
Record Acceleration of the Two-Dimensional Ising

Model Using High-Performance Wafer Scale

Engine

Dirk Van Essendelft1, Hayl Almolyki2, Wei Shi3, Terry Jordan4,
Mei-Yu Wang5, Wissam A. Saidi6

1,3,4Advanced Computing and Artificial Intelligence, The National
Energy Technology Laboratory, 3610 Collins Ferry Rd, Morgantown,

26505, WV, USA.
2,6Computational Materials Engineering, The National Energy

Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, 15236, PA,
USA.

5HPC AI and Big Data Group, Pittsburgh Supercomputing Center,
Carnegie Mellon University, 300 S. Craig St., Pittsburgh, 15213, PA,

USA.

Contributing authors: dirk.vanessendelft@netl.doe.gov;
Wei.Shi@netl.doe.gov; Wissam.Saidi@netl.doe.gov;

Abstract

The versatility and wide-ranging applicability of the Ising model, originally
introduced to study phase transitions in magnetic materials, have made it a cor-
nerstone in statistical physics and a valuable tool for evaluating the performance
of emerging computer hardware. Here, we present a novel implementation of the
two-dimensional Ising model on a Cerebras Wafer-Scale Engine (WSE) – a revolu-
tionary processor that is opening new frontiers in computing. In our deployment
of the checkerboard algorithm, we optimized the Ising model to take advan-
tage of the unique WSE architecture. Specifically, we employed a compressed bit
representation storing 16 spins on each int16 word, and efficiently distributed
the spins over the processing units enabling seamless weak scaling and limiting
communications to only immediate neighboring units. Our implementation can
handle up to 754 simulations in parallel, achieving an aggregate of over 61.8
trillion flip attempts per second for Ising models with up to 200 million spins.
This represents a gain of up to 148 times over previously reported single-device

1

ar
X

iv
:2

40
4.

16
99

0v
2

 [
cs

.A
R

]
 1

 M
ay

 2
02

4

with a highly optimized implementation on NVIDIA V100 and up to 88 times in
productivity compared to NVIDIA H100. Our findings highlight the significant
potential of the WSE in scientific computing, particularly in the field of materials
modeling.

Keywords: Wafer Scale Engine, High Performance Computing, Ising model

1 Introduction

Advanced materials are a crucial enabling technology for humankind to remain com-
petitive in addressing challenges related to energy, health, and nanotechnology. While
materials modeling based on atomistic principles has made significant strides in the
past decade in designing novel materials for different applications, there are still
considerable challenges owing to the computational cost of applying these models, par-
ticularly for large and complex systems. These challenges call for the development of
new methodologies as well as in advancement of software and hardware technologies.
The Wafer Scale-engine (WSE), the world’s largest accelerator chip in existence, rep-
resents a significant hardware breakthrough in the field of computing and integrated
circuit design though its impact on scientific computing is yet to be fully assessed.[1–3]

As schematically shown in Figure 1, the WSE is a massively-parallel, data-flow
architecture consisting of a grid of nearly a million, identical Processing-Elements
(PEs) within nearly a 215 mm × 215 mm wafer, without interposers and chiplets
arranged on a two-dimensional (2D) grid across the wafer surface. Each PE is a
Turing-complete, independently programmable computer consisting of a controller,
Arithmetic Logic Unit (ALU), 48KB of Static Random-Access Memory (SRAM), and
a router that can communicate with nearest-neighbor PEs. We conducted our work
on a CS-2 and configured various fabric sizes ranging from 130× 133 up to 756× 993.

On traditional compute hardware latency is unfavorably high (hundreds of system
clock cycles from processor to memory and many thousands of cycles between proces-
sors on a network) and memory/network bandwidths are several orders of magnitude
lower than L1 cache rates. By contrast, all main memory in the WSE is SRAM and
accessible at L1 cache rates (128b of read and 64b of write on each cycle), which
is matched to the ALU processing rates and the on-chip network bandwidth. On
a system level, PEs on the WSE can coordinate to achieve a larger task via the
massively-parallel, data-flow architecture. The WSE is designed to be able to trigger
computations based on the arrival of data or control signals. Each PE supports fused
operations where one operands data (64b) can come from the network-on-chip router
and one can come from local memory. Data can be simultaneously sent, received, and
processed via micro-thread scheduling. Synchronous machine operation is achieved by
unblocking/activation of tasks at micro-thread processing conclusion. [4]

The WSE, Field-equation, Application-programming-interface (WFA) was devel-
oped as an easy-to-use interface to programming the WSE. Specifically, the WFA is
designed to support and accelerate models that can be distributed on a structured
grid with hexahedral connectivity including computational fluid dynamics, structural

2

mechanics, and subsurface modeling.[5] Recent benchmarks in computational fluid
dynamics showed two to three orders of magnitude speedup relative to a typical CPU
cluster.[4, 6]

The Ising model[7] initially devised to study phase transitions in magnetic materials
stands as one of the most fundamental models in statistical physics to investigate
the universal behavior of critical phenomena. The Hamiltonian of the Ising system
is defined as, H = −J

∑
⟨i,j⟩ σiσj , where J is the coupling strength of interaction

between nearest neighbors ⟨i, j⟩ spins σi and σj . For example, in 2D systems, each
spin interacts with 4 neighbors while in 3D each spin interacts with 6 neighbors. σi

can assume values +1 or −1 and thus the σi σj interaction can assume a value of +1
or −1 when spins are parallel or antiparallel, respectively. For ferromagnetic coupling
with J > 0, the total system energy is minimized if all spins are aligned or parallel.
The 1D Ising model has no phase transition to a ferromagnetic state at any finite
temperature, while in higher dimensions, it undergoes a thermally-driven order-to-
disorder phase transition.[8] The critical temperature TC at which the phase transition
occurs has been analytically determined for 2D Ising model by Onsager.[9] For higher
dimensions, the critical temperature is not known analytically but can be determined
numerically based on Monte Carlo simulations.[8]

The Monte Carlo (MC) approach is a widely employed method for solving complex
systems like the Ising model in statistical physics, which relies heavily on the Metropo-
lis probability criterion and random number generation.[8] In the MC approach, an
initial spin is randomly selected, and an attempt is made to flip its sign that is accepted
based on Metropolis probability e−β∆E where β = 1/kBT , kB is the Boltzmann con-
stant, T is temperature, and ∆E is the energy change in the system due to a spin
flip. If the proposed spin reduces the energy or satisfies the probabilistic Metropolis
decision then the move is accepted and a new configuration is generated, otherwise
the system retains the old configuration. Metropolis probabilistic decision is based on
a random number ran() in [0, 1) and the flip is accepted if ran() < e−β∆E .

Due to their locality, the sequential single-site MC approach suffers from the prob-
lem of critical slowing down near TC , as it becomes increasingly difficult to flip a
spin at random that is likely to be coupled to neighboring spins pointing in the same
direction.This leads to the divergence of the relaxation times near TC . The critical
slowing down was mitigated by cluster algorithms such as Swendsen-Wang[10] and
Wolff[11], where an attempt is made to flip a cluster of spins based on Metropolis
probability rather than a single spin. Cluster algorithms significantly reduce the num-
ber of updates needed to reach equilibrium and provide more accurate estimates of
thermodynamic properties, especially in the vicinity of phase transitions.

The Ising model’s combination of simplicity and complexity, along with its suit-
ability for parallelization and algorithm optimization, makes it a valuable tool for
testing and benchmarking new hardware in the realm of computational physics and
high-performance computing (HPC). The Ising model has been ported on different
computing hardwares including GPUs [12–14], Tensor Processing Units (TPU) [15],
and Field Programmable Gate Arrays (FPGAs) [16–18]. The comparison between the
speedups obtained on different architectures is convoluted due to different algorithms

3

employed to solve the Ising model, different metrics involved in quantifying the per-
formance, and whether the obtained metrics are dated considering new architectures.
Typically, the number of attempted spin flips per nanosecond (flip/ns) is used as a
metric where high flips/ns is indicative of a better performance. The 2019 TPU v3
implementation on single core reported 12.8 flips/ns and over multiple cores reported
11.43 flips/ns/core (e.g., 366 flips/ns over 32 cores).[15] In comparison, the 2020 imple-
mentation on single Tesla V100 GPU reported 66.954 flips/ns using a basic CUDA C
implementation.[14] Further, this study optimized the code by using a four bit repre-
sentation per spin, and reported an impressive rate of 459 flips/ns on a single Tesla
V100 GPU. The multi-GPU implementation of up to 16 GPUs achieved 7381 flips/ns.
A FPGA implementation achieved a speed-up factor of approximately 104 times in
comparison to a standard CPU simulation and 614 flips/ns for a lattice of 1024×1024
spins in 2016.[16]

Herein, we implement the 2D Ising model on the WSE and optimize the code using
a novel approach to take advantage of its unique hardware architecture. We show that
the WSE can simultaneously handle up to 754 simulations in parallel and achieve up
to 148 times speedup over previously reported single-device on NVIDIA V100 and up
to 88 times in productivity compared to a highly optimized code on NVIDIA H100.
Additionally, our deployment achieved perfect weak scaling out to the maximum wafer
extents owing to the optimum implementation that requires only communications
between nearest-neighbor processing units.

2 Implementation of the 2D Ising model on the WSE

Naively, given the local interaction between nearest neighbors in the Ising model, it
is tempting to distribute the spins such that each PE will have a single spin. While
simple in concept, this arrangement results in very low memory utilization and very
high parasitic cycle consumption. A single spin will only consume one bit of the 48kB
available per PE. In addition, it takes tens of cycles of operations to set up an arith-
metic operation. Operating on single spin element is the least efficient way to use the
PE, and it is computationally far more efficient to use the memory to its fullest extent
and operate over longer vectors to dilute instructions overhead. With this in mind, our
approach for solving the Ising model utilizes only a single PE column of the 2D WSE
grid. As we elaborate below, we have devised a computationally efficient approach to
distribute the spins that requires minimal communication between the PE’s. Further,
different columns of the PE’s on the WSE can then be utilized to simultaneously solve
different 2D Ising models, e.g., at different temperatures as implemented in our study.
See schematic in Figure 2a.

The checkerboard decomposition of the Ising model allows for efficient parallel
processing as the local adjacency matrix for each spin shows dependence only on the
opposite color when attempting to flip a spin with a specific color, i.e. flipping red
spins depends only on neighboring blue spins and vice versa. This is illustrated for
a 12 × 96 lattice in Figure 2. Thus, an m × n Ising lattice can be conveniently split
into two equal arrays of size mn/2 and the spins within each half are operated on in
parallel. See Supplementary information for single-spin and checkerboard algorithms.

4

Romero et al. implemented the checkerboard algorithm on GPUs and optimized it by
representing a single spin as a four-bit word to reduce memory traffic and storage per
spin.[14]

To leverage the hardware architecture of the WSE, our implementation casts the
Ising lattice into eight arrays and compacts 16 spins into a single int16 word. This
decomposition involves the standard color separation of the checkerboard into red
(R) and blue (B), followed by further dividing each color into even (E) and odd
(O) arrays based on spin index. Subsequently, we utilize domain folding by halving
these four arrays and reversing the order of the right half, resulting in forward (F)
and backward (B) spin orderings. We refer to this as domain folding with Nfold =
1. See Figure 2d for visual representation for the case of 12 × 96 Ising lattice. For
clarity, we use a three-letter code to denote the eight arrays. For example, ”RFE”
signifies ”Red-Forward-Even” and ”BBO” represents ”Blue-Backward-Odd.” This 8-
array representation mandates that the dimensions of the Ising lattice m×n, must be
selected such that m is a multiple of 4 and n a multiple of 32.

Domain folding with the forward and backward spin arrangements, ensures that
updates across periodic boundaries involve communication solely with immediate
neighboring PEs. Thus, this decomposition, specifically tailored to take advantage of
the unique WSE architecture, enables perfect weak scaling by eliminating the need to
relay messages from one end of the wafer to the other, as demonstrated later. In fact,
the 2D Ising lattice domain folding can be applied any odd number Nfold, to fine-tune
the memory allocation between width and height in a 2D lattice model. For example,
some of our benchmarking discussed below is done with Nfold = 5.

To simplify the notation, we introduce a compact representation in which a single
16-bit integer, s, that can hold 16 spins is tagged with the three-letter code as a
superscript and the spin index in the original lattice as a subscript. The bit value for
this spin index occurs at the least significant bit position in the 16-bit representation
(Figure 3). For example, sRFE

0 contains spins [30, 28, ... 2, 0] where spin 0 is used as
the subscript as it sits at the least significant bit (rightmost) in the int16 word. Using
this notation, a 12× 96 Ising lattice can be described using eight 3× 3 int16 arrays,
as demonstrated for the RFE case (Figure 2) by SRFE in Eq. 1. See supplementary
information for the 3× 3 representations of the other arrays.

SRFE =

sRFE
64 sRFE

256 sRFE
448

sRFE
32 sRFE

224 sRFE
416

sRFE
0 sRFE

192 sRFE
384

 (1)

S facilitates the identification of neighboring spins on the Ising lattice through
straightforward, and importantly, computationally efficient bit operations, as illus-
trated in Algorithm 1. Specifically, since spins are ordered sequentially with an
increment of 2, neighboring spins located at the least significant bits imply that all
spins/bits within the int16 word are also neighbors. We illustrate this for SRFE[1, 1] =
sRFE
224 . For this case, the nearest neighbors are determined by inspecting only the blue
odd and even matrices SBFE and SBFO to identify integers with the least signifi-
cant bit/spin associated with neighboring spins. Figure 2c shows that the right, left,
top, and bottom neighboring spins of 224 are respectively 320, 128, 225, and 223.
Three of the neighbors can be found in the arrays with no need for manipulation

5

(SBFE[1, 1] = s320, S
BFE[0, 1] = s128, S

BF0[1, 1] = s225). The bottom nearest neigh-
bor, 223, can be obtained using common bitwise operators. SBFO[1, 0] = sBFO

193 is right
shifted by 15 bits, SBF0[1, 1] = s225 is left shifted by 1 bit, and the shifted integer arrays
are combined with a bitwise OR (the result of this operation is shown in Figure 3).

Performing similar local neighborhood analyses for each of the eight arrays reveals
data access patterns that can be utilized in the code implementation kernels, as
summarized in the following four rules. In this notation, i and j represent the first
and second dimensions in the compacted spin arrays (i.e., SBFO[i, j]). Also, i, j are
consistent with the Spin Axis directions depicted in Figure 2a,b.

1. RFE, RBO, BBE, BFO are only accessed from i and i+ 1 positions
2. RBE, RFO, BFE, BBO are only accessed from i and i− 1 positions
3. Even arrays are only accessed from j and j + 1 positions
4. Odd arrays are only accessed from j and j − 1 positions

To use stencil operations beyond the central elements of the eight arrays, we expand
S by one in all directions and copy data from neighbors at appropriate times during
the algorithm. This approach allows us to leverage single vector instructions to fully
compute to the original extents of the unexpanded arrays at minor memory and PE
costs. The expanded and periodic boundary condition (PBC) updated array for the
RFE array is shown in Eq. 3. See Supplementary data for representation of the other
arrays.

SRFE =

0 sRFE

0 sRFE
192 sRFE

384 0
0 sRFE

64 sRFE
256 sRFE

448 sRBE
640

0 sRFE
32 sRFE

224 sRFE
416 sRBE

608

0 sRFE
0 sRFE

192 sRFE
384 sRBE

576

0 0 0 0 0

 = {S⃗RFE
0 , S⃗RFE

1 , S⃗RFE
2 , S⃗RFE

3 , S⃗RFE
4 } (2)

We also adopt a new notation, S⃗, as shown in Eq. 3, with the same three-letter
code related to the array in the superscript and a new subscript related to the column
within the array. For example, S⃗RFE

0 = SRFE[0, :] and {S⃗RFE
0 , S⃗RFE

1 , S⃗RFE
2 , S⃗RFE

3 , S⃗RFE
4 }

is a list of all the column vectors in SRFE. We express the final array form as a list of
column vectors as this is what is held in local memory of each PE. For instance, all
vectors with subscript 0, i.e. S⃗RFE

0 , S⃗RBO
0 , S⃗RBE

0 , S⃗RFO
0 , S⃗BFE

0 , S⃗BBO
0 , S⃗BBE

0 , and S⃗BFO
0 are

held on PE 0 (k, i = 0), which is adjacent to PE 1 (k, i = 1) that holds all vectors with
subscript 1, and so forth (Figure 2b). In this notation, the PBC updates are executed
as straightforward copy operations, as shown in Supplementary information.

Algorithm 2 outlines the implementation of the spin-flipping using the eight-array
representation. Initially, we employ Algorithm 1 to retrieve the neighbors of S⃗. Subse-
quently, a set of half adders are applied to aggregate the bits into three int16 vectors,
namely O⃗, T⃗ , and F⃗ , representing the one’s, two’s, and four’s place values of the neigh-
bor spin sum. Using a series of four masks, we obtain every fourth bit, enabling us to
shift and combine O⃗, T⃗ and F⃗ into a compacted four-bit integer (S⃗sum[1 : −1]) which
contains the sum of the neighbors of four spins in one int16 value. A masked S⃗ is
added to the eight’s place to differentiate the sums as aligned or anti-aligned to the

6

central spin. Subsequently, we loop over this final sum to extract each of the summed
values as a single int16 (statement 13), which is then used to look up the acceptance

ratio, A⃗R, from a precomputed exponent table. A random float between 0 and 1, R⃗,
is generated and compared to A⃗R. The outcome yields an int16 value of 0 or 1, which
is shifted to the appropriate position, and then an exclusive OR is used to flip the bit,
if the MC move is accepted.

We now have a complete set of kernels to implement the Ising model on the WSE
using the massive parallelism available as shown in Algorithm 3 (see also, supple-
mentary document for PBE update algorithm). While this implementation is more
complex than those on traditional hardware, with this tailored approach to the WSE
architecture, we obtain record acceleration of the Ising model.

3 Results and Discussion

Thanks to Onsager[9], the 2D Ising model can be analytically solved for an infinite
lattice size. Though computational methods are not strictly necessary for determining
the phase transition, they are commonly utilized to assess the model’s performance
on new hardware and to gain insights for more intricate simulations such as 3D and
higher Ising Hamiltonian’s that are not amenable to the analytical solution. With this
in mind, our aim is to create a straightforward 2D Ising model code for the WSE,
compare its performance with other hardware, and affirm the WSE’s viability for
Monte Carlo-based modeling.

3.1 Code Validation

We first validate our implementation of the 2D Ising model on the WSE before we
conduct a performance analysis. Specifically, we carried out 2262 interdependent simu-
lations at three lattice sizes (1024×1024, 2048×2048, and 4096×4096) for temperatures
ranging from T/J = 0.385 to 4.145 in steps of 0.005. For each simulation, we started
from a completely random configuration of the Ising spins and carried out 12-24 million
of MC iterations over the entire lattice. During the simulations, every 10,000-20,000
MC iterations, the mean value for the absolute magnetization value is calculated for
post-analysis. Due to the large amount of data for post-analysis, an automatic method
to discard the non-equilibration data was used [19]. Figure 4 shows the absolute aver-
age magnetization as a function of temperature. As seen from the figure, the average
of the absolute magnetization values of the three lattice sizes matches the theoretical

result predicted by Onsager where |M | =
[
1− sinh−4 (2J/T)

]1/8
, and |M | = 0 when

T ≥ Tc, and correctly predicted the phase transition temperature, Tc/J = 2.269, 185.
These findings are strongly indicative of the validity of our implementation. We note
here that we have ensured that the random number generator implemented in the MC
simulation is of high fidelity, as detailed in the supplementary information.

3.2 Performance Analysis

Our initial performance evaluation primarily compares the net computation or flip rate
Rflip, measured in flip attempts per nanosecond (flip/ns). Figure 5 summarizes our

7

findings. The highest observed flip rate on a single WSE was Rflip = 61, 853 flip/ns,
achieved through our current compressed bit representation across 754 parallel simula-
tions and with Nfold = 1. This marks a significant improvement over the performance
reported by Romero et al. on V100[14], which was over 142 times lower. Additionally,
we conducted a comparison with modern GPUs by evaluating Romero’s code on A100
and H100 GPUs, resulting in flip rates of 585.8 flips/ns and 880.6 flips/ns, respec-
tively. Consequently, our WSE implementation demonstrates a flip rate advantage of
over 70 times compared to the latest H100 GPUs.

In addition to the computational efficiency, another aspect worth discussing is
the maximum lattice size feasible for simulation on the WSE. In this regard, the
GPU can handle a significantly larger single lattice than what we implemented in the
WFA for the WSE. Specifically, the largest lattice size we have managed on a single
H100 or A100 with 80 GB memory is 409, 600× 409, 600 totaling 168 billion spins. In
contrast, our current code in the WFA allows with Nfold = 5 for a maximum single
simulation of 11, 856 × 16, 384, comprising 194 million spins. While this difference
might appear disadvantageous initially, and notwithstanding the existing analytical
solution by Onsager, the practicality of running such extensive Ising simulations is
limited due to the time required to achieve equilibrium in the MC simulation. Namely,
although equilibrating the Ising system depends on factors such as temperature and
initial configuration, it is reasonable to assume that the equilibration time scales with
the total number of spins in the system. Thus, for a lattice size of 409, 6002 spins
and a 0.194-second iteration period obtained on H100, reaching equilibrium would
necessitate over a thousand years of continuous computing – an unfeasible task.

It is worth noting that the largest validation run conducted by Romero et al.
involved a lattice of 4096 × 4096 spins.[14] For this size, each temperature required
approximately 15 minutes on a V100 and 7.3 minutes on an H100 to achieve equilib-
rium. Considering these practical computing time constraints, the attainable size on a
single row of PEs suffices. Therefore, we propose that conducting multiple simulations
in parallel is more valuable than increasing the lattice size, given the significant time
investment required for equilibrium in larger simulations.

Furthermore, as observed in Figure 5, the GPU implementation[14] achieves its
peak flip rate at smaller lattice sizes (ranging from 8192 × 8192 to 16, 384 × 16, 384)
compared to the maximum lattice size accommodated in memory (up to 409, 600 ×
409, 600 for H100), primarily due to the GPU fully utilizing its memory bandwidth.
Consequently, any increase in the number of spins leads to a proportional increase in
computation time per iteration. While the compressed bit representation[14] partly
alleviates the memory bandwidth pressure by encoding more spins into each byte of
data transferred between main memory and processors, reaching saturation at as few
as 81922 = 67 million spins implies limited advantages in developing methods for
running more simulations in parallel on a single GPU. This limitation arises because
there are no computing resources left to allocate to more than one simulation per
device.

In contrast to traditional CPU or GPU hardware, the WSE is fundamentally dif-
ferent because all memory is accessible at L1 cache rates (128b read and 64b write per
cycle on the current generation WSE). In addition, 64b of data can be received/sent

8

on the network-on-chip router per cycle. As long as the data needed for computation
exists in the local vicinity of a PE, WSE computations will be compute-bound, which
is the case for our implementation of the 2D Ising model.

To underscore this point, we present the simulation dimensions, flip rate Rflip, and
iteration period for Nfold = 5 benchmarks in Table 1. The iteration period Titer =
(n × m × Nsim)/Rflip denotes the measured time it takes to attempt to flip all the
spins on the device. Notice that Titer is independent of the lattice dimension assigned
to one PE axis, n, and the number of independent simulations, Nsim assigned to the
other PE axis, and only varies in response to the number of spins held in the memory
of each PE (in proportion to m). This is justified because the workload for each PE
scales in direct proportion to the vectors that it must loop over, e.g., see Eq. 3. The
distinctive aspect of WSE computing lies in the fact that memory bandwidth and
on-chip network bandwidth, scale directly with the number of PEs utilized in the
simulation. This scalability ensures that the bandwidth is consistently adequate to
support local operations proceeding at compute-bound rates. As a result, within this
framework, neighbor-based algorithms such as the Ising model can achieve perfect
weak scaling up to the edge of the wafer and very good strong scaling. This stands in
stark contrast to traditional architectures where the main memory bandwidth is fixed
and often significantly lower, by orders of magnitude, than what is required to sustain
processors operating at compute-bound rates, as demonstrated by the performance on
the GPUs shown in Figure 5a. This results in poor strong scaling.

As a more meaningful metric, Figure 5b compares the productivity metric, defined
as the cumulative device time per iteration to run Nsim simulations, between the H100
and WSE. As seen from the figure, our implementation on the WSE can run up to 754
simulations in parallel so the device time per iteration is the same for a given lattice
size up to 754 simulations. However, the device time per iteration increases for the
GPU in direct proportion to Nsim. This analysis shows that if more than 9 simulations
are needed, the WSE will be faster with our current code. Further, at the limit of
capacity (754 simulations), the WSE is as much as 88 times more productive than a
H100.

It is worth noting that folding the spin array Nfold times and consolidating all
resulting arrays into the same column of PEs does affect performance by increasing the
workload per PE within each iteration. There are alternative mappings of this problem
to the hardware that differ from the current implementation. For example, assigning
each fold to its own column of PEs could reduce the PE workload by a factor ofNfold+1
and consequently decrease iteration time proportionally. Although this mapping would
separate one PBC edge by Nfold PEs, it would only introduce Nfold − 1 cycles of
latency to a PBC update. This increase is relatively minor, especially considering that
PBC updates are infrequent. Therefore, as long as Nfold remains relatively small, its
impact on computing speed is negligible. Additionally, this approach would enable
larger individual simulation sizes, as more PEs (along with their associated memory)
are allocated to each simulation. However, the productivity advantage depicted in
Figure 5b would remain largely unchanged, as the number of simulations running in
parallel would decrease by Nfold + 1. In essence, while the time per iteration for all

9

parallel simulations would decrease by Nfold + 1, the number of simulations running
in parallel would also decrease by the same factor.

The 2D Ising model is positioned towards the lower end of the data intensity spec-
trum of HPC applications. Romero et al.[14] reported that they achieved 6 bits of IO
per flip attempt in their highly optimized code, which is very near the theoretical min-
imum. Keep in mind that many operations need to be performed per flip attempt, so
the theoretical minimum data intensity is 0.5/Nop bytes per operation where Nop is
the number of operations in a flip attempt and is much greater than unity. It is useful
to contrast the Ising model with a seven-point-stencil with non-constant coefficients
in double precision, a very common HPC algorithm, where 104 bytes of IO are needed
and 13 operations are performed per stencil evaluation giving it a data intensity of 8
bytes per operation. Even before counting the operations in a particular Ising imple-
mentation, the data intensity of the Ising model is over an order of magnitude lower
than this common HPC algorithm. Given that low data intensity workloads favor tra-
ditional architectures due to the ability to hide computing behind low memory access
rates with effective caching, and the fact that there is no ability to do this on the
WSE, it is reasonable to infer that the current work will be amongst the lowest figure
of merits reported in HPC algorithm ports. Indeed, our previous work with compu-
tational fluid dynamics did find significantly higher figures of merits in the several
hundred range.[4, 6] In light of this, a figure of merit of 88 times greater productiv-
ity in comparison to the fastest available current-generation GPU is impressive and
understandable relative to our previous work.

4 Conclusions

The Ising model’s adaptability and broad applicability have solidified its position as
a foundational tool in statistical physics and hardware assessment. Our study intro-
duces a pioneering implementation of the two-dimensional Ising model on the Cerebras
Wafer-Scale Engine (WSE), a revolutionary computing platform. We tailored the
checkerboard algorithm for the unique WSE architecture, we used a compressed bit
representation where 16 spins are represented as a single int16 work and performed
the Monte Carlo simulations of the Ising model relying on computationally efficient bit
manipulations. Importantly, to take advantage of the efficient communications between
neighboring processing units on the WSE, we decomposed the Ising lattice into an
eight array representation that resulted in a code that exhibits nearly perfect weak
scaling as shown in Table 1. Our implementation demonstrates impressive parallel per-
formance, handling up to 754 simulations concurrently and achieving unprecedented
flip attempt rates for Ising models with up to 200 million spins with nearly over 61.8
trillion flip attempts per second. This acceleration represents a gain of up to 148
times over previously reported single-device with a highly optimized implementation
on NVIDIA V100 and up to 88 times in productivity compared to NVIDIA H100.
Our findings highlight the significant potential of the WSE in scientific computing,
particularly in the field of materials modeling.

10

5 Declaration of competing interest

The author declares no competing interests.

6 Acknowledgments

We acknowledge Michael James, Leighton Willson, and Kylee Santos at Cerebras for
useful discussions about software half adders that enabled us to compute rapid sums
and for discussions about scaling behavior and optimizations. We would also like to
thank Hal Finkel at Office of Science for access to the A100 GPUs on Perlmutter at
National Energy Research Scientific Computing Center. Finally, we would like to thank
Prof. Sebastian Scherer from the Robotics Institute at Carnage Mellon University for
facilitating access to NVIDIA H100 GPUs under the DURIP award W911NF2310067.

This project was funded by the U.S. Department of Energy, National Energy Tech-
nology Laboratory, in part, through a site support contract. Neither the United States
Government nor any agency thereof, nor any of their employees, nor the support con-
tractor, nor any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

References

[1] Lauterbach, G.: The path to successful wafer-scale integration: The cerebras story.
IEEE Micro 41(6), 52–57 (2021) https://doi.org/10.1109/MM.2021.3112025

[2] Cerebras Systems: Achieving Industry Best AI Performance Through A Systems
Approach. Cerebras Systems, INC. (2021)

[3] Lavely, A.: Powering Extreme-Scale HPC with Cerebras Wafer-Scale Accelerators.
Cerebras Systems, INC. (2022)

[4] Rocki, K., Van Essendelft, D., Sharapov, I., Schreiber, R., Morrison, M., Kibardin,
V., Portnoy, A., Dietiker, J.F., Syamlal, M., James, M.: Fast stencil-code compu-
tation on a wafer-scale processor. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. SC ’20.
IEEE Press

[5] Van Essendelft, D., Jordan, T., Woo, M., Shi, W., Chong, L., Zidane, A., Kim,
H.: The Wafer Scale Engine, Field Equation, Application Programming Interface.
NETL (2023). https://mfix.netl.doe.gov/gitlab/tjordan/cerebrasdev

11

https://doi.org/10.1109/MM.2021.3112025
https://mfix.netl.doe.gov/gitlab/tjordan/cerebrasdev

[6] Woo, M., Jordan, T., Schreiber, R., Sharapov, I., Muhammad, S., Koneru, A.,
James, M., Essendelft, D.V.: Disruptive Changes in Field Equation Modeling: A
Simple Interface for Wafer Scale Engines. arXiv (2022)

[7] Ising, E.: Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik 31,
253–258 (1925)

[8] Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical
Physics, 4th Edition. Cambridge University Press, Cambridge, England (2014)

[9] Onsager, L.: Crystal statistics. i. a two-dimensional model with an order-disorder
transition. Phys. Rev. 65, 117–149 (1944) https://doi.org/10.1103/PhysRev.65.
117

[10] Swendsen, R.H., Wang, J.S.: Nonuniversal critical-dynamics in monte-carlo
simulations. Phys. Rev. Lett. 58(2), 86–88 (1987) https://doi.org/10.1103/
PhysRevLett.58.86

[11] Wolff, U.: Collective monte-carlo updating for spin systems. Phys. Rev. Lett.
62(4), 361–364 (1989) https://doi.org/10.1103/PhysRevLett.62.361

[12] Block, B.J.: Platform independent, efficient implementation of the ising model
on parallel acceleration devices. Eur. Phys. J.-Spec. Top. 210(1), 147–157 (2012)
https://doi.org/10.1140/epjst/e2012-01643-x

[13] Komura, Y., Okabe, Y.: GPU-based single-cluster algorithm for the simulation
of the ising model. J. Comput. Phys. 231(4), 1209–1215 (2012) https://doi.org/
10.1016/j.jcp.2011.09.029

[14] Romero, J., Bisson, M., Fatica, M., Bernaschi, M.: High performance implemen-
tations of the 2d ising model on GPUs. Comput. Phys. Commun. 256, 107473
(2020) https://doi.org/10.1016/j.cpc.2020.107473

[15] Yang, K., Chen, Y., Roumpos, G., Colby, C., Anderson, J.R.: High Performance
Monte Carlo Simulation of Ising Model on TPU Clusters. arXiv (2019). http:
//arxiv.org/abs/1903.11714

[16] Ortega-Zamorano, F., Montemurro, M.A., Alejandro Cannas, S., Jerez, J.M.,
Franco, L.: FPGA hardware acceleration of monte carlo simulations for the
ising model. IEEE Trans. Parallel Distrib. Syst. 27(9), 2618–2627 (2016) https:
//doi.org/10.1109/TPDS.2015.2505725

[17] Lin, Y., Wang, F., Zheng, X., Gao, H., Zhang, L.: Monte carlo simulation of the
ising model on FPGA. J. Comput. Phys. 237, 224–234 (2013) https://doi.org/
10.1016/j.jcp.2012.12.005

[18] Gilman, A., Leist, A., Hawick, K.: 3d lattice monte carlo simulations on FPGAs.

12

https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1140/epjst/e2012-01643-x
https://doi.org/10.1016/j.jcp.2011.09.029
https://doi.org/10.1016/j.jcp.2011.09.029
https://doi.org/10.1016/j.cpc.2020.107473
http://arxiv.org/abs/1903.11714
http://arxiv.org/abs/1903.11714
https://doi.org/10.1109/TPDS.2015.2505725
https://doi.org/10.1109/TPDS.2015.2505725
https://doi.org/10.1016/j.jcp.2012.12.005
https://doi.org/10.1016/j.jcp.2012.12.005

In: Proceedings of the International Conference on Computer Design, pp. 72–78

[19] Chodera, J.D.: A simple method for automated equilibration detection in molec-
ular simulations. J. Chem. Theory Comput. 12(4), 1799–1805 (2016) https:
//doi.org/10.1021/acs.jctc.5b00784

[20] Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Leigh, S., Lev-
enson, M., Vangel, M., Heckert, N., Banks, D.: A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applications.
Special Publication (NIST SP), National Institute of Standards and Technol-
ogy, Gaithersburg, MD (2010). https://tsapps.nist.gov/publication/get pdf.cfm?
pub id=906762

[21] Ang, S.: Nist Randomness Test Suite (2024). https://github.com/stevenang/
randomness testsuite

13

https://doi.org/10.1021/acs.jctc.5b00784
https://doi.org/10.1021/acs.jctc.5b00784
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762
https://github.com/stevenang/randomness_testsuite
https://github.com/stevenang/randomness_testsuite

Fig. 1 CS-2 Wafer scale engine. (rightmost) A single Wafer Scale Engine is a single processor
spanning the largest possible square that can be patterned on a 300mm wafer. Each processing
engine (PE) is a Turing-complete, independently programmable computer consisting of a controller,
Arithmetic Logic Unit (ALU), 48KB of Static Random-Access Memory (SRAM), and a router that
can communicate with nearest-neighbor PEs. All main memory in WSE is SRAM and accessible at
L1 cache rates (128b of read and 64b of write on each cycle), which is matched to the ALU processing
rates. (middle) Each processor is a collection of dies arranged in a 2D fashion that are then further
subdivided into a grid of Processing Elements (PEs). (leftmost) One die hosts thousands of PEs
(computational cores, memory and routers). There is no logical discontinuity between adjacent dies
and there is no additional bandwidth penalty for crossing the die-die barrier.

14

Fig. 2 Conceptual layout of the 12× 96 2D Ising model on WSE hardware. (a) The WSE is used
to solve multiple instances of the 2D Ising model, where each instance is solved independently on
a single column of the WSE. Note that the real WSE-2 architecture contains nearly 1 million PEs
distributed over 756 columns. We devote one axis of PE’s to one of the axis of spins in the 2D Ising
model, the second axis is devoted to simulations in parallel. The second spin axis is held in the
memory of each PE. (b) The conceptual layout within the WFA with a single fold. Each simulation
spans 5 PEs (3 workers, blue, and 2 moats, orange). The expanded and PBC updated column vectors
are spread across the spin axis in order. The moats hold one axis of boundary condition data. The
second axis of BC data is held in the top and bottom of each vector on the workers memory space. (c)
Checkerboard decomposition. (d) 8-array representation on the WSE. For instance, the RFE array
refers to spin belong to red checkerboard in (a) with even index and forward order. BBO refers to
spins belonging to blue checkerboard with odd index and backward ordering. The mapping between
the Ising lattice and the WSE PEs are also shown in (b) where k, i refers to PE (x, y) coordinates.
For simplicity and clarity, we only show few spin indices from 0 to 1152.

15

Fig. 3 An illustration of the compacted spin representation around sRFE
224 for the 12 × 96 lattice

decomposition. All values displayed are int16 integer values that contain 16 bits representing 16 spin
states in an ascending order from least to most significant bit. sRFE

224 contains 16 bits representing
spins between 224 (least significant) and 254 (most significant). The right, left, and top neighbors to
all spins in sRFE

224 are blue spins in sBFE
320 , sBFE

128 , and sBFO
225 , respectively. The bottom spins to sRFE

224
can be derived from sBFO

225 and sBFO
193 using logical operators as shown in Algorithm 1.

16

Fig. 4 The absolute average magnetization values obtained from Monte Carlo simulations on WSE
for the 2D Ising model at temperatures between 0.385J − 4.145J for three different sizes of 2D Ising
lattices. For comparison, the analytical solution for the thermodynamic infinite large spin system
size is also shown along with the critical temperature Tc/J = 2.269, 185 obtained from the analytic
solution for infinite large spin system.

17

Fig. 5 (a) The flip rate as a function of spins on device. The GPU V100 results are reported in
[14] while as the A100 and H100 benchmarks are obtained in this study using the same code as in
[14]. The WSE results are obtained using Nfold = 1, 3, and 5 folding. compares the productivity
metric, defined as the cumulative device time per iteration to run Nsim simulations, between the H100
and WSE. (b) Productivity metric, defined as the cumulative device time per iteration to run Nsim

simulations. The lattice sizes for the WSE measurements are 2048×2048, 3952×4096, 7904×8192, and
11, 586× 16, 384. The lattice sizes for GPU measurements are 2048× 2048, 4096× 4096, 8192× 8192,
and 16, 384× 16, 384.

18

Algorithm 1 PE Level getNeighbors Pseudo-Code. The “right” operation refers to
data transfer between neighboring PE (k, i+1) and center PE (k, i). While, the “left”
operation refers to data transfer between neighboring PE (k, i − 1) and center PE
(k, i). The γ symbol is equivalent to i to indicate the PE position in the y direction.
For example, in Eq. (3), γ varies between 1– 3. The “up” and “down” refer to data
transfer within a local memory, which resides in the current center PE (k, i). The |
symbol indicates the bitwise OR operation. The≫ and≪ symbols indicate the bitwise
right and left shift operations for the 16-bit strings.

1: function getNeighbors(S⃗a, S⃗b, γ, up, right)
2: if right then
3: S⃗R

γ [1 : −1]← S⃗a
γ+1[1 : −1]

4: S⃗L
γ [1 : −1]← S⃗a

γ [1 : −1]
5: else
6: S⃗R

γ [1 : −1]← S⃗a
γ [1 : −1]

7: S⃗L
γ [1 : −1]← S⃗a

γ−1[1 : −1]
8: if up then
9: S⃗T

γ [1 : −1] = getBitAbove(S⃗b
γ)

10: S⃗B
γ [1 : −1]← S⃗b

γ [1 : −1]
11: else
12: S⃗T

γ [1 : −1]← S⃗b
γ [1 : −1]

13: S⃗B
γ [1 : −1] = getBitBelow(S⃗b

γ)

14: return S⃗R
γ , S⃗L

γ , S⃗
T
γ , S⃗

B
γ

15: function getBitAbove(S⃗)

16: return (S⃗[2 :]≪ 15) | (S⃗[1 : −1]≫ 1)

17: function getBitBelow(S⃗)

18: return (S⃗[: −2]≫ 15) | (S⃗[1 : −1]≪ 1)

19

Algorithm 2 PE Level Pseudo-Code to flip the spins. The & symbol indicates the
bitwise AND operation. The ⊕ symbol indicates the bitwise exclusive OR operation.

1: function flipQuarter(S⃗, S⃗a, S⃗b, γ, up, right)

2: S⃗R, S⃗L, S⃗T , S⃗B = getNeigbors(S⃗a, S⃗b, γ, up, right)

3: O⃗, T⃗ , F⃗ = bitwiseAdd(S⃗R, S⃗L, S⃗T , S⃗B)
4: mask := [0x1111, 0x2222, 0x4444, 0x8888]
5: for i in 0 to 3 do
6: S⃗sum[1 : −1]← (O⃗[1 : −1] & mask[i])≫ i

7: T⃗M [1 : −1]← (T⃗ [1 : −1] & mask[i])≫ i

8: F⃗M [1 : −1]← (F⃗ [1 : −1] & mask[i])≫ i

9: S⃗M [1 : −1]← (S⃗[1 : −1] & mask[i])≫ i

10: S⃗sum[1 : −1]← S⃗sum[1 : −1] + (T⃗M [1 : −1]≪ 1) + (F⃗M [1 : −1]≪ 2)

11: S⃗sum[1 : −1]← S⃗sum[1 : −1] + (S⃗M [1 : −1]≪ 3)
12: for ii in 0 to 3 do
13: A⃗R[1 : −1]← expTable[(S⃗sum[1 : −1]≫ 4× ii) & 15]

14: R⃗[1 : −1] = randVect()

15: S⃗[1 : −1]← S⃗[1 : −1]⊕ ((R⃗[1 : −1] < A⃗R[1 : −1])≪ (4× ii+ i))

16: function flipRed(γ)

17: flipQuarter(S⃗RFE, S⃗BFE, S⃗BFO, γ, F, F)

18: flipQuarter(S⃗RBO, S⃗BBO, S⃗BBE, γ, T, F)

19: flipQuarter(S⃗RBE, S⃗BBE, S⃗BBO, γ, F, T)

20: flipQuarter(S⃗RFO, S⃗BFO, S⃗BFE, γ, T, T)

21: function flipBlue(γ)

22: flipQuarter(S⃗BFE, S⃗RFE, S⃗RFO, γ, F, T)

23: flipQuarter(S⃗BBO, S⃗RBO, S⃗RBE, γ, T, T)

24: flipQuarter(S⃗BBE, S⃗RBE, S⃗RBO, γ, F, F)

25: flipQuarter(S⃗BFO, S⃗RFO, S⃗RFE, γ, T, F)

Algorithm 3 PE Level Multi-Spin Pseudo-Code

Require: T ⊂ Z2 | 0 ≤ γ < NPE, 0 ≤ β < Nsim ∀(γ, β) ∈ T
1: while not eqilibrated do
2: flipRed(γ) ∀ (γ, β) ∈ T ▷ PE parallel
3: updateRedBC(γ) ∀ (γ, β) ∈ T ▷ PE parallel
4: flipBlue(γ) ∀ (γ, β) ∈ T ▷ PE parallel
5: updateBlueBC(γ) ∀ (γ, β) ∈ T ▷ PE parallel

20

Table 1 Benchmark results for WFA Ising model
with five folds. n and m are lattice dimensions for
each simulation. Nsim is the number of n×m
simulations run in parallel. n and Nsim determine the
number of PEs applied to the block of simulations. m
determines the length of memory vectors.

n m Nsim
Flip Rate
(flip/ns)

Iteration Period
(ms)

1536 2048 128 681 0.591,48
3072 2048 256 2723 0.591,56
6144 2048 512 10891 0.591,56
11856 2048 754 30948 0.591,57

1536 4096 128 907 0.888,24
3072 4096 256 3626 0.888,31
6144 4096 512 14505 0.888,32
11856 4096 754 41219 0.888,32

1536 8192 128 1085 1.483,69
3072 8192 256 4342 1.483,70
6144 8192 512 17368 1.483,71
11856 8192 754 49357 1.483,71

1536 16384 128 1204 2.675,25
3072 16384 256 4816 2.675,25
6144 16384 512 19265 2.675,24
11856 16384 754 54747 2.675,26

21

7 Supplementary Information

7.1 Algorithms for Single-spin Multi-spin Updates

Algorithm 4 2D single-spin algorithm.

Require: P ⊂ Z2 | 0 ≤ i < N, 0 ≤ j < M ∀(i, j) ∈ P
1: σ[i, j]← random({−1,1}) ∀(i, j) ∈ P
2: while not eqilibrated do
3: FlipSpin(i, j, σ) ∀(i, j) ∈ P ▷ any traversal order

4: function FlipSpin(i, j, σ)
5: k := {(i+ 1, j), (i−1, j), (i, j+ 1), (i, j−1)} ▷ local adjacency matrix
6: k = wrap(k) ▷ apply periodic boundary
7: AR← exp(−(2σ[i, j]

∑
0≤γ<3 σ[k [γ]])/T)

8: if random({x⊂ R | 0 <x≤ 1}) < AR then
9: σ[i, j]← −σ[i, j]

Algorithm 5 2D checkerboard multi-spin algorithm

Require: P ⊂ Z2 | 0 ≤ i < N, 0 ≤ j < M ∀(i, j) ∈ P
Require: Pred ⊂ P |mod(i+ j,2) = 0 ∀(i, j) ∈ P
Require: Pblue ⊂ P |mod(i+ j,2) = 1 ∀(i, j) ∈ P
1: σ[i, j]← random({−1,1}) ∀(i, j) ∈ P
2: while not eqilibrated do
3: FlipSpin(i, j, σ) ∀(i, j) ∈ Pred ▷ in parallel
4: FlipSpin(i, j, σ) ∀(i, j) ∈ Pblue ▷ in parallel

5: function FlipSpin(i, j, σ)
6: k := {(i+ 1, j), (i−1, j), (i, j+ 1), (i, j−1)} ▷ local adjacency matrix
7: k = wrap(k) ▷ apply periodic boundary
8: AR← exp(−(2σ[i, j]

∑
0≤γ<3 σ[k [γ]])/T) ▷ acceptance ratio calculation

9: if random({x⊂ R | 0 <x≤ 1}) < AR then
10: σ[i, j]← −σ[i, j]

22

7.2 Algorithms for Periodic Boundary Condition Update

Algorithm 6 PE Level BC Update Pseudo-Code

1: function updateBC(S⃗, S⃗nbr, γ, up, right)
2: if up then
3: S⃗γ [−1]← S⃗γ [1]
4: else
5: S⃗γ [0]← S⃗γ [−2]
6: if right then
7: if γ = NPE then
8: S⃗γ [1 : −1]← S⃗nbr

γ−1[1 : −1]
9: else if γ > 0 then

10: T⃗γ [1 : −1]← S⃗nbr
γ−1[1 : −1]

11: else
12: if γ = 0 then
13: S⃗γ [1 : −1]← S⃗nbr

γ+1[1 : −1]
14: else if γ < NPE then
15: T⃗γ [1 : −1]← S⃗nbr

γ+1[1 : −1]
16: function updateRedBC(γ)

17: updateBC(S⃗RFE, S⃗RBE, γ, T, T)

18: updateBC(S⃗RBO, S⃗RFO, γ, F, T)

19: updateBC(S⃗RBE, S⃗RFE, γ, T, F)

20: updateBC(S⃗RFO, S⃗RBO, γ, F, F)

21: function updateBlueBC(γ)

22: updateBC(S⃗BFE, S⃗BBE, γ, T, F)

23: updateBC(S⃗BBO, S⃗BFO, γ, F, F)

24: updateBC(S⃗BBE, S⃗BFE, γ, T, T)

25: updateBC(S⃗BFO, S⃗BBO, γ, F, T)

23

7.3 12x96 Arrays After PBC Updates

Eq. 2 in the main text references an example array out of a series of arrays after being
expanded and PBC updated. The following contains all arrays after expansion. Eq. 1
in the main text references the arrays before expansion and PBC update. Those arrays
are simply the 3× 3 central terms in the arrays below.

SRFE =

0 sRFE

0 sRFE
192 sRFE

384 0
0 sRFE

64 sRFE
256 sRFE

448 sRBE
640

0 sRFE
32 sRFE

224 sRFE
416 sRBE

608

0 sRFE
0 sRFE

192 sRFE
384 sRBE

576

0 0 0 0 0

 = {S⃗RFE
0 , S⃗RFE

1 , S⃗RFE
2 , S⃗RFE

3 , S⃗RFE
4 } (3)

SRBO =

0 0 0 0 0
0 sRBO

1121 sRBO
929 sRBO

737 sRFO
545

0 sRBO
1089 sRBO

897 sRBO
705 sRFO

513

0 sRBO
1057 sRBO

865 sRBO
673 sRFO

481

0 sRBO
1121 sRBO

929 sRBO
737 0

 = {S⃗RBO
0 , S⃗RBO

1 , S⃗RBO
2 , S⃗RBO

3 , S⃗RBO
4 } (4)

SRBE =

0 sRBE

960 sRBE
768 sRBE

576 0
sRFE
64 sRBE

1024 sRBE
832 sRBE

640 0
sRFE
32 sRBE

992 sRBE
800 sRBE

608 0
sRFE
0 sRBE

960 sRBE
768 sRBE

576 0
0 0 0 0 0

 = {S⃗RBE
0 , S⃗RBE

1 , S⃗RBE
2 , S⃗RBE

3 , S⃗RBE
4 } (5)

SRFO =

0 0 0 0 0

sRBO
1121 sRFO

161 sRFO
353 sRFO

545 0
sRBO
1089 sRFO

129 sRFO
321 sRFO

513 0
sRBO
1057 sRFO

97 sRFO
289 sRFO

481 0
0 sRFO

161 sRFO
353 sRFO

545 0

 = {S⃗RFO
0 , S⃗RFO

1 , S⃗RFO
2 , S⃗RFO

3 , S⃗RFO
4 } (6)

SBFE =

0 sBFE

96 sBFE
288 sBFE

480 0
sBBE
1120 sBFE

160 sBFE
352 sBFE

544 0
sBBE
1088 sBFE

128 sBFE
320 sBFE

512 0
sBBE
1056 sBFE

96 sBFE
288 sBFE

480 0
0 0 0 0 0

 = {S⃗BFE
0 , S⃗BFE

1 , S⃗BFE
2 , S⃗BFE

3 , S⃗BFE
4 } (7)

24

SBBO =

0 0 0 0 0

sBFO
065 sBBO

1025 sBBO
833 sBBO

641 0
sBFO
033 sBBO

993 sBBO
801 sBBO

609 0
sBFO
001 sBBO

961 sBBO
769 sBBO

577 0
0 sBBO

1025 sBBO
833 sBBO

641 0

 = {S⃗BBO
0 , S⃗BBO

1 , S⃗BBO
2 , S⃗BBO

3 , S⃗BBO
4 } (8)

SBBE =

0 sBBE

1056 sBBE
864 sBBE

672 0
0 sBBE

1120 sBBE
928 sBBE

736 sBFE
544

0 sBBE
1088 sBBE

896 sBBE
704 sBFE

512

0 sBBE
1056 sBBE

864 sBBE
672 sBFE

480

0 0 0 0 0

 = {S⃗BBE
0 , S⃗BBE

1 , S⃗BBE
2 , S⃗BBE

3 , S⃗BBE
4 } (9)

SBFO =

0 0 0 0 0
0 sBFO

065 sBFO
257 sBFO

449 sBBO
641

0 sBFO
033 sBFO

225 sBFO
417 sBBO

609

0 sBFO
001 sBFO

193 sBFO
385 sBBO

577

0 sBFO
065 sBFO

257 sBFO
449 0

 = {S⃗BFO
0 , S⃗BFO

1 , S⃗BFO
2 , S⃗BFO

3 , S⃗BFO
4 } (10)

25

7.4 Pseudo-Random Bitstream Tests

The WSE has a Pseudo-Random Number Generator (PRNG) that is capable of gen-
erating 64 bits of pseudo random data per cycle on each PE. To start our investigation
into the quality of the PRNG, we wrote a bit perfect representation of the PRNG
in Python (not available due to a NDA) which allows us to study the PRNG appart
from hardware. At its heart, the PRNG generates a random stream of bits which can
later be shaped into a particular set of numbers according to a binary format. Several
methods have been developed to assess the quality of of PRNG bit stream. We chose
to test according to NIST SP 800-22 Rev. 1.[20] This standard was developed to assess
PRNGs for suitability in stringent cryptographic applications where approximation of
randomness are exceptionally important. To quote Ruken et. al. ”Generators suitable
for use in cryptographic applications may need to meet stronger requirements than for
other applications. In particular, their outputs must be unpredictable in the absence
of knowledge of the inputs.” [20] The rigorous statistical tests in NIST SP 800-22 Rev.
1 are intended to assess any stream of bits for uniformity, independence, and unpre-
dictability. The tests calculate the probability of a bit stream having the character of a
truly random sequence and compare it to a defined threshold specified for each test to
determine if bit sequence is ”random” or ”non-random”. Most of the tests recommend
a sequence of bits larger than 1,000,000 bits, so we generated a sequence of 6,400,000
bits with the Python PRNG code. There are several open-source libraries available
to run the statistical tests given a bit sequence and we chose the ”NIST Randomness
Test Suit”.[21]

The bit stream was random according to the Frequency (Monobit) Test, Frequency
Test within a Block Test, Runs Test, Longest Run of Ones in a Block Test, Discrete
Fourier Transform Test, Non-overlapping Template Matching Test, Overlapping Tem-
plate Matching Test, Maurer’s ”Universal Statistical” Test, Linear Complexity Test,
Serial Test, Approximate Entropy Test, Cumulative Sums Test, Random Excursions
Test, and Random Excursions Variant Test. From these tests, we can conclude that
the WSE is capable of generating high quality pseudo-random bit streams having the
appearance of uniformity, independence, and unpredictability.

7.5 Pseudo-Random Ranged Float Tests

A random stream of bits needs to be shaped to produce meaningful float values as
a random bit arrangement could produce any float value in the full dynamic range
as well as values that cannot be interpreted as a float according to the IEEE 754
standard. In particular, we are interested in generating random values in the range of
0.0 and 1.0. To do this, the most significant 10 bits are discarded via an AND with
0x7fffff. The result is then combined with 0x3f800000 with an OR to create a pseudo
random float in the range of 1.0 to 2.0. 1.0 is then subtracted to yield a pseudo random
float in the range of 0.0 to 1.0. Given the rigorous tests above, it is highly likely that
the resulting ranged floats also have random character. To verify this, we did further
examinations for uniformity, independence and unpredictability.

We applied the transformations above to generate random floats between 0 and 1
and confirmed its accuracy against WSE hardware. We generated a random number

26

array with shape of (2,2,1000000), which is denoted as WSE-rand(2,2,1000000). To
evaluate the uniformity of the random numbers, the frequencies were calculated for
1 million random numbers in 100 blocks of [0, 0.01), [0.01, 0.02), [0.02, 0.03), ..[0.99,
1.0) with a bin width of 0.01. All the values in the frequency data array were found
to be close to 0.01, as expected. The highest frequency value is 0.010422, and the
lowest frequency value is 0.009755. The relative difference between the highest and
the lowest frequency was found to be 6.8% (see Fig. 6). When a larger bin width of
0.1 was chosen, the relative difference between the highest and the lowest frequency
is decreased to 1.1%.

To evaluate the independence of the random numbers, the joint distribution for two
variables are calculated. The two random variables are set to be x =WSE-rand[i,j,0:-1]
and y =WSE-rand[i,j,1:] (i,j=0,1). One example of the joint distribution between x and
y for the WSE-rand(1,1,:) is shown in Fig. 7. There is no obvious pattern in Fig.7 and
the axis histograms are flat and uniform, which suggests that x and y are independent
from each other. The other three random number sequences, WSE-rand(0,0,:), WSE-
rand(0,1,:) and WSE-rand(1,0,:) show similar independence as Fig.7.

For comparison, we also calculated uniform, independence, and unpredictability
for random numbers generated by using Numpy (ie: np.random.rand(2,2,1000000)).
Similarly to the random numbers generated on WSE, all the frequency values are close
to 0.01 when the bin width was chosen to be 0.01. The highest frequency value is
0.010271, and the lowest frequency value is 0.009708. The relative difference between
the highest and the lowest frequency is 5.8% (Fig. 6). When the bin width is increased
to 0.1, the relative difference between the highest and the lowest frequency is decreased
to be 1.2%. The independence of the random number of was also evaluated and x and
y values for the np.random.rand show the similar behavior as Fig.7. The simple Runs
Test also suggest that the numbers are unpredictable and random.

As a final test, we generated 8,388,608 (223) random floats and converted them to
a bit sequence by an element wise comparison to the median value of the sequence
(bit[i] = float[i] ≥ median(float[:]). The bit sequence was fed into The NIST Random
Test Suite as before. If a PRNG is used to generate a set of random values within a
range, each random value should have an equal probability of being above or below
the median. Thus the bit sequence in this test should also pass the random character
tests in the NIST SP 800-22 Rev. 1 standard.

The bit stream was random according to the Frequency (Monobit) Test, Frequency
Test within a Block Test, Runs Test, Longest Run of Ones in a Block Test, Dis-
crete Fourier Transform Test, Non-overlapping Template Matching Test, Overlapping
Template Matching Test, Maurer’s ”Universal Statistical” Test, Serial Test, Approx-
imate Entropy Test, Cumulative Sums Test, Random Excursions Test, and Random
Excursions Variant Test. From these tests, we can conclude that the methods used to
transform the bit stream to a ranged set of psudo-random floats is also of high quality
having the appearance of uniformity, independence, and unpredictability.

27

Fig. 6 The frequency analysis for two sets of pseudo-random numbers with a size of 1000000. a)The
pseudo random numbers generated on WSE. b) The pseudo random numbers generated from numpy
by using the numpy.random.rand.

28

Fig. 7 The 2-dimensional histogram analysis for two variables x and y. Also shown are the 1
dimensional histogram analysis for x (top) and y (right) respectively. For a random sequence array,
such as rand[0:1000000], x =rand[0:-1], and y =rand[1:]. The a) is for the pseudo random num-
bers generated on WSE, and b) is for the pseudo random numbers generated from numpy by using
numpy.random.rand.

29

	Introduction
	Implementation of the 2D Ising model on the WSE
	Results and Discussion
	Code Validation
	Performance Analysis

	Conclusions
	Declaration of competing interest
	Acknowledgments
	Supplementary Information
	Algorithms for Single-spin Multi-spin Updates
	Algorithms for Periodic Boundary Condition Update
	12x96 Arrays After PBC Updates
	Pseudo-Random Bitstream Tests
	Pseudo-Random Ranged Float Tests

