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Abstract

Numerically simulating magnetohydrodynamics (MHD) poses notable challenges, including the

suppression of spurious oscillations near discontinuities (e.g., shocks) and preservation of essential

physical structures (e.g., the divergence-free constraint of magnetic field and the positivity of den-

sity and pressure). This paper develops structure-preserving oscillation-eliminating discontinuous

Galerkin (OEDG) schemes for ideal MHD, as a sequel to our recent work [M. Peng, Z. Sun &

K. Wu, arXiv:2310.04807, 2023]. The schemes leverage a locally divergence-free (LDF) oscillation-

eliminating (OE) procedure to suppress spurious oscillations while retaining the LDF property of

magnetic field and many desirable attributes of original DG schemes, such as conservation, local

compactness, and optimal convergence rates. The OE procedure is based on the solution operator

of a novel damping equation, a linear system of ordinary differential equations that are exactly

solvable without any discretization. The OE procedure is performed after each Runge–Kutta stage

and does not impact DG spatial discretization, facilitating its easy integration into existing DG

codes as an independent module. Moreover, this paper presents a rigorous positivity-preserving

(PP) analysis of the LDF OEDG schemes on Cartesian meshes, utilizing the optimal convex decom-

position technique [S. Cui, S. Ding & K. Wu, SIAM J. Numer. Anal., 62:775–810, 2024] and the

geometric quasi-linearization (GQL) approach [K. Wu & C.-W. Shu, SIAM Review, 65:1031–1073,

2023]. Efficient PP LDF OEDG schemes are derived by incorporating appropriate discretization of

Godunov–Powell source terms into only the discrete equations of cell averages, under a condition

achievable through a simple PP limiter. Several one- and two-dimensional MHD tests verify the

accuracy, effectiveness, and robustness of the proposed structure-preserving OEDG schemes.
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1. Introduction

The magnetohydrodynamic (MHD) equations are extensively employed to model macro-scale

behaviors across various domains, such as laboratory, space, and astrophysical plasmas. These

equations find notable applications in the study of phenomena including coronal mass ejections

[1], the evolution of solar coronal magnetic fields [2], and the dynamics within Earth’s magneto-

sphere [3]. As a nonlinear hyperbolic system, the ideal compressible MHD equations are inherently

complex, making analytical solutions challenging to derive. Thus, numerical methods have become

a primary approach in this research area. Among these methods, discontinuous Galerkin (DG)

methods are especially preferred due to their ability to achieve high-order accuracy, excellent

local compactness, and adaptability to arbitrary mesh configurations (cf. [4, 5]). The effective-

ness of DG methods in MHD numerical simulations is well-documented in various studies (e.g.,

[6, 7, 8, 9, 10, 11]). However, in scenarios with strong discontinuities like shocks, conventional

high-order DG methods may generate spurious oscillations near these discontinuities, leading to

non-physical results and potential simulation failures.

To suppress spurious oscillations in the DG methods for hyperbolic conservation laws, var-

ious techniques have been developed, including but not limited to the total variation bounded

limiter [4], the weighted essentially non-oscillatory limiter [12], and artificial viscosity techniques

(e.g., [13, 14]). These strategies effectively control oscillations and enhance the stability of DG

schemes. However, some of them may compromise certain desirable attributes of the original DG

schemes, such as optimal convergence rates, or depend on problem-specific parameters. Recently,

Lu, Liu, and Shu [15] introduced the so-called oscillation-free DG (OFDG) method for scalar

conservation laws, by ingeniously incorporating a damping term into semi-discrete DG schemes.

The OFDG method can effectively mitigate numerical oscillations near strong discontinuities while

retaining many beneficial features of the original DG schemes, including conservation, superconver-

gence, and optimal error estimates. Subsequently, the OFDG method was successfully extended to

hyperbolic systems [16] with characteristic decomposition and applied to shallow water equations

[17], nonlinear degenerate parabolic equations [18], and multi-component chemically reacting flows

[19]. However, the characteristic decomposition in the OFDG method may be computationally

expensive and require careful adjustments to the eigenvectors due to a lack of scale invariance.

Furthermore, as Liu, Lu, and Shu mentioned [16], the stiffness of the large damping terms near

strong discontinuities makes the Courant–Friedrichs–Lewy (CFL) condition more restrictive, ne-

cessitating the use of modified exponential Runge–Kutta methods to alleviate this restriction.

More recently, motivated by [15], a novel oscillation-eliminating DG (OEDG) method was sys-

tematically developed in [20]. This method alternately evolves the conventional semi-discrete DG
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scheme and a novel damping equation. Unlike the OFDG method, the OEDG approach decouples

the damping terms from the DG formulations, facilitating non-intrusive integration into existing

DG codes, simplifying implementation, and enhancing efficiency. Additionally, the OEDG method

does not require characteristic decomposition for hyperbolic systems, maintains stability under

the standard CFL condition without the need for exponential Runge–Kutta discretization, and

exhibits desirable properties such as scale invariance and evolution invariance across various scales

and wave speeds.

In ideal MHD, the magnetic field must be divergence-free, and both density and internal energy

(or pressure) must remain positive. Preserving these physical structures—zero divergence of the

magnetic field and positivity of density and pressure—presents significant challenges in MHD simu-

lations. Large divergence errors can introduce nonphysical features or cause numerical instabilities

[21, 22]. To mitigate these divergence errors, several techniques have been developed, includ-

ing but not limited to the projection method [21], the constrained transport method [23, 24], the

eight-wave method [25], the hyperbolic divergence cleaning method [26], the locally divergence-free

(LDF) method [6, 27, 28, 29], and the globally divergence-free (GDF) method [30, 7, 31, 32, 11].

These methods have been widely applied across various schemes due to their effectiveness in con-

trolling divergence errors. Positivity of density and pressure can be compromised in challenging

MHD simulations involving low density or pressure, high Mach numbers, large magnetic energies,

or strong discontinuities. To address this, early research primarily focused on developing robust

one-dimensional approximate Riemann solvers; see, for example, [33, 34, 35, 36]. Waagan [37]

introduced a second-order MUSCL-Hancock scheme using relaxation Riemann solvers [35, 36] that

ensures the positivity of density and pressure; the robustness of this scheme was further validated

through extensive testing [38]. There has been notable progress in the development of positivity-

preserving (PP) limiters for higher-order schemes [39, 40]. Balsara [41] proposed a self-adjusting

PP limiter to maintain the positivity of reconstructed density and pressure in ideal MHD. Cheng et

al. [42] extended the PP limiter of Zhang–Shu [40] to ideal MHD and demonstrated the PP prop-

erty of one-dimensional (central) DG schemes under certain assumptions. Christlieb et al. [43, 44]

developed high-order PP finite difference methods for ideal MHD, via a parameterized flux lim-

iter [45]. These PP techniques have significantly enhanced the robustness of MHD schemes, as

evidenced by numerous numerical tests. However, the inherent complexity of MHD equations and

the unclear relationship between the PP property and the divergence-free condition have limited

earlier research in proposing numerical schemes that can be rigorously proven to preserve positivity

for ideal MHD.

In recent years, important advances [46, 47, 48, 49, 50] have been made in revealing the theo-
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retical connections between the PP property and the divergence-free condition for MHD systems.

For the ideal MHD equations, the work [46] first rigorously proved that a discrete divergence-

free condition is intrinsically linked to achieving the PP property. As discovered in [46], even

slight deviations from the discrete divergence-free condition could compromise the PP property.

Furthermore, it has been found in [47] that even the exact smooth solutions of the conservative

MHD system with nonzero magnetic divergence may result in negative pressure. Fortunately, as

shown in [48], this issue does not arise in the symmetrizable MHD system, which incorporates

the Godunov–Powell source term [51, 52]. A provably PP DG scheme for this system was first

developed in [47]. Subsequently, [48] established a framework for provably positive high-order

finite volume and DG schemes on general meshes. These advancements leverage an innovative

approach termed geometric quasilinearization (GQL) [46, 49], which equivalently transforms com-

plex nonlinear constraints—such as ensuring the positivity of internal energy or pressure in the

MHD system—into manageable linear constraints through the integration of appropriate auxil-

iary variables. Capitalizing on the geometric characteristics of convex sets, a comprehensive GQL

framework was recently proposed in [49] to address bound-preserving schemes under nonlinear

constraints. For developments in the field of relativistic MHD, refer to [53, 54, 55]. More recently,

a novel second-order structure-preserving finite element method was introduced in [56], based on

convex limiting and a novel splitting technique.

This paper aims to develop the LDF OEDG method for ideal MHD and then present a rigorous

PP analysis. Our analysis establishes the probable PP property for the LDF OEDG method

through the optimal convex decomposition technique [57, 58] and the GQL approach [49]. The

contributions, novelty, and significance of this work are outlined as follows:

• We design an LDF OE procedure, which effectively eliminates spurious oscillations while

locally maintaining the divergence-free magnetic field. This procedure is integrated as an

independent module within the LDF DG framework, applied after each Runge–Kutta stage,

resulting in the LDF OEDG method. The procedure is built on the evolution operator of

a novel damping equation, whose exact solution is explicitly formulated without any dis-

cretization. It serves as an LDF filter to the DG modal coefficients and is easily implemented

and efficient, involving merely the multiplication of modal coefficients by scalars. The LDF

OEDG method retains the desirable features of original DG schemes, such as conservation,

local compactness, and optimal convergence rates, and is naturally extensible to general

meshes.

• A rigorous PP analysis of the LDF OEDG schemes with the Harten–Lax–van Leer (HLL)

flux is carried out on Cartesian meshes. This analysis employs the recently developed GQL
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approach [46, 49], which skillfully transforms the nonlinear constraint of pressure into a

family of equivalent linear constraints by introducing several auxiliary variables. To ensure

the weak PP property for the cell averages of the OEDG solution, we incorporate suitable

upwind discretization of Godunov–Powell source terms into the schemes. This addresses

the impact of divergence errors on the PP property. Unlike our previous work [47, 48], we

establish a couple of “two-state” inequalities for estimating the effect of the HLL flux on

PP on rectangular cells, which simplifies/improves the estimates in [48] for general meshes

when reduced to Cartesian meshes. Another difference is that we incorporate the discrete

Godunov–Powell source terms solely into the evolution equations of the cell averages, as the

weak PP property relates only to these discrete equations, thereby enhancing simplicity and

efficiency.

• A key aspect of the PP analysis is the convex decomposition, where the cell averages of the

numerical solution are decomposed into a convex combination of its point values at certain

quadrature points. We provide a comprehensive PP analysis via general convex decom-

position [58] on Cartesian meshes and derive PP CFL conditions through specific convex

decompositions, including the Zhang–Shu convex decomposition [39] and the optimal convex

decomposition [57, 58]. The optimal convex decomposition leads to a milder theoretical PP

CFL condition and requires fewer nodes, thus improving efficiency further. Our theoretical

analyses establish the weak PP property of the LDF OEDG method, implying that employ-

ing a simple scaling PP limiter can enforce the pointwise PP property of the OEDG solution

at any point of interest.

Some one- and two-dimensional (2D) MHD examples are utilized to test the accuracy, effectiveness,

and robustness of the proposed PP LDF OEDG method. The numerical results demonstrate that

our method achieves the expected optimal convergence order, effectively suppresses oscillations,

and performs robustly in challenging scenarios.

The paper is organized as follows. Section 2 presents the LDF OEDG method for 2D ideal

MHD equations. In section 3, we construct a PP LDF OEDG scheme for 2D ideal MHD equations

and prove the PP property. Section 4 provides several numerical examples for MHD in one and

two dimensions. Section 5 gives the concluding remarks of this paper.

2. Locally divergence-free OEDG method for ideal MHD

This section presents the LDF OEDG method for the ideal MHD system. Without loss of

generality, we focus on the 2D MHD equations, while our method is directly applicable to the
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one-dimensional MHD system and can be readily extended to the three-dimensional case.

2.1. Governing equations of 2D MHD system

The 2D conservative MHD system can be written as

∂U

∂t
+
∂F 1 (U)

∂x
+
∂F 2 (U)

∂y
= 0, (1)

where U = (ρ, ρu,B, E)⊤ = (ρ,m,B, E)⊤ is the conservation vector. In alignment with existing

studies in the literature, this paper considers the general configurations where m,B ∈ R3 rather

than R2, to accommodate the general 2D case that is a reduction from the 3D scenario. The fluxes

in the x- and y-directions are respectively given by

F 1 (U) =



ρu1

ρu1
2 +

(
p+ ∥B∥2/2

)
−B2

1

ρu1u2 −B1B2

ρu1u3 −B1B3

0

u1B2 −B1u2

u1B3 −B1u3(
E + p+ ∥B∥2/2

)
u1 −B1 (B · u)



, F 2 (U) =



ρu2

ρu2u1 −B2B1

ρu2
2 +

(
p+ ∥B∥2/2

)
−B2

2

ρu2u3 −B2B3

u2B1 −B2u1

0

u2B3 −B2u3(
E + p+ ∥B∥2/2

)
u2 −B2 (B · u)



.

Here, ρ represents the fluid density, m is the momentum vector, and B = (B1, B2, B3) is the

magnetic field vector. The variable p stands for thermal pressure, and E is the total energy

density, expressed by the ideal state equation as

E =
p

γ − 1
+

1

2ρ
∥m∥2 + 1

2
∥B∥2,

where γ is the adiabatic index and ∥ · ∥ denotes the vector-2 norm. Additionally, the physical

solutions of the MHD equations require a divergence-free constraint on the magnetic field:

∇ ·B :=
∂B1

∂x
+
∂B2

∂y
= 0, (2)

which implies the absence of magnetic monopoles.

Divide the conservation variables U into two parts:

R = (ρ, ρu1, ρu2, ρu3, B3, E)⊤ and Q = (B1, B2)
⊤ ,

and correspondingly divide the flux F i(U) into FR
i (U) and FQ

i (U). The MHD system (1) is then

split into
∂R

∂t
+
∂FR

1 (U)

∂x
+
∂FR

2 (U)

∂y
= 0, (3)
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∂Q

∂t
+
∂FQ

1 (U)

∂x
+
∂FQ

2 (U)

∂y
= 0. (4)

The objective of the LDF OEDG method is to find an approximate solution Uh, which comprises

Rh and Qh obtained through different OEDG discretizations.

Next, we will elaborate on our LDF OEDG method, including the LDF finite element spaces,

the semi-discrete LDF DG formulation, and the fully discrete LDF OEDG discretization. It

incorporates an LDF OE procedure after each Runge–Kutta stage to eliminate spurious oscillations.

The PP property of the LDF OEDG method will be systematically addressed in section 3.

2.2. LDF DG finite element spaces

Let Ω =
⋃

ij Iij with mesh element Iij =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
be a partition of the

2D spatial domain Ω. Denote by ∆x and ∆y the spatial step-sizes in the x- and y-directions,

respectively. We now introduce two finite element DG spaces in which we seek approximations to

R and Q, respectively.

The approximation space for R is defined as follows:

Vk
R :=

{
v (x) ∈ L2 (Ω) : v (x)|Iij ∈

[
Pk (Iij)

]6
∀i, j

}
,

where x = (x, y) denotes the spatial coordinate vector, and Pk(Iij) is the space of polynomials of

total degree less than or equal to k on the element Iij . An orthogonal basis of Pk(Iij) is denoted

as {ϕ(α)
ij (x) : |α| ≤ k}, where α = (α1, α2) is the multi-index vector with |α| = α1 + α2. For

example, we adopt the following local orthogonal Legendre basis over cell Iij :

1, ξ, η, ξ2 − 1

3
, ξη, η2 − 1

3
, · · ·

where ξ = 2 (x− xi) /∆x and η = 2 (y − yj) /∆y; the corresponding multi-index vectors α are

(0, 0) , (1, 0) , (0, 1) , (2, 0) , (1, 1) , (0, 2) , . . .

The dimensionality of Pk(Iij) is D
k
R = (k+1)(k+2)/2. Using the Legendre basis, the approximate

solution Rh(x, t) on element Iij can be expressed as

Rh (x, t) =
k∑

µ=0

∑
|α|=µ

R
(α)
ij (t)ϕ

(α)
ij (x) for x ∈ Iij , (5)

where R
(α)
ij (t) represents a moment of the approximate solution Rh(x, t).

We seek a divergence-free approximation to Q in the following LDF space [6]:

Vk
Q :=

{
v (x) = (v1 (x) , v2 (x))

⊤ : v1 (x) , v2 (x) ∈ Pk (Iij) , ∇ · v (x)|Iij = 0 ∀i, j
}
.
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The local orthogonal basis of Vk
Q on element Iij is denoted as {φ(µ)

ij (x) , µ = 0, 1, · · · , Dk
Q − 1},

where Dk
Q = (k + 1) (k + 4) /2 is the dimensionality of the LDF polynomial space defined on Iij .

We employ the following local orthogonal LDF basis 0

1

 ,

 1

0

 ,

 0

ξ

 ,

 η

0

 ,

 ∆xξ

−∆yη

 ,

 η2 − 1/3

0

 ,

 0

ξ2 − 1/3

 ,

 ∆x
(
ξ2 − 1/3

)
−2∆yξη

 ,

 −2∆xξη

∆y
(
η2 − 1/3

)
 , · · · ,

where ξ = 2 (x− xi) /∆x and η = 2 (y − yj) /∆y. With this basis, we express the approximate

solution Qh (x, t) over element Iij as

Qh (x, t) =
k∑

µ=0

Dµ
Q−1∑

η=Dµ−1
Q

Q
(η)
ij (t)φ

(η)
ij (x) for x ∈ Iij . (6)

where Q
(η)
ij (t) represents a moment of approximate polynomial solution Qh (x, t). Note that the

approximate magnetic field Qh given in the above form naturally satisfies the divergence-free

constraint (2) within each element Iij .

2.3. Semi-discrete LDF DG formulation

The LDF DG method uses different spatial discretizations for R and Q.

For any test function v (x) ∈ Pk (Iij), the approximate solution Rh (x, t) is expected to satisfy

d

dt

∫
Iij

Rh (x, t) v (x) dx =

∫
Iij

FR
1 (Uh (x, t))

∂v (x)

∂x
dx+

∫
Iij

FR
2 (Uh (x, t))

∂v (x)

∂y
dx

−
∫ y

j+1
2

y
j− 1

2

(
v

(
x−
i+ 1

2

, y

)
F̂R

1 ,i+ 1
2
(y, t)− v

(
x+
i− 1

2

, y

)
F̂R

1 ,i− 1
2
(y, t)

)
dy

−
∫ x

i+1
2

x
i− 1

2

(
v

(
x, y−

j+ 1
2

)
F̂R

2 ,j+ 1
2
(x, t)− v

(
x, y+

j− 1
2

)
F̂R

2 ,j− 1
2
(x, t)

)
dx,

(7)

where the superscripts “−” and “+” indicate the left- and right-hand-side limits at the cell inter-

faces, respectively, and

F̂R
1 ,i+ 1

2
(y, t) := F̂R

1

(
Uh

(
x−
i+ 1

2

, y, t

)
,Uh

(
x+
i+ 1

2

, y, t

))
,

F̂R
2 ,j+ 1

2
(x, t) := F̂R

2

(
Uh

(
x, y−

j+ 1
2

, t

)
,Uh

(
x, y+

j+ 1
2

, t

))
.

Here, F̂R
1 and F̂R

2 denote the numerical fluxes in the x- and y-directions, respectively. In this

work, we use the PP HLL fluxes

F̂R
ℓ

(
U−,U+

)
=

V +
ℓ FR

ℓ

(
U−)− V −

ℓ FR
ℓ

(
U+
)
+ V −

ℓ V +
ℓ

(
R+ −R−)

V +
ℓ − V −

ℓ

, ℓ = 1, 2, (8)
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where V −
ℓ and V +

ℓ denote the (properly estimated) non-positive minimum and non-negative max-

imum wave speeds, respectively, with ℓ = 1 for the x-direction and ℓ = 2 for the y-direction.

The estimates of V −
ℓ and V +

ℓ are crucial for the PP property; see section 3.1 for details. Taking

the test function v (x) as the (orthogonal) Legendre basis function ϕ
(α)
ij (x) and using the Gauss

quadrature of sufficiently high accuracy to approximate the right-hand side of (7), we obtain the

following semi-discrete scheme(∫
Iij

(
ϕ
(α)
ij (x)

)2
dx

)
dR

(α)
ij (t)

dt
= ∆x∆y

q∑
µ=1

q∑
η=1

ωG
µ ω

G
η F

R
1

(
Uh

(
x
(µ)
i , y

(η)
j , t

))
∂xϕ

(α)
ij

(
x
(µ)
i , y

(η)
j

)
+∆x∆y

q∑
µ=1

q∑
η=1

ωG
µ ω

G
η F

R
2

(
Uh

(
x
(µ)
i , y

(η)
j , t

))
∂yϕ

(α)
ij

(
x
(µ)
i , y

(η)
j

)
−∆y

q∑
µ=1

ωG
µ

(
ϕ
(α)
ij

(
x−
i+ 1

2

, y
(µ)
j

)
F̂R

1 ,i+ 1
2

(
y
(µ)
j , t

)
− ϕ(α)

ij

(
x+
i− 1

2

, y
(µ)
j

)
F̂R

1 ,i− 1
2

(
y
(µ)
j , t

))

−∆x

q∑
µ=1

ωG
µ

(
ϕ
(α)
ij

(
x
(µ)
i , y−

j+ 1
2

)
F̂R

2 ,j+ 1
2

(
x
(µ)
i , t

)
− ϕ(α)

ij

(
x
(µ)
i , y+

j− 1
2

)
F̂R

2 ,j− 1
2

(
x
(µ)
i , t

))
, ∀|α| ≤ k,

(9)

where
{
x
(µ)
i

}q

µ=1
and

{
y
(µ)
j

}q

µ=1
are the q-point Gauss quadrature nodes with 2q − 1 ≥ 2k in[

xi− 1
2
, xi+ 1

2

]
and

[
yj− 1

2
, yj+ 1

2

]
, respectively, and

{
ωG
µ

}q
µ=1

are the associated weights for the in-

terval [−1
2 ,

1
2 ].

For any test function v (x) ∈ Vk
Q, the approximate solution Qh (x, t) is expected to satisfy

d

dt

∫
Iij

Qh (x, t) · v (x) dx =

∫
Iij

FQ
1 (Uh (x, t)) ·

∂v (x)

∂x
dx+

∫
Iij

FQ
2 (Uh (x, t)) ·

∂v (x)

∂y
dx

−
∫ y

j+1
2

y
j− 1

2

(
v

(
x−
i+ 1

2

, y

)
· F̂Q

1 ,i+ 1
2
(y, t)− v

(
x+
i− 1

2

, y

)
· F̂Q

1 ,i− 1
2
(y, t)

)
dy

−
∫ x

i+1
2

x
i− 1

2

(
v

(
x, y−

j+ 1
2

)
· F̂Q

2 ,j+ 1
2
(x, t)− v

(
x, y+

j− 1
2

)
· F̂Q

2 ,j− 1
2
(x, t)

)
dx,

(10)

where

F̂Q
1 ,i+ 1

2
(y, t) := F̂Q

1

(
Uh

(
x−
i+ 1

2

, y, t

)
,Uh

(
x+
i+ 1

2

, y, t

))
,

F̂Q
2 ,j+ 1

2
(x, t) := F̂Q

2

(
Uh

(
x, y−

j+ 1
2

, t

)
,Uh

(
x, y+

j+ 1
2

, t

))
,

with F̂Q
1 and F̂Q

2 denoting the numerical fluxes in the x- and y-directions, respectively. Here, we

use the PP HLL fluxes

F̂Q
ℓ

(
U−,U+

)
=

V +
ℓ FQ

ℓ

(
U−)− V −

ℓ FQ
ℓ

(
U+
)
+ V −

ℓ V +
ℓ

(
Q+ −Q−)

V +
ℓ − V −

ℓ

, ℓ = 1, 2, (11)

where V ±
ℓ are the same as those in equation (8). Taking the test function v (x) as the orthogonal

LDF basis function φ
(m)
ij (x) and using the same Gauss quadrature to approximate the right-hand

9



side of (10), we can obtain the following semi-discrete scheme(∫
Iij

(
φ

(m)
ij (x)

)2
dx

)
dQ

(m)
ij (t)

dt
= ∆x∆y

q∑
µ=1

q∑
η=1

ωG
µ ω

G
η F

Q
1

(
Uh

(
x
(µ)
i , y

(η)
j , t

))
· ∂xφ(m)

ij

(
x
(µ)
i , y

(η)
j

)
+∆x∆y

q∑
µ=1

q∑
η=1

ωG
µ ω

G
η F

Q
2

(
Uh

(
x
(µ)
i , y

(η)
j , t

))
· ∂yφ(m)

ij

(
x
(µ)
i , y

(η)
j

)
−∆y

q∑
µ=1

ωG
µ

(
φ

(m)
ij

(
x−
i+ 1

2

, y
(µ)
j

)
· F̂Q

1 ,i+ 1
2

(
y
(µ)
j , t

)
−φ

(m)
ij

(
x+
i− 1

2

, y
(µ)
j

)
· F̂Q

1 ,i− 1
2

(
y
(µ)
j , t

))

−∆x

q∑
µ=1

ωG
µ

(
φ

(m)
ij

(
x
(µ)
i , y−

j+ 1
2

)
· F̂Q

2 ,j+ 1
2

(
x
(µ)
i , t

)
−φ

(m)
ij

(
x
(µ)
i , y+

j− 1
2

)
· F̂Q

2 ,j− 1
2

(
x
(µ)
i , t

))
,

m = 0, 1, · · · , Dk
Q − 1,

(12)

where the Gauss quadrature nodes and weights are the same as those in (9).

2.4. Fully discrete OEDG schemes

The combination of semi-discrete schemes (9) and (12) can be regarded as a system of ordinary

differential equations (ODEs) with respect to time t. For brevity, we rewrite equations (9) and

(12) in the following ODE form:
d

dt
Uh = L (Uh) , (13)

where Uh denotes the combination of Rh and Qh. This ODE system (13) is typically discretized in

time by a Runge–Kutta method, for example, the explicit third-order strong-stability-preserving

(SSP) Runge–Kutta method:

Un,0
h = Un

h,

Un,1
h = Un,0

h +∆tnL
(
Un,0

h

)
,

Un,2
h =

3

4
Un,0

h +
1

4

(
Un,1

h +∆tnL
(
Un,1

h

))
,

Un,3
h =

1

3
Un,0

h +
2

3

(
Un,2

h +∆tnL
(
Un,2

h

))
,

Un+1
h = Un,3

h ,

where Un
h denotes the numerical solution at the nth time level, and ∆tn is the time step-size.

The LDF Runge–Kutta DG method described above works well in smooth regions, but can

produce serious numerical nonphysical oscillations around strong discontinuities. To address this

issue, we propose an LDF OE procedure after each Runge–Kutta stage

Un,ℓ
σ = FOEU

n,ℓ
h , ℓ = 1, 2, 3,

10



resulting in the fully discrete LDF OEDG method

Un,0
σ = Un

σ,

Un,1
h = Un,0

σ +∆tnL
(
Un,0

σ

)
, Un,1

σ = FOEU
n,1
h ,

Un,2
h =

3

4
Un,0

σ +
1

4

(
Un,1

σ +∆tnL
(
Un,1

σ

))
, Un,2

σ = FOEU
n,2
h ,

Un,3
h =

1

3
Un,0

σ +
2

3

(
Un,2

σ +∆tnL
(
Un,2

σ

))
, Un,3

σ = FOEU
n,3
h ,

Un+1
σ = Un,3

σ ,

(14)

where Un
σ is the OE numerical solution at the n-th time level, and we define U0

σ = U0
h or U0

σ =

FOEU
0
h.

In the following, we will elaborate on the OE procedures FOE for Rh and Qh, respectively.

It is important to note that the LDF OE procedure we will introduce is specifically designed to

maintain the LDF constraint on the approximate magnetic field.

2.4.1. Component-wise OE procedure for Rh

The OE procedure applied for Rh is denoted as

Rn,ℓ
σ = FR

OER
n,ℓ
h , ℓ = 1, 2, 3. (15)

The OE operator FR
OE is defined by

(
FR
OER

n,ℓ
h

)
(x) = Rσ (x, τ)

∣∣
τ=∆tn

with Rσ (x, τ) ∈ Vk
R being

the solution to the following damping equations:
d

dτ

∫
Iij

Rσv dx+
k∑

m=0

δmij

(
Rn,ℓ

h

)
◦
∫
Iij

(
Rσ − Pm−1Rσ

)
v dx = 0 ∀v ∈ Pk (Iij) ,

Rσ (x, 0) = Rn,ℓ
h (x) ,

(16)

where τ is a pseudo-time different from t, “ ◦ ” denotes the Hadamard product of two vectors, Pm

is the standard L2-projection operator into Vm
R for m ≥ 0, and we define P−1 = P 0. The vector

δmij

(
Rn,ℓ

h

)
is defined by

δmij (Rh) :=
βxij

(
σm
i+ 1

2
,j
(Rh) + σm

i− 1
2
,j
(Rh)

)
∆x

+
βyij

(
σm
i,j+ 1

2

(Rh) + σm
i,j− 1

2

(Rh)
)

∆y
, (17)

where βxij and βyij denote suitable estimates of the local maximum wave speed in the x- and y-

directions, respectively, and σm
i+ 1

2
,j
(Rh) and σm

i,j+ 1
2

(Rh) correspond to the damping coefficients

on the x = xi+ 1
2
and y = yj+ 1

2
edges, respectively. In practice, we take βxij and βyij as the spectral

radii of the Jacobian matrices ∂F 1
∂U

(
Ū

n,ℓ
ij

)
and ∂F 2

∂U

(
Ū

n,ℓ
ij

)
, respectively, and Ū

n,ℓ
ij denotes the cell

average of Un,ℓ
h (x) over Iij . In equation (17), the damping coefficients are given by

σm
i+ 1

2
,j
(Rh) =

(
σm
i+ 1

2
,j

(
R

(1)
h

)
, σm

i+ 1
2
,j

(
R

(2)
h

)
, · · · , σm

i+ 1
2
,j

(
R

(6)
h

))⊤
11



σm
i,j+ 1

2

(Rh) =
(
σm
i,j+ 1

2

(
R

(1)
h

)
, σm

i,j+ 1
2

(
R

(2)
h

)
, · · · , σm

i,j+ 1
2

(
R

(6)
h

))⊤
,

with R
(µ)
h being the µ-th component of Rh, and

σm
i+ 1

2
,j

(
R

(µ)
h

)
=



0, if R
(µ)
h ≡ avg

(
R

(µ)
h

)
,

(2m+ 1) (∆x)m

2 (2k − 1)m!

∑
|α|=m

1
∆y

∫ y
j+1

2

y
j− 1

2

∣∣∣∣[[∂αR(µ)
h

]]
i+ 1

2
,j

∣∣∣∣dy∥∥∥R(µ)
h − avg

(
R

(µ)
h

)∥∥∥
L∞(Ω)

, otherwise,

(18)

σm
i,j+ 1

2

(
R

(µ)
h

)
=



0, if R
(µ)
h ≡ avg

(
R

(µ)
h

)
,

(2m+ 1) (∆y)m

2 (2k − 1)m!

∑
|α|=m

1
∆x

∫ x
i+1

2

x
i− 1

2

∣∣∣∣[[∂αR(µ)
h

]]
i,j+ 1

2

∣∣∣∣dx∥∥∥R(µ)
h − avg

(
R

(µ)
h

)∥∥∥
L∞(Ω)

, otherwise.

(19)

In equations (18)-(19), the vector α = (α1, α2) is the multi-index, ∂αR
(µ)
h is defined as

∂αR
(µ)
h (x) :=

|α|!
α1!α2!

∂|α|

∂xα1∂yα2
R

(µ)
h (x) ,

and
[[
∂αR

(µ)
h

]]
i+ 1

2
,j
and

[[
∂αR

(µ)
h

]]
i,j+ 1

2

represent the jump values of ∂αR
(µ)
h across the x = xi+ 1

2

and y = yj+ 1
2
edges, respectively.

Note that the coefficient δmij

(
Rn,ℓ

h

)
in the damping equations (16) only depends on the “initial”

value Rσ (x, 0) = Rn,ℓ
h (x). Consequently, the damping equations (16) are actually a linear ODE

system, and its exact solution can be analytically given. We now derive the exact solver of damping

equations (16) for Rσ (x, τ). Based on the local orthogonal basis
{
ϕ
(α)
ij (x) : |α| ≤ k

}
of Pk (Iij),

the “initial” value Rn,ℓ
h (x) of the damping equations (16) can be expanded as

Rn,ℓ
h (x) =

k∑
µ=0

∑
|α|=µ

R
(α)
ij (0)ϕ

(α)
ij (x) for x ∈ Iij .

Assume that the solution of (16) can be expressed as

Rσ (x, τ) =
k∑

µ=0

∑
|α|=µ

R̂
(α)
ij (τ)ϕ

(α)
ij (x) for x ∈ Iij . (20)

Note that (
Rσ − Pm−1Rσ

)
(x, τ) =

k∑
µ=max{m,1}

∑
|α|=µ

R̂
(α)
ij (τ)ϕ

(α)
ij (x) . (21)

Substitute (20)-(21) into (16) and take v = ϕ
(α)
ij (x). For |α| = µ ≥ 1, one has

d

dτ
R̂

(α)
ij (τ)

∫
Iij

(
ϕ
(α)
ij (x)

)2
dx+

µ∑
m=0

δmij

(
Rn,ℓ

h

)
◦ R̂(α)

ij (τ)

∫
Iij

(
ϕ
(α)
ij (x)

)2
dx = 0,

12



which implies

d

dτ
R̂

(α)
ij (τ) +

µ∑
m=0

δmij

(
Rn,ℓ

h

)
◦ R̂(α)

ij (τ) = 0, µ = 1, 2, · · · , k, (22)

Integrating (22) from τ = 0 to ∆tn gives

R̂
(α)
ij (∆tn) = exp

(
−∆tn

µ∑
m=0

δmij

(
Rn,ℓ

h

))
◦R(α)

ij (0) , µ = 1, 2, · · · , k. (23)

For |α| = 0, because ∫
Iij

(
Rσ − Pm−1Rσ

)
ϕ
(α)
ij (x) dx = 0 ∀m ≥ 0,

and thus

R̂
(α)
ij (∆tn) = R

(α)
ij (0) for α = 0 = (0, 0). (24)

Hence, with (23) and (24), one has

Rn,ℓ
σ (x) =

(
FR
OER

n,ℓ
h

)
(x) = Rσ (x,∆tn)

= R
(0)
ij (0)ϕ

(0)
ij (x) +

k∑
µ=1

exp

(
−∆tn

µ∑
m=0

δmij

(
Rn,ℓ

h

))
◦
∑
|α|=µ

R
(α)
ij (0)ϕ

(α)
ij (x) .

(25)

Remark 1. In essence, the OE procedure (25) suppresses potential spurious oscillations in the

DG solution by damping its modal coefficients. Since the OE procedure does not interfere with DG

spatial discretization or RK stage updates, it can be easily incorporated into existing DG codes as

an independent module and easily extensible onto general meshes. Thanks to the exact solver of the

OE procedure, its implementation is straightforward and efficient. Furthermore, the OEDG method

remains stable under the normal CFL condition, and many desirable properties of the original DG

method are preserved, including conservation and optimal convergence rates (see the theoretical

justification in [20] and the numerical evidence in section 4). Note that the OE procedure is applied

directly to the conservative variables without the need for characteristic decomposition, which greatly

reduces computational costs. As with the OE technique in [20], the present OE procedure is also

scale-invariant and evolution-invariant, thereby being capable of effectively eliminating spurious

oscillations for problems across different scales and wave speeds.

2.4.2. LDF OE procedure for Qh

After each Runge–Kutta stage, the LDF OE procedure applied for Qh is denoted as

Qn,ℓ
σ = FQ

OEQ
n,ℓ
h , ℓ = 1, 2, 3. (26)

13



The LDF OE operator FQ
OE is defined by

(
FQ
OEQ

n,ℓ
h

)
(x) = Qσ (x,∆tn) with Qσ (x, τ) ∈ Vk

Q

(0 ≤ τ ≤ ∆tn) being the solution to the following initial value problem:
d

dτ

∫
Iij

Qσ · v dx+
k∑

m=0

δmij

(
Qn,ℓ

h

)∫
Iij

(
Qσ − Pm−1Qσ

)
· v dx = 0 ∀v ∈ Vk

Q,

Qσ (x, 0) = Qn,ℓ
h (x) ,

(27)

where τ is a pseudo-time different from t, Pm is the L2-projection operator into Vm
Q for m ≥ 0,

and we define P−1 = P0. The coefficient δmij

(
Qn,ℓ

h

)
is defined as

δmij (Qh) :=
βxij

(
σm
i+ 1

2
,j
(Qh) + σm

i− 1
2
,j
(Qh)

)
∆x

+
βyij

(
σm
i,j+ 1

2

(Qh) + σm
i,j− 1

2

(Qh)
)

∆y
,

where βxij and βyij are the same as those in equation (17), and σm
i+ 1

2
,j
(Qh) and σ

m
i,j+ 1

2

(Qh) denote

the damping coefficients on the x = xi+ 1
2
and y = yj+ 1

2
edges, respectively, given by

σm
i+ 1

2
,j
(Qh) = max

1≤µ≤2
σm
i+ 1

2
,j

(
Q

(µ)
h

)
, σm

i,j+ 1
2

(Qh) = max
1≤µ≤2

σm
i,j+ 1

2

(
Q

(µ)
h

)
,

with Q
(µ)
h being the µ-th component of Qh, and

σm
i+ 1

2
,j

(
Q

(µ)
h

)
=



0, if Q
(µ)
h ≡ avg

(
Q

(µ)
h

)
,

(2m+ 1) (∆x)m

2 (2k − 1)m!

∑
|α|=m

1
∆y

∫ y
j+1

2

y
j− 1

2

∣∣∣∣[[∂αQ(µ)
h

]]
i+ 1

2
,j

∣∣∣∣dy∥∥∥Q(µ)
h − avg

(
Q

(µ)
h

)∥∥∥
L∞(Ω)

, otherwise,

(28)

σm
i,j+ 1

2

(
Q

(µ)
h

)
=



0, if Q
(µ)
h ≡ avg

(
Q

(µ)
h

)
,

(2m+ 1) (∆y)m

2 (2k − 1)m!

∑
|α|=m

1
∆x

∫ x
i+1

2

x
i− 1

2

∣∣∣∣[[∂αQ(µ)
h

]]
i,j+ 1

2

∣∣∣∣dx∥∥∥Q(µ)
h − avg

(
Q

(µ)
h

)∥∥∥
L∞(Ω)

, otherwise.

(29)

In equations (28)-(29), the vector α = (α1, α2) is the multi-index, ∂αQ
(µ)
h is defined as

∂αQ
(µ)
h (x) :=

|α|!
α1!α2!

∂|α|

∂xα1∂yα2
Q

(µ)
h (x) ,

and
[[
∂αQ

(µ)
h

]]
i+ 1

2
,j
and

[[
∂αQ

(µ)
h

]]
i,j+ 1

2

represent the jump values of ∂αQ
(µ)
h across the x = xi+ 1

2

and y = yj+ 1
2
edges, respectively.

We now formulate explicitly the exact solver of the damping equation (27) for Qσ (x, τ). Based

on the local orthogonal basis
{
φ

(µ)
ij (x) , µ = 0, 1, · · · , Dk

Q − 1
}
of Vk

Q over cell Iij , the “initial” value

14



Qσ (x, 0) = Qn,ℓ
h (x) of the damping equation (27) can be expressed as

Qn,ℓ
h (x) =

k∑
µ=0

Dµ
Q−1∑

η=Dµ−1
Q

Q
(η)
ij (0)φ

(η)
ij (x) for x ∈ Iij .

Assume that the solution of (27) can be represented as

Qσ (x, τ) =

k∑
µ=0

Dµ
Q−1∑

η=Dµ−1
Q

Q̂
(η)
ij (τ)φ

(η)
ij (x) for x ∈ Iij . (30)

Note that

(
Qσ − Pm−1Qσ

)
(x, τ) =

k∑
µ=max{m,1}

Dµ
Q−1∑

η=Dµ−1
Q

Q̂
(η)
ij (τ)φ

(η)
ij (x) for x ∈ Iij . (31)

Substitute (30)-(31) into (27) and take v = φ
(η)
ij (x). For any µ ≥ 1 and Dµ−1

Q ≤ η ≤ Dµ
Q − 1, one

obtains

d

dτ
Q̂

(η)
ij (τ)

∫
Iij

φ
(η)
ij (x) ·φ(η)

ij (x) dx+

µ∑
m=0

δmij

(
Qn,ℓ

h

)
Q̂

(η)
ij (τ)

∫
Iij

φ
(η)
ij (x) ·φ(η)

ij (x) dx = 0,

which can be simplified as

d

dτ
Q̂

(η)
ij (τ) +

µ∑
m=0

δmij

(
Qn,ℓ

h

)
Q̂

(η)
ij (τ) = 0, Dµ−1

Q ≤ η ≤ Dµ
Q − 1. (32)

Solving (32) gives

Q̂
(η)
ij (∆tn) = exp

(
−∆tn

µ∑
m=0

δmij

(
Qn,ℓ

h

))
Q

(η)
ij (0) , Dµ−1

Q ≤ η ≤ Dµ
Q − 1. (33)

For 0 ≤ η ≤ D0
Q − 1 = 1, because∫

Iij

(
Qσ − Pm−1Qσ

)
·φ(η)

ij (x) dx ≡ 0 ∀m ≥ 0,

we have
d

dτ
Q̂

(η)
ij (τ)

∫
Iij

φ
(η)
ij (x) ·φ(η)

ij (x) dx = 0, 0 ≤ η ≤ D0
Q − 1 = 1,

and thus

Q̂
(η)
ij (∆tn) = Q

(η)
ij (0) , η = 0, · · · , D0

Q − 1. (34)

Hence, with (33) and (34), one has

Qn,ℓ
σ (x) =

(
FQ
OEQ

n,ℓ
h

)
(x) = Qσ (x,∆tn)

=

D0
Q−1∑
η=0

Q
(η)
ij (0)φ

(η)
ij (x) +

k∑
µ=1

exp

(
−∆tn

µ∑
m=0

δmij

(
Qn,ℓ

h

)) Dµ
Q−1∑

η=Dµ−1
Q

Q
(η)
ij (0)φ

(η)
ij (x) .

(35)
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Remark 2. The OE procedure (35) not only effectively suppresses potential spurious oscillations

but also naturally maintains the LDF property of the magnetic field. Moreover, this LDF OE pro-

cedure inherits many notable advantages of the component-wise OE procedure (25) mentioned in

Remark 1, including: being non-intrusive, which enables easy integration into existing (LDF) DG

codes; straightforward extensibility to general meshes; stability under normal CFL conditions; scale

invariance and evolution invariance, which are crucial for effectively eliminating spurious oscilla-

tions across various scales and wave speeds; being free of characteristic decomposition; retaining

the conservation and optimal convergence rates of the original DG method. All these advantages

underscore the strengths of the LDF OE procedure.

3. Positivity preservation for LDF OEDG method

For physical solutions, both the density and internal energy (or pressure) must be positive. We

define the set of physically admissible states as follows:

G =

{
U = (ρ,m,B, E)⊤ : ρ > 0, E (U) := E − 1

2

(
∥m∥2

ρ
+ ∥B∥2

)
> 0

}
, (36)

where E (U) denotes the internal energy. When the polynomial degree k ≥ 1, the OEDG method

does not always ensure that Un
σ ∈ G. Based on the Zhang–Shu framework [39, 40], to achieve

a bound-preserving DG scheme for hyperbolic conservation laws, one must first identify a DG

scheme that preserves the updated cell averages within the bounds. Subsequently, a local scaling

bound-preserving limiter is used to ensure that the DG solution satisfies these bounds at all the

points of interest. According to discoveries in [46, 48], for the conservative MHD system (1), the

PP property of the updated cell averages of the DG solution is closely connected with a set of

globally coupled discrete divergence-free conditions, which, however, are incompatible with the

standard local scaling limiter. An effective way [47, 48] to address this issue is to consider the

following symmetrizable MHD system with an additional source term:

∂U

∂t
+
∂F 1 (U)

∂x
+
∂F 2 (U)

∂y
= − (∇ ·B)S (U) , (37)

where S (U) = (0,B,u,u ·B)⊤, and the right-hand side of (37) is termed the Godunov–Powell

source term [51, 52]. As demonstrated in [47, 48], this source term can help to eliminate the effect

of divergence error on the PP property.

In this section, we will utilize the optimal convex decomposition approach proposed in [58, 57]

to derive an efficient, provably PP LDF OEDG method. This method will be built on a PP HLL
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flux, a properly upwind discretization of the Godunov–Powell source term, and a simple scaling PP

limiter. Our method automatically ensures that the updated cell averages of the OEDG solution

remain within G, while the PP limiter enforces the values of the OEDG solution in G at any points

of interest.

3.1. Positivity-preserving HLL flux

The HLL fluxes, with ℓ = 1 for the x-direction and ℓ = 2 for the y-direction, are given by

F̂ ℓ

(
U−,U+

)
=


F ℓ

(
U−) , 0 ≤ Vℓ,l < Vℓ,r,

Vℓ,rF ℓ

(
U−)− Vℓ,lF ℓ

(
U+
)
+ Vℓ,lVℓ,r

(
U+ −U−)

Vℓ,r − Vℓ,l
, Vℓ,l < 0 < Vℓ,r,

F ℓ

(
U+
)
, Vℓ,l < Vℓ,r ≤ 0,

(38)

where Vℓ,l and Vℓ,r are functions of U− and U+, denoting the estimated minimum and maximum

wave speeds, respectively.

The estimates of {Vℓ,l} and {Vℓ,r} are crucial for the PP property [48]. For any pair of admissible

states U and Ũ , define

αℓ,l

(
U , Ũ

)
:= min

{
uℓ,

√
ρuℓ +

√
ρ̃ũℓ√

ρ+
√
ρ̃

}
− Cℓ (U)− ∥B − B̃∥

√
ρ+
√
ρ̃
, ℓ = 1, 2, (39)

αℓ,r

(
U , Ũ

)
:= max

{
uℓ,

√
ρuℓ +

√
ρ̃ũℓ√

ρ+
√
ρ̃

}
+ Cℓ (U) +

∥B − B̃∥
√
ρ+
√
ρ̃
, ℓ = 1, 2, (40)

where

Cℓ (U) :=
1√
2

C 2
s +
∥B∥2

ρ
+

√(
Cs

2 +
∥B∥2
ρ

)2

− 4
C 2
s Bℓ

2

ρ

 1
2

with Cs =

√
(γ − 1) p

2ρ
, ℓ = 1, 2.

(41)

According to the rigorous PP analysis in [48], {Vℓ,l} and {Vℓ,r} should satisfy

Vℓ,l ≤ αℓ,l

(
U−,U+

)
, Vℓ,r ≥ αℓ,r

(
U+,U−) , ℓ = 1, 2. (42)

We take Vℓ,l and Vℓ,r as

Vℓ,l = min
{
αℓ,l

(
U−,U+

)
, λℓ,min

(
U−) , λℓ,min

(
URoe

)
, λℓ,min

(
U+
)}
, ℓ = 1, 2,

Vℓ,r = max
{
αℓ,r

(
U+,U−) , λℓ,max

(
U−) , λℓ,max

(
URoe

)
, λℓ,max

(
U+
)}
, ℓ = 1, 2,

(43)

where λℓ,min /max (U) are the minimum and maximum eigenvalues of the Jacobian matrix ∂F ℓ
∂U ,

respectively, and λℓ,min /max

(
URoe

)
are those of the Roe matrix [52]. Let V −

ℓ = min {Vℓ,l, 0} and

V +
ℓ = max {Vℓ,r, 0}, then the HLL fluxes in (38) can be rewritten as

F̂ ℓ

(
U−,U+

)
=

V +
ℓ F ℓ

(
U−)− V −

ℓ F ℓ

(
U+
)
+ V −

ℓ V +
ℓ

(
U+ −U−)

V +
ℓ − V −

ℓ

, ℓ = 1, 2. (44)
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3.2. Upwind discretization of Godunov–Powell source term

According to the theory in [47, 48], incorporating a properly discretized Godunov–Powell source

term into the DG schemes is important to ensure the PP property of the updated cell averages. The

source terms can help eliminate the effect of the normal magnetic jump across the cell interface on

the PP property. Since the PP property of the updated cell averages is related only to the discrete

equations satisfied by the cell averages, we consider adding the Godunov–Powell source term only

to the evolution equations of the cell averages. Meanwhile, the evolution of the higher-order

“moments” continues to use the OEDG schemes designed in section 2.

Let Un
σ (x, y) denote the OEDG solution at the nth time level after LDF OE procedure, and

let Ū
n
ij represent its cell average over Iij . Since an SSP time discretization can be regarded as a

convex combination of the forward Euler method, we only need to discuss the PP property of the

OEDG method coupled with the forward Euler time discretization. By incorporating an “upwind”

discretized Godunov–Powell source term into the evolution equations for the cell averages, we

design

Ū
n+1
ij = Ū

n
ij +∆tnLij (U

n
σ) ,

where

Lij (U
n
σ) := −

1

∆x

q∑
µ=1

ωG
µ

[(
F̂ 1,i+ 1

2

(
y
(µ)
j

)
− F̂ 1,i− 1

2

(
y
(µ)
j

))
+ B−

1,i+ 1
2

(
y
(µ)
j

)
S

(
Un

σ

(
x−
i+ 1

2

, y
(µ)
j

))
+ B+

1,i− 1
2

(
y
(µ)
j

)
S

(
Un

σ

(
x+
i− 1

2

, y
(µ)
j

))]
− 1

∆y

q∑
µ=1

ωG
µ

[(
F̂ 2,j+ 1

2

(
x
(µ)
i

)
− F̂ 2,j− 1

2

(
x
(µ)
i

))
+ B−

2,j+ 1
2

(
x
(µ)
i

)
S

(
Un

σ

(
x
(µ)
i , y−

j+ 1
2

))
+ B+

2,j− 1
2

(
x
(µ)
i

)
S

(
Un

σ

(
x
(µ)
i , y+

j− 1
2

))]
.

(45)

Here the Gauss quadrature nodes
{
x
(µ)
i

}q

µ=1
and

{
y
(µ)
j

}q

µ=1
as well as the weights

{
ωG
µ

}q
µ=1

are

the same as in (9). The numerical fluxes read

F̂ 1,i+ 1
2
(y) := F̂ 1

(
Un

σ

(
x−
i+ 1

2

, y

)
,Un

σ

(
x+
i+ 1

2

, y

))
,

F̂ 2,j+ 1
2
(x) := F̂ 2

(
Un

σ

(
x, y−

j+ 1
2

)
,Un

σ

(
x, y+

j+ 1
2

))
,

In (45), we take

B±
1,i+ 1

2

(y) :=
±V ±

1,i+ 1
2

(y)

V +
1,i+ 1

2

(y)− V −
1,i+ 1

2

(y)

[
(B1)

n
σ

(
x+
i+ 1

2

, y

)
− (B1)

n
σ

(
x−
i+ 1

2

, y

)]
,

B±
2,j+ 1

2

(x) :=
±V ±

2,j+ 1
2

(x)

V +
2,j+ 1

2

(x)− V −
2,j+ 1

2

(x)

[
(B2)

n
σ

(
x, y+

j+ 1
2

)
− (B2)

n
σ

(
x, y−

j+ 1
2

)]
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with

V ±
1,i+ 1

2

(y) := V ±
1

(
Un

σ

(
x−
i+ 1

2

, y

)
,Un

σ

(
x+
i+ 1

2

, y

))
,

V ±
2,j+ 1

2

(x) := V ±
2

(
Un

σ

(
x, y−

j+ 1
2

)
,Un

σ

(
x, y+

j+ 1
2

))
,

where V ±
1 and V ±

2 are the wave speeds in the HLL fluxes discussed in section 3.1. Note that

B+
1,i+ 1

2

(y) + B−
1,i+ 1

2

(y) = (B1)
n
σ

(
x+
i+ 1

2

, y

)
− (B1)

n
σ

(
x−
i+ 1

2

, y

)
=: [[(B1)

n
σ]]i+ 1

2
(y), (46)

B+
2,j+ 1

2

(x) + B−
2,j+ 1

2

(x) = (B2)
n
σ

(
x, y+

j+ 1
2

)
− (B2)

n
σ

(
x, y−

j+ 1
2

)
=: [[(B2)

n
σ]]j+ 1

2
(x) (47)

are actually wave-dependent splittings of the jumps in the normal magnetic component across the

cell interfaces x = xi+ 1
2
and y = yj+ 1

2
, respectively. Such “upwind” splittings are crucial for the

PP property of the updated cell averages; see section 3.6.

More specifically, in (45), the terms involving B±
1,i+ 1

2

(y) and B±
2,j+ 1

2

(x) are actually an “un-

wind” discretization of the cell average of the Godunov–Powell source term

1

∆x∆y

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

(−∇ ·Bn
σ)S (Un

σ) dxdy. (48)

Thanks to the LDF property of Bn
σ, the local divergence ∇ · Bn

σ vanishes within each cell Iij .

Therefore, to approximate (48), we only need to measure the “weak” divergence/derivatives of the

normal magnetic component at the cell interface.

Cell Cell

Fig. 1. The sketch near the interface x = xi+ 1
2
: the left/right part of the gray area represents the local

region of cell Iij/Ii+1,j near the interface with a thickness of ε→ 0+.

Take the interface x = xi+ 1
2
as an example. See Figure 1, where the left/right part of the gray

area represents the local region of cell Iij/Ii+1,j near the interface x = xi+ 1
2
with a thickness of
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ε→ 0+. The contribution of the Godunov–Powell source term due to the weak divergence at the

interface x = xi+ 1
2
can be approximated by

1

∆x∆y
lim
ε→0+

∫ x
i+1

2
+ε

x
i+1

2
−ε

∫ y
j+1

2

y
j− 1

2

(
∂ (B1)

n
σ

∂x
+
∂ (B2)

n
σ

∂y

)
S (Un

σ) dxdy

=
1

∆x∆y
lim
ε→0+

∫ x
i+1

2
+ε

x
i+1

2
−ε

∫ y
j+1

2

y
j− 1

2

∂ (B1)
n
σ

∂x
S (Un

σ) dxdy

≈ 1

∆x

q∑
µ=1

ωG
µ lim

ε→0+

∫ x
i+1

2
+ε

x
i+1

2
−ε

∂ (B1)
n
σ

(
x, y

(µ)
j

)
∂x

S
(
Un

σ

(
x, y

(µ)
j

))
dx

≈ 1

∆x

q∑
µ=1

ωG
µ

[
S

(
Un

σ

(
x−
i+ 1

2

, y
(µ)
j

))
ω−
jump [[(B1)

n
σ]]i+ 1

2
(y

(µ)
j )+

S

(
Un

σ

(
x+
i+ 1

2

, y
(µ)
j

))
ω+
jump [[(B1)

n
σ]]i+ 1

2
(y

(µ)
j )

]
,

(49)

where [[(B1)
n
σ]]i+ 1

2
(y) is the jump across the interface x = xi+ 1

2
, and ω−

jump (resp. ω+
jump) represents

the weight assigned to the cell Iij (resp. Ii+1,j). These two weights satisfy ω−
jump + ω+

jump = 1, as

we have discussed in (46). In this work, we adopt the following wave-dependent weights ω−
jump and

ω+
jump:

ω−
jump =

−V −
1,i+ 1

2

(
y
(µ)
j

)
V +
1,i+ 1

2

(
y
(µ)
j

)
− V −

1,i+ 1
2

(
y
(µ)
j

) , ω+
jump =

V +
1,i+ 1

2

(
y
(µ)
j

)
V +
1,i+ 1

2

(
y
(µ)
j

)
− V −

1,i+ 1
2

(
y
(µ)
j

) .
Let V1,l

(
xi+ 1

2
, y

(µ)
j

)
and V1,r

(
xi+ 1

2
, y

(µ)
j

)
denote the (estimated) minimum and maximum wave

speeds at the interface x = xi+ 1
2
, respectively. Recall that

V −
1,i+ 1

2

(
y
(µ)
j

)
= min

{
0,V1,l

(
xi+ 1

2
, y

(µ)
j

)}
, V +

1,i+ 1
2

(
y
(µ)
j

)
= max

{
0,V1,r

(
xi+ 1

2
, y

(µ)
j

)}
.

Figure 2 shows the three HLL wave patterns at the interface x = xi+ 1
2
. The corresponding weights

are listed below:

• For case (a), ω−
jump =

−V −
1,i+1

2

(
y
(µ)
j

)
V +

1,i+1
2

(
y
(µ)
j

)
−V −

1,i+1
2

(
y
(µ)
j

) , ω+
jump = 0;

• For case (b), ω−
jump =

−V −
1,i+1

2

(
y
(µ)
j

)
V +

1,i+1
2

(
y
(µ)
j

)
−V −

1,i+1
2

(
y
(µ)
j

) , ω+
jump =

V +

1,i+1
2

(
y
(µ)
j

)
V +

1,i+1
2

(
y
(µ)
j

)
−V −

1,i+1
2

(
y
(µ)
j

) ;

• For case (c), ω−
jump = 0, ω+

jump =
V +

1,i+1
2

(
y
(µ)
j

)
V +

1,i+1
2

(
y
(µ)
j

)
−V −

1,i+1
2

(
y
(µ)
j

) .
Such choices reflect an “upwind” discretization of the Godunov–Powell source term. It is worth

mentioning that this discretization is actually motivated by rigorous PP analysis, which will become

clear in the proof of Theorem 1 in section 3.6.
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(a) (b) (c)

Fig. 2. The three HLL wave patterns at the interface x = xi+ 1
2
with the (estimated) minimum wave speed

V1,l

(
xi+ 1

2
, y

(µ)
j

)
and the (estimated) maximum wave speed V1,r

(
xi+ 1

2
, y

(µ)
j

)
.

3.3. Convex decomposition of cell averages

In the framework [39, 57, 58] of constructing provably PP high-order schemes, a key ingredient

is the decomposition of the cell averages of the numerical solution into a convex combination of

the point values at certain quadrature points. The convex decomposition determines not only the

theoretical PP CFL condition of the resulting scheme, but also identifies the points at which to

perform the PP limiter, as will be shown in section 3.4.

Recall that {x(µ)i }
q
µ=1 and {y(µ)j }

q
µ=1 denote the Gauss quadrature nodes, and {ωG

µ }
q
µ=1 are the

associated weights in the DG schemes in (9). Let a1 and a2 represent the (estimated) maximum

wave speeds in the x- and y-directions, respectively. According to [57, 58], a general feasible convex

decomposition for polynomial space Pk(Iij) on a rectangular cell can be expressed as

Ū ij =

q∑
µ=1

ωG
µ

[
ω+
1 U ij

(
x−
i+ 1

2

, y
(µ)
j

)
+ ω−

1 U ij

(
x+
i− 1

2

, y
(µ)
j

)
+ ω+

2 U ij

(
x
(µ)
i , y−

j+ 1
2

)
+ ω−

2 U ij

(
x
(µ)
i , y+

j− 1
2

)]

+
S∑

s=1

ωsU ij

(
x
(s)
ij , y

(s)
ij

)
,

(50)

which should simultaneously satisfy the following three conditions:

(i) the convex decomposition holds exactly for all U ij (x, y) ∈ [Pk (Iij)]
8;

(ii) the weights
{
ω±
1 , ω

±
2 , ωs

}
are all positive and their summation equals one;

(iii) the internal node set Sinternalij :=
{(
x
(s)
ij , y

(s)
ij

)}S

s=1
⊂ Iij .

In convex decomposition (50), the boundary node set is given by

Sboundaryij :=

{(
x−
i+ 1

2

, y
(µ)
j

)}q

µ=1

⋃{(
x+
i− 1

2

, y
(µ)
j

)}q

µ=1

⋃{(
x
(µ)
i , y−

j+ 1
2

)}q

µ=1

⋃{(
x
(µ)
i , y+

j− 1
2

)}q

µ=1

.
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Based on (50), the cell average Ū ij is decomposed into a convex combination of solution values at

the quadrature points belonging to

Sij := Sboundaryij

⋃
Sinternalij ,

at which the PP limiter will be performed; see section 3.4.

Denote
{
x̂
(µ)
i

}L

µ=1
and

{
ŷ
(µ)
j

}L

µ=1
as the L-point Gauss–Lobatto quadrature nodes with L =

⌈k+3
2 ⌉ in

[
xi− 1

2
, xi+ 1

2

]
and

[
yj− 1

2
, yj+ 1

2

]
, respectively, and

{
ω̂GL
µ

}L
µ=1

are the associated weights

for the interval [−1
2 ,

1
2 ] with ω̂GL

1 = ω̂GL
L = 1

L(L−1) . Based on the tensor product of the L-point

Gauss–Lobatto quadrature and the q-point Gauss quadrature, Zhang and Shu [39] proposed the

following classic convex decomposition.

Zhang–Shu convex decomposition:

Ū ij =

q∑
µ=1

ωG
µ ω̂

GL
1

[
κ1U ij

(
x−
i+ 1

2

, y
(µ)
j

)
+ κ1U ij

(
x+
i− 1

2

, y
(µ)
j

)
+κ2U ij

(
x
(µ)
i , y−

j+ 1
2

,

)
+ κ2U ij

(
x
(µ)
i , y+

j− 1
2

)]
+

L−1∑
s=2

q∑
µ=1

ω̂GL
s ωG

µ

[
κ1U ij

(
x̂
(s)
i , y

(µ)
j

)
+ κ2U ij

(
x
(µ)
i , ŷ

(s)
j

)]
(51)

with

κ1 :=
a1
∆x

a1
∆x + a2

∆y

, κ2 :=

a2
∆y

a1
∆x + a2

∆y

.

Cui, Ding, and Wu [57, 58] discovered an optimal convex decomposition involving much fewer

nodes and allowing the mildest PP time step-size, as shown below for the cases of P2 and P3

spaces. For the optimal convex decomposition for general Pk spaces with k ≥ 4, see [58].

Optimal convex decomposition for P2 and P3:

Ū ij =
κ1
2

q∑
µ=1

ωG
µ

[
U ij

(
x−
i+ 1

2

, y
(µ)
j

)
+U ij

(
x+
i− 1

2

, y
(µ)
j

)]

+
κ2
2

q∑
µ=1

ωG
µ

[
U ij

(
x
(µ)
i , y−

j+ 1
2

)
+U ij

(
x
(µ)
i , y+

j− 1
2

)]
+ ω

∑
s

U ij (x̂s, ŷs)

(52)

with

{(x̂s, ŷs)} =



(
xi, yj ±

∆y

2
√
3

√
ϕ∗ − ϕ2
ϕ∗

)
, if ϕ1 ≥ ϕ2,(

xi ±
∆x

2
√
3

√
ϕ∗ − ϕ1
ϕ∗

, yj

)
, if ϕ1 < ϕ2,

where

ϕ1 =
a1
∆x

, ϕ2 =
a2
∆y

, ϕ∗ = max {ϕ1, ϕ2} , ψ = ϕ1+ϕ2+2ϕ∗, κ1 =
ϕ1
ψ
, κ2 =

ϕ2
ψ
, ω =

ϕ∗
ψ
.

22



3.4. Positivity–preserving limiter

Let Un
ij (x) denote the OEDG solution in Iij at the nth time level after the LDF OE procedure,

and let Ū
n
ij be its cell average over Iij . As it will be shown in section 3.6, the OEDG method

with the PP HLL flux and upwind discrete Godunov–Powell source term preserves the positivity

for the updated cell averages under a CFL condition, if the OEDG solution satisfies

Un
ij (x) ∈ G ∀x ∈ Sij (53)

where Sij is the set of all nodes involved in the adopted convex decomposition (50).

The LDF OE procedure, although enhancing the numerical stability for strong shocks, does

not necessarily guarantee the condition (53), which should be enforced by a simple PP limiter. For

readers’ convenience, here we briefly review the PP limiter [40, 42, 48]. The PP limiting procedure

mainly consists of two steps. First, modify the density to enforce the positivity by

ρ̂ij (x) = θ1
(
ρnij (x)− ρ̄nij

)
+ ρ̄nij with θ1 = min

{
1,

ρ̄nij − ϵ1
ρ̄nij −minx∈Sij ρ

n
ij (x)

}
. (54)

Then, modify Û ij (x) :=
(
ρ̂ij (x) ,m

n
ij (x) ,B

n
ij (x) , E

n
ij (x)

)⊤
to ensure positive internal energy

by

Ũ
n

ij (x) = θ2

(
Û ij (x)− Ū

n
ij

)
+ Ū

n
ij with θ2 = min

1,
E
(
Ū

n
ij

)
− ϵ2

E
(
Ū

n
ij

)
−minx∈Sij E

(
Û ij (x)

)
 .

(55)

Here ϵ1 = min
{
10−13, ρ̄nij

}
and ϵ2 = min

{
10−13, E

(
Ū

n
ij

)}
are introduced to avoid the impact of

rounding errors on PP property [48]. Note that the modified solution has the same cell average

Ū
n
ij on Iij and holds

Ũ
n

ij (x) ∈ Gϵ = {U : ρ ≥ ϵ1, E (U) ≥ ϵ2} ∀x ∈ Sij . (56)

It is worth mentioning that such a limiter does not reduce the high-order accuracy of the DG

schemes [39, 40]. The PP limiter is performed right after each LDF OE procedure, and it maintains

the LDF property for the magnetic field.

3.5. Algorithmic flow of PP LDF OEDG schemes

Based on the LDF OEDG method, the proper upwind discretization of Godunov–Powell source

term, and the PP limiter, we construct the PP LDF OEDG schemes as follows. For clarity, we

focus on the detailed descriptions of the schemes with the forward Euler time discretization.

Step 0 Initialize the approximate solution U0
h (x) by the L2-projection of initial data of R onto

the space Vk
R and the L2-projection of initial data of Q onto the LDF space Vk

Q. The cell

average Ū
0
ij ∈ G, because of the convexity of G.
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Step 1 Given the approximate solution Un
h (x) with admissible cell averages

{
Ū

n
ij

}
, perform LDF

OE procedure

Rn
σ (x) = FR

OER
n
h (x) , Qn

σ (x) = F
Q
OEQ

n
h (x) , (57)

to obtain the OEDG solution Un
σ (x).

Step 2 Given the OEDG solution Un
σ (x) with the admissible cell averages

{
Ū

n
ij

}
, define the

polynomial vector of Un
σ (x) on Iij as Un

ij (x), and perform PP limiter (section 3.4) to

modify
{
Un

ij (x)
}
such that the modified polynomial vector

{
Ũ

n

ij (x)
}
satisfies

Ũ
n

ij (x) ∈ G ∀x ∈ Sij , (58)

where Sij is the set of all the nodes of the adopted convex decomposition (50). We opt to

use the optimal convex decomposition (52) in our computations.

Step 3 Let Ũ
n

σ (x) denote the piecewise polynomial solution defined by Ũ
n

ij (x). Perform an SSP

Runge–Kutta time discretization to evolve the OEDG solution. For clarity, we only provide

specific details for the forward Euler method. The cell averages {Ūn+1
ij } are updated by

utilizing the following scheme

Ū
n+1
ij = Ū

n
ij +∆tnLij

(
Ũ

n

σ

)
, (59)

where the operator Lij is defined by (45) with the properly discretized Godunov–Powell

source term. The high-order “moments” of the DG solution are updated by evolving the

semi-discrete schemes (9) and (12) with the forward Euler method. Note that the scheme

(59) ensures Ū
n+1
ij ∈ G, as shown in Theorem 1 later.

Step 4 If tn+1 < T , assign n← n+ 1 and go to Step 1; otherwise, output numerical results.

3.6. Rigorous PP analysis

To prove Ū
n+1
ij ∈ G in scheme (59), we first introduce several key auxiliary lemmas related to

the GQL approach [46, 49], which will be used in the proof of Ū
n+1
ij ∈ G in Theorem 1.

Lemma 1 (GQL representation [46]). The admissible state set G is exactly equivalent to

G∗ =

{
U = (ρ,m,B, E)⊤ : ρ > 0, U · n∗ +

∥B∗∥2

2
> 0 ∀v∗,B∗ ∈ R3

}
, (60)

where v∗ and B∗ are the extra free auxiliary variables independent of U , and

n∗ =

(
∥v∗∥2

2
, − v∗, −B∗, 1

)⊤

.
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In the original definition (36) of G, the second constraint is nonlinear respect to U , leading

to challenges in analyzing the positivity of E(U). Thanks to the GQL representation (60), all

equivalent constraints in G∗ become linear with respect to U , thereby greatly facilitating the PP

analysis. The first proof of Lemma 1 can be found in [46]. For more details about its geometric

interpretation, refer to the GQL framework in [49].

Lemma 2 ([47]). For any U ∈ G and any v∗,B∗ ∈ R3, we have

S (U) · n∗ = (v − v∗) · (B −B∗)− v∗ ·B∗,

|√ρ (v − v∗) · (B −B∗)| < U · n∗ +
∥B∗∥2

2
.

Furthermore, for any b ∈ R, it holds

−b (S (U) · n∗) ≥ b (v∗ ·B∗)− |b|√
ρ

(
U · n∗ +

∥B∗∥2

2

)
. (61)

The proof of Lemma 2 can be found in [47].

Lemma 3. Given two admissible states U (1) and U (2), we define for ℓ ∈ {1, 2} that

α̂
(1)
ℓ := max

{
(uℓ)

(1) ,

√
ρ(1) (uℓ)

(1) +
√
ρ(2) (uℓ)

(2)√
ρ(1) +

√
ρ(2)

}
+ Cℓ

(
U (1)

)
+

∥∥∥B(1) −B(2)
∥∥∥√

ρ(1) +
√
ρ(2)

,

α̂
(2)
ℓ := max

{
− (uℓ)

(2) ,−

(√
ρ(2) (uℓ)

(2) +
√
ρ(1) (uℓ)

(1)√
ρ(2) +

√
ρ(1)

)}
+ Cℓ

(
U (2)

)
+

∥∥∥B(2) −B(1)
∥∥∥√

ρ(2) +
√
ρ(1)

.

Then for any α
(j)
ℓ ≥ α̂

(j)
ℓ , j = 1, 2, the states

Ū ℓ :=
1

α
(1)
ℓ + α

(2)
ℓ

[(
α
(1)
ℓ U (1) − F ℓ

(
U (1)

))
+
(
α
(2)
ℓ U (2) + F ℓ

(
U (2)

))]
, ℓ = 1, 2,

belong to Gρ :=
{
U = (ρ,m,B, E)⊤ : ρ > 0

}
, and satisfy

Ū ℓ · n∗ +
|B∗|2

2
≥ −v∗ ·B∗

α
(1)
ℓ + α

(2)
ℓ

(
(Bℓ)

(1) − (Bℓ)
(2)
)
∀v∗,B∗ ∈ R3.

Proof This directly follows from Theorem 1 in [48] with N = 2, by taking s1 = s2 = 1,

ξ(1) = −ξ(2) = (1, 0) for ℓ = 1, and ξ(1) = −ξ(2) = (0, 1) for ℓ = 2.

Lemma 4. Assume U−,U+ ∈ G. If the approximate wave speeds in the HLL flux satisfy

Vℓ,r ≥ αℓ,r

(
U+,U−) , Vℓ,l ≤ αℓ,l

(
U−,U+

)
, ℓ = 1, 2, (62)
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then

F̂ ℓ

(
U−,U+

)
= V −

ℓ Hℓ

(
U−,U+

)
+ F ℓ

(
U−)− V −

ℓ U−, (63)

F̂ ℓ

(
U−,U+

)
= V +

ℓ Hℓ

(
U−,U+

)
+ F ℓ

(
U+
)
− V +

ℓ U+ (64)

with the intermediate state

Hℓ

(
U−,U+

)
:=

1

V +
ℓ − V −

ℓ

(
V +
ℓ U+ − F ℓ

(
U+
)
− V −

ℓ U− + F ℓ

(
U−))

belonging to G and satisfying

Hℓ

(
U−,U+

)
· n∗ +

∥B∗∥2

2
≥ − v∗ ·B∗

V +
ℓ − V −

ℓ

(
B+

ℓ −B−
ℓ

)
∀v∗,B∗ ∈ R3. (65)

Proof This directly follows from Theorem 2 in [48] by taking ξ = (1, 0) for ℓ = 1 and ξ = (0, 1)

for ℓ = 2.

With the above auxiliary lemmas as the key cornerstone, we are now ready to prove Ū
n+1
ij ∈ G

in scheme (59). Recall that Ũ
n

σ denotes the OEDG solution after the LDF OE and PP limiting

procedures. To shorten our notations, define

U±,µ

i+ 1
2
,j
:= Ũ

n

σ

(
x±
i+ 1

2

, y
(µ)
j

)
, Uµ,±

i,j+ 1
2

:= Ũ
n

σ

(
x
(µ)
i , y±

j+ 1
2

)
,

V µ,±
1,i+ 1

2

:= V ±
1

(
Ũ

n

σ

(
x−
i+ 1

2

, y
(µ)
j

)
, Ũ

n

σ

(
x+
i+ 1

2

, y
(µ)
j

))
,

V µ,±
2,j+ 1

2

:= V ±
2

(
Ũ

n

σ

(
x
(µ)
i , y−

j+ 1
2

)
, Ũ

n

σ

(
x
(µ)
i , y+

j+ 1
2

))
,

Hµ

1,i+ 1
2

:= H1

(
Ũ

n

σ

(
x−
i+ 1

2

, y
(µ)
j

)
, Ũ

n

σ

(
x+
i+ 1

2

, y
(µ)
j

))
,

Hµ

2,j+ 1
2

:= H2

(
Ũ

n

σ

(
x
(µ)
i , y−

j+ 1
2

)
, Ũ

n

σ

(
x
(µ)
i , y+

j+ 1
2

))
,

α̂µ,∓
1,i± 1

2

=max

± (u1)
∓,µ

i± 1
2
,j
,±


√
ρ∓,µ

i± 1
2
,j
(u1)

∓,µ

i± 1
2
,j
+
√
ρ±,µ

i∓ 1
2
,j
(u1)

±,µ

i∓ 1
2
,j√

ρ∓,µ

i± 1
2
,j
+
√
ρ±,µ

i∓ 1
2
,j


+ C1

(
U∓,µ

i± 1
2
,j

)
+

∥∥∥∥B∓,µ

i± 1
2
,j
−B±,µ

i∓ 1
2
,j

∥∥∥∥√
ρ∓,µ

i± 1
2
,j
+
√
ρ±,µ

i∓ 1
2
,j

,

α̂µ,∓
2,j± 1

2

=max

± (u2)
µ,∓
i,j± 1

2

,±


√
ρµ,∓
i,j± 1

2

(u2)
µ,∓
i,j± 1

2

+
√
ρµ,±
i,j∓ 1

2

(u2)
µ,±
i,j∓ 1

2√
ρµ,∓
i,j± 1

2

+
√
ρµ,±
i,j∓ 1

2


+ C2

(
Uµ,∓

i,j± 1
2

)
+

∥∥∥∥Bµ,∓
i,j± 1

2

−Bµ,±
i,j∓ 1

2

∥∥∥∥√
ρµ,∓
i,j± 1

2

+
√
ρµ,±
i,j∓ 1

2

.

The PP property of the updated cell averages in scheme (59) is shown as follows.
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Theorem 1. Let
{
Ũ

n

ij (x)
}

denote the OEDG solution polynomial vector in cell Iij after the OE

and PP limiting procedures, so that B̃
n

ij (x) is LDF and Ũ
n

ij (x) satisfies condition (58). If the

wave speeds in the HLL flux satisfy the condition (62), then the scheme (59) preserves Ū
n+1
ij ∈ G

under the CFL-type condition

∆tn ≤ min

∆xω+
1

αµ

1,i+ 1
2

,
∆xω−

1

αµ

1,i− 1
2

,
∆yω+

2

αµ

2,j+ 1
2

,
∆yω−

2

αµ

2,j− 1
2

 ∀i, j, 1 ≤ µ ≤ q, (66)

where

αµ

1,i+ 1
2

= α̂µ,−
1,i+ 1

2

− V µ,−
1,i+ 1

2

+

∣∣∣∣B−
1,i+ 1

2

(
y
(µ)
j

)∣∣∣∣√
ρ−,µ

i+ 1
2
,j

, αµ

1,i− 1
2

= α̂µ,+

1,i− 1
2

+ V µ,+

1,i− 1
2

+

∣∣∣∣B+
1,i− 1

2

(
y
(µ)
j

)∣∣∣∣√
ρ+,µ

i− 1
2
,j

,

αµ

2,j+ 1
2

= α̂µ,−
2,j+ 1

2

− V µ,−
2,j+ 1

2

+

∣∣∣∣B−
2,j+ 1

2

(
x
(µ)
i

)∣∣∣∣√
ρµ,−
i,j+ 1

2

, αµ

2,j− 1
2

= α̂µ,+

2,j− 1
2

+ V µ,+

2,j− 1
2

+

∣∣∣∣B+
2,j− 1

2

(
x
(µ)
i

)∣∣∣∣√
ρµ,+
i,j− 1

2

.

Proof According to the identities (63)–(64) in Lemma 4, the scheme (59) can be rewritten as

Ū
n+1
ij = Ū

n
ij−

∆tn
∆x

q∑
µ=1

ωG
µ

[(
V µ,−
1,i+ 1

2

Hµ

1,i+ 1
2

+ F 1

(
U−,µ

i+ 1
2
,j

)
− V µ,−

1,i+ 1
2

U−,µ

i+ 1
2
,j

)
−
(

V µ,+

1,i− 1
2

Hµ

1,i− 1
2

+ F 1

(
U+,µ

i− 1
2
,j

)
− V µ,+

1,i− 1
2

U+,µ

i− 1
2
,j

)
+B−

1,i+ 1
2

(
y
(µ)
j

)
S

(
U−,µ

i+ 1
2
,j

)
+ B+

1,i− 1
2

(
y
(µ)
j

)
S

(
U+,µ

i− 1
2
,j

)]
−∆tn

∆y

q∑
µ=1

ωG
µ

[(
V µ,−
2,j+ 1

2

Hµ

2,j+ 1
2

+ F 2

(
Uµ,−

i,j+ 1
2

)
− V µ,−

2,j+ 1
2

Uµ,−
i,j+ 1

2

)
−
(

V µ,+

2,j− 1
2

Hµ

2,j− 1
2

+ F 2

(
Uµ,+

i,j− 1
2

)
− V µ,+

2,j− 1
2

Uµ,+

i,j− 1
2

)
+B−

2,j+ 1
2

(
x
(µ)
i

)
S

(
Uµ,−

i,j+ 1
2

)
+ B+

2,j− 1
2

(
x
(µ)
i

)
S

(
Uµ,+

i,j− 1
2

)]
.

It can be further split into

Ū
n+1
ij = Ū

n
ij +Ξ1 +Ξ2 +Ξ3 +Ξ4 (67)

with

Ξ1 :=
∆tn
∆x

q∑
µ=1

ωG
µ

[(
V µ,−
1,i+ 1

2

− α̂µ,−
1,i+ 1

2

)
U−,µ

i+ 1
2
,j
−
(

V µ,+

1,i− 1
2

+ α̂µ,+

1,i− 1
2

)
U+,µ

i− 1
2
,j

]

+
∆tn
∆y

q∑
µ=1

ωG
µ

[(
V µ,−
2,j+ 1

2

− α̂µ,−
2,j+ 1

2

)
Uµ,−

i,j+ 1
2

−
(

V µ,+

2,j− 1
2

+ α̂µ,+

2,j− 1
2

)
Uµ,+

i,j− 1
2

]
,

Ξ2 :=
∆tn
∆x

q∑
µ=1

ωG
µ

[(
α̂µ,−
1,i+ 1

2

U−,µ

i+ 1
2
,j
− F 1

(
U−,µ

i+ 1
2
,j

))
+

(
α̂µ,+

1,i− 1
2

U+,µ

i− 1
2
,j
+ F 1

(
U+,µ

i− 1
2
,j

))]

+
∆tn
∆y

q∑
µ=1

ωG
µ

[(
α̂µ,−
2,j+ 1

2

Uµ,−
i,j+ 1

2

− F 2

(
Uµ,−

i,j+ 1
2

))
+

(
α̂µ,+

2,j− 1
2

Uµ,+

i,j− 1
2

+ F 2

(
Uµ,+

i,j− 1
2

))]
,
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Ξ3 :=−
∆tn
∆x

q∑
µ=1

ωG
µ

(
V µ,−
1,i+ 1

2

Hµ

1,i+ 1
2

− V µ,+

1,i− 1
2

Hµ

1,i− 1
2

)
− ∆tn

∆y

q∑
µ=1

ωG
µ

(
V µ,−
2,j+ 1

2

Hµ

2,j+ 1
2

− V µ,+

2,j− 1
2

Hµ

2,j− 1
2

)
,

Ξ4 :=−
∆tn
∆x

q∑
µ=1

ωG
µ

(
B−

1,i+ 1
2

(
y
(µ)
j

)
S

(
U−,µ

i+ 1
2
,j

)
+ B+

1,i− 1
2

(
y
(µ)
j

)
S

(
U+,µ

i− 1
2
,j

))

− ∆tn
∆y

q∑
µ=1

ωG
µ

(
B−

2,j+ 1
2

(
x
(µ)
i

)
S

(
Uµ,−

i,j+ 1
2

)
+ B+

2,j− 1
2

(
x
(µ)
i

)
S

(
Uµ,+

i,j− 1
2

))
.

We define, for any 1 ≤ µ ≤ q,

Ū
(µ)
1,ij :=

1

α̂µ,−
1,i+ 1

2

+ α̂µ,+

1,i− 1
2

[(
α̂µ,−
1,i+ 1

2

U−,µ

i+ 1
2
,j
− F 1

(
U−,µ

i+ 1
2
,j

))
+

(
α̂µ,+

1,i− 1
2

U+,µ

i− 1
2
,j
+ F 1

(
U+,µ

i− 1
2
,j

))]
,

Ū
(µ)
2,ij :=

1

α̂µ,−
2,j+ 1

2

+ α̂µ,+

2,j− 1
2

[(
α̂µ,−
2,j+ 1

2

Uµ,−
i,j+ 1

2

− F 2

(
Uµ,−

i,j+ 1
2

))
+

(
α̂µ,+

2,j− 1
2

Uµ,+

i,j− 1
2

+ F 2

(
Uµ,+

i,j− 1
2

))]
,

then Ξ2 is equal to

Ξ2 =
∆tn
∆x

q∑
µ=1

ωG
µ

(
α̂µ,−
1,i+ 1

2

+ α̂µ,+

1,i− 1
2

)
Ū

(µ)
1,ij +

∆tn
∆y

q∑
µ=1

ωG
µ

(
α̂µ,−
2,j+ 1

2

+ α̂µ,+

2,j− 1
2

)
Ū

(µ)
2,ij .

Now, we first show ρ̄n+1
ij > 0. Thanks to Lemma 3, we have, for all 1 ≤ µ ≤ q, Ū

(µ)
1,ij ∈ Gρ and

Ū
(µ)
2,ij ∈ Gρ. Since α̂µ,−

1,i+ 1
2

+ α̂µ,+

1,i− 1
2

> 0 and α̂µ,−
2,j+ 1

2

+ α̂µ,+

2,j− 1
2

> 0, we obtain Ξ2 ∈ Gρ. According to

Lemma 4, we have Hµ

1,i+ 1
2

, Hµ

1,i− 1
2

, Hµ

2,j+ 1
2

, and Hµ

2,j− 1
2

all belong to Gρ, which means Ξ3 ∈ Gρ.

Since the first component of Ξ4 is zero, we deduce from (67) that

ρ̄n+1
ij > ρ̄nij +

∆tn
∆x

q∑
µ=1

ωG
µ

[(
V µ,−
1,i+ 1

2

− α̂µ,−
1,i+ 1

2

)
ρ−,µ

i+ 1
2
,j
−
(

V µ,+

1,i− 1
2

+ α̂µ,+

1,i− 1
2

)
ρ+,µ

i− 1
2
,j

]

+
∆tn
∆y

q∑
µ=1

ωG
µ

[(
V µ,−
2,j+ 1

2

− α̂µ,−
2,j+ 1

2

)
ρµ,−
i,j+ 1

2

−
(

V µ,+

2,j− 1
2

+ α̂µ,+

2,j− 1
2

)
ρµ,+
i,j− 1

2

]

=

q∑
µ=1

ωG
µ

[
ω+
1 ρ

−,µ

i+ 1
2
,j
+ ω−

1 ρ
+,µ

i− 1
2
,j
+ ω+

2 ρ
µ,−
i,j+ 1

2

+ ω−
2 ρ

µ,+

i,j− 1
2

]
+

S∑
s=1

ωsρ̃
n
σ

(
x
(s)
ij , y

(s)
ij

)
+

∆tn
∆x

q∑
µ=1

ωG
µ

[(
V µ,−
1,i+ 1

2

− α̂µ,−
1,i+ 1

2

)
ρ−,µ

i+ 1
2
,j
−
(

V µ,+

1,i− 1
2

+ α̂µ,+

1,i− 1
2

)
ρ+,µ

i− 1
2
,j

]

+
∆tn
∆y

q∑
µ=1

ωG
µ

[(
V µ,−
2,j+ 1

2

− α̂µ,−
2,j+ 1

2

)
ρµ,−
i,j+ 1

2

−
(

V µ,+

2,j− 1
2

+ α̂µ,+

2,j− 1
2

)
ρµ,+
i,j− 1

2

]
,

≥
q∑

µ=1

ωG
µ ρ

−,µ

i+ 1
2
,j

(
ω+
1 +

∆tn
∆x

(
V µ,−
1,i+ 1

2

− α̂µ,−
1,i+ 1

2

))

+

q∑
µ=1

ωG
µ ρ

+,µ

i− 1
2
,j

(
ω−
1 −

∆tn
∆x

(
V µ,+

1,i− 1
2

+ α̂µ,+

1,i− 1
2

))

+

q∑
µ=1

ωG
µ ρ

µ,−
i,j+ 1

2

(
ω+
2 +

∆tn
∆y

(
V µ,−
2,j+ 1

2

− α̂µ,−
2,j+ 1

2

))
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+

q∑
µ=1

ωG
µ ρ

µ,+

i,j− 1
2

(
ω−
2 −

∆tn
∆y

(
V µ,+

2,j− 1
2

+ α̂µ,+

2,j− 1
2

))
≥ 0,

where we have used the convex decomposition (50) in the above equality, the condition (58) in the

second inequality, and the CFL condition (66) in the last inequality.

We then prove that Ū
n+1
ij · n∗ + ∥B∗∥2

2 > 0 for any v∗,B∗ ∈ R3. It follows from (67) that

Ū
n+1
ij · n∗ +

∥B∗∥2

2
= Π0 +Π1 +Π2 +Π3 +Π4, (68)

where

Π0 := Ū
n
ij · n∗ +

∥B∗∥2

2
,

Π1 :=
∆tn
∆x

q∑
µ=1

ωG
µ

[(
V µ,−
1,i+ 1

2

− α̂µ,−
1,i+ 1

2

)(
U−,µ

i+ 1
2
,j
· n∗ +

∥B∗∥2

2

)

−
(

V µ,+

1,i− 1
2

+ α̂µ,+

1,i− 1
2

)(
U+,µ

i− 1
2
,j
· n∗ +

∥B∗∥2

2

)]

+
∆tn
∆y

q∑
µ=1

ωG
µ

[(
V µ,−
2,j+ 1

2

− α̂µ,−
2,j+ 1

2

)(
Uµ,−

i,j+ 1
2

· n∗ +
∥B∗∥2

2

)

−
(

V µ,+

2,j− 1
2

+ α̂µ,+

2,j− 1
2

)(
Uµ,+

i,j− 1
2

· n∗ +
∥B∗∥2

2

)]
,

Π2 :=
∆tn
∆x

q∑
µ=1

ωG
µ

(
α̂µ,−
1,i+ 1

2

+ α̂µ,+

1,i− 1
2

)(
Ū

(µ)
1,ij · n

∗ +
∥B∗∥2

2

)

+
∆tn
∆y

q∑
µ=1

ωG
µ

(
α̂µ,−
2,j+ 1

2

+ α̂µ,+

2,j− 1
2

)(
Ū

(µ)
2,ij · n

∗ +
∥B∗∥2

2

)
,

Π3 :=−
∆tn
∆x

q∑
µ=1

ωG
µ

[
V µ,−
1,i+ 1

2

(
Hµ

1,i+ 1
2

· n∗ +
∥B∗∥2

2

)
− V µ,+

1,i− 1
2

(
Hµ

1,i− 1
2

· n∗ +
∥B∗∥2

2

)]

− ∆tn
∆y

q∑
µ=1

ωG
µ

[
V µ,−
2,j+ 1

2

(
Hµ

2,j+ 1
2

· n∗ +
∥B∗∥2

2

)
− V µ,+

2,j− 1
2

(
Hµ

2,j− 1
2

· n∗ +
∥B∗∥2

2

)]
,

Π4 :=−
∆tn
∆x

q∑
µ=1

ωG
µ

(
B−

1,i+ 1
2

(
y
(µ)
j

)
S

(
U−,µ

i+ 1
2
,j

)
· n∗ + B+

1,i− 1
2

(
y
(µ)
j

)
S

(
U+,µ

i− 1
2
,j

)
· n∗

)

− ∆tn
∆y

q∑
µ=1

ωG
µ

(
B−

2,j+ 1
2

(
x
(µ)
i

)
S

(
Uµ,−

i,j+ 1
2

)
· n∗ + B+

2,j− 1
2

(
x
(µ)
i

)
S

(
Uµ,+

i,j− 1
2

)
· n∗

)
.

We now estimate the lower bounds of Π0, Π2, Π3, and Π4, respectively. Based on the the convex
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decomposition (50), we have

Π0 =

q∑
µ=1

ωG
µ

[
ω+
1

(
U−,µ

i+ 1
2
,j
· n∗ +

∥B∗∥2

2

)
+ ω−

1

(
U+,µ

i− 1
2
,j
· n∗ +

∥B∗∥2

2

)
+ ω+

2

(
Uµ,−

i,j+ 1
2

· n∗ +
∥B∗∥2

2

)

+ω−
2

(
Uµ,+

i,j− 1
2

· n∗ +
∥B∗∥2

2

)]
+

S∑
s=1

ωs

(
Ũ

n

σ

(
x
(s)
ij , y

(s)
ij

)
· n∗ +

∥B∗∥2

2

)
,

≥
q∑

µ=1

ωG
µ

[
ω+
1

(
U−,µ

i+ 1
2
,j
· n∗ +

∥B∗∥2

2

)
+ ω−

1

(
U+,µ

i− 1
2
,j
· n∗ +

∥B∗∥2

2

)

+ω+
2

(
Uµ,−

i,j+ 1
2

· n∗ +
∥B∗∥2

2

)
+ ω−

2

(
Uµ,+

i,j− 1
2

· n∗ +
∥B∗∥2

2

)]
,

(69)

where the inequality follows from the condition (58) and Lemma 1. According to Lemma 3, for

any v∗,B∗ ∈ R3, we have

Ū
(µ)
1,ij · n

∗ +
|B∗|2

2
≥ −v∗ ·B∗

α̂µ,−
1,i+ 1

2

+ α̂µ,+

1,i− 1
2

(
(B1)

−,µ

i+ 1
2
,j
− (B1)

+,µ

i− 1
2
,j

)
,

Ū
(µ)
2,ij · n

∗ +
|B∗|2

2
≥ −v∗ ·B∗

α̂µ,−
2,j+ 1

2

+ α̂µ,+

2,j− 1
2

(
(B2)

µ,−
i,j+ 1

2

− (B2)
µ,+

i,j− 1
2

)
.

Therefore, the lower bound of Π2 can be given by

Π2 ≥ −
∆tn
∆x

(v∗ ·B∗)

q∑
µ=1

ωG
µ

(
(B1)

−,µ

i+ 1
2
,j
− (B1)

+,µ

i− 1
2
,j

)

− ∆tn
∆y

(v∗ ·B∗)

q∑
µ=1

ωG
µ

(
(B2)

µ,−
i,j+ 1

2

− (B2)
µ,+

i,j− 1
2

)
= −∆tn (v∗ ·B∗) divlocalB̃

n

σ = 0,

(70)

where the last equality uses the LDF property of the magnetic field within Iij :

divlocalB̃
n

σ =
1

∆x

q∑
µ=1

ωG
µ

[
(B1)

n
σ

(
x−
i+ 1

2

, y
(µ)
j

)
− (B1)

n
σ

(
x+
i− 1

2

, y
(µ)
j

)]

+
1

∆y

q∑
µ=1

ωG
µ

[
(B2)

n
σ

(
x
(µ)
i , y−

j+ 1
2

)
− (B2)

n
σ

(
x
(µ)
i , y+

j− 1
2

)]
=

1

∆x∆y

∮
∂Iij

B̃
n

ij (x) · n ds =
1

∆x∆y

∫
Iij

∇ · B̃
n

ij (x) dx = 0.
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By using the inequality (65) in Lemma 4, we give a lower bound of Π3 as

Π3 ≥−
∆tn
∆x

q∑
µ=1

ωG
µ

V µ,−
1,i+ 1

2

− v∗ ·B∗

V µ,+

1,i+ 1
2

− V µ,−
1,i+ 1

2

(
(B1)

+,µ

i+ 1
2
,j
− (B1)

−,µ

i+ 1
2
,j

)
−V µ,+

1,i− 1
2

− v∗ ·B∗

V µ,+

1,i− 1
2

− V µ,−
1,i− 1

2

(
(B1)

+,µ

i− 1
2
,j
− (B1)

−,µ

i− 1
2
,j

)
− ∆tn

∆y

q∑
µ=1

ωG
µ

V µ,−
2,j+ 1

2

− v∗ ·B∗

V µ,+

2,j+ 1
2

− V µ,−
2,j+ 1

2

(
(B2)

µ,+

i,j+ 1
2

− (B2)
µ,−
i,j+ 1

2

)
− V µ,+

2,j− 1
2

− v∗ ·B∗

V µ,+

2,j− 1
2

− V µ,−
2,j− 1

2

(
(B2)

µ,+

i,j− 1
2

− (B2)
µ,−
i,j− 1

2

) .

(71)

Following the inequality (61) in Lemma 2, we estimate the lower bound of Π4 as

Π4 ≥
∆tn
∆x

q∑
µ=1

ωG
µ

B−
1,i+ 1

2

(
y
(µ)
j

)
(v∗ ·B∗)−

∣∣∣∣B−
1,i+ 1

2

(
y
(µ)
j

)∣∣∣∣√
ρ−,µ

i+ 1
2
,j

(
U−,µ

i+ 1
2
,j
· n∗ +

∥B∗∥2

2

)

+
∆tn
∆x

q∑
µ=1

ωG
µ

B+
1,i− 1

2

(
y
(µ)
j

)
(v∗ ·B∗)−

∣∣∣∣B+
1,i− 1

2

(
y
(µ)
j

)∣∣∣∣√
ρ+,µ

i− 1
2
,j

(
U+,µ

i− 1
2
,j
· n∗ +

∥B∗∥2

2

)

+
∆tn
∆y

q∑
µ=1

ωG
µ

B−
2,j+ 1

2

(
x
(µ)
i

)
(v∗ ·B∗)−

∣∣∣∣B−
2,j+ 1

2

(
x
(µ)
i

)∣∣∣∣√
ρµ,−
i,j+ 1

2

(
Uµ,−

i,j+ 1
2

· n∗ +
∥B∗∥2

2

)

+
∆tn
∆y

q∑
µ=1

ωG
µ

B+
2,j− 1

2

(
x
(µ)
i

)
(v∗ ·B∗)−

∣∣∣∣B+
2,j− 1

2

(
x
(µ)
i

)∣∣∣∣√
ρµ,+
i,j− 1

2

(
Uµ,+

i,j− 1
2

· n∗ +
∥B∗∥2

2

) . (72)

Combining the lower bounds in (69), (70), (71), (72) with (68), we obtain

Ū
n+1
ij · n∗ +

∥B∗∥2

2

≥
q∑

µ=1

ωG
µ

ω+
1 +

∆tn
∆x

V µ,−
1,i+ 1

2

− α̂µ,−
1,i+ 1

2

−

∣∣∣∣B−
1,i+ 1

2

(
y
(µ)
j

)∣∣∣∣√
ρ−,µ

i+ 1
2
,j



(
U−,µ

i+ 1
2
,j
· n∗ +

∥B∗∥2

2

)

+

q∑
µ=1

ωG
µ

ω−
1 −

∆tn
∆x

V µ,+

1,i− 1
2

+ α̂µ,+

1,i− 1
2

+

∣∣∣∣B+
1,i− 1

2

(
y
(µ)
j

)∣∣∣∣√
ρ+,µ

i− 1
2
,j



(
U+,µ

i− 1
2
,j
· n∗ +

∥B∗∥2

2

)

+

q∑
µ=1

ωG
µ

ω+
2 +

∆tn
∆y

V µ,−
2,j+ 1

2

− α̂µ,−
2,j+ 1

2

−

∣∣∣∣B−
2,j+ 1

2

(
x
(µ)
i

)∣∣∣∣√
ρµ,−
i,j+ 1

2



(
Uµ,−

i,j+ 1
2

· n∗ +
∥B∗∥2

2

)

31



+

q∑
µ=1

ωG
µ

ω−
2 −

∆tn
∆y

V µ,+

2,j− 1
2

+ α̂µ,+

2,j− 1
2

+

∣∣∣∣B+
2,j− 1

2

(
x
(µ)
i

)∣∣∣∣√
ρµ,+
i,j− 1

2



(
Uµ,+

i,j− 1
2

· n∗ +
∥B∗∥2

2

)

> 0

where the last inequality follows from the condition (58) and CFL condition (66). In summary, we

have

ρ̄n+1
ij > 0, Ū

n+1
ij · n∗ +

∥B∗∥2

2
> 0 ∀v∗,B∗ ∈ R3,

which implies Ū
n+1
ij ∈ G by Lemma 1. The proof is completed.

As direct consequences of Theorem 1, we have the following two corollaries.

Corollary 1 (PP via Zhang–Shu convex decomposition). Let the OEDG solution polynomial

vectors
{
Ũ

n

ij (x)
}

be LDF and satisfy the following condition after the PP limiting procedure:

Ũ
n

ij (x) ∈ G ∀x ∈ Sclassicij ,

where Sclassicij denotes the set of all nodes of the classic Zhang–Shu convex decomposition (51). If the

wave speeds in the HLL flux satisfy the condition (62), then the scheme (59) preserves Ū
n+1
ij ∈ G

under the CFL-type condition

∆tn ≤
∆x∆yω̂GL

1

a2∆x+ a1∆y
,

where a1 = max{αµ

1,i+ 1
2

}, a2 = max{αµ

2,j+ 1
2

}, and ω̂GL
1 = 1

L(L−1) with L = ⌈k+3
2 ⌉.

Proof This follows from Theorem 1 by taking the convex decomposition as the Zhang–Shu convex

decomposition (51) with a1 = max{αµ

1,i+ 1
2

} and a2 = max{αµ

2,j+ 1
2

}.

Corollary 2 (PP via optimal convex decomposition for P2 and P3). Consider the P2- and P3-based

LDF OEDG method. Let the OEDG solution polynomial vectors
{
Ũ

n

ij (x)
}

be LDF and satisfy

the following condition after the PP limiting procedure:

Ũ
n

ij (x) ∈ G ∀x ∈ Soptimal
ij ,

where Soptimal
ij denotes the set of all nodes of optimal convex decomposition (52). If the wave speeds

in the HLL flux satisfy the condition (62), then the scheme (59) preserves Ū
n+1
ij ∈ G under the
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CFL-type condition

∆tn ≤
∆x∆y

max {6a1∆y + 2a2∆x, 6a2∆x+ 2a1∆y}
,

where a1 = max{αµ

1,i+ 1
2

} and a2 = max{αµ

2,j+ 1
2

}.

Proof This follows from Theorem 1 by adopting the optimal convex decomposition (52) with

a1 = max{αµ

1,i+ 1
2

} and a2 = max{αµ

2,j+ 1
2

}.

Remark 3. For the Pk-based LDF OEDG method with higher k ≥ 4, the PP CFL condition

derived from the optimal convex decomposition can be expressed as

∆tn

(
a1
∆x

+
a2
∆y

)
≤ ω̄⋆(δ,Pk),

where weight ω̄⋆ = ω̄⋆(δ,Pk) depends on δ := a1∆y−a2∆x
a1∆y+a2∆x and the space Pk. For example, ω̄⋆(δ,P1) =

1
2 , ω̄⋆(δ,P2) = ω̄⋆(δ,P3) = 1

4+2|δ| , and for k ∈ {4, 5},

ω̄⋆(δ,Pk) =

[
14

3
+

2

3

√
78 δ2 + 46 cos

(
1

3
arccos

1476 δ2 − 244

(78 δ2 + 46)
3
2

)]−1

.

For higher degree k; see [58] for more details.

Thanks to the “two-state” inequalities established in Lemma 3 and the optimal convex decom-

position, our above PP CFL condition (2) is notably improved, compared to the estimates in [48]

for general meshes when reduced to Cartesian meshes.

In our above analysis, our focus has been on employing the forward Euler time discretization.

Given that a high-order SSP method is essentially a convex combination of the forward Euler

approach, our PP analysis of the proposed schemes persists as applicable for high-order SSP time

discretization owing to the convexity G.

4. Numerical tests

This section gives several 1D and 2D MHD numerical examples to validate the accuracy, the

essentially non-oscillatory shock-capturing capability, and the robustness of the proposed PP LDF

OEDG method on uniform 1D meshes and 2D rectangular meshes. Without loss of generality, we

focus on the third-order (k = 2) OEDG method, coupled with the third-order SSP Runge–Kutta

time discretization. We use the HLL flux and set the CFL number to 0.12.
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4.1. 1D MHD tests

This subsection assesses the OEDG scheme through various 1D MHD examples, including

a smooth sine wave problem, three shock tube problems, and the MHD version of the Leblanc

problem.

4.1.1. 1D smooth sine wave problem

We begin by simulating a smooth MHD sine wave problem to evaluate the accuracy of the PP

OEDG scheme in the 1D setting. This problem involves a sine wave propagating with low density,

and its exact solution is described by:

(ρ,u, p,B) (x, t) = (1 + 0.99 sin (x− t) , 1, 0, 0, 1, 0.1, 0, 0) , x ∈ [0, 2π] , t ≥ 0.

Periodic boundary conditions are applied, and γ = 1.4. Table 1 lists the numerical errors and

the corresponding convergence rates at t = 0.1 for the density. The results confirm that the 1D

P2-based PP OEDG scheme achieves the expected third-order convergence rate. This confirms

that the OE procedure and PP limiter do not compromise the optimal convergence order of the

DG solutions.

Table 1

Numerical errors and the corresponding convergence rates at t = 0.1 for the density in the 1D smooth sine

wave problem.

Mesh l1-error Order l2-error Order l∞-error Order

100 × 100 7.3204E-06 - 3.3012E-06 - 2.2240E-06 -

200 × 200 8.0642E-07 3.1823 3.5962E-07 3.1984 2.3122E-07 3.2658

400 × 400 9.5388E-08 3.0796 4.2327E-08 3.0868 2.6784E-08 3.1098

800 × 800 1.1621E-08 3.0371 5.1440E-09 3.0406 3.2338E-09 3.0500

1600 × 1600 1.4340E-09 3.0186 6.3399E-10 3.0204 3.9760E-10 3.0239

3200 × 3200 1.7806E-10 3.0096 7.8681E-11 3.0104 4.9302E-11 3.0116

4.1.2. Shock tube problems

To evaluate the shock-capturing and non-oscillatory properties of the PP OEDG method, we

simulate three 1D MHD shock tube problems. For the first two problems, the adiabatic index γ

is set to 5/3, and for the third problem, it is set to 2. All simulations employ the third-order PP
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OEDG scheme with 800 uniform cells. The initial conditions of the first shock tube problem [59]

are given by

(ρ,u,B, p) (x, 0) =


(
1.08, 1.2, 0.01, 0.5,

2√
4π
,
3.6√
4π
,

2√
4π
, 0.95

)
, x < 0.5,(

1, 0, 0, 0,
2√
4π
,

4√
4π
,

2√
4π
, 1

)
, x > 0.5,

and the numerical results at time t = 0.2 are presented in Figure 3. The second shock tube problem

encompasses a hydrodynamic rarefaction, a switch-on slow shock, a contact discontinuity, a slow

shock, a rotational discontinuity, and a fast rarefaction, following the setup in [59]:

(ρ,u,B, p) (x, 0) =


(1, 0, 0, 0, 0.7, 0, 0, 1) , x < 0.5,

(0.3, 0, 0, 1, 0.7, 1, 0, 0.2) , x > 0.5,

and Figure 4 shows the numerical results at time t = 0.16. The third shock tube problem, initially

proposed by Brio and Wu [60], features the following initial conditions:

(ρ,u,B, p) (x, 0) =


(1, 0, 0, 0, 0.75, 1, 0, 1) , x < 0,

(0.125, 0, 0, 0, 0.75,−1, 0, 0.1) , x > 0.

The numerical results at time t = 0.1 are shown in Figure 5. From these results, one can see

that the PP OEDG method accurately captures all the discontinuities such as shocks with high

resolution and without any noticeable spurious oscillations.

4.1.3. Leblanc problem

To assess the robustness of the 1D PP OEDG scheme, we test a challenging MHD Riemann

problem with a strong magnetic field, a large pressure jump, and an extremely low plasma-beta

(β = 4 × 10−8). This problem is a variant of the Leblanc problem [40] of the gas dynamics and

was proposed in [48]. The initial conditions are defined as follows:

(ρ,u, p,B) (x, 0) =


(
2, 0, 0, 0, 109, 0, 5000, 5000

)
, x < 0,

(0.001, 0, 0, 0, 1, 0, 5000, 5000) , x > 0.

The computational domain spans [−10, 10], and the adiabatic index γ is set to 1.4. Figure 6

presents the numerical results for density and magnetic pressure at t = 0.00003. As anticipated,

no negative density or pressure values are observed in the OEDG solution, demonstrating the

robustness and stability of the 1D PP OEDG scheme.

4.2. 2D MHD tests

This subsection conducts six 2D MHD tests on the third-order PP LDF OEDG method, which

include simulations of a smooth sine wave, the Orszag–Tang vortex, a rotor problem, shock-cloud

interaction, an MHD blast wave, and MHD jet flows.
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Fig. 3. Numerical solutions of the first MHD shock tube problem at time t = 0.2 with 800 cells (symbols

“◦”) and 4000 cells (solid lines). Left column from top to bottom: ρ, u1, u3, B3. Right column from top to

bottom: p, u2, B2, E.
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Fig. 4. Numerical solutions of the second MHD shock tube problem at time t = 0.16 with 800 cells (symbols

“◦”) and 4000 cells (solid lines). Left column from top to bottom: ρ, u1, u3, B3. Right column from top to

bottom: p, u2, B2, E.
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Fig. 5. Numerical solutions of the third MHD shock tube problem at time t = 0.1 computed by the

third-order OEDG scheme with 800 cells (symbols “◦”) and 4000 cells (solid lines). Left column from top

to bottom: ρ, u1, B2. Right column from top to bottom: p, u2, E.

4.2.1. 2D smooth sine wave problem

To evaluate the convergence order of the PP LDF OEDG method, we simulate a 2D smooth

sine wave problem [47], which involves an MHD sine wave propagating through a medium with

low density. The exact solution of this problem is expressed as follows:

(ρ,u, p,B) (x, y, t) = (1 + 0.99 sin (x+ y − 2t) , 1, 1, 0, 1, 0.1, 0.1, 0) , x ∈ [0, 2π] , y ∈ [0, 2π] , t ≥ 0,

and the adiabatic index γ = 1.4. Table 2 presents the numerical errors and corresponding con-

vergence rates for density at time t = 0.1. The results demonstrate that the P2-based PP LDF
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Fig. 6. Density logarithm (left) and magnetic pressure (right) of the 1D Leblanc problem at time t = 0.00003

with 2000 cells (symbols “◦”) and 10000 cells (solid lines).

OEDG scheme consistently achieves third-order accuracy. That is, the optimal convergence rate

is not destroyed by the LDF OE procedure and the PP limiter.

Table 2

Numerical errors and corresponding convergence orders at t = 0.1 for density in the 2D smooth sine wave

problem.

Mesh l1-error Order l2-error Order l∞-error Order

15 × 15 3.7023E-01 - 8.3500E-02 - 7.2613E-02 -

30 × 30 4.8828E-02 2.9227 1.1535E-02 2.8557 1.0510E-02 2.7885

60 × 60 2.5913E-03 4.2360 6.1398E-04 4.2317 4.8343E-04 4.4423

120 × 120 1.0602E-04 4.6113 2.4135E-05 4.6690 2.3836E-05 4.3421

240 × 240 9.0494E-06 3.5503 2.1438E-06 3.4929 2.3849E-06 3.3212

480 × 480 9.8980E-07 3.1926 2.3377E-07 3.1970 2.6805E-07 3.1533

4.2.2. Orszag–Tang problem

We next examine the benchmark Orszag–Tang vortex problem [61]. This problem begins with

smooth initial data, rapidly forming shocks, and eventually transitioning into 2D MHD turbulence.
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The initial conditions are set as

ρ (x, y) = γ2, u1 (x, y) = − sin y, u2 (x, y) = sinx, u3 (x, y) = 0,

p (x, y) = γ, B1 (x, y) = − sin y, B2 (x, y) = sin (2x) , B3 (x, y) = 0,

where the adiabatic index γ is 5/3. The computational domain spans [0, 2π]× [0, 2π], with periodic

boundary conditions applied on all edges.

Figure 7 displays contour plots of density, magnetic pressure, and Mach number at times

t = 3 and t = 4, obtained by the third-order PP LDF OEDG scheme with 400 × 400 cells. Our

method accurately resolves the shocks and smooth flows, which are in good agreement with those

in [7, 62, 10]. For this problem, Jiang and Wu [63] previously reported that negative pressure was

occurred at t ≈ 3.9 in their computation. Thanks to the PP property of our scheme, negative

pressure was not observed throughout our simulation. To further verify the convergence of our

scheme, Figure 8 plots the profiles of density and thermal pressure along the line of y = 0.625π

at time t = 3 under 200 × 200 and 400 × 400 resolutions. As shown in Figure 8, the shock

discontinuities for density and thermal pressure are formed near x = 0.4, 0.5, 1.6 and 4.4, which

are consistent with the results in [64, 28]. As discussed by Yang et al. in [64], high-resolution

simulations typically exhibit sharper shock profiles, particularly noticeable at x = 0.4 and x = 0.5.

In Figure 8, it is observed that the shock discontinuities around x = 0.4 and x = 0.5 with 400×400

resolution are much sharper than those with 200× 200 resolution, indicating the convergence and

effectiveness of our scheme.

4.2.3. Rotor problem

We further evaluate the PP LDF OEDG method by simulating the rotor problem [22]. This

problem involves a dense disk of fluid embedded in a static fluid background, with a velocity

tapering layer between the dense disk’s edge and the static ambient fluid. As time progresses, the

disk rotates within the ambient fluid. The initial configurations are set as follows:

(u3, B1, B2, B3, p) = (0, 2.5/
√
4π, 0, 0, 0.5),

and

(ρ, u1, u2) =


(10,−(y − 0.5)/r0, (x− 0.5)/r0) if r < r0,

(1 + 9f,−f(y − 0.5)/r, f(x− 0.5)/r) if r0 < r < r1,

(1, 0, 0) if r > r1,

where r0 = 0.1, r1 = 0.115, r =
√

(x− 0.5)2 + (y − 0.5)2, and f = (r1−r)/(r1−r0). The adiabatic

index γ is 5/3, and the computational domain is [0, 1]× [0, 1] with periodic boundary conditions.

Figure 9 presents the contours of density, thermal pressure, Mach number, and magnetic pres-

sure at t = 0.295, computed using the third-order PP LDF OEDG method with 400 × 400 cells.
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Fig. 7. Contour plots for the Orszag–Tang problem with 400× 400 cells. From top to bottom: density ρ,

magnetic pressure ∥B∥2/2, and Mach number ∥u∥/c. Left: t = 3; right: t = 4.

The contours show good conservation of the circular rotation pattern, which Tóth [65] found chal-

lenging for some other MHD numerical schemes. Distortions may appear in the numerical solution
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Orszag–Tang problem with 200× 200 cells (dash dot lines) and 400× 400 cells (solid lines).

around the central part of the Mach number if there are large divergence errors in the magnetic

field, as observed in [6]. However, our simulation results show no distortions around the central

almond-shaped disk region, suggesting effective control of divergence errors by our LDF OEDG

scheme. To further assess the performance of our scheme, Figure 10 zooms into the central part

of our computed Mach number at different resolutions, showing no observed distortions. Figure

11 presents two slices of the magnetic field at time t = 0.295 across horizontal and vertical cuts

through the center of the domain at different mesh resolutions, with results that align well with

those reported by [28, 66]. It was found that in [28] higher-order scheme exhibits higher peaks near

x = 0.35, 0.65 of B1 and x = 0.325, 0.675 of B2, as well as sharper shock discontinuities around

x = 0.4, 0.6 of B1. In Figure 11, the same trend is observed in our high-resolution results compared

to the low-resolution ones, reflecting the convergence behavior of our scheme. According to Liu et

al. [28], the overshoots at y = 0.05, 0.95 for B1 and at x = 0.38, 0.62 for B2 were generated by their

third-order finite volume scheme. Our results in Figure 11 show no overshoots, further verifying

that the LDF OE procedure effectively suppresses nonphysical oscillations.

4.2.4. Shock-cloud interaction

To further validate the shock-capturing and PP capabilities of our structure-preserving OEDG

scheme, we simulate the shock-cloud interaction problem [67]. This test involves strong MHD

shocks interacting with a dense cloud, which is disrupted by the interaction. The initial conditions
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Fig. 11. Slices of B1 (left) and B2 (right) along the lines x = 0.5 and y = 0.5 at time t = 0.295 for the
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feature left and right states separated by a discontinuity along the line x = 0.6:

(ρ,u, p,B) =


(3.86859, 0, 0, 0, 167.345, 0, 2.1826182,−2.1826182) , x < 0.6,

(1,−11.2536, 0, 0, 1, 0, 0.56418958, 0.56418958) , x > 0.6,

and includes a circular cloud with a radius of 0.15 centered at (0.8, 0.5) on the right side of the

discontinuity. The cloud has the same state as the surrounding medium but with a higher density

of 10. The computational domain is [0, 1]× [0, 1], and adiabatic index γ is 5/3. For this problem,

supersonic inflow condition is employed on the right boundary, while outflow conditions are utilized

on the others.

Figure 12 displays the numerical results at time t = 0.06 for density, thermal pressure, velocity

magnitude, and magnetic pressure, computed using our third-order PP LDF OEDG scheme on a

400 × 400 mesh. The results successfully capture complex flow structures and discontinuities at

high resolution, demonstrating good agreement with those in the literature, e.g., [65, 68, 47, 48].

We note that disabling the LDF OE procedure in this simulation leads to failure, underscoring the

critical role of our OE technique. Furthermore, removal of either the Godunov–Powell source terms

or the PP limiter resulted in negative pressure values in the cell averages of numerical solutions,

reaffirming the necessity of these elements for ensuring positivity in the simulation.

4.2.5. MHD blast wave

We now turn to a 2D blast wave test to further verify the capability of our structure-preserving

OEDG scheme in handling strong shocks and rarefaction waves. This test involves an over-

pressured region situated at the center of a strongly magnetized medium with low plasma β. The
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Fig. 12. The density ρ (top left), thermal pressure p (top right), velocity ∥u∥ (bottom left) and magnetic

pressure ∥B∥2/2 (bottom right) at time t = 0.06 for the shock cloud interaction with 400× 400 cells.

scenario leads to the formation of an MHD blast wave that drives fast outward magnetic shocks,

compressing both the plasma and magnetic fields ahead, while internally generating a rarefaction

wave. We utilize the setup in [69], with the initial conditions specified as

ρ = 1, u1 = u2 = u3 = 0, B1 = B2 =
1√
2
, B3 = 0, p =


10, if

√
(x− 1.5)2 + y2 < 0.1,

0.1, otherwise.

The adiabatic index γ is set to 5/3, and Dirichlet boundary conditions matching the initial values

are applied. The simulation is conducted over the domain [1, 2]× [−0.5, 0.5] and runs until a final

time of t = 0.2.

Figure 13 presents the results at t = 0.2 computed using our third-order PP LDF OEDG scheme

on a 400× 400 mesh, showing the density, thermal pressure, velocity, and magnetic pressure. The

results align well with those found in [70, 64]. The visualizations clearly illustrate that a circular

blast wave propagates outward, while a rarefaction wave moves inward. The numerical solution
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maintains symmetry excellently. Our method successfully captures the shocks with high resolution

and remains free from nonphysical oscillations, demonstrating its robustness and reliability in

handling highly magnetized shock configurations. This performance underscores the capability

of our structure-preserving OEDG scheme to effectively manage complex dynamic interactions in

MHD environments.
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Fig. 13. The density ρ (top left), thermal pressure p (top right), velocity ∥u∥ (bottom left) and magnetic

pressure ∥B∥2/2 (bottom right) at time t = 0.2 for the MHD blast wave problem with 400× 400 cells.

4.2.6. MHD jet flows

In our final example, we explore two challenging MHD jet problems to assess our scheme’s

capability in capturing shocks and preserving positivity under demanding conditions. These MHD

jet flows were proposed in [47] by adding a magnetic field in the gas dynamical jet of [41]. Since

there are strong shock waves, shear flows and interface instabilities in high Mach number jet with

strong magnetic field and huge kinetic energy, negative pressure is very likely to be produced in

the numerical simulations.
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Our computational domain is [−0.5, 0.5]× [0, 1.5], and the adiabatic index is γ = 1.4. Initially,

we set (ρ, p) = (0.1γ, 1) in the static ambient medium with a magnetic field (0, B2, 0). As observed

in [47], the larger B2 is set, the more challenging the test becomes. On the bottom boundary, a

dense jet described by (ρ, p, u1, u2, u3) = (γ, 1, 0, u2, 0) is injected through the nozzle {y = 0, |x| <

0.05}, with the Mach number determined by u2. We employ fixed inflow conditions at the nozzle

and outflow conditions on other boundaries. Reflecting boundary conditions are used at x = 0,

with the domain limited to [0, 0.5]× [0, 1.5] on the right half, divided into 200× 600 cells.

First, we simulate a Mach 800 dense jet in a magnetized environment with B2 =
√
2000. The

numerical results, showcasing density logarithm log10 ρ, thermal pressure logarithm log10 p, and

velocity magnitude ∥u∥, are displayed in Figure 14. These results vividly depict the evolution of

jet flow structures, consistent with those reported in [47, 48]. Our scheme accurately captures the

Mach shock wave at the jet head and the beam/cocoon interface with high resolution. Specifically,

the shear flows near the beam/cocoon interfaces of jets are clearly presented.

We also conduct a more demanding test with a Mach 10000 dense jet and a stronger magnetic

field characterized by B2 =
√
20000. Figure 15 illustrates the time resolution of flow structures,

including log10 ρ, log10 p, and ∥u∥. Throughout all simulations, no instances of negative pressure

or density were observed, highlighting our scheme’s robustness even under extreme conditions.

However, if we disable the LDF OE procedure, the PP limiting procedure, or the upwind discrete

Godunov–Powell source term, the code immediately fails in these challenging tests due to negative

pressure in the numerical solution. This underscores the essential roles of the LDF OE procedure,

PP limiting procedure, and upwind discrete Godunov–Powell source terms in ensuring the PP

property and overall robustness of our scheme.

5. Concluding remarks

In this paper, we have proposed a structure-preserving, oscillation-eliminating discontinuous

Galerkin (OEDG) method for ideal magnetohydrodynamics (MHD). This method stands out for its

capability to effectively suppresses potential spurious oscillations in the DG solution while preserv-

ing the key physical structures, including the divergence-free constraint of magnetic field and the

positivity of density and pressure. Based on a novel damping equation, the locally divergence-free

(LDF) OE procedure is designed to eliminate spurious oscillations while automatically maintain-

ing an LDF magnetic field. This procedure is implemented after each Runge–Kutta stage in a

non-intrusive way, and thus can be easily integrated into existing DG codes as an independent

module. Its integration into the LDF DG framework maintains beneficial properties such as con-

servation, local compactness, and optimal convergence rates. A rigorous positivity-preserving (PP)
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Fig. 14. The density logarithm (top), thermal pressure logarithm (middle) and velocity (bottom) for the

Mach 800 jet problem with B2 =
√
2000. From left to right: t = 0.001, 0.0015, 0.002.

analysis has been conducted for the LDF OEDG method with the HLL flux. This analysis utilizes

the geometric quasi-linearization (GQL) approach to transform the nonlinear constraint of pres-
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Fig. 15. The density logarithm (top), thermal pressure logarithm (middle), and velocity (bottom) for the

Mach 10000 jet problem with B2 =
√
20000. From left to right: t = 0.00005, 0.0001, 0.00015.

sure positivity into a set of equivalent linear constraints. It has been proven that the LDF OEDG

method is PP if an “upwind” discrete Godunov–Powell source term is added solely to the evolution

equations of the cell averages, under a condition achievable through a simple PP limiter. We have
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derived the PP CFL condition via a general convex decomposition of the cell averages and have

also obtained the sharp PP CFL constraint through the optimal convex decomposition. The effec-

tiveness of our method is validated through extensive one- and two-dimensional MHD tests. The

numerical results demonstrate that the proposed method not only achieves the expected optimal

convergence order but also exhibits robust performance in challenging MHD scenarios involving

low density, low pressure, strong discontinuities, or low plasma-beta. Our future work includes

extending the PP LDF OEDG schemes to numerical simulations of MHD on unstructured meshes.
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