs found in Ref. [3] is shown as well,
which roughly agrees with the data with no fitting param-
eter. We thus find that the tip-mass flexible string is rea-
sonably well modeled by Eq. (1) with the BCs in Ref. [3].
As the string is not able experimentally to freely rotate
around its lower attachment point (see inset of Fig. 3), a
rigid motion occurs on the string δℓ ≃ 2 mm away from its
lower end, and we have thus introduced an effective length
of the axis, ℓeff = ℓ+ δℓ, in this model.

7. Hill’s equation

Let us now take into account the remote magnetic forc-
ing as the vertical oscillations of the conducting plate in-
duce a time-dependent force on the magnet. First, we
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Figure 4: Experimental resonant frequencies, f0, of the tip-mass-
cord system for different pivoting mass lengths ℓ. The solid line
corresponds to Eq. (1) of the flexible string model with a tip mass,
i.e., including nontrivial BCs. Inset: Magnetic field Bx measured
at different distances z below the magnet bottom without forcing
(bullets). Near-field dipole prediction (dashed line) and far-field
monopole model (dash-dotted line). L = 6 cm.

measure, with no forcing and using a Koshava5 Gauss-
meter, the field amplitude Bx(z) generated by the magnet
along the negative z axis (i.e., below the magnet and in the
direction of the magnetic dipole moment m). Far from the
magnet, Bx(z) is well described (see inset of Fig. 4) by the
classical magnetic dipole law Bx(z) = µ0m/(4πz3) [17],
with µ0 = 4π10−7 Tm/A the vacuum magnetic perme-
ability. By moving closer to the magnet, the experimen-
tal magnetic strength clearly departs from this prediction
and is roughly fitted by Bx(z) = µ0q/(4πz

2) where q is
an effective monopole moment inferred from the fit as
q = 33 ± 4 Am. Note that the components By and Bz

are negligible due to the choice of m along the x direction,
since they are measured to be ten times smaller than Bx.
Additionally, more sophisticated expressions for the field
of a permanent magnet could be used [18], but for the sake
of simplicity we rely on this empirical model, also known
as the dumbbell model [19]. The electromagnetic interac-
tion between the magnetic field Bx and the vertical motion
of the nearby oscillating conductor causes a vertical force
on the magnet computed as Fz(d) = (µ2

0q
2σuz)/(16πd)

(see Appendix B) with d(t) = d0+A sin (2πft) the relative
distance between the magnet and the plate, uz = dd/dt
their relative vertical velocity, and σ the plate conductiv-
ity. By adding the driving force Fz into Eq. (1) of the
hanging string, including the nontrivial BCs, and assum-
ing small horizontal displacements, we find that the am-
plitude pn of each mode n, oscillating at ωn, is governed
by an equation of the Hill type (see Appendix C)

∂ttpn = −ω2
n

[
1 + c

(A/d0)ω cos(ωt)

1 + (A/d0) sin(ωt)

]
p− κ∂tpn (5)
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Figure 5: Top: Temporal evolution of the horizontal velocity of the
magnet, for increasing plate amplitudes A (in order blue, red, green,
yellow) at fixed f = 27 Hz, and below the period-doubling instability
threshold (white area in Fig. 3). Bottom: same within the period-
doubling region (red area in Fig. 3).

with c = (µ2
0q

2σ)/(16πMg) = 0.026 s, and κ a dissipation
coefficient. It is well-known that the Hill equation can lead
to resonant tongues of parametric instability including the
special case of the Mathieu equation [20].

By applying a Fourier expansion of the periodic func-
tion within the brackets in Eq. (5) up to the second or-
der, we can analytically find the expressions for the reso-
nant tongues in the (f/f0, A/d0) parameter space (see Ap-
pendix C). The tongues originate at 2ωn/m (m = 1, 2, ...
is the tongue number) leading thus to a harmonic or sub-
harmonic response. We reproduce here only the expression
for the subharmonic tongue at 2f0, i.e.,(

2ω2
0

ω2
− 1

2

)2

+
κ2

ω2
−
(
ce1

ω2
n

ω

)2

= 0. (6)

where e1 corresponds to the first Fourier coefficient in the
series expansion, which depends nontrivially on the forcing
amplitude (the exact expressions being cumbersome, they
have been collected in Appendix C and Appendix D).
The subharmonic instability curve of Eq. (6) is plotted
in Fig. 3 (red solid line) along with the harmonic predic-
tion at f0 (blue one) from Eq. (C.9). Our model is found
to be in good agreement with the experimental instability
curves with no fitting parameter once the tongue minimum
is known. As the latter is related to dissipation [21], this
leads to an estimation of the effective dissipation κ = 0.18
s−1 satisfying the timescale separation 1/f ≪ 1/κ. Slight
deviations of the model for higher frequencies (compare
red solid line and bullets) could be due to the mode trun-
cation to obtain the analytic expression. In addition, the
theoretical tongue shape near f0 (blue solid line) exhibits
a sharp, almost vertical, rise above f0, explaining why we
are unable to experimentally observe the right part of the
harmonic instability curve.
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8. Transition behavior

We finally focus on the magnet dynamics when cross-
ing the subharmonics instability threshold. For this, we
increase the plate amplitude A at a fixed frequency f ,
and, using the laser vibrometer, we measure the horizon-
tal velocity v(t) of the magnet-string motion, as shown
in top Fig. 5. For low A, small-scale oscillations are re-
ported (see blue curve). For high enough A, still below
the subharmonic instability threshold Ac(f) in Fig. 3, we
observe the appearance of higher harmonics as well as an
asymmetry of the motion on every second period of the
forcing frequency. This asymmetry is likely because the
magnet velocity is no longer negligible. Once we cross the
threshold of instability, the motion becomes more regular
and with an amplitude that is ten times larger, as seen in
bottom Fig. 5, with period doubling clearly visible. In-
terestingly, the magnet spends a long time at its extreme
points, i.e., for v = 0, with a rapid pass through its equi-
librium point. Thus, increasing the amplitude means that
higher harmonics grow more and more until the system
transitions into the period-doubling state. This behavior
is similar to that of the Duffing equation and indicates the
presence of nonlinearities in the string.

9. Conclusion

We have reported, both experimentally and theoret-
ically, the dynamics of an articulated oscillating system
consisting of a flexible string with a freely pivoting mass
at its end. The system resonant frequency is controlled
by the length of the pivoting mass and differs significantly
(by one order of magnitude) from that of the single flex-
ible string. This articulated system in particular exhibits
bending oscillations, similar to a swing becoming slack. To
do so, we used a remote and noninvasive parametric forc-
ing technique. A magnet suspended by a flexible string
above a vertically oscillating conductive plate is subjected
to a remote force (due to induced currents in response to
the conductor motion). Parametric resonances of the tip-
mass-string system are then highlighted such as harmonic
and period-doubling instabilities. This parametric system
is theoretically modeled using a Hill equation and the ob-
tained analytic expressions for the resonant tongues de-
scribe well the observed instabilities. Beyond their thresh-
olds, more complex dynamics can be observed once the
magnet displacement or velocity becomes comparable to
the oscillating plate one. A potential improvement to
the current study would be to consider different magnet
strengths.
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Appendix A. Movie

Video of the string, swinging back and forth at half the
driving frequency, and showing a period-doubling instabil-
ity. f = 30 Hz. See the video

Appendix B. Force on the magnet

In our model, we consider that the magnet is the source
of a simplified magnetic field close to the conducting plate
in the form of

B⃗ =
µ0

4π

q

r2
x̂, (B.1)

which we find to be a reasonable approximation empiri-
cally. Following Ref. [7], the force on the source of this
field can be obtained through

F⃗ =

∫
Σ

σ(u⃗× B⃗)× B⃗dV, (B.2)

where Σ is the conductor volume, considered to be located
at a distance d from the source and filling the half-infinite
volume (we find numerically that effects of finite size can
be neglected due to the 1/r2 drop-off of field strength).

Inserting Eq. (B.1) into Eq. (B.2) and considering u⃗ =
uẑ, Eq. (B.2) reads

F⃗ =

(
µ0q

4π

2
)
σu

∫
Σ

(ẑ × ŷ)× ŷ

r4
dV. (B.3)

By turning to cylindrical coordinates, we have

F⃗ =
(µ0q

4π

)2
σuẑ

∫ ∞

d

∫ ∞

0

∫ 2π

0

ρ

ρ2 + z2
dϕdρdz, (B.4)

finally yielding

F⃗ =
(µ0q

4

)2 σu

πd
ẑ. (B.5)

Appendix C. Hill equation and stability

We can now insert Eq. (B.5) into Eq. (4) to find the
governing equation of a single mode as

∂ttp = −ω2
n

[
1 +

(µ0q

4

)2 σ

πMg

Aω cos(ωt)

d0 +A sin(ωt)

]
p, (C.1)

where we have assumed that the conducting plate posi-
tion is given by z(t) = A sin(ωt) and its motion is larger
than the magnet one, much like the linearized equations
of motion found in Ref. [7].
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We introduce now τ = ωt and perform a change of
variables

∂ττp = − [α+ γf(τ)] p, (C.2)

where

α =
ω2
n

ω2
, γ =

(µ0q

4

)2 σω2
n

πωMg
(C.3)

f(τ) =
β cos(τ)

1 + β sin(τ)
, β =

A

d0
. (C.4)

In order to analytically compute the approximative insta-
bility regions of Eq. (C.2), we expand the function f(τ)
into a Fourier series up to the second order. This yields

∂ττp = − [α+ γ (e1 cos τ + e2 sin 2τ)] p− κ∂τp, (C.5)

where a damping term κ is now included. Both e1 and e2
are functions of β and are given in Eq. (D.2). We consider
p =

∑∞
−∞ ane

inτ/2, giving us a system of equations for an.
We truncate the system to two dimensions and impose that
the corresponding determinant is zero, i.e.,∣∣∣∣α− 1

4 + i
2κ

1
2γe1

1
2γe1 α− 1

4 − i
2κ

∣∣∣∣ (C.6)

giving (
α− 1

4

)2

+
1

4
κ2 − 1

4
(γe1)

2 = 0. (C.7)

We repeat the procedure for the harmonic solutions with
p =

∑∞
−∞ ane

inτ , except that a larger dimension is needed
now ∣∣∣∣∣∣

2(α− 1 + iκ) γe1 −iγe2
γe1 2α γe1
iγe2 γe1 2(α− 1− iκ)

∣∣∣∣∣∣ (C.8)

which leads to

α
[
4(α− 1)2 + 4κ2 − γ2e22

]
− 2(α− 1)γ2e21 = 0. (C.9)

Appendix D. Fourier coefficients

The function f(τ) is expanded as

f(τ) ≈ e1 cos(τ) + e2 sin(2τ) (D.1)

with

e2 =
2

β2

(
β2 + 2

√
1− β2 − 2

)
e1 =

r

2πβ
√
1− β

r =4π
(
2
√

β + 1β +
√

1− β − 2
√
β + 1

)
− 8(β − 1)

√
β + 1 tan−1

(√
1− β

β + 1

)

− 8(β − 1)
√
β + 1 tan−1

(√
β + 1

1− β

)
(D.2)
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