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Abstract

This paper studies the testability of identifying restrictions commonly employed

to assign a causal interpretation to two stage least squares (TSLS) estimators based

on Bartik instruments. For homogeneous effects models applied to short panels,

our analysis yields testable implications previously noted in the literature for the

two major available identification strategies. We propose overidentification tests for

these restrictions that remain valid in high dimensional regimes and are robust to

heteroskedasticity and clustering. We further show that homogeneous effect mod-

els in short panels, and their corresponding overidentification tests, are of central

importance by establishing that: (i) In heterogenous effects models, interpreting

TSLS as a positively weighted average of treatment effects can impose implausible

assumptions on the distribution of the data; and (ii) Alternative identifying strate-

gies relying on long panels can prove uninformative in short panel applications. We

highlight the empirical relevance of our results by examining the viability of Bartik

instruments for identifying the effect of rising Chinese import competition on US

local labor markets.
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1 Introduction

Shift-share designs typically rely on linear combinations of unit specific variables (the

“shares”) and aggregate level variables (the “shocks”) as instruments to obtain iden-

tification. Originally employed in the work of Bartik (1991) and Blanchard and Katz

(1992), these instruments have become known in the literature as “Bartik” instruments.

Bartik instruments have proven to be remarkably versatile yielding insights into, among

others, the impact of immigration on labor markets (Card, 2001), the consequence of

trade liberalization for poverty (Topalova, 2010), the effect of import competition on

labor markets (Autor et al., 2013), and the welfare implications of geographic sorting

by education (Diamond, 2016).

In this paper, we examine the testable implications of identifying restrictions com-

monly employed to assign a causal interpretation to two stage least squares (TSLS)

estimators based on Bartik instruments. We largely focus our analysis on two recent

complementary identification strategies. The first, studied by Goldsmith-Pinkham et al.

(2020), attributes the exogeneity of the Bartik instrument to the exogeneity of the

shares. The second, examined by Adao et al. (2019) and Borusyak et al. (2022), in-

stead attributes the exogeneity of the Bartik instrument to the exogeneity of aggregate

shocks. We systematically study the overidentifying content of both approaches by

noting that their differing asymptotic frameworks either implicitly or explicitly require

conditional moment restrictions to hold. Specifically, Goldsmith-Pinkham et al. (2020)

necessitates the Bartik instrument to be exogenous conditional on the realization of the

aggregate shocks, while Adao et al. (2019) and Borusyak et al. (2022) require the Bartik

instrument to be exogenous conditional on the realization of the shares (among other

variables).

The conditional moment restrictions implied by the different identification strate-

gies yield previously noted overidentifying restrictions in homogeneous treatment ef-

fects models. For instance, when applied to the framework of Goldsmith-Pinkham et al.

(2020), our analysis implies that the entire vector of shares must be exogenous. As noted

by Goldsmith-Pinkham et al. (2020), the model is therefore overidentified because any

deterministic linear combination of the shares yields a valid instrument. In contrast,

when applied to the framework of Adao et al. (2019) and Borusyak et al. (2022), our

results imply that the conditional mean of the Bartik instrument given controls, shares,

and residuals must be a linear function of the controls only. As a result, the model

is overidentified because any appropriately centered deterministic linear combination of

the aggregate shocks yields a valid instrument. Our impression is that the latter overi-

dentifying restrictions have not received the same level of attention by practitioners as

the testable implications of Goldsmith-Pinkham et al. (2020).

Building on our overidentification analysis, we develop a framework for testing the
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overidentifying restrictions corresponding to both identification strategies. In many

of the applications that motivate us, the number of overidentifying restrictions can be

“large” relative to the sample – e.g., in many applications the numbers of sectors exceeds

the number of clusters. We therefore focus on developing tests that remain valid in such

high dimensional settings by employing the high dimensional central limit theorem of

Chernozhuokov et al. (2022). Our tests utilize bootstrap based critical values and are

robust to the presence of heteroskedasticity, clustering, and weighting.1

A natural way to proceed, for instance after rejecting the validity of the homogeneous

effects model, is to consider weaker assumptions that still enable us to attribute a causal

interpretation to TSLS. To this end, we study a generalization of the model and an alter-

native identification strategy, but find both approaches to be potentially empirically lim-

ited in scope. As a generalization of the model, we consider linear heterogeneous treat-

ment effects models previously employed in the literature (Goldsmith-Pinkham et al.,

2020; Adao et al., 2019). In such a setting, TSLS can readily be shown to estimate

a weighted average of group specific treatment effects. As forcibly argued by Kolesar

(2013) and Blandhol et al. (2022) among others, however, the averaging weights should

be positive in order to attribute a causal interpretation to TSLS. Unfortunately, we

find that in the case of Bartik instruments the weights can naturally be negative. In

particular, within the identification framework of Goldsmith-Pinkham et al. (2020), we

show that a necessary condition for the weights to be positive is that shares of different

sectors be uncorrelated with each other – a requirement that a-fortiori fails when shares

sum up to one. Conversely, within the identification framework of Adao et al. (2019)

and Borusyak et al. (2022), we show that a necessary condition for the weights to be

positive is that aggregate shocks to different sectors be (weakly) positively correlated

with each other.

As an alternative identification strategy, we consider the possibility that the exo-

geneity of the instrument is not justified by the shares alone (Goldsmith-Pinkham et al.,

2020) or the aggregate shocks alone (Adao et al., 2019; Borusyak et al., 2022) but by

the shares and shocks together. Formally, such an identification strategy corresponds

to requiring that the Bartik instrument be uncorrelated with the error term when ex-

pectations are evaluated over both the time series distribution of aggregate shocks and

the cross sectional distribution of shares. While this identification strategy renders the

model “just identified,” it also necessitates a long panel in order to estimate the time se-

ries distribution of the aggregate shocks. We show that as a result, the effective number

of observations for computing TSLS standard errors is governed by the number of time

periods in the panel. Because the majority of empirical studies relying on Bartik in-

struments have relied on short panels, we expect TSLS to be statistically uninformative

1In contrast, Goldsmith-Pinkham et al. (2020) emply overidentification tests based on LIML (which
requires homoskedasticity) and Chao et al. (2014) (which precludes clustering). Neither test allows the
number of restrictions to exceed the sample size.
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under this identification strategy. Our asymptotic analysis relies on a novel simulta-

neous time series and cross sectional study of long panels. These results significantly

extend related work in Hahn et al. (2019, 2022) and may be of independent interest.

We highlight the empirical relevance of our analysis by revisiting the study by

Autor et al. (2013) on the impact of rising Chinese import competition on local US

labor markets. In this setting, our overidentification tests find evidence against the va-

lidity of the identification framework of Goldsmith-Pinkham et al. (2020) as well as the

identification framework of Adao et al. (2019) and Borusyak et al. (2022). Moreover,

since shares are empirically correlated across sectors, our analysis further suggests that

TSLS may not have a causal interpretation in a heterogeneous effects model under the

identification strategy of Goldsmith-Pinkham et al. (2020). Likewise, TSLS may not

possess a causal interpretation in a heterogeneous effects model under the identification

strategy of Adao et al. (2019) and Borusyak et al. (2022) when shocks within clusters

are negatively correlated. Finally, we note that applying the proposed alternative just

identified long panel identification strategy is not viable in this application because there

are only two time periods.

The rest of the paper is organized as follows. Section 2 characterizes the overiden-

tifying restrictions implied by the identification strategies of Goldsmith-Pinkham et al.

(2020) as well Borusyak et al. (2022) and Adao et al. (2019). Section 3 examines the

scope for attributing a causal interpretation to TSLS under heterogeneous effects models

or long panel identification strategies. Our overidentification tests are developed in Sec-

tion 4, while Section 5 illustrates the relevance of our analysis by revisiting Autor et al.

(2013). Section 6 briefly concludes by providing recommendations for empirical practice.

A series of appendices contain proofs of our results and a Monte Carlo study.

2 Overidentification

Following the main instrumental variables specifications of Goldsmith-Pinkham et al.

(2020) and Adao et al. (2019), we begin by studying homogeneous treatment effects

models in which the parameter of interest is common across all individuals. In the next

section, we will examine heterogenous treatment effects models instead. For ease of

exposition, we focus on cross sectional applications though note that an extension to

short panel data settings is immediate; see, e.g., Remarks 2.1 and 2.2 below.

In what follows we let Yi ∈ R, Xi ∈ R, Zi ∈ R, and Wi ∈ R
d denote the outcome

variable, a scalar regressor of interest, a scalar instrument, and a vector of controls. We

will refer to each “i” as an individual, though note that in applications i may represent,

for example, a location. The variables (Yi,Xi,Wi) are assumed to satisfy

Yi = Xiβ +W ′
iγs + εi, (1)
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where the restrictions on εi will be stated shortly. We will further require that the

instrument Zi follow a Bartik structure in the sense that it satisfies

Zi = Z ′Si

with Z ∈ R
p an aggregate variable and Si ∈ R

p an individual specific variable.

For instance, in canonical applications Z equals a vector of aggregate industry spe-

cific shocks and Si equals the share of each industry in the economy of location i. For

this reason, in what follows we refer to Z as “shocks” and Si as “shares.” Other variables,

such as εi, may have a Bartik structure as well though we only make the Bartik structure

explicit for Zi. Finally, we complement equation (1) with the first stage equation

Xi = Ziλ+W ′
iγf + ηi. (2)

Here, the f and s subscripts on γ refer to the first and the second stage respectively.

While we let the first stage coefficients in (2) be fixed for simplicity, it is worth emphasiz-

ing that all the results in this section continue section hold if the first stage coefficients

are instead random as in Adao et al. (2019). The observable variables are the aggregate

shocks Z and the cross sectional variables {Yi,Xi,Wi, Si}ni=1.

Different asymptotic frameworks either implicitly or explicitly condition on different

variables when delivering asymptotic promises. To reflect these differences, it will prove

convenient to introduce the notation Gn to denote the relevant conditioning variables.

For instance, we will argue below that asymptotic approximations that rely on only

the cross section being large implicitly condition on aggregate variables such as the

shocks Z. Hence, in such instances we would set Gn to include all aggregate variables,

including Z. Alternatively, when specialized to equations (1) and (2), the asymptotic

framework of Adao et al. (2019) and Borusyak et al. (2022) explicitly conditions on the

cross-sectional variables {Wi, Si, εi}ni=1 so we would in that case simply set Gn to equal

{Wi, Si, εi}ni=1.

We will first examine conditions under which the two stage least squares (TSLS)

estimand equals β in the homogeneous effects model defined by (1) and (2). To this

end, it is helpful to define the “population” residualized instrument Żi,n according to

Żi,n ≡ Zi −W ′
iπn πn ≡

(

1

n

n
∑

i=1

E
[

WiW
′
i

∣

∣Gn

]

)−1(

1

n

n
∑

i=1

E [WiZi| Gn]

)

, (3)

which allows us to define the TSLS estimand β0,n as the solution to the equation

1

n

n
∑

i=1

E
[

(Yi −Xiβ0,n) Żi,n

∣

∣

∣
Gn

]

= 0. (4)
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We note that in the notation we have let β0,n depend on n to reflect that the TSLS

estimand may depend on n through the conditioning on Gn. Under an appropriate rank

condition, plugging the outcome equation (1) into the moment condition in (4) readily

yields that the estimand β0,n equals β if and only if we have

1

n

n
∑

i=1

E
[

εi(Zi −W ′
iπn)|Gn

]

= 0. (5)

We next examine the implications of this exogeneity condition under the different choices

of conditioning set Gn that correspond to different asymptotic approximations.

2.1 Conditioning on Shocks

Traditionally, empirical work employing shift-share designs has reported standard er-

rors that are motivated by asymptotic approximations in which only the cross section

becomes large (i.e. n → ∞). Probabilistic statements associated with these asymptotic

approximations correspond to a thought experiment in which we only re-sample the

individual specific variables {Yi,Xi,Wi, Si}ni=1. For instance, in this context, the level

of a confidence interval for β refers to the probability that a randomly drawn sample

{Yi,Xi,Wi, Si}ni=1 yields a confidence interval that indeed includes β.

Probabilistic statements based on re-sampling only individual specific variables a

fortiori keep aggregate variables such as the shocks Z fixed. Consequently, in an asymp-

totic approximation in which only n becomes large we are only able to identify the

distribution of individual specific variables conditionally on the realizations of aggre-

gate variables such as Z. When evaluating the exogeneity condition on our instrument

(i.e. restriction (5)) under this asymptotic approximation, we should therefore view all

aggregate variables as belonging to the conditioning set Gn.

In order to illustrate the implications of these observations, we will for simplicity

assume that the variables {Si,Wi, εi}ni=1 are i.i.d. and independent of all aggregate vari-

ables.2 Provided that the controls Wi are uncorrelated with the error εi, it then follows

from a bit of algebra that the exogeneity condition in (5) is equivalent to

Z ′E [Siεi] = 0. (6)

Equation (6) highlights that the relevant exogeneity condition for this asymptotic frame-

work depends on the realization of the aggregate shocks Z and the correlation between

the shares Si and the error εi. Lacking a justification as to why (6) should hold at the

actual realization of Z and not others, we should in the interest of robustness demand

2This setting rules out, for example, that (W,ε) have a Bartik structure as in Adao et al. (2019).
We note, however, that the main points made in this section carry over if we allow (W,ε) to have a
Bartik structure as well, though such an extension requires additional notation and assumptions.
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that (6) hold at all possible realizations of Z. Provided the aggregate shocks Z exhibit

sufficient variation, however, it then follows that condition (6) can hold for all possible

realizations of Z if and only if in fact Si itself is uncorrelated with the errors εi.

Our next simple proposition formalizes the preceding discussion.

Proposition 2.1. Suppose that Z ∈ Gn and that {Si,Wi, εi}ni=1 are i.i.d. and indepen-

dent of Gn. If E[Wε] = 0 and the support of Z ∈ R
p has dimension p, then

1

n

n
∑

i=1

E
[

εi(Zi −W ′
iπn)|Gn

]

= 0 (7)

with probability one (over Z) if and only if E[Siεi] = 0.

Proposition 2.1 establishes that the entire vector of shares Si must be a valid in-

strument in order for the scalar instrument Zi itself to be valid. This conclusion echoes

arguments in Goldsmith-Pinkham et al. (2020), who similarly argue that the exogeneity

of the instrument Zi should be understood in terms of the exogeneity of the shares Si.

The principal implication of Proposition 2.1 for our purposes is that the validity of the

Bartik instrument renders the model overidentified. For instance, it follows that we may

construct an overidentification test by employing the sample moments

1

n

n
∑

i=1

Siε̂i,

where {ε̂i}ni=1 denotes the fitted residuals from the estimated model. One complication

that arises in building overidentification tests from these moments is that the number

of moments (i.e. the number of shares) is often too “large” for standard asymptotic

approximations to remain accurate. In Section 4, we address this challenge by developing

overidentification tests that rely on high dimensional asymptotics instead.

Remark 2.1. While we have focused on a cross-sectional setting for ease of exposition,

our conclusions readily extends to panel data applications. Specifically, suppose there

are 1 ≤ t ≤ T time periods, each with an aggregate shock Zt and a cross-section

{Yit,Xit, Sit,Wit}ni=1. Under a short panel asymptotic approximation (i.e. n → ∞ and

T fixed), conditions similar to those employed in Proposition 2.1 readily imply that as

the relevant exogeneity condition we should require that

E[Sitεit] = 0 for 1 ≤ t ≤ T.

Thus, in this context, the time dimension yields additional overidentifying restrictions

to those available in the cross sectional setting.
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2.2 Identification Through Shocks

As an alternative identification strategy, Adao et al. (2019) and Borusyak et al. (2022)

advocate interpreting the exogeneity of the Bartik instrument Zi as originating from the

exogeneity of the aggregate shocks Z. Within our context, the assumptions employed by

their asymptotic approximations correspond to setting Gn to equal {Si,Wi, εi}ni=1 and

letting the number of shocks p increase with the sample size n.3 Under this asymptotic

framework, the relevant exogeneity condition (i.e. restriction (5)) is equivalent to

1

n

n
∑

i=1

εi
(

S′
iE [Z|Gn]−W ′

iπn
)

= 0. (8)

To gain intuition into this exogeneity requirement, it is instructive to consider the

case in which there are no controls Wi. Letting Zj denote the jth coordinate of the

vector of aggregate shocks Z ∈ R
p and Sij the jth coordinate of the shares Si ∈ R

p, it

then follows that the exogeneity condition in (8) simplifies to the expression

p
∑

j=1

(

E[Zj |Gn]×
(

1

n

n
∑

i=1

εiSij

))

= 0. (9)

Moreover, since the moment restriction in (9) must hold for any possible realization of

the sample {Si, εi}ni=1, the exogeneity condition in this context implies, under appro-

priate assumptions, that the aggregate shocks {Zj}pj=1 must have mean zero and be

mean independent of the individual specific variables {Si, εi}ni=1. However, if all the

aggregate shock {Zj}pj=1 are mean independent of the individual specific variables, then

the instrument Zi = S′
iZ must itself be mean independent of {Si, εi}ni=1 because

E[Zi|{Si, εi}ni=1] =

p
∑

j=1

E[Zj |Gn]Sij = 0.

Intuitively, if the aggregate shocks {Zj}pj=1 are exogenous in the sense that (9) holds,

then any suitable linear combination of the shocks, such as Zi = S′
iZ, must be mean

independent of {Si, εi}ni=1 as well. In particular, we obtain the overidentifying restriction

that Zi must be uncorrelated with any functions of the shares Si and the error εi.
4

While the inclusion of controls Wi allows us to relax the requirements on the ag-

gregate shocks Z, the model remains overidentified through its implications on the

conditional mean of the instrument Zi. Our next proposition illustrates this conclusion

in the simple setting in which Z is independent of all individual specific variables.

3As noted by Adao et al. (2019), including {εi}
n
i=1 in the conditioning set is important for obtaining

asymptotically valid standard errors in applications in which {εi}
n
i=1 possesses a Bartik structure.

4Equivalently, note that since any suitably linear combination of Z is also a valid instrument, it
follows that there is a surplus of instruments and hence that the model is overidentified.

8



Proposition 2.2. Suppose Gn = {Si,Wi, εi}ni=1 and Z is independent of Gn. If the

support of {εi}ni=1 conditional on {Si,Wi}ni=1 has dimension n, then

1

n

n
∑

i=1

E[εi(Zi −W ′
iπn)|Gn] = 0 (10)

with probability one (over {Si,Wi, εi}ni=1) if and only if E[Zi|{Si,Wi, εi}ni=1] =W ′
iπn.

Proposition 2.2 establishes that the exogeneity requirement needed to obtain iden-

tification through the aggregate shocks Z effectively imposes that the conditional mean

of the instrument Zi given {Si,Wi, εi}ni=1 be equal to the linear projection of Zi onto

Wi. This conclusion can be shown to hold even if Z is not independent of the individual

specific variables {Si,Wi, εi}ni=1 at the cost of additional notation and assumptions. For

our purposes, the principal implication of Proposition 2.2 is that the residualized instru-

ment (Zi−W ′
iπn) must be uncorrelated with any function of the shares Si, controls Wi,

and errors εi. This observation suggests employing the sample moments

1

n

n
∑

i=1

g(ε̂i,Wi, Si)(Zi −W ′
i π̂n)

to construct an overidentification test – here g is an arbitrary vector valued function and

{Zi −W ′
i π̂n}ni=1 denotes the residuals from regressing the instrument on the controls.

In Section 4 we will develop such an overidentification test while allowing the number

of sample moments to potentially be high dimensional.

Remark 2.2. The overidentifying restrictions of Proposition 2.2 generalize to panel

data applications. Specifically, suppose that at each time period 1 ≤ t ≤ T we observe

a shock Zt ∈ R
p and individual specific variables {Yit,Xit, Sit,Wit}ni=1. In this context,

the asymptotic framework in Adao et al. (2019) and Borusyak et al. (2022) corresponds

to setting Gn to equal {Sit,Wit, εit}n,Ti=1,t=1 and letting T be fixed while n and p become

large. Under conditions similar to those imposed in Proposition 2.2, it follows that the

exogeneity requirements imposed on the shocks {Zt}Tt=1 to obtain identification imply

E[Zit|Gn] =W ′
itπn πn ≡

(

n
∑

i=1

T
∑

t=1

WitW
′
it

)−1( n
∑

i=1

T
∑

t=1

WitE[Zit|Gn]

)

.

As a result, the model is now overidentified by the restriction that the residualized

instrument (Zit −W ′
itπn) be uncorrelated with any function of {Wit, Sit, εit}Tt=1.

Remark 2.3. Adao et al. (2019) and Borusyak et al. (2022) impose sufficient conditions

for the overidentifying restrictions derived in Proposition 2.2 to hold. For instance,

Adao et al. (2019) require that the controls satisfy Wi = W ′Si, with W a p× d matrix

of aggregate shocks, and impose that E[Z|{Si,Wi, εi}ni=1,W] = WΓ for some vector

9



Γ ∈ R
d.5 Under this structure, it follows that πn equals Γ and hence that

E[Zi|{Si,Wi, εi}ni=1]

= E[S′
iE[Z|{Si,Wi, εi}ni=1,W]|{Si,Wi, εi}ni=1] = E[S′

iWΓ|{Si,Wi, εi}ni=1] =W ′
iπn,

which implies the overidentifying restrictions of Proposition 2.2 are indeed satisfied.

3 Just Identification?

We have so far shown that the homogeneous effects model is overidentified in shift-

share designs. One possible way to proceed, for instance after statistically rejecting

the model, is to weaken assumptions in a manner that renders the model potentially

just identified (e.g., in the sense of (Chen and Santos, 2018)). In this section, we show

that two natural relaxations to the model of Section 2 are severely limited in the set of

empirical contexts to which they may be successfully applied. As a result, we conclude

that the homogeneous effects model of Section 2 is of central empirical importance in

shift-share designs relying on Bartik instruments.

First, we examine the possibility of relaxing the model in Section 2 to a linear

heterogeneous effects model. In this context, the TSLS estimand can be interpreted as

a weighted average of causal effects for different population subgroups. We find, however,

that ensuring the estimand equals a positively weighted average of causal effects requires

strong, often unrealistic, assumptions on the distribution of the data.

Second, we examine the possibility of relaxing the model in Section 2 by only re-

quiring that the Bartik instrument be exogeneous when expectations are evaluated over

both the shocks and the shares. We show that, under this exogeneity requirement, iden-

tification crucially relies on the time series variation of the shocks and, as a result, that

the standard errors of TSLS depend on the time dimension. Because the majority of

empirical studies relying on shift-share designs have employed short panels, we expect

TSLS estimates to be highly imprecise under this identification strategy.

3.1 Heterogeneous Effects

We first re-examine the shift-share design of Section 2 in the presence of heterogenous

treatment effects. To this end, we generalize the second stage equation by setting

Yi = Xiβi +W ′
iγs + εi; (11)

5More precisely, Adao et al. (2019) impose that Wi = W ′Si+Ui and require Ui to be asymptotically
negligible in a suitable sense; see their Assumptions 3(iii)(iv).
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i.e. the “treatment effect” βi is allowed to depend on the individual but, for simplicity, we

keep the coefficient for the controls fixed. We complement the second stage by following

Adao et al. (2019) and Goldsmith-Pinkham et al. (2020) in imposing a linear first stage

Xi = Z ′ΛiSi +W ′
iγf + ηi Λi = diag {(λi1, . . . , λip)} , (12)

where “diag{(a1, . . . , ap)}” denotes a diagonal matrix with diagonal entries (a1, . . . , ap)

and again, for simplicity, we set the coefficient for the controlsWi to be fixed. In analogy

to Imbens and Angrist (1994), we refer to Λi as the “type” of the individual.

Within this context, we examine conditions under which the TSLS estimand retains

a causal interpretation. Formally, we remain interested in the parameter β0,n solving

1

n

n
∑

i=1

E
[

(Yi −Xiβ0,n)Żi,n

∣

∣

∣
Gn

]

= 0,

but now study conditions under which β0,n equals a positively weighted average of the

average treatment effects for different subgroups. Under suitable exogeneity and rank

conditions on the instrument Zi, it is possible to show that the estimand β0,n satisfies

β0,n = E

[(

n
∑

i=1

ωi,nE [βi|Λi,Wi,Gn]

)∣

∣

∣

∣

∣

Gn

]

ωi,n ≡
E
[

XiŻi,n|Λi,Wi,Gn

]

∑n
i=1E

[

XiŻi,n|Gn

] ; (13)

i.e. β0,n equals the expectation of a {ωi,n}ni=1-weighted average of the average treatment

effects for subgroups determined by Λi andWi; see Lemma A.2.1 for a formal statement.

As forcibly argued in the literature, a minimal requirement for β0,n to possess a causal

interpretation is that the weights {ωi,n}ni=1 be positive (Kolesar, 2013; Blandhol et al.,

2022). In what follows, we study the implications of requiring that such a positivity

condition hold under different asymptotic frameworks – i.e. under different choices of

Gn. For succinctness, we will refer to TSLS as having a causal interpretation whenever

the weights {ωi,n}ni=1 are positive with probability one.

3.1.1 Conditioning on Shocks

We begin by studying the conditions under which TSLS has a causal interpretation in

an asymptotic setting in which only the cross section grows (i.e. n → ∞). Recall that

in Section 2.1 we showed that this setting implicitly conditions on the shocks Z and

requires the shares Si to be a valid instrument.

The analysis in this section relies on the following assumption and additional regu-

larity conditions that we formally state in the Appendix; see Assumption A.2.1.
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Assumption 3.1. (i) Z and {Yi,Xi,Wi, Si}ni=1 satisfy equations (11) and (12); (ii)

(Z,Λi, βi, εi, ηi) ⊥⊥ Si conditionally on Wi; (iii) E[Zi|Wi,Gn] =W ′
iπn with Gn = {Z}.

Assumption 3.1(i) formally imposes the structure of the model, while Assumption

3.1(ii) requires the shares Si to be suitably exogenous. In Assumption 3.1(iii) we further

demand that the conditional mean of the instrument given the covariates be linear.6

Blandhol et al. (2022) showed in a related context that Assumption 3.1(iii) is a necessary

condition for TSLS to have a causal interpretation. We therefore impose Assumption

3.1(iii) not because it is innocuous, but because it enables us to examine what additional

conditions are necessary for TSLS to have a causal interpretation. Assumption 3.1(iii)

is of course testable, and practitioners may wish to examine its validity in assessing

whether the TSLS estimator can be assigned a causal interpretation.

Our next proposition characterizes the weights {ωi,n}ni=1 and obtains necessary and

sufficient conditions for them to be positive with probability one.

Proposition 3.1. If Assumptions 3.1 holds and Gn = Z, then it follows that

ωi,n =
Z ′(ΛiVar{Si|Wi})Z

∑n
j=1Z ′(ΛjVar{Sj|Wj})Z

. (14)

Moreover, if in addition Assumption A.2.1 holds, then for n large ωi,n is positive for all

i with probability one (over Λi,Wi,Z) if and only if the matrix ΛiVar{Si|Wi} is either

positive semi-definite with probability one, or negative semi-definite with probability one.

The first part of Proposition 3.1 shows that the weights may be expressed as a

quadratic form in the shocks Z (see (14)). Intuitively, provided that the support of the

shocks Z is sufficiently rich, it therefore follows that the weights can only be positive

for all possible realizations of the shocks Z if in fact the matrices ΛiVar{Si|Wi} are

positive semi-definite (or negative semi-definite) with probability one. The second part

of Proposition 3.1 formalizes this intuition under the requirement that the support of

the shocks Z contain a neighborhood of zero.7

The necessary and sufficient conditions derived in Proposition 3.1 for TSLS to have a

causal interpretation are both highly restrictive and testable. Our next corollary shows

that, under mild conditions on the support of Λi, these conditions in fact necessarily fail

whenever shares are correlated with each other.

Corollary 3.1. Let the conditions of Proposition 3.1 hold and suppose that the support

of λij/λik is unbounded for any j 6= k. If for some j 6= k we have that

P (Cov{Sij , Sik|Wi} 6= 0) > 0, (15)

6Under regularity conditions, Assumption 3.1(iii) is equivalent to E[Si|Wi] being linear in Wi.
7This requirement is formally stated in Assumption A.2.1 in the Appendix.

12



then the weights {ωi,n}ni=1 are negative with positive probability (over (Λi,Wi,Z)).

Corollary 3.1 implies that, whenever shares are correlated, TSLS necessarily lacks a

causal interpretation under certain realizations of the shocks Z. Because shares must be

correlated whenever they sum up to one, we view Corollary 3.1 as a warning that TSLS

based on the Bartik instrument can easily fail to have a causal interpretation under a

heterogenous effects model. However, it may be worth emphasizing that, as argued by

Goldsmith-Pinkham et al. (2020), empirical researchers may still be able to estimate

causal parameters by carefully employing the shares as separate instruments instead of

combining them into a single scalar Zi by employing the shocks Z.

Remark 3.1. Corollary 3.1 yields testable implications beyond restricting the correla-

tion between shares. Notably, because Var{Si|Wi} must be diagonal and Λi must have

constant sign in order for TSLS to have a causal interpretation, it follows that the sign

of the first stage must be constant under certain choices of instrument. In particular,

letting Z̃ij = fj(Wi)Zj for any positive fj and Z̃i = (Z̃i1, . . . , Z̃ip)
′, it follows that

sign
{

E[XiŻi,n|Z]
}

= sign
{

E[Xi(Si − E[Si|Wi])
′Z̃i|Z]

}

. (16)

Since the conditional mean of the shares is linear in the controls in our setting, we

obtain a simple diagnostic: Compare the sign of the covariances between Xi and Ṡ
′
i,nZ̃i

for different choices of Z̃i – here, Ṡi,n denotes the residual from regressing Si on Wi.

3.1.2 Identification Through Shocks

We next examine the conditions under which TSLS retains a causal interpretation in

an asymptotic framework in which identification is driven by the exogeneity of the

aggregate shocks. To this end, we follow Adao et al. (2019) and Borusyak et al. (2022) in

augmenting the conditioning set Gn of Section 2.2 to include all unobserved heterogeneity

– i.e., we set Gn to equal {Si,Wi,Λi, βi, εi, ηi}ni=1.

Our analysis in this section relies on the following assumption and a set of regularity

conditions that we formally state in the Appendix; see Assumption A.3.1.

Assumption 3.2. (i) Z and {Yi,Xi,Wi, Si}ni=1 satisfy equations (11) and (12); (ii)

E[Zi|Wi,Gn] =W ′
iπn with Gn = {Si,Wi,Λi, βi, εi, ηi}ni=1.

Assumption 3.2 imposes the structure of our model and requires that the conditional

mean of the instrument given the controls be linear.8 As previously noted in Section

3.1.1, linearity has been shown to be a necessary condition for TSLS to preserve a causal

8Sufficient conditions for Assumption 3.2(ii) were introduced by Adao et al. (2019); see Remark 2.3.
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interpretation in related contexts. We reiterate that we therefore impose linearity to ex-

amine what additional conditions are needed for TSLS to have a causal interpretation,

and not because we view linearity as an inoccuous assumption. It is also worth empha-

sizing the connection between Assumption 3.2(ii) and Proposition 2.2, which established

that linearity was a necessary condition for the instrument to be exogenous in a homo-

geneous effects model. As a result, the overidentification test for the homogenous effects

model that we develop in Section 4 may be readily adapted to test Assumption 3.2(ii).

Our next proposition obtains a characterization of the weights {ωi,n}ni=1 and derives

a necessary and sufficient condition for TSLS to have a causal interpretation.

Proposition 3.2. If Assumption 3.2 holds, and Gn = {Si,Wi,Λi, βi, εi, ηi}ni=1, then

ωi,n =
S′
i(ΛiVar{Z|Gn})Si

∑n
j=1 S

′
j(ΛjVar{Z|Gn})Sj

. (17)

Moreover, if in addition Assumption A.3.1 holds, then for n large ωi,n is positive for all

i with probability one (over Gn) if and only if the distribution of ΛiVar{Z|Gn} satisfies

P

(

sup
s∈Rp

+

s′(ΛiVar{Z|Gn})s ≤ 0

)

= 1 or P

(

inf
s∈Rp

+

s′(ΛiVar{Z|Gn})s ≥ 0

)

= 1. (18)

The first part of Proposition 3.2 establishes that the weights {ωi,n}ni=1 equal a

quadratic form in the shares Si. Intuitively, the expression for the weights as a quadratic

form in the shares implies that the support of the random matrix ΛiVar{Z|Gn} must be

restricted in order for the weights to be positive for any possible realization of the shares.

The second part of Proposition 3.2 formalizes this intuition under a requirement that

the support of the shares is suitably rich; see Assumption A.3.1 for a formal statement.

Because, unlike the shocks, the shares are always positive, the necessary and sufficient

condition for TSLS to have causal interpretation (i.e. (18)) is weaker than requiring the

random matrix ΛiVar{Z|Gn} to be positive (or negative) semidefinite with probability

one. The conditions derived by Proposition 3.2 are nonetheless restrictive and testable.

Our next corollary, for instance, employs Proposition 3.2 to establish that TSLS fails to

have a causal interpretation whenever shocks are negatively correlated.

Corollary 3.2. Let the conditions of Proposition 3.2 hold and suppose P (λij = 0) = 0

for all j and the support of λij/λik is unbounded for any j 6= k. If in addition

P (Cov{Zj ,Zk|Gn} < 0) > 0 (19)

for some j 6= k, then the weights {ωi,n}ni=1 are negative with positive probability.

Traditionally, the literature has assumed shocks to either be uncorrelated or clus-

tered for asymptotic purposes (Adao et al., 2019; Borusyak et al., 2022). Corollary 3.2
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highlights that the covariance structure of the shocks is important not only for deliv-

ering asymptotic approximations and computing standard errors, but also for assigning

TSLS a causal interpretation. Corollary 3.2 additionally has important implications

for applications in which standard errors are clustered. In particular, since clustered

standard errors reflect a concern that shocks within a cluster are correlated, Corollary

3.2 implies that TSLS can only retain a causal interpretation if in fact all correlations

within a cluster are positive conditionally on Gn. Empirical researchers clustering stan-

dard errors should therefore argue that all correlations within a cluster are positive or,

alternatively, rely on a homogeneous effects model.

Remark 3.2. Because all entries of Var{Z|Gn} must be (weakly) positive and the sign

of Λi must be constant for TSLS to possess a causal interpretation, it follows that

sign

{

n
∑

i=1

E[XiŻi,n|Gn]

}

= sign

{

n
∑

i=1

E
[

Xi(Z − E[Z|Gn])
′f(Si,Wi)|Gn

]

}

(20)

for any positive f(Si,Wi) ∈ R
p and Gn as in Corollary 3.2. In parallel to Remark 3.1,

we may interpret the restriction in (20) as demanding that the sign of the first stage

be constant under certain alternative choices of instrument. Empirically evaluating this

restriction can require an estimator for the conditional mean of the shocks. For this

purpose, we note that multiple such estimators have been proposed in the literature

as they are also needed to compute the standard errors of the TSLS estimator when

conditioning on Gn (Adao et al., 2019; Borusyak et al., 2022).

3.2 Long Panel

Our cross sectional analysis has so far conditioned on either the aggregate shocks or

the shares to obtain identification. Both approaches yield overidentifying restrictions

for homogeneous effects models that carry over to short panel settings (i.e. T fixed);

see Remarks 2.1 and 2.2. In this section, we conclude by exploring the implications of

employing unconditional moment restrictions for identification instead.

For illustrative purposes, we consider a homogeneous effects models with no controls

and a scalar endogenous variable. We assume that at each time period 1 ≤ t ≤ T we

observe an aggregate shock Zt and variables {Yit,Xit, Zit, Sit}ni=1 satisfying

Yit = Xitβ + εit Zit = S′
itZt.

As an identifying assumption, we now employ the just identified moment restriction

1

nT

n
∑

i=1

T
∑

t=1

E[εitZit] = 0. (21)
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Crucially, the expectation in (21) is taken over both the cross section and the time

series – e.g., over both Zt and (Sit, εit). In particular, the moment restriction in (21)

contrasts with Goldsmith-Pinkham et al. (2020) and Adao et al. (2019) who instead

consider conditional expectations given Zt and (Sit, εit) respectively; see Section 2.

The natural estimator for β continues to be the same TSLS estimator that we have

considered so far. However, relying on the unconditional moment restriction in (21) for

identification now requires us to let both n and T grow so that we may approximate

expectations over both the cross section and the time series. As a result, when employing

the just identified moment restriction in (21) to obtain identification, we need to rely on

“long panel” asymptotic approximations and their corresponding standard errors. The

main message of this section is that the long panel standard errors for TSLS decrease

at a rate of 1/
√
T . Therefore, long panel standard errors, and hence the identification

restriction in (21), are unlikely to prove informative in applications in which T is small.

In the rest of the section, we provide a summary of the long panel asymptotic

properties of the TSLS estimator. Due to the technical nature of the analysis, we

relegate formal statements to the appendix and focus instead on providing intuition for

the results. To this end, we begin by noting that the TSLS estimator β̂n satisfies

β̂n − β =

(

1

nT

T
∑

t=1

n
∑

i=1

XitZit

)−1(

1

nT

n
∑

i=1

T
∑

t=1

Z ′
tSitεit

)

. (22)

As the cross section and time series grow, the denominator in (22) converge in probability

to some constant D 6= 0 under standard conditions; i.e., the denominator satisfies

1

nT

T
∑

t=1

n
∑

i=1

XitZit
p→ D. (23)

The asymptotic distribution of the TSLS estimator is therefore governed by the numera-

tor in (22). In order to derive this asymptotic distribution, we let Ct denote all aggregate
shocks at time t (which includes Zt) and assume that {Sitεit}ni=1 are i.i.d. across i (but

not t) conditionally on the aggregate shocks Ct. Defining the variables

ζt ≡ E [Sitεit|Ct] , νit ≡ Sitεit − ζt,

we then obtain a decomposition into a time series and a panel process by noting that

1

nT

n
∑

i=1

T
∑

t=1

Z ′
tSitεit =

1

T

T
∑

t=1

Z ′
tζt +

1

nT

T
∑

t=1

n
∑

i=1

Z ′
tνit. (24)

Crucially, the time series process {Z ′
tζt}Tt=1 has mean zero because of the moment re-

striction in (21), while the panel process {Z ′
tνit}n,Ti,t=1 has mean zero by construction.
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Thus, under appropriate restrictions, we should expect both the time series and panel

processes to be asymptotically normally distributed.

The preceding discussion is formalized in the appendix, where we establish:

Proposition 3.3. Under the technical conditions presented in Appendix A.4 we have

(

1√
T

T
∑

t=1

Z ′
tζt,

1√
nT

T
∑

t=1

n
∑

i=1

Z ′
tνi,t

)

d→ (Gζ ,Gν) (25)

as n, T → ∞, with Gζ and Gν independent Gaussian random variables.

The long panel asymptotic properties of the TSLS estimator immediately follow from

Proposition 3.3. For instance, combining Proposition 3.3 with results (22), (23), and

(24) allows us to approximate the variance of β̂n by the expression

Var
{

β̂n − β
}

≈
(

1

D

)2{ 1

T
Var{Gζ}+

1

nT
Var{Gν}

}

. (26)

In particular, it follows that the long panel standard errors for TSLS decrease at a rate of

1/
√
T . Intuitively, this dependence on the time dimension results from the dependence of

the moment restriction on the distribution of the time series. One important exception to

this phenomenon arises when the time series process has zero variance (i.e. Var{Gζ} = 0).

This exception corresponds to the case in which ζt = 0 or, equivalently,

E[Sitεit|Ct] = 0. (27)

However, as we discussed in Section 2.1, the conditional moment restriction in (27) is ex-

actly the identifying assumption made by Goldsmith-Pinkham et al. (2020) that renders

the model overidentified. In summary, the long panel analysis suggests that practitioners

should either report standard errors based on (26) or rely on the short panel identifi-

cation strategies discussed in Section 2 and report the corresponding overidentification

tests instead.

4 Overidentification Tests

We next build on our results by developing overidentification tests for the homogeneous

effects model studied in Section 2. While we focus on homogeneous effects models due to

their demonstrated importance in shift-share designs, we note that it is also possible to

test the overidentifying restrictions for heterogeneous effects models derived in Remarks

3.1 and 3.2 by adapting the insights in, e.g., Bai et al. (2022).
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4.1 The Approach

The identification strategies commonly employed for homogeneous effects models yield

testable implications in the form of moment equality restrictions. In this section, we

present a general inference approach that is portable across the moment restrictions

yielded by different identification strategies.

In what follows, we let Vi ≡ (Yi,Xi,Wi, Si,Z) for notational simplicity. The overi-

dentifying moment restrictions we derived in Section 2 have the structure

E[f (Vi, θ)| Gn] = 0,

where θ represent some unknown parameter (e.g., β) and f(Vi, θ) ∈ R
q is a vector

valued function. In many applications, the number of moment equality restrictions is

high dimensional in the sense that it is “large” relative to the sample size. Because

the distributional approximations implicit in chi-squared overidentification tests can be

unreliable in high dimensional problems, we instead employ test statistics based on the

high dimensional central limit theorem of Chernozhuokov et al. (2022). Specifically, for

an estimator θ̂n of θ and fj(Vi, θ̂n) denoting the jth coordinate of f(Vi, θ̂n) ∈ R
q we set

Tn ≡ max
1≤j≤q

∣

∣

∣

∣

∣

n
∑

i=1

fj

(

Vi, θ̂n

)

∣

∣

∣

∣

∣

(28)

as the test statistic for the null hypothesis that the moment restrictions hold.

The main assumption we impose to construct a test is that the sample moments be

asymptotically linear; see Appendix A.5 for a formal statement of the assumptions and

results for this section. Intuitively, we require that for some collection of independent

mean zero random variables {ψi}bni=1 ⊂ R
q the test statistic approximately equals

Tn ≈ max
1≤j≤q

∣

∣

∣

∣

∣

bn
∑

i=1

ψij

∣

∣

∣

∣

∣

,

where ψij denotes the jth coordinate of ψi. We refer to the number bn of random

variables ψi as the “effective number of observations,” and note that it need not equal

the sample size. Such a distinction is useful, for example, when the data is clustered

(in which case bn equals the number of clusters) or when relying in the asymptotic

framework in Adao et al. (2019) (in which case bn equals the number of shocks p).

We obtain critical values for our test by relying on a bootstrap approximation.

Specifically, given estimates {ψ̂i}bni=1 for {ψi}bni=1, we define a bootstrap statistic

T ⋆
n ≡ max

1≤j≤q

∣

∣

∣

∣

∣

bn
∑

i=1

ωi

(

ψ̂ij −
1

bn

bn
∑

k=1

ψ̂kj

)∣

∣

∣

∣

∣

,
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where ψ̂ij denotes the jth coordinate of ψ̂i ∈ R
q and the random weights {ωi}bni=1 are

drawn independently of the data {Vi}ni=1. For instance, we may set the bootstrap weights

{ωi}bni=1 to be i.i.d. and drawn from a standard normal or Rademacher distribution.9 The

bootstrap critical value for a level α test is then given by the bootstrap quantile

ĉn ≡ inf{c : P (T ∗
n ≤ c| {Vi}ni=1) ≥ 1− α};

i.e. we employ the 1−α quantile of T ∗
n conditional on the data {Vi}ni=1 but uncondition-

ally on the bootstrap weights {ωi}ni=1. The critical value ĉn can as usual be obtained

through simulation by employing multiple draws of the bootstrap weights {ωi}ni=1 to

approximate the distribution of T ∗
n conditionally on the data.

Our next result establishes that a test that rejects whenever Tn exceeds the critical

value ĉn has the correct asymptotic size. We defer the statement of the relevant regular-

ity conditions to Appendix A.5, though note that they allow for the number of moment

restrictions q to grow together with the effective sample size bn.

Proposition 4.1. Under the regularity conditions discussed in Appendix A.5, we have

lim
n→∞

P (Tn > ĉn) = α.

4.2 Conditioning on Shocks

The general approach discussed in the preceding section can readily be specialized to

develop an overidentification test for application that implicitly condition on aggregate

shocks in their analysis. Recall that such applications require the restriction

E [Siεi|Gn] = 0,

where Gn is understood to contain all aggregate variables, includingZ (Goldsmith-Pinkham et al.,

2020). As our test statistic we therefore employ

Tn = max
1≤j≤p

∣

∣

∣

∣

∣

1

σ̂j

n
∑

i=1

Sij ε̂i

∣

∣

∣

∣

∣

, (29)

where Sij denotes the jth coordinate of Si ∈ R
p, {ε̂i}ni=1 are the residuals from the

estimated model, and σ̂j is an estimated weight that allows us to ensure that all p

moments are on a comparable scale.

In order to map this setting into the overidentification test of the preceding section,

we simply set fj(Vi, θ̂n) = Sij ε̂i/σ̂j so that the test statistic in (29) becomes a special

9The Rademacher distirbution corresponds to setting ωi to satisfy P (ωi = 1) = P (ωi = −1) = 1/2.
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case of (28). Setting Ai ≡ (Zi,W
′
i )

′, σj to be the probability limit of σ̂j, and defining

ψij =
Uij

σj
Uij ≡

(

Sijεi − E[Sij
(

Xi,W
′
i

)∣

∣Gn]
(

E[Ai

(

Xi,W
′
i

)

|Gn]
)−1

Aiεi

)

,

it is then possible to show that, under the null hypothesis, Tn approximately equals

Tn ≈ max
1≤j≤p

∣

∣

∣

∣

∣

n
∑

i=1

ψij

∣

∣

∣

∣

∣

provided the observations {Yi, Si,Xi}ni=1 are i.i.d. conditionally on Gn.
10 Our inference

approach requires an estimator for the influence function ψi and to this end we set

ψ̂ij ≡
Ûij

σ̂j
Ûij ≡



Sij ε̂i −
(

1

n

n
∑

k=1

Skj
(

Xk,W
′
k

)

)(

1

n

n
∑

k=1

Ak

(

Xk,W
′
k

)

)−1

Aiε̂i



 .

We also let σ̂2j be an estimator of the asymptotic variance of the jth moment by setting

σ̂2j =
1

n

n
∑

i=1

(

Ûij −
1

n

n
∑

k=1

Ûkj

)2

.

Following the approach in the preceding section, we obtain critical values for our test

statistic by: (i) Drawing b ∈ {1, . . . , B} samples {ω(b)
i }ni=1 of standard normal random

variables independent of the data; (ii) For each drawn sample {ω(b)
i }ni=1 computing

T ∗(b)
n ≡ max

1≤j≤p

∣

∣

∣

∣

∣

n
∑

i=1

ω
(b)
i

(

ψ̂ij −
1

n

n
∑

k=1

ψ̂kj

)∣

∣

∣

∣

∣

;

and (iii) For a level α test, letting ĉ1−α denote the 1 − α quantile of {T ∗(b)
n }Bb=1. Our

overidentification test then rejects whenever Tn exceeds the critical value ĉ1−α.

Remark 4.1. The proposed test can easily be adapted to account for clustered data.

Specifically, suppose observations are divided into clusters {c1, . . . , c|C|} ≡ C – e.g., C

may represent all states, |C| the total number of states, and each cluster c ∈ C a specific

state. While the test statistic remains the same, for our bootstrap implementation we

now set ψ̂cj ≡
∑

i∈c Ûij/σ̂j for σ̂2j the cluter robust sample variance of {Ûij}ni=1, and let

T ∗
n ≡ max

1≤j≤p

∣

∣

∣

∣

∣

∑

c∈C

ωc

(

ψ̂cj −
1

|C|
∑

c̃∈C

ψ̂c̃j

)∣

∣

∣

∣

∣

,

with {ωi}c∈C an i.i.d. sample of standard normal random variables drawn independently

of the data – i.e., the bootstrap procedure is modified by simply employing the same

10See the supplemental appendix for calculations supporting the claims in this section.
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draw of ωc for all observations in the same cluster. We note that this procedure maps

into the notation of Section 4.1 by letting bn equal the number of clusters.

4.3 Identification Through Shocks

We conclude our discussion of overidentification tests by specializing our approach to

applications in which the exogeneity of the Bartik instrument originates from the exo-

geneity of the shocks. Recall from Section 2.2 that the asymptotic framework designed

for such applications relies on setting Gn ≡ {Si,Wi, εi}ni=1, which yields the restriction

E[Zi|{Si,Wi, εi}ni=1] =W ′
iπn

for πn the population regression coefficient from regressing {Zi}ni=1 on {Wi}ni=1 condi-

tionally on Gn (as in (3)). As our overidentification test statistic we therefore employ

Tn = max
1≤j≤q

∣

∣

∣

∣

∣

1

σ̂j

n
∑

i=1

gj(ε̂i,Wi, Si)(Zi −W ′
i π̂n)

∣

∣

∣

∣

∣

, (30)

where {ε̂i}ni=1 are the residuals from the estimated model, π̂n is the regression coefficient

from regressing {Zi}ni=1 on {Wi}ni=1, σ̂j is again an estimated weight, and gj(ε̂i,Wi, Si)

denotes the jth coordinate of the vector valued function g(ε̂i,Wi, Si) ∈ R
q.

In order to obtain a suitable critical value, we first need a characterization of the

influence function for each sample moment. To this end, we define

δj ≡
(

n
∑

i=1

WiW
′
i

)−1 n
∑

i=1

Wigj(εi,Wi, Si)

κj ≡
(

n
∑

i=1

E
[

S′
iEXi|Gn

]

)−1( n
∑

i=1

E
[

S′
iEXi|Gn

] ∂

∂ε
gj(εi,Wi, Si)

)

with E ≡ Z − E[Z|Gn], and for σj the probability limit of σ̂j we let ψij be given by

ψij ≡
Uij

σj
Uij ≡ Ei ×

n
∑

k=1

Ski(gj(εk,Wk, Sk)−W ′
kδj − εkκj).

Under conditions similar to those employed by Adao et al. (2019), it is then possible to

show that under the null hypothesis the statistic Tn satisfies the approximation11

Tn ≈ max
1≤j≤q

∣

∣

∣

∣

∣

p
∑

i=1

ψij

∣

∣

∣

∣

∣

.

We note that, because identification is driven by the exogeneity of the shocks, the

11See the supplemental appendix for calculations supporting the claims in this section.
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effective number of observations equals p and not n – i.e. the sample {ψi} is of size p.

Our bootstrap critical value also relies on an estimate of ψi, and to this end we define

δ̂j ≡
(

n
∑

i=1

WiW
′
i

)−1 n
∑

i=1

Wigj(ε̂i,Wi, Si)

κ̂j ≡
(

n
∑

i=1

(Zi −W ′
i π̂n)Xi

)−1( n
∑

i=1

(Zi −W ′
i π̂n)Xi

∂

∂ε
gj(ε̂i,Wi, Si)

)

,

and let Ê ∈ R
p denote a suitable estimator for E ≡ Z − E[Z|Gn]; see Remark 4.2 for

possible choices of Ê . As our estimator for the influence function ψij we then set

ψ̂ij ≡
Ûij

σ̂j
Ûij ≡ Êi ×

n
∑

k=1

Ski(gj(ε̂k,Wi, Si)−W ′
kδ̂j − ε̂kκ̂j).

Finally, for the purposes of studentizing the sample moments we set σ̂2j to be given by

σ̂2j ≡ 1

p

p
∑

i=1

(

Ûij −
1

p

p
∑

k=1

Ûkj

)2

.

Given the estimates {ψ̂i}, we can obtain asymptotically valid critical values by

following the same procedure as in the preceding section. Specifically, we: (i) Draw

b ∈ {1, . . . , B} samples {ω(b)
i }pi=1 of standard normal random variables independent of

the data; (ii) For each drawn sample {ω(b)
i }pi=1 we compute the bootstrap statistic

T ∗(b)
n ≡ max

1≤j≤q

∣

∣

∣

∣

∣

p
∑

i=1

ω
(b)
i

(

ψ̂ij −
1

p

p
∑

k=1

ψ̂kj

)∣

∣

∣

∣

∣

;

and (iii) For a level α test, we let ĉ1−α denote the 1 − α quantile of {T ∗(b)
n }Bb=1. Our

overidentification test then rejects whenever Tn exceeds the critical value ĉ1−α.

Remark 4.2. Multiple estimates Ê for E = Z − E[Z|Gn] have been previously studied

in the literature. Adao et al. (2019), for instance, propose the estimator

Ê ≡
(

n
∑

i=1

SiS
′
i

)−1 n
∑

i=1

Sit(Zit −W ′
itπ̂n). (31)

Alternatively, in applications in whichWi contains variables equal to Q′Si for some p×k
observable matrix of aggregate variables Q, Borusyak et al. (2022) advocate setting

Ê ≡ Z −Q(Q′Q)−1Q′Z (32)

instead. In our empirical analysis of Autor et al. (2013) we employ a ridge regression
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version of (31) because: (i) The matrix
∑

i SiS
′
i is ill-conditioned in that application,12

which prevents the use of (31); and (ii) We focus on the specification employed in

Autor et al. (2013), which does not contain controls with the structure required by (32).

5 Empirical Application: The China Syndrome

We illustrate the empirical relevance of our analysis by revisiting the seminal work of

Autor et al. (2013) examining the impact of rising Chinese import competition on local

US markets. We focus on the main specification of Autor et al. (2013), in which

Yit = Xitβ +W ′
itγs + εit (33)

with i indexing a commuting zone (CZ), t indexing one of two time periods, Yit and Xit

denoting the change in employment manufacturing and a measure of import exposure,

and Wit denoting a set of CZ level characteristics.13 Autor et al. (2013) estimate the

model in (33) by TSLS based on a Bartik instrument Zit = Z ′
tSit in which Sit and Zt

consist of a vector of lagged industry shares and a vector of Chinese imports growth to

other countries for different industries. Their analysis also employs four digit SIC codes

to define sectors, leading to a total of p = 397 sectors.

The standard errors in Autor et al. (2013) rely on an asymptotic approximation that

implicitly conditions on the shocks. As we argued in Section 2.1, such standard errors

corresponds to an identification strategy in which shares are viewed as exogeneous; i.e.

E[Sitεit] = 0 for all t. (34)

We therefore begin by examining the viability of a constant treatment effects model

in this application by employing the overidentification test of Section 4.2. Following

Autor et al. (2013), we conduct inference by clustering at the state level leading to only

48 effective observations – a number much smaller than the p × T = 794 number of

moment restrictions represented by (34). In a Monte Carlo study based on this dataset

we found the finite sample rejection probabilities of our test to be below the nominal

level when employing all 794 restrictions; see the Supplemental Appendix. We therefore

also test the validity of moment restrictions implied by (34) by aggregating shares to

higher level SIC codes and focusing on particular time periods.

Table 1 reports the p-values for our overidentification tests under different choices of

moment restrictions. Overall, our analysis yields evidence against the validity of the con-

12Adao et al. (2019) instead address this ill-conditioning by dropping sectors from the shares vector.
13Specifically, we employ the specification in column (6) of Table 3 in Autor et al. (2013).
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Table 1: Overidentification tests corresponding to conditioning on shocks

Moment Restrictions # Moments p-value

Four Digit SIC & all time periods 794 0.127
Four Digit SIC & t = 1 397 0.115
Four Digit SIC & t = 2 397 0.098

Three Digit SIC & all time periods 272 0.049
Three Digit SIC & t = 1 136 0.009
Three Digit SIC & t = 2 136 0.072

Two Digit SIC & all time periods 40 0.005
Two Digit SIC & t = 1 20 0.002
Two Digit SIC & t = 2 20 0.366

Table reports p-values for overidentification tests of constant treatment effects models identified by implicitly
conditioning on the realization of the shocks; see Section 4.2. All tests are implemented by clustering at the
state level and weighting commuting zones by their start of period population as in Autor et al. (2013).

stant effects model under an identification strategy that implicitly conditions on shocks.

Goldsmith-Pinkham et al. (2020) reach a similar conclusion, though we note that the

overidentification tests they employ do not cluster at the state level and are not robust

to a “large” number of moment restrictions. Given the implausibility of the constant

treatment effects model, it is natural to ask whether TSLS can be attributed a causal

interpretation through a heterogeneous treatment effects model instead. Unfortunately,

Corollary 3.1 establishes that such an interpretation necessitates that shares be uncor-

related across sectors – a requirement readily contradicted by the data, which exhibits

correlations for some sectors in excess of 0.9. We note, however, that as advocated by

Goldsmith-Pinkham et al. (2020) it may still be possible to proceed by employing the

shares as instruments without combining them into a Bartik instrument.

We next examine the viability of a constant effects model under an identification

strategy in which the exogeneity of the Bartik instrument is due to the exogeneity of

the shocks (Adao et al., 2019; Borusyak et al., 2022). To this end, we implement the

overidentification test of Section 4.3, which requires us to select a vector of moments

({gj} in (30)) and an estimator for E ≡ Z−E[Z|Gn] (as in Remark 4.2). For the former,

we select a total of twenty moments and let the functions {gj} depend on ε only. In

particular, we select one function gj to simply equal ε2, and the other nineteen to equal

the Logit pdf centered at equispaced points in the support of ε; see the Supplemental

Appendix for details. Finally, as discussed in Remark 4.2, we estimate E through Ridge

regression and follow Borusyak et al. (2022) in clustering at the three level SIC code.

Table 2 reports the p-values for our test corresponding to different choice of Ridge

penalties. Our results show some sensitivity of the p-value to the choice of Ridge penalty.

This conclusion echoes Adao et al. (2019) who similarly find that the manner in which
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Table 2: Overidentification tests corresponding to identification through shocks

Ridge Penalty
1e-3 1e-4 1e-5 1e-6

p-value 0.0012 0.0074 0.0368 0.065

Table reports p-values for overidentification tests of constant treatment effects models identified through the
exogeneity of shocks; see Section 4.3. All tests are implemented by clustering at the three digit SIC level and
weighting commuting zones by their start of period population as in Autor et al. (2013).

they address the singularity of the shares design matrix affects their standard errors.14

Overall, we interpret Table 2 as providing evidence against the plausibility of the con-

stant effects model under the identification strategy that attributes the exogeneity of

the Bartik instruments to the shocks. Our preferred choice of penalty for this applica-

tion is 1e-5, yielding a p-value of 0.0368, which in a Monte Carlo study based on this

dataset yielded finite sample rejection probabilities closest to a 5% nominal level; see

the Supplemental Appendix. It is also worth emphasizing that clustering at the three

digit SIC level has important implications for whether TSLS can be attributed a causal

interpretation in a heterogeneous effects model. For example, Corollary 3.2 implies that

such a causal interpretation necessitates all industries within the same 3-digit SIC code

to be (weakly) positively correlated. It is important to note, however, that the latter

requirement is necessary but not sufficient for TSLS to have a causal interpretation; see

Remark 3.2 for additional restrictions.

Finally, we note that the “just identified” long panel identification strategy of Section

3.2 is not viable in this application. Specifically, because there are only two time periods

in Autor et al. (2013), it is not possible to learn the time series distribution of the shocks

as required by such an approach. In other words, it would be foolhardy to invoke an

asymptotic approximation based on T diverging to infinity when T equals two.

6 Summary and Recommendations

In this paper, we examined the testable implications of identifying restrictions employed

to assign a causal interpretation to TSLS based on Bartik instruments. We developed

specification tests for homogeneous effects models that are robust to heteroskedasticity,

clustering, and weighting. Because our tests are based on the high dimensional central

limit theorem, we expect them to be more robust than their alternatives to the “high”

degree of overidentification present in shift-share designs. Finally, we argued that our

overidentification tests are of central importance due to the potentially limited empirical

scope of the natural alternatives to the homogeneous effects models.

14Adao et al. (2019) addressed the singularity of
∑

i SiS
′

i by dropping sectors from their analysis.
As stated by the authors, their standard errors are affected by what sectors are dropped; see page 3 in
https://github.com/kolesarm/ShiftShareSE/blob/master/doc/ShiftShareSE.pdf

25



Our analysis has a number of important implications for applied work:

• We recommend that practitioners report overidentification tests corresponding to

the identification strategy of Goldsmith-Pinkham et al. (2020) as well as that of

Adao et al. (2019) and Borusyak et al. (2022). These tests can provide evidence

as to which identification strategy is more compatible with the data.

• Practitioners relying on the identification strategy of Goldsmith-Pinkham et al.

(2020) should be wary of assigning a causal interpretation to TSLS by relying on

a heterogenous effects model. Such an interpretation necessitates that shares be

uncorrelated across sectors, which is empirically untenable. On the other hand, as

advocated by Goldsmith-Pinkham et al. (2020), it may still be possible to employ

the shares for causal inference by not combining them into a Bartik instrument.

• Practitioners should likewise be careful in assigning TSLS a causal interpretation

by relying on a heterogeneous effects model under the identification strategy of

Adao et al. (2019) and Borusyak et al. (2022). A necessary condition for TSLS to

be causal is that shocks to different sectors not be negatively correlated. Reasoning

through the correlation structure of shocks is thus important not only for the

purposes of obtaining standard errors, but also for interpreting the TSLS estimand.

• In applications with long panels, it is possible to rely on an alternative identifi-

cation strategy in which the randomness of the instrument is understood jointly

over the cross sectional distribution of shares and the time series distribution of

shocks. Practitioners relying on this approach, however, need to employ different

standard errors that are governed by the length of the panel.
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Appendix

This Appendix contains the proofs of all the results in the main text.

A.1 Proofs for Section 2

Proof of Proposition 2.1. First note that since {Si,Wi, εi}ni=1 are i.i.d. and independent

of Gn and Z is measurable with respect to Gn it follows E[Wiεi] = 0 that

1

n

n
∑

i=1

E
[

εi(Zi −W ′
iπn)|Gn

]

= Z ′[Siεi].

It is therefore immediate that E[Siεi] = 0 is a sufficient condition for (7) to hold with

probability one over Z. To see that this condition is also necessary, suppose by way of

contradiction that E[Siεi] 6= 0. By Lemma A.1.1, it then follows that there is a z∗ in

the support of Z satisfying (z∗)′E[Siεi] 6= 0. Assuming without loss of generality that

(z∗)′E[Siεi] > 0 and setting Bδ(z
∗) ≡ {z ∈ R

p : ‖z − z∗‖22 < δ}, we then obtain that

(E[Siεi])
′z > 0 for all z ∈ Bδ(z

∗) provided that δ > 0 is chosen to be sufficiently small.

Hence, employing that z∗ is in the support of Z yields that

P
(

Z ′E[Siεi] 6= 0
)

≥ P (Z ∈ Bδ(z
∗)) > 0,

which implies that for (7) to hold with probability one we must have E[Siεi] = 0.

Proof of Proposition 2.2. First note that since Gn = {Si,Wi, εi}ni=1 and Z is independent

of Gn by hypothesis, it follows from Zi = S′
iZ by definition that we have

1

n

n
∑

i=1

E
[

εi
(

Zi −W ′
iπn
)

|Gn

]

=
1

n

n
∑

i=1

εi
(

S′
iE[Z]−W ′

iπn
)

.

Since E[Zi|{Si,Wi, εi}ni=1] = S′
iE[Z], we can conclude that E[Zi|{Si,Wi, εi}ni=1] =W ′

iπn

is a sufficient condition for (10) to hold with probability one. In order to establish the

converse direction, we next define the event An to be given by

An ≡
{

S′
iE[Z] 6=W ′

iπn for some 1 ≤ i ≤ n
}

and note that An is measurable with respect to {Si,Wi} by definition of πn. For any

realization of {Si,Wi}ni=1 in the event An, Lemma A.1.1 allows us to conclude that there

exists a {e∗i }ni=1 in the support of {εi}ni=1 conditional on {Si,Wi} satisfying

1

n

n
∑

i=1

e∗i
(

S′
iE[Z]−W ′

iπn
)

6= 0.
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Hence, defining Bδ({e∗i }ni=1) ≡ {{ei}ni=1 :
∑

i(ei − e∗i )
2 < δ2} we obtain from {e∗i }ni=1

being in the support of {εi}ni=1 conditional on {Si,Wi}ni=1 that for δ sufficiently small

P

(

1

n

n
∑

i=1

εi
(

S′
iE[Z]−W ′

iπn
)

6= 0
∣

∣

∣{Si,Wi}ni=1

)

≥ P ({εi}ni=1 ∈ Bδ({e∗i }ni=1)|{Si,Wi}ni=1) > 0. (A.1)

In particular, since the conclusion in (A.1) applies to any {Si,Wi}ni=1 in the event An,

it follows that An must have probability zero in order for condition (10) to hold with

probability one. Since S′
iE[Z] = E[Zi|{Si,Wi, εn}ni=1], the lemma follows.

Lemma A.1.1. If the linear span of a set V ⊆ R
k has dimension k, then it follows that

for any 0 6= x ∈ R
k there is a v∗ ∈ V such that x′v∗ 6= 0.

Proof. Since the dimension of the linear span of V equals k, it follows that there are

vectors {vj}kj=1 ⊂ R
k and scalars {αj}kj=1 satisfying x =

∑

j αjvj . In particular, since

x 6= 0, we have (
∑

j αjvj)
′x = ‖x‖22 > 0 and hence that v′j∗x 6= 0 for some j∗.

A.2 Proofs for Section 3.1.1

The results in Section 3.1.1 rely on the next set of regularity conditions. In the statement

below, the notation supp{V } refers to the support of a random variable V .

Assumption A.2.1. (i) {Λi,Wi}ni=1 are i.i.d. conditional on Z; (ii) supp{(Λi,Wi,Z)} =

supp{Λi}× supp{Wi}× supp{Z}; (iii) rank{Var{Si|Wi}} ≥ p− 1 and Var{Sij |Wi} > 0

for all 1 ≤ j ≤ p with probability one; (iv) (λi1, . . . , λip) has a continuous density w.r.t.

Lebesgue measure; (v) supp{Z} includes a neighborhood of zero.

Assumption A.2.1(i) allows for dependence across observations though it implies

that the marginal distribution of (Λi,Wi,Z) is the same for all observations. Assump-

tions A.2.1(ii)(iv) further impose support restrictions on (Λi,Wi,Z), while Assumption

A.2.1(iii) states our restrictions on the covariance matrix of Si ∈ R
p conditionally on Wi

(denoted Var{Si|Wi}). Assumption A.2.1(iii) allows for Var{Si|Wi} to be rank-deficient

to recognize that the shares may sum up to one. Finally, Assumptions A.2.1(iv) simply

demands that the “types” vector (λi1, . . . , λip) be continuously distributed.

Proof of Proposition 3.1. First note that Assumption 3.1(ii) implies (Λi, βi, εi, ηi) is

independent of (Z, Si) conditionally on (Z,Wi). Therefore, by Assumptions 3.1(i)(iii),

we may apply Lemma A.2.1 with Gn = {Z} to conclude that

E
[

XiŻi,n|Λi,Wi,Z
]

= E
[

(Z ′ΛiSi)Żi,n

∣

∣

∣
Λi,Wi,Z

]

= Z ′ΛiE
[

Si(S
′
i − E[S′

i|Wi,Z])|Λi,Wi,Z
]

Z = Z ′(ΛiVar{Si|Wi})Z, (A.2)
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where the second equality holds by Zi = S′
iZ and Assumption 3.1(iii), and the final

equality holds by Assumption 3.1(ii). The claim of the proposition therefore follows

from result (A.2), the definition of ωi,n in (13), and Lemma A.2.2.

Proof of Corollary 3.1. Suppose that condition (15) holds for some j 6= k and define

σ2l (Wi) ≡ Var{Sil|Wi} σjk(Wi) = Cov{Sij, Sik|Wi}.

Next, note that by Proposition 3.1 a necessary condition for ωi,n to be positive for all

1 ≤ i ≤ n with probability one is that the corresponding 2× 2 matrix

(

λij 0

0 λik

)(

σ2j (Wi) σjk(Wi)

σjk(Wi) σ2k(Wi)

)

=

(

λijσ
2
j (Wi) λijσjk(Wi)

λikσjk(Wi) λikσ
2
k(Wi)

)

be either positive semi-definite or negative semi-definite with probability one. Hence,

setting λ̄i = (λij + λik)/2 and noting that for any 2 × 2 matrix A and a ∈ R
2 we have

a′Aa = a′(A+A′)a/2, it follows that a necessary condition for ωi,n to be positive for all

1 ≤ i ≤ n with probability one is that the matrices Ωi defined by

Ωi ≡
(

λijσ
2
j (Wi) λ̄iσjk(Wi)

λ̄iσjk(Wi) λikσ
2
k(Wi)

)

be either positive semi-definite with probability one or negative semi-definite with proba-

bility one. However, in order for Ωi to be positive semi-definite or negative-semidefinite

with probability one we must have λijλik ≥ 0 due to min{σ2j (Wi), σ
2
k(Wi)} > 0 by

Assumption A.2.1(iii). Hence, since the determinant of Ωi equals the product of its

eigenvalues, a necessary condition for ωi,n to be positive for all i with probability one is

1 = P (det{Ωi} ≥ 0 and λijλik ≥ 0).

However, setting ρjk(Wi) ≡ σjk(Wi)/σj(Wi)σk(Wi) we obtain by direct calculation that

P (det{Ωi} ≥ 0 and λijλik ≥ 0) = P
(

λijλik − λ̄2i ρ
2
jk(Wi) ≥ 0 and λijλik ≥ 0

)

≤ P

(

1 ≥
ρ2jk(Wi)

4

(

λij
λik

+
λik
λij

+ 2

)

)

< 1,

where the first inequality follows from λijλik 6= 0 with probability one by Assump-

tion A.2.1(iv), and the final from Assumption A.2.1(ii), the support of λij/λik being

unbounded, and ρ2jk(Wi) 6= 0 with positive probability due to condition (15).

Lemma A.2.1. Suppose that Z and {Yi,Xi,Wi, Si}ni=1 satisfy equations (11) and (12),

E[Zi|Wi,Gn] =W ′
iπn, and (Λi, βi, εi, ηi) ⊥⊥ (Z, Si) conditionally on (Wi,Gn). Then:

E
[

XiŻi,n

∣

∣

∣
Λi,Wi,Gn

]

= E[(Z ′ΛiSi)Żi,n|Λi,Wi,Gn]. (A.3)
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If in addition
∑n

i=1E[XiŻi,n|Gn] 6= 0, then it also follows that equation (13) holds.

Proof. First note that for any function f of (Λi, βi, εi, ηi,Wi) it follows from the require-

ments that (Λi, βi, εi, ηi) ⊥⊥ (Z, Si) conditionally on (Gn,Wi) and Zi = Z ′Si that

E
[

Żi,nf(Λi, βi, εi, ηi,Wi)
∣

∣

∣
Gn

]

= E
[

E
[

Żi,n|Wi,Gn

]

E [f(Λi, βi, εi, ηi,Wi)|Wi,Gn]
∣

∣

∣
Gn

]

= 0, (A.4)

where the final equality follows from E[Zi|Wi,Gn] =W ′
iπn. Combining result (A.4) with

the specifications of the first and second stages in (11) and (12) then yields that

E
[

YiŻi,n

∣

∣

∣Gn

]

= E
[

XiŻi,nβi

∣

∣

∣Gn

]

= E
[

(Z ′ΛiSi)Żi,nβi

∣

∣

∣Gn

]

. (A.5)

Letting Zj denote the jth coordinate of Z, Sij the jth coordinate of Si, and recalling

that Λi = diag{(λi1, . . . , λip)} we may also employ (12) and (A.4) to obtain

E
[

XiŻi,n|Λi,Wi,Gn

]

= E
[

(Z ′ΛiSi)Żi,n|Λi,Wi,Gn

]

=

p
∑

j=1

E
[

(ZjλijSij)Żi,n

∣

∣

∣
Λi,Wi,Gn

]

, (A.6)

which verifies that (A.3) indeed holds. Finally, observe that (Λi, βi) being independent

of (Z, Si) conditionally on (Wi,Gn) further allows us to conclude that

E[(Z ′ΛiSi)Żi,nβi|Gn] =

p
∑

j=1

E[E[ZjSijŻi,n|Wi,Gn]E[λijβi|Wi,Gn]|Gn]

=

p
∑

j=1

E[E[ZjSijŻi,n|Wi,Gn]λijE[βi|Λi,Wi,Gn]|Gn]

= E[XiŻi,n|Λi,Wi,Gn]E[βi|Λi,Wi,Gn]|Gn], (A.7)

where the final equality follows from result (A.6) and Λi ⊥⊥ (Z, Si) conditionally on

(Wi,Gn). The claim that (13) holds therefore follows from the definition of β0,n, the

rank condition
∑n

i=1E[XiŻi,n|Gn] 6= 0 and results (A.5), (A.6), and (A.7).

Lemma A.2.2. Let Assumption A.2.1 hold. Then, for n sufficiently large, it follows

P

(

min
1≤i≤n

Z ′(ΛiVar{Si|Wi})Z} ≥ 0 or max
1≤i≤n

Z ′(ΛiVar{Si|Wi})Z} ≤ 0

)

= 1 (A.8)

if and only if either ΛiVar{Si|Wi} is positive semi-definite with probability one for all i,

or ΛiVar{Si|Wi} is negative semi-definite with probability one for all i.

Proof. For notational simplicity we first set Γi ≡ ΛiVar{Si|Wi} and use “Γi ≥ 0” and
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“Γi ≤ 0” to denote that Γi is positive semi-defintie and negative-semidefinite respec-

tively. Then note that if either P (Γi ≥ 0) = 1 for all i or P (Γi ≤ 0) = 1 for all i, then

(A.8) immediately holds. For the opposite direction, we next observe that

P

(

min
1≤i≤n

Z ′ΓiZ ≥ 0 or max
1≤i≤n

Z ′ΓiZ ≤ 0

)

= P

(

min
1≤i≤n

Z ′ΓiZ ≥ 0

)

+ P

(

max
1≤i≤n

Z ′ΓiZ ≤ 0

)

− P
(

Z ′ΓiZ = 0 for all 1 ≤ i ≤ n
)

= E
[

Pn
(

Z ′Γ1Z ≥ 0|Z
)

+ Pn
(

Z ′Γ1Z ≤ 0|Z
)

− Pn
(

Z ′Γ1Z = 0|Z
)]

, (A.9)

where the second equality follows from Assumption A.2.1(i). However, since an = o(1)

for any a ∈ [0, 1) as n tends to infinity, result (A.9) implies that in order for the claim

in (A.8) to hold for n sufficiently large we must have with probability one over Z that

max{P (Z ′Γ1Z ≥ 0|Z), P (Z ′Γ1Z ≤ 0|Z)} = 1. (A.10)

By Assumption A.2.1(ii), supp{(Γ1,Z)} = supp{Γ1}× supp{Z} and hence the distribu-

tion of Γ1 is absolutely continuous with respect to the distribution of Γ1 conditionally

on Z. Defining the sets S+ and S− to be given by

S+ ≡ {z ∈ R
p : P (z′Γ1z ≥ 0) = 1}

S− ≡ {z ∈ R
p : P (z′Γ1z ≤ 0) = 1} (A.11)

it therefore follows from result (A.10) holding with probability one that we must have

P (Z ∈ S+ ∪ S−) = 1. (A.12)

Next, set Γ∗ ≡ Λ∗Σ∗ with Σ∗ any point in the support of Var{S1|W1} and Λ∗ =

diag{λ∗1, . . . , λ∗p} for any point (λ∗1, . . . , λ
∗
p) at which the density of (λ11, . . . , λ1p) is

strictly positive. We next aim to show that Γ∗ is either positive semi-definite or neg-

ative semi-definite. We proceed by contradiction: Suppose that Γ∗ is neither positive

semi-definite nor negative semi-definite. Then, by Lemma A.2.3, Assumption A.2.1(iii),

the density of (λ11, . . . , λ1p) being continuous and strictly positive at (λ∗1, . . . , λ
∗
p), and

Assumption A.2.1(v), there are z0 ∈ supp{Z} and Λ0, Λ̃0 ∈ supp{Λ1} satisfying

z′0(Λ0Σ
∗)z0 > 0 z′0(Λ̃0Σ

∗)z0 < 0.

We may therefore select sufficiently small neighborhoods N(z0), N(Λ0), N(Λ̃0), N(Σ∗)

of z0,Λ0, Λ̃0, and Σ∗ such that the following inequalities are satisfied

z′(ΛΣ)z > 0 for all (z,Λ,Σ) ∈ N(z0)×N(Λ0)×N(Σ∗)

z′(ΛΣ)z < 0 for all (z,Λ,Σ) ∈ N(z0)×N(Λ̃0)×N(Σ∗).
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Then note that since Λ0Σ
∗ ∈ supp{Λ1Var{S1|W1}} by Assumption A.2.1(ii), it follows

P (z′(Λ1Var{S1|W1})z > 0 for all z ∈ N(z0))

≥ P ((Λ1,Var{S1|W1}) ∈ N(Λ0)×N(Σ∗)) > 0. (A.13)

By identical arguments, but relying on N(Λ̃0)×N(Σ∗) instead, similarly yield that

P (z′(Λ1Var{S1|W1})z < 0 for all z ∈ N(z0)) > 0. (A.14)

However, because P (Z ∈ N(z0)) > 0 due to z0 ∈ supp{Z}, results (A.13) and (A.14)

together contradict (A.12) and therefore Γ∗ must be either positive semi-definite or

negative semi-definite as claimed. Thus, we have so far shown that

P (Γ1 ≥ 0 or Γ1 ≤ 0) = 1. (A.15)

To conclude, note that by result (A.12) and Lemma A.2.4 either S+ or S− (or both)

must contain p linearly independent vectors. If S+ contains p linearly independent

vectors {sj}pj=1, then we obtain by the definition of S+ in (A.11) that

P (Γ1 = 0) ≤ P (Γ1 ≤ 0) ≤ P (z′Γ1z ≤ 0 for all z ∈ S+)

≤ P (s′jΓ1sj ≤ 0 for 1 ≤ j ≤ p) = P (s′jΓ1sj = 0 for 1 ≤ j ≤ p). (A.16)

Next note that z′Γ1z = z′(Γ1 + Γ′
1)z/2 for any z ∈ R

p and use that (Γ1 + Γ′
1) is

diagonalizable and s′j(Γ1 + Γ′
1)sj = 0 for all 1 ≤ j ≤ p implies that all the eigenvalues

of (Γ1 + Γ′
1) equal zero due to {sj}pj=1 being linearly independent to conclude that

P (s′jΓ1sj = 0 for 1 ≤ j ≤ p) = P (s′j(Γ1 + Γ′
1)sj = 0 for 1 ≤ j ≤ p)

= P (Γ1 = −Γ′
1) ≤ P ((λ11, . . . , λ1p) = 0) ≤ P (Γ1 = 0), (A.17)

where the first inequality follows from Var{S1j |Wi} > 0 for all 1 ≤ j ≤ p by Assumption

A.2.1(iii) and the second inequality by Γ1 = diag{(λ11, . . . , λ1p)}Var{S1|W1}. Hence,

combining results (A.16) and (A.17) we obtain that if S+ contains p linearly independent

vectors, then P (Γ1 = 0) = P (Γ1 ≤ 0), which together with result (A.15) yields

1 = P (Γ1 ≥ 0 or Γ1 ≤ 0) = P (Γ1 ≥ 0) + P (Γ1 ≤ 0)− P (Γ1 = 0) = P (Γ1 ≥ 0).

Similarly, if S− instead contains p linearly independent vectors, then it is possible to

show that (A.15) implies that P (Γ1 ≤ 0) = 1 and therefore the lemma follows.

Lemma A.2.3. Let Γ ≡ DΣ with D a p × p diagonal matrix and Σ a p × p positive

semi-definite matrix with rank{Σ} ≥ p − 1. If Γ is neither positive semi-definite nor

negative semi-definite, then for any δ > 0 there is a z ∈ R
p and diagonal p× p matrices
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H1,H2 satisfying ‖z‖ ∨ ‖D −H1‖ ∨ ‖D −H2‖ < δ, z′(H1Σ)z > 0, and z′(H2Σ)z < 0.

Proof. Let Γ̄ = (Γ + Γ′)/2 and note that since a′Γa = a′Γ′a for any a ∈ R
p, we have

a′Γa = a′Γ̄a for all a ∈ R
p. (A.18)

Next observe that Γ̄ is a symmetric matrix and let {πi}pi=1 denote its eigenvalues and

{vi}pi=1 its corresponding eigenvectors. If Γ is neither positive semi-definite nor negative

semi-definite, then result (A.18) implies that Γ̄ must have a strictly positive eigenvalue

and a strictly negative eigenvalue. Assuming without loss of generality that π1 > 0 and

π2 < 0, let α > 0 and define the vectors c1 and c2 to be given by

c1 ≡ αv1 + α

√
π1

√

|π2|
v2 c2 ≡ αv1 − α

√
π1

√

|π2|
v2.

Next note that ‖c1‖2 = ‖c2‖2 = α2(1 + π1/|π2|) and that therefore we may set ‖c1‖ =

‖c2‖ < δ by selecting α to be sufficiently small. Moreover, by direct calculation we have

c′1Γ̄c1 = c′2Γ̄c2 = α2π1 + α2 π1
|π2|

π2 = 0, (A.19)

where the final equality follows from π2 < 0. Next observe that since rank{Σ1/2} =

rank{Σ} ≥ p − 1 and c1, c2 ∈ R
p are linearly independent, it follows that Σ1/2cj 6= 0

for some j ∈ {1, 2}. Assuming without loss of generality that Σ1/2c1 6= 0, we then set

z = c1 and note that results (A.18), (A.19), and Σ1/2z 6= 0 imply that

z′Γz = 0 and z′Σz > 0. (A.20)

Setting x ≡ Σz and letting xj and zj denote the jth coordinates of x and z, then note

0 < z′Σz =

p
∑

j=1

zjxj,

which implies that zjxj > 0 for some 1 ≤ j ≤ p. Assuming without loss of generality

that z1x1 > 0, then set e1 = (1, 0, . . . , 0)′ and for ξ > 0 define the matrices

H1 ≡ D + ξe1e
′
1 H2 ≡ D − ξe1e

′
1,

noting that ‖D − H1‖ = ‖D − H2‖ < δ provided ξ is chosen sufficiently small. In

addition, Γ ≡ DΣ, x ≡ Σz, result (A.20), and x1z1 > 0 together yield that

z′(H1Σ)z = z′((D + ξe1e
′
1)Σ)z = z′Γz + ξz1x1 > 0.

Identical arguments imply z′(H2Σ)z < 0, and hence the lemma follows.
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Lemma A.2.4. If Assumption A.2.1(v) holds and A1, A2 satisfy P (Z ∈ A1 ∪A2) = 1,

then it follows that span{Ai} = R
p for some i ∈ {1, 2}.

Proof. By way of contradiction, suppose that span{Ai} 6= R
p for i ∈ {1, 2}. Then note

that Ai ⊆ Vi for some vector subspace Vi ⊂ R
p and that for each i we may find a vi ∈ R

p

that is orthogonal to Vi and satisfies ‖vi‖2 = 1. Next define v∗ to equal

v∗ ≡
{

v1 if |〈v1, v2〉| = 1

v1 + v2 if |〈v1, v2〉| 6= 1

and note that 〈v∗, vi〉 6= 0 for i ∈ {1, 2} due to ‖vi‖2 = 1. Since vi is orthogonal to Vi it

follows that ξv∗ /∈ Vi and hence ξv∗ /∈ V1 ∪ V2 for any ξ > 0. In particular, we obtain

that ξv∗ /∈ A1 ∪ A2 due to A1 ∪ A2 ⊆ V1 ∪ V2. However, for ξ sufficiently small, ξv∗

belongs to the support of Z by Assumption A.2.1(v). Thus, selecting N(ξv∗) to be a

neighborhood of ξv∗ sufficiently small to ensure that N(ξv∗) ⊆ (A1 ∪A2)
c we obtain

P (Z ∈ (A1 ∪A2)
c) ≥ P (Z ∈ N(ξv∗)) > 0, (A.21)

where the final inequality follows from ξv∗ being in the support of Z. Since (A.21)

contradicts the hypothesis that P (Z ∈ A1 ∪A2) = 1, the lemma follows.

A.3 Proofs for Section 3.1.2

The results in Section 3.1.2 rely on the following regularity conditions.

Assumption A.3.1. For Gn = {Si,Wi,Λi, βi, εi, ηi}ni=1 and Wn = {Wi}ni=1 we have: (i)

Var{Z|Gn} = Var{Z|Wn} and Var{Zj|Wn} > 0 for all 1 ≤ j ≤ p with probability one;

(ii) {Λi, Si}ni=1 are i.i.d. conditionally on Wn; (iii) supp{(Λi, Si,Wn)} = supp{Λi} ×
supp{Si} × supp{Wn}; (iv) supp{Si/‖Si‖1} = {s ∈ R

p : s ≥ 0 and ‖s‖1 = 1}.

Assumptions A.3.1(i)-(iii) impose conditions that simplify our analysis. In turn,

Assumption A.3.1(iv) demands that the support of the shares be sufficiently rich –

in its statement, ‖ · ‖1 denotes the ℓ1 norm ‖s‖1 =
∑n

i=1 |s(i)| for any vector s =

(s(1), . . . , s(p))′ ∈ R
p. We note that Assumption A.3.1(iv) allows the shares to sum to

less than one, as is sometimes the case in empirical applications.

Proof of Proposition 3.2. First note that setting Gn = {Si,Wi,Λi, βi, εi, ηi}ni=1 implies

that (Λi, βi, εi, ηi) ⊥⊥ (Z, Si) conditionally on (Wi,Gn). Hence, Assumption 3.2 yields

E
[

XiŻi,n|Λi,Wi,Gn

]

= E
[

(Z ′ΛiSi)Żi,n

∣

∣

∣
Gn

]

= S′
iΛiE

[

Z(Z ′ − E[Z ′|Gn])|Gn

]

Si = S′
i(ΛiVar{Z|Gn})Si, (A.22)
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where the first equality follows from Lemma A.2.1 and (Λi,Wi) ∈ Gn, the second equality

holds by Zi = S′
iZ and Assumption 3.2(ii), and the third equality holds by direct calcu-

lation. The claim of the proposition therefore follows from result (A.22), the definition

of ωi,n in (13), and Lemma A.3.1.

Proof of Corollary 3.2. Suppose condition (19) holds for some j 6= k and define

σ2l (Gn) ≡ Var{Zl|Gn} σ2jk(Gn) = Cov{Zj ,Zk|Gn} ρjk(Gn) ≡ Corr{Zj ,Zk|Gn}.

Also note that Assumptions A.3.1(i)(iii) and Proposition 3.2 together imply that a

necessary condition for ωi,n to be positive for all i with probability one is that

P (Λi ≥ 0) = 1 or P (Λi ≤ 0) = 1.

In what follows, we assume that P (Λi ≥ 0) = 1 and note that the case in which

P (Λi ≤ 0) = 1 follows by identical arguments. Next note that by Proposition 3.2, a

necessary condition for ωi,n to be positive for all i with probability one is that

(λjsj, λksk)

(

σ2j (Gn) σjk(Gn)

σjk(Gn) σ2k(Gn)

)(

sj

sk

)

(A.23)

be either positive for all (sj, sk) ∈ R+ with probability one over Gn, or negative for all

(sj, sk) ∈ R+ with probability one over Gn. However, Assumption A.3.1(i), P (λij = 0) =

0, and P (λij ≥ 0) = 1 imply that setting (sj, sk) = (1, 0) yields a strictly positive number

in (A.23) with probability one. Hence, we can conclude that a necessary condition for

ωi,n to be positive for all i with probability one is that we have

1 = P

(

inf
sj ,sk≥0

{

s2jλjσ
2
j (Gn) + s2kλkσ

2
k(Gn) + sjskσjk(Gn)(λj + λk)

}

≥ 0

)

= P

(

inf
sj ,sk≥0

{

s2jλj + s2kλk + sjskρjk(Gn)(λj + λk)
}

≥ 0

)

,

= P

(

inf
sk≥0

{

s2k

(

λk −
ρ2jk(Gn)

4λj
(λj + λk)

2

)}

≥ 0

)

(A.24)

where in the second equality we employed Assumption A.3.1(i) and in the third equality

we profiled out sj by setting sj = −skρ(Gn)(λj + λk)/2λj . However, note that

P

(

λk −
ρ2jk(Gn)

4λj
(λj + λk)

2 < 0

)

= P

(

1 <
ρ2jk(Gn)

4

(

λj
λk

+
λk
λj

+ 2

)

)

> 0 (A.25)

where the inequality holds due to condition (3.2), Assumptions A.3.1(i)(iii), and the

support of λj/λk being unbounded. Since result (A.25) implies the necessary condition

in (A.24) cannot hold, the claim of the corollary follows.
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Lemma A.3.1. Let Assumption A.3.1 hold and Gn = {Si,Wi,Λi, βi, εi, ηi}ni=1. Then,

P

(

min
1≤i≤n

S′
i(ΛiVar{Z|Gn})Si ≥ 0 or max

1≤i≤n
S′
i(ΛiVar{Z|Gn})Si ≤ 0

)

= 1 (A.26)

for all n sufficiently large if and only if the distribution of ΛiVar{Z|Gn} satisfies

P

(

sup
s∈Rp

+

s′(ΛiVar{Z|Gn})s ≤ 0

)

= 1 or P

(

inf
s∈Rp

+

s′(ΛiVar{Z|Gn})s ≥ 0

)

= 1. (A.27)

Proof. First note that since Si ∈ R
p
+ by Assumption A.3.1(iv), it follows that condition

(A.27) implies (A.26) holds. For the reverse direction, set Wn = {Wi}ni=1 and Γi,n =

ΛiVar{Z|Wn} for notational simplicity, and employ Assumptions A.3.1(i) to obtain

P

(

min
1≤i≤n

S′
i(ΛiVar{Z|Gn})Si ≥ 0 or max

1≤i≤n
S′
i(ΛiVar{Z|Gn})Si ≤ 0

)

= P

(

min
1≤i≤n

S′
iΓi,nSi ≥ 0

)

+ P

(

max
1≤i≤n

S′
iΓi,nSi ≤ 0

)

− P
(

S′
iΓi,nSi = 0 for all i

)

= E
[

Pn
(

S′
iΓi,nSi ≥ 0|Wn

)

+ Pn
(

S′
iΓi,nSi ≤ 0|Wn

)

− Pn
(

S′
iΓi,nSi = 0|Wn

)]

,

(A.28)

where the second equality follows from Assumption A.3.1(ii). For n ≥ 2, result (A.28)

and the law of iterated expectations together imply that in order for the equality in

(A.26) to hold we must have with probability one over (Λi,Wn) that

max
{

P
(

S′
iΓi,nSi ≥ 0|Λi,Wn

)

, P
(

S′
iΓi,nSi ≤ 0|Λi,Wn

)}

= 1. (A.29)

Next note that Assumption A.3.1(iii) implies that the distribution of Si is absolutely

continuous with respect to the distribution of Si conditionally on (Λi,Wn). Therefore,

letting Mp denote the set of p× p real matrices and defining the sets

O+ ≡
{

G ∈ Mp : P
(

S′GS ≥ 0
)

= 1
}

O− ≡
{

G ∈ Mp : P
(

S′GS ≤ 0
)

= 1
}

we obtain from result (A.29) holding with probability one over (Λi,Wn) that we have

P (Γi,n ∈ O+ ∪O−) = 1. (A.30)

Moreover, since the sign of a′Ga equals the sign of a′Ga/‖a‖21 for any matrix G ∈ M
p

and vector 0 6= a ∈ R
p, Assumption A.3.1(iv) allows us to conclude that

O+ =

{

G ∈ Mp : inf
a∈Rp

+

a′Ga ≥ 0

}

O− =

{

G ∈ Mp : sup
a∈Rp

+

a′Ga ≤ 0

}

. (A.31)
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In particular, combining (A.30) with (A.31) yields that the distribution of Γi,n satisfies

P

(

inf
a∈Rp

+

a′Γi,na ≥ 0 or sup
a∈Rp

+

a′Γi,na ≤ 0

)

= 1. (A.32)

To conclude, note that by Lemma A.3.2 we have P (Λi ≥ 0) = 1 or P (Λi ≤ 0) = 1.

However, if P (Λi ≥ 0) = 1, then Γi,n = ΛiVar{Z|Wn} and Assumption A.3.1(i) imply

P

(

sup
a∈Rp

+

a′Γi,na ≤ 0

)

= P

(

sup
a∈Rp

+

a′Γi,na ≤ 0; Λi ≥ 0

)

≤ P (Λi = 0) ≤ P

(

sup
a∈Rp

+

|a′Γi,na| = 0

)

≤ P

(

sup
a∈Rp

+

a′Γi,na ≤ 0

)

, (A.33)

where the final two inequalities hold by set inclusion. By result (A.32) we thus obtain

1 = P

(

inf
a∈Rp

+

a′Γi,na ≥ 0 or sup
a∈Rp

+

a′Γi,na ≤ 0

)

= P

(

inf
a∈Rp

+

a′Γi,na ≥ 0

)

+ P

(

sup
a∈Rp

+

a′Γi,na ≤ 0

)

− P

(

sup
a∈Rp

+

|a′Γi,na| = 0

)

= P

(

inf
a∈Rp

+

a′Γi,na ≥ 0

)

,

where the final equality follows from (A.33). Similarly, it is possible to show that if

P (Λi ≤ 0) = 1, then P (supa∈Rp
+
a′Γi,na ≤ 0) = 1, and therefore the lemma follows.

Lemma A.3.2. Let Assumption A.3.1 hold, set Gn = {Si,Wi,Λi, βi, εi, ηi}ni=1, and

P

(

min
1≤i≤n

S′
i(ΛiVar{Z|Gn}Si} ≥ 0 or max

1≤i≤n
S′
i(ΛiVar{Z|Gn})Si} ≤ 0

)

= 1 (A.34)

for n sufficiently large. Then, it follows that either P (Λi ≥ 0) = 1 or P (Λi ≤ 0) = 1.

Proof. We will proceed by contradiction and instead suppose that in fact we have that

min

{

P

(

max
1≤j≤p

λij > 0

)

, P

(

min
1≤j≤p

λij < 0

)}

> 0. (A.35)

For notational simplicity, let Wn = {Wi}ni=1, set Γi,n ≡ ΛiVar{Z|Wn}, and define

A+(Γi,n) ≡
{

s ∈ R
p : s ≥ 0 and s′Γi,ns > 0

}

A−(Γi,n) ≡
{

s ∈ R
p : s ≥ 0 and s′Γi,ns < 0

}

.

Next note that if λij > 0 for some 1 ≤ j ≤ p (resp. λij < 0 for some 1 ≤ j ≤ p) then

A+(Γi,n) (rep. A−(Γi,n)) has non-empty interior whenever Var{Zj|Wn} > 0 for all 1 ≤
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j ≤ p. Therefore, since s ∈ A+(Γi,n) (resp. A−(Γi,n)) if and only if s/‖s‖1 ∈ A+(Γi,n)

(resp. s/‖s‖1 ∈ A−(Γi,n)), we obtain by Assumptions A.3.1(i)(iii) that

P

(

Si ∈ A+(Γi,n)
∣

∣

∣ max
1≤j≤p

λij > 0,Wn

)

> 0

P

(

Si ∈ A−(Γi,n)
∣

∣

∣
min
1≤j≤p

λij < 0,Wn

)

> 0. (A.36)

Similarly, also note that display (A.35) holding and Assumption A.3.1(iii) together imply

min

{

P

(

max
1≤j≤p

λij > 0
∣

∣

∣
Wn

)

, P

(

min
1≤j≤p

λij < 0
∣

∣

∣
Wn

)}

> 0. (A.37)

To conclude, observe that for n ≥ 2, display (A.3.2) and Assumptions A.3.1(i)(ii) yield

0 ≥ P
(

S′
1Λ1Var{Z|Wn}S1 > 0 and S′

2Λ2Var{Z|Wn}S2 < 0
)

= E
[

P
(

S′
1Λ1Var{Z|Wn}S1 > 0|Wn

)

P
(

S′
1Λ1Var{Z|Wn}S1 < 0|Wn

)]

≥ E

[

P

(

S1 ∈ A+(Γ1,n); max
1≤j≤p

λ1j > 0|Wn

)

P

(

S1 ∈ A−(Γ1,n); min
1≤j≤p

λ1j < 0|Wn

)]

> 0,

where the final inequality follows from results (A.36) and (A.37). Hence, we have arrived

at a contradiction implying (A.35) cannot hold.

A.4 Proofs for Section 3.2

In this appendix we collect the technical results behind Proposition 4.1. Section A.4.1

introduces the framework, Section A.4.2 provides an outline of the main argument, and

Sections A.4.3 and A.4.4 establish the two key building blocks for the main result.

A.4.1 Preliminaries and Definitions

We consider a probability space (Ξ×Ψ,F × C, Pu × Pf ) where Ξ and Ψ are Polish

spaces with their respective Borel σ-algebras F and C; see, p. 270 in Dudley (1989). An

example of such spaces is Ξ = (R∞ × ....× R
∞); i.e. a finite number of products of R∞.

Let Ω ≡ Ξ × Ψ, X ≡ F × C and P ≡ Pu × Pf so that the probability space can be

represented more compactly as (Ω,X , P ). It is useful for later developments to impose

further structure on (Ξ,F , Pu). We assume that {(Ξi,Fi, Pu,i)}∞i=1 is a sequence of

probability spaces and define Ξ ≡ Ξ1×Ξ2×...., F ≡ F1×F2×..., and Pu ≡ Pu,1×Pu,2×...
such that (Ξ,F , Pu) is an infinite dimensional product space. Let F i

t ⊂ Fi denote an
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array of filtrations, where F i
−∞ = {∅,Ξi}, F i

∞ = Fi, and F i
t ⊂ F i

t+1 for i ≤ n.15

Similarly, let Ct ⊂ C denote a triangular array of filtrations, where C−∞ = {∅,Ψ},
C∞ = C, and Ct ⊂ Ct+1. In addition, define the filtrations Hi

t ≡ F i
t × Ct. Then,

F × Ct ⊂ X for all t and Hi
t can be embedded in X for each i and all t ≤ T by padding

up additional coordinates; see, e.g., page 140 in Halmos (1976). In addition, note that

Hi
t ⊂ Hi

t+1 for all i, and t.

In order to simplify our analysis, we will assume that F i
t = σ (...., ηi,t−1, ηit), where

(ηit)
∞,∞
i=1,t=−∞ is an array of some random variables on (Ξ,F , Pu) where for each i,

(ηit)
∞
t=−∞ is an array of random variables defined on (Ξi,Fi, Pu,i). The product space

structure of (Ξ,F , Pu) immediately implies independence of (ηit)
∞
t=−∞ and (ηjt)

∞
t=−∞ for

any i 6= j. Likewise, we assume that Ct = σ (..., vt−1, vt), where (vt)
∞
t=−∞ is a sequence

of some random variables on (Ψ, C, Pf ).

We will introduce mixing measures as in McLeish (1975); see also Andrews (1988)

for triangular array versions of these measures. Recall Ct = σ (..., vt−1, vt) and define

Ct+m
t ≡ σ (vt, vt+1, ..., vt+m) and C∞

t ≡ σ (vt, vt+1, ...). Similarly, we let

F i,t+m
t ≡ σ (ηit, ..., ηi,t+m) for all i ≤ n.

Our asymptotic normality results employ α-mixing coefficients, and we therefore define

αf (m) ≡ sup
t

sup
A∈Ct,B∈C∞

t+m

|P (A ∩B)− P (A)P (B)| .

We will now impose the following restrictions on the measures Pu and Pf . By

Theorems 4.34 and A.46 in Breiman (1968), a regular conditional distribution on X
given C ⊂ X exists, and by Theorem 10.2.2 in Dudley (1989), the regular conditional

distribution is unique for P -almost all ω ∈ Ω. As in Eagleson (1975), let ω′ ∈ Ω and

consider the regular conditional (on C) probability denoted by Qω′ (B, C) = Qω′ (B). It

follows that for fixed B ∈ X , Qω′ (B, C) is a version of P (B| C) and for fixed ω′ ∈ Ω,

Qω′ (·) is a probability measure on X . Importantly, this means Qω′ (·) is countably

additive which ensures that the law of iterated expectations holds; see p. 270 in Dudley

(1989). We note that the results in Dudley (1989) are established for Polish spaces.

Consider the measure space (Ω,X , Qω′) with expectation Eω′ , which formalizes the

idea of treating the aggregate variables κt (to be defined later) as constants through the

choice of ω′. By a lemma in p. 558 of Eagleson (1975), the following holds:

Lemma A.4.1 (Eagleson 1975). Let Y be a sub-sigma field of X such that C ⊆ Y.16
Then, for P almost all ω′ ∈ Ω and a random variable q with E [|q|] < ∞ it follows that

Eω′ [q| Y] (ω) = E [q| Y] (ω) Qω′-a.s.

15We can allow for triangular arrays, but suppress it for simplicity of notations.
16It is easy to see that the proof of Lemma 1 in Eagleson (1975) goes through when F = G.

39



For arbitrary t and arbitrary m ≥ 0, we next define the filtration Y i,t+m
t by

Y i,t+m
t ≡ F i,t+m

t × C (A.38)

To establish marginal convergence as T → ∞ for each i ≤ n fixed we follow the

strategy of the proof of Theorem 2 in Eagleson (1975). This requires modifying the

regularity conditions to the measure Qω′ . Define the conditional Lq norm ‖y‖ q|C =
(∫

|y|q dP (y| C)
)1/q

. By Lemma A.4.1 it follows that ‖y‖ q|C =
(∫

|y|q dQω′

)1/q
Qω′ a.s.

for P -almost all ω′. Similarly, define the conditional mixing coefficients

α ξ|C (m) ≡ sup
t

sup
A∈Yi,t

−∞
,B∈Yi,∞

t+m

|P (A ∩B| C)− P (A| C)P (B| C)| , a.s. (A.39)

where α ξ|C (m) are C-measurable random variables.

Now, recall that our analysis is predicated on the moment restriction in (21). In

order to facilitate our asymptotic analysis, we impose the following:

Condition 1. (i) There are some random vectors ft and uit defined on (Ψ, C, Pf ) and

(Ξi,Fi, Pu,i) such that Siεit = ψ (ft, uit); (ii) The Zt is a component of ft; and (iii) The

joint distribution of (uit)
∞
t=1 is identical across i.

It is important to note that the product structure Pu = Pu,1 ×Pu,2 × ... implies that

the variables (uit)
∞
t=1 are independent over i. Finally, we define the variables

ξit ≡ (Zt)
′νit, κt ≡ (Zt)

′ζt,

where ζt and νit are given by ζt ≡ E [Sitεit| C] = E [Sitεit| ft] and νit ≡ Sitεit − ζt.

A.4.2 Proof of Proposition 3.3 (Outline)

Recall that Proposition 3.3 derives an asymptotic distribution for the numerator (i.e.

the score) of (β̂n − β); see (22). Given the introduced notation, we can decompose

1

nT

n
∑

i=1

T
∑

t=1

(

Z ′
tSit
)

εit =
1

T

T
∑

t=1

κt +
1

nT

T
∑

t=1

n
∑

i=1

ξit.

We start the analysis by studying the conditional distribution given C of the term

1√
nT

T
∑

t=1

n
∑

i=1

ξit. (A.40)

By Condition 1, ξit are independent over i conditional on C, and we therefore expect

that (A.40) is asymptotically normal conditional on C. Under additional regularity
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conditions, the limit distribution has a variance that does not depend on C. Indeed, this
is formally established in Theorem A.4.2 below. In particular, defining

φnT (ς1| C) ≡ E

[

exp

(

ις1
1√
nT

T
∑

t=1

n
∑

i=1

ξit

)∣

∣

∣

∣

∣

C
]

, (A.41)

we have that φnT ( ς1| C) → φ (ς1) almost surely in C, where φ (ς1) denotes the charac-

teristic function of the limiting normal distribution.

Now, let’s consider the joint characteristic function of the vector in display (25):

E

[

exp

(

ις2
1√
T

T
∑

t=1

κt + ις1
1√
nT

T
∑

t=1

n
∑

i=1

ξit

)]

= E

[

exp

(

ις2
1√
T

T
∑

t=1

κt

)

φnT (ς1| C)
]

where we note that κt is measurable with respect to C. Because ∑T
t=1E[κt] = 0 due to

the moment restriction in (21), a time series CLT should apply to the term

1√
T

T
∑

t=1

κt. (A.42)

Indeed, the asymptotic normality of (A.42) is formally established in Theorem A.4.1 in

Appendix A.4.3 below. Letting ϕ (ς2) denote the characteristic function of the limiting

normal distribution of the term in (A.42), we then obtain that

E

[

exp

(

ις2
1√
T

T
∑

t=1

κt + ις1
1√
nT

T
∑

t=1

n
∑

i=1

ξit

)]

− ϕ (ς2)φ (ς1)

= E

[

exp

(

ις2
1√
T

T
∑

t=1

κt

)

φnT (ς1| C)
]

− E

[

exp

(

ις2
1√
T

T
∑

t=1

κt

)

φ (ς1)

]

(A.43)

+ E

[

exp

(

ις2
1√
T

T
∑

t=1

κt

)

φ (ς1)

]

− ϕ (ς2)φ (ς1) . (A.44)

Because characteristic functions are bounded by one and φnT (ς1| C) → φ (ς1) almost

surely in C we obtain from the dominated convergence theorem that

|(A.43)| ≤ E

[

exp

(

ις2
1√
T

T
∑

t=1

κt

)

|φnT (ς1| C)− φ (ς1)|
]

≤ E [|φnT (ς1| C)− φ (ς1)|] → 0.

Similarly, since (A.42) is asymptotically normally distributed and ϕ (ς2) denotes the
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characteristic function of its limiting distribution, we also have that

|(A.44)| ≤
∣

∣

∣

∣

∣

E

[

exp

(

ις2
1√
T

T
∑

t=1

κt

)]

− ϕ (ς2)

∣

∣

∣

∣

∣

|φ (ς1)|

≤
∣

∣

∣

∣

∣

E

[

exp

(

ις2
1√
T

T
∑

t=1

κt

)]

− ϕ (ς2)

∣

∣

∣

∣

∣

→ 0.

To conclude, we see that (A.40) and (A.42) are jointly asymptotically normally dis-

tributed and independent under the conditions laid out in Theorems A.4.1 and A.4.2.

Remark A.4.1. While we have focused on the numerator of (β̂n−β), the denominator

can be studied under similar conditions. In particular it is possible to show that

1

nT

T
∑

t=1

n
∑

i=1

(Z ′
tSit)Xit =

1

nT

T
∑

t=1

n
∑

i=1

E[(Z ′
tSit)Xit] + oP (1),

though, for conciseness, we do not provide the details of the relevant argument.

A.4.3 Unconditional Convergence

The main purpose of this section is to establish a time series central limit theorem for

1√
T

T
∑

t=1

κt,

which is formally established in Theorem A.4.1 below. For this purpose, it is convenient

to assume that κt is L2 near-epoch-dependent (NED). The concept of NED sequences

was introduced by Billingsley (1968). McLeish (1975) or Andrews (1988) show that a

NED process is also a mixingale. Therefore assumptions that impose NED type condi-

tions lead to strong laws by showing that these processes also satisfy the requirements

for strong laws of related mixingales; see Theorem 3 in McLeish (1975) for the first result

of this nature.

We impose the following condition that establishes the NED property for κt, and

imposes sufficient conditions for κt to satisfy the conditions for the SLLN in de Jong

(1996) and the CLT in de Jong (1997). In the statement below, we say that a sequence

δm is of size −λ if δm = O
(

m−λ−ω
)

for some ω > 0; see p. 335 in de Jong (1997).

Condition 2. For r > 2, assume that supt ‖κt‖r <∞, and that there exists a bounded

array of non-random constants ct such that

∥

∥κt − E
[

κt|Ct+m
t−m

]∥

∥

2
≤ ctβf (m) for all t

where βf (m) is of size −1/2. Further assume that for r > 2, αf (m) is of size r/ (r − 2).
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To establish the CLT we adopt the conditions given in de Jong (1997). The result

is based on a blocking scheme that needs to be defined. Let bT and lT be positive,

non-decreasing integer valued sequences that are the lengths of included and discarded

blocks. Assume bT ≥ lT + 1, lT → ∞, lT ≥ 1, bT ≤ T , bT /T → 0 and lT /bT → 0. Let

rT ≡ [T/bT ] and define κ̃T,t ≡ κt/σT,κ , where where σ2T,κ is given by

σ2T,κ ≡ E





(

T
∑

t=1

κt

)2


 .

The following condition is sufficient for obtaining the desired CLT.

Condition 3. Assume that {κt, Ct} satisfies Condition 2. There exists a positive con-

stant array eT,t such that ct/eT,t is uniformly bounded in t ≤ T and T ≥ 1 and

{κ̃T,t/eT,t} is Lr bounded for r > 2 uniformly in t ≤ T and T ≥ 1. Let MT,j ≡
max(j−1)bT+1≤t≤jbT eT,t for 1 ≤ j ≤ rT and MT,rT+1 ≡ maxrT bT+1≤t≤T eT,t. Then,

max1≤j≤rT+1MT,j = o
(

b
−1/2
T

)

and
∑rT

j=1M
2
T,j = O

(

b−1
T

)

.

Theorem A.4.1. Assume that Condition 3 holds and suppose that there is some non-

random constant σ2κ such that limT→∞ σ2T,κ/T = σ2κ. It then follows that

1√
T

T
∑

t=1

κt
d→ N

(

0, σ2κ
)

.

Proof. Under Condition 3, we can use Theorem 2 in de Jong (1997) to conclude that
∑T

t=1 κ̃T,t
d→ N (0, 1). Under the additional assumption that T−1σ2T,κ → σ2κ for some

non-random constant σ2κ, it follows from the continuous mapping theorem that

1√
T

T
∑

t=1

κt
d→ N

(

0, σ2κ
)

, (A.45)

which establishes Theorem A.4.1.

A.4.4 Conditional Analysis

The primary purpose of this section is to establish the asymptotic normality of the term

1√
nT

T
∑

t=1

n
∑

i=1

ξit

conditional on C, which is formally shown in Theorem A.4.2. The proof uses ideas

similar to the development in Hahn et al. (2019), which in turn relies on arguments

in Eagleson (1975), to handle the conditioning step in the proof of the CLT; see also
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Lemma 2.9.5 in van der Vaart and Wellner (1996). However, the dependence structure

of the panel is more complicated here than in Hahn et al. (2019) and requires a different

approach to prove the CLT. Hahn et al. (2019) consider a scenario where conditional

on C, a cross-sectional average over i.i.d. draws is analyzed. Here, we need to extend

these results to a panel setting with joint asymptotics as N,T → ∞ and where we allow

for general dependence and possible non-stationarity in the time series direction. We

extend the notation from Hahn et al. (2019) to account for these extensions. The result

of Eagleson (1975) formalizes the intuition that conditional on C the processes Zt and

ft can be treated as a fixed constant in deriving limiting results.

We assume that α ξ|C (m) → 0 almost surely as m → ∞. This is done in the next

condition, which introduces conditional NED, by requiring αξ|C be of size r/(r − 2).

Condition 4. For r > 2, assume that sup ‖ξit‖ r|C < ∞ a.s., and that there exists an

array of C-measurable random variables dit (ω) and a sequence of C-measurable random

variables β ξ|C (m) of size −1/2 a.s. such that the following inequality holds:

∥

∥

∥ξit − E
[

ξit| Y i,t+m
t−m

]∥

∥

∥

2|C
≤ dit (ω) β ξ|C (m) .

Further assume that for r > 2, α ξ|C (m) is of size r/ (r − 2) a.s.

We now turn to establishing our main result. The argument is based on the one-to-

one mapping hT of the double index (i, t) into a single index s = hT (i, t) ≡ (i− 1)T + t

for i ≤ n and L ≡ nT . We will let (ῑT (s), t̄T (s)) denote the (i, t) that corresponds to s,

i.e., (ῑT (s), t̄T (s)) ≡ h−1
T (s).17 With some abuse of notation, we then set

(nT )−1/2
n
∑

i=1

T
∑

t=1

ξit = L−1/2
L
∑

s=1

ξL,s.

The sum on the right hand side sums over components starting with i = 1, t = 1, . . . , T

followed by i = 2, t = 1, . . . , T , and so on. Similarly, we construct the array of filtrations

based on (A.38), using coordinate identification rules of Halmos (1976) (see p. 151 and

p. 155) to organize coordinates, by defining

KL,s ≡





ῑT (s)−1×
j=1

F j,∞
−∞



×F ῑT (s),t̄T (s)
−∞ ×

(

∞×
j=ῑT (s)+1

F j
−∞

)

× C if t̄T (s) < T,

KL,s ≡





ῑT (s)×
j=1

F j,∞
−∞



×
(

∞×
j=ῑT (s)+1

F j
−∞

)

× C if t̄T (s) = T.

The construction guarantees that KL,s ⊂ X by padding missing coordinates with the

trivial field F j
−∞ = {∅,Ξj}.

17Note ῑT (s) is the smallest integer larger than or equal to s/T , and t̄T (s) = s− (ῑT (s)− 1) · T .
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We introduce the binary operator ⊖ that maps two σ-fields generated by a sequence

of random variables into a σ-field generated by the non-overlapping portion of members

of the sequence. In particular, for 0 < s < s′ and F j,s′

−∞, F j,s
−∞ we define F j,s′

−∞ ⊖F j,s
−∞ ≡

F j,s′
s , where F i,t+m

t = σ (ηit, ..., ηi,t+m) . We further define ⊖ to have the properties
(×∞

j=1Aj
nT

)

⊖
(×∞

j=1 Bj
nT

)

≡ ×∞

j=1

(

Aj
nT ⊖ Bj

nT

)

for Aj
nT ,B

j
nT ⊂ F j,∞

−∞, where we

understand F j,∞
−∞ ⊖ F j,∞

−∞ ≡ F j
−∞, F j

−∞ ⊖ F j
−∞ ≡ F j

−∞ and C ⊖ C ≡ C. Using these

properties we define the sigma fields Ks′

L,s by Ks′

L,s ≡ KL,s′ ⊖KL,s.

Because KL,s contains the coordinate C for all L and s the construction implies that

when conditioning on KL,s, all κt and ζt are held fixed. We have the following Lemma

relating mixing coefficients for {ξL,s,KL,s} to mixing coefficients for
{

ξit,Y i,t
−∞

}

.18

Lemma A.4.2. Assume that
{

ξit,Y i,t
−∞

}

satisfies Condition 4 for each i. Assume that

Condition 1 holds. Then, for r > 2, {ξL,s,KL,s} satisfies supL,s≤L ‖ξL,s‖ r|C < ∞ a.s.,

and there exists an array of C-measurable, almost surely bounded, random variables

dL,s (ω) and a sequence of C-measurable random variables βξ|C (m) such that

∥

∥

∥
ξL,s − E

[

ξL,s|Ks+m
L,s−m

]∥

∥

∥

2|C
≤ dL,s (ω)β ξ|C (m) for each s ≤ L (A.46)

where β ξ|C (m) is of size −1/2 a.s.. Furthermore, for r > 2, and

α ξ|C (m) = sup
t

sup
A∈Kt

L,−∞
,B∈K∞

L,t+m

|P (A ∩B|C)− P (A|C)P (B|C)| (A.47)

it follows that α ξ|C (m) is of size r/ (r − 2) a.s.

Proof. The first claim follows immediately from ξL,s = ξit, where the (i, t) = h−1
T (s),

and by applying Condition 4 to ξit. To establish (A.46), we first consider the case where

m > max (T − t̄T (s), t̄T (s)). The way the filtration Ks+m
L,s−m is constructed, it follows

that ξL,s is measurable with respect to Ks+m
L,s−m. This then leads to

∥

∥

∥ξL,s − E
[

ξL,s| Ks+m
L,s−m

]∥

∥

∥

2|C
= 0.

Now, consider the case where 0 ≤ m ≤ max (T − t̄T (s), t̄T (s)). We distinguish two cases

(a) T − t̄T (s) ≥ t̄T (s), and (b) T − t̄T (s) < t̄T (s). For Case (a), if 0 ≤ m < t̄T (s), then
19

E
[

ξL,s| Ks+m
L,s−m

]

= E
[

ξit

∣

∣

∣F i,t+m
t−m ∨ C

]

,

and if t̄T (s) ≤ m < T − t̄T (s), then by independence

E
[

ξL,s| Ks+m
L,s−m

]

= E
[

ξit| F i,t+m
−∞ ∨ C

]

.

18Condition 4 includes uniformity of the mixing and approximation coefficients, which is used here.
19For simplicity of notations, we adopt the convention that (i, t) = (ῑT (s), t̄T (s)).
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In the latter case, we have

∥

∥

∥
ξL,s − E

[

ξL,s| Ks+m
L,s−m

]∥

∥

∥

2|C
=
∥

∥

∥
ξit − E

[

ξit| F i,t+m
nT,−∞ ∨ C

]∥

∥

∥

2|C

≤
∥

∥

∥ξit − E
[

ξit| F i,t+m
t−m ∨ C

]∥

∥

∥

2|C
,

because the residual in the projection on F i,t+m
t−m ∨ C ⊂ F i,t+m

−∞ ∨ C has smaller variance,

whereas in the former case we have

∥

∥

∥
ξL,s − E

[

ξL,s| Ks+m
L,s−m

]∥

∥

∥

2|C
=
∥

∥

∥
ξit − E

[

ξit| F i,t+m
t−m ∨ C

]∥

∥

∥

2|C
.

Therefore, in both cases, we have

∥

∥ξL,s − E
[

ξL,s| Ks+m
n,s−m

]∥

∥

2|C
≤ dnT,it (ω) β ξ|C (m)

by Condition 4. Relabeling the term dnT,it (ω) = dL,s (ω) then yields the claimed in-

equality in (A.46). For Case (b), if 0 ≤ m ≤ T − t̄T (s), then

E
[

ξL,s| Ks+m
L,s−m

]

= E
[

ξit

∣

∣

∣F i,t+m
t−m ∨ C

]

,

and if T − t̄T (s) < m ≤ t̄T (s), then

E
[

ξL,s| Ks+m
L,s−m

]

= E
[

ξit| F i,∞
t−m ∨ C

]

.

In both cases, we have by similar reasoning

∥

∥

∥ξL,s −E
[

ξL,s| Ks+m
L,s−m

]∥

∥

∥

2|C
≤ dnT,it (ω)β ξ|C (m) .

Finally, to establish (A.47) note that if m > T − t̄T (s), it follows for A ∈ Ks
L,−∞ and

B ∈ K∞
L,s+m that

|P (A ∩B| C)− P (A| C)P (B| C)| = 0 a.s. (A.48)

because in that case A and B are independent by Condition 1. When m ≤ T − t̄T (s),

which implies that ῑT (s) = ῑT (s + m), or in other words that conditioning happens

within the same cross-sectional unit, we consider the following. The product space

structure of Ks
L,−∞ implies that A = A1 ×A2 ×A3 ×A4, where

20 A1 ∈×ῑT (s)−1

j=1 F j
−∞,

A2 ∈ F ῑT (s),t̄T (s)
−∞ , A3 ∈×∞

j=ῑT (s)+1 F j
nT,−∞, and A4 ∈ C. In the same way, B = B1×B2×

B3 × B4, where B1 ∈ ×ῑT (s+m)−1

j=1 F j
−∞, B2 ∈ F ῑT (s+m),∞

t̄T (s+m)
, B3 ∈ ×∞

j=ῑT (s+m)+1 F j
−∞,

B4 ∈ C. Note that

A2 ×A4 ∈ Y ῑT (s),t̄T (s)
−∞ = F ῑT (s),t̄T (s)

−∞ × C (A.49)

20See (Halmos, 1976, p.154 and theorem 38.A).
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and

B2 ×B4 ∈ Y ῑT (s+m),∞
t̄T (s+m)

= F ῑT (s+m),∞
t̄T (s+m)

× C. (A.50)

Since A ∩B =×4

j=1 (Aj ∩Bj) by p. 139 in Halmos (1976), and

P (A ∩B|C) =
(

∏3
j=1P̃j (Aj ∩Bj)

)

Pf (A4 ∩B4|C)

where P̃j are themselves products of measures Pu,j corresponding to the respective

coordinates in Aj and Bj and where Aj , Bj for j ≤ 3 are independent of C. We note

that A1 and B3 consist of coordinates that are either Ξj or ∅. By Theorem 33.A in Halmos

(1976), B = ∅ if and only if at least one coordinate is equal to ∅. Thus, by the properties

of conditional expectations, P (A ∩B|C) = 0 if one of the coordinates of B or A is equal

to ∅. Thus, the mixing coefficient is zero in this case. We therefore assume without loss of

generality that for A1 and B3 all coordinates are equal to Ξj . This implies that A1∩B1 =

B1 and A3 ∩B3 = A3, and we have P̃1 (A1 ∩B1) = P̃1 (B1) and P̃1 (A3 ∩B3) = P̃3 (A3).

Note that Pf (A4 ∩B4|C) = E [1A41B4 |C] = 1A41B4 since A4 and B4 are measurable

with respect to C. Finally, note that P̃2 (A2 ∩B2) = Pu,ῑT (s) (A2 ∩B2). (Recall that

ῑT (s) = ῑT (s+m).) These arguments lead to

P (A ∩B|C) = P̃1 (B1) P̃3 (A3)Pu,ῑT (s) (A2 ∩B2) 1A41B4 . (A.51)

Similar arguments also show that

P (A|C) = P̃1 (A1)Pu,ῑT (s) (A2) 1A4 (A.52)

and

P (B|C) = P̃3 (B3)Pu,ῑT (s) (B2) 1B4 (A.53)

such that

|P (A ∩B|C)− P (A|C)P (B|C)| (A.54)

=
∣

∣Pu,ῑT (s) (A2 ∩B2)− Pu,ῑT (s) (A2)Pu,ῑT (s) (B2)
∣

∣ P̃1 (B1) P̃3 (A3) 1A41B4

≤
∣

∣Pu,ῑT (s) (A2 ∩B2)− Pu,ῑT (s) (A2)Pu,ῑT (s) (B2)
∣

∣ 1A41B4

≤ sup
A∈Y

ῑT (s),t̄T (s)
−∞

,B∈Y
ῑT (s),∞

t̄T (s+m)

|P (A ∩B|C)− P (A|C)P (B|C)|

≤ α ξ|C (m) ,

where the equality combines results (A.51), (A.52) and (A.53), the first inequality uses
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P̃1 (B1) P̃3 (A3) ≤ 1, the second inequality uses

Pu,ῑT (s) (A2 ∩B2) 1A41B4 = Pu,ῑT (s) (A2 ∩B2)Pf (A4 ∩B4|C)
= Pu,ῑT (s) ((A2 ×A4) ∩ (B2 ×B4) |C)

as well as (A.49) and (A.50). The last inequality in (A.54) uses (A.39). Then, combining

(A.48) and (A.54) show that (A.47) holds.

Lemma A.4.2 is the basis for establishing a joint CLT as both n, T → ∞. For this,

the earlier blocking definitions need to be adjusted. Let L ≡ nT, and n, T → ∞. Define

bL and lL to be positive, non-decreasing integer valued sequences that are the length of

included and discarded blocks. Assume bL ≥ lL + 1, lL → ∞, lL ≥ 1, bL ≤ n, bL/L → 0

and lL/bL → 0. Let rL ≡ [L/bL] and define ξ̃L,s ≡ ξL,s/σL,ξ(ω),
21 where

σ2L,ξ = E





(

L
∑

s=1

ξL,s

)2
∣

∣

∣

∣

∣

∣

C



 . (A.55)

We impose the following conditions that are modifications of the conditions for the

case of marginal convergence when T → ∞.

Condition 5. Assume that
{

ξit,Y i,t
−∞

}

satisfies Condition 4 for each i ≤ n and all

T, n ≥ 1. For {ξL,s,KL,s} impose the following additional restrictions. There exists

a positive array of random variables gL,s (ω) such that dL,s (ω) /gL,s (ω) is uniformly

bounded P -a.s. for all s ≤ L and all L ≥ 1 and

∥

∥

∥
ξ̃L,s/gL,s (ω)

∥

∥

∥

r|C
<∞ (A.56)

for r > 2 for all s ≤ L and all L ≥ 1. Let ML,j ≡ max(j−1)bL+1≤s≤jbL gL,s (ω) for

1 ≤ j ≤ rL, and ML,rL+1 ≡ maxrLbL+1≤s≤L gL,s (ω). Then,

b
1/2
L

(

max
1≤j≤rL+1

ML,j

)

→ 0 P -a.s.

and
∣

∣

∣

∣

∣

∣

bL





rL
∑

j=1

M2
L,j





∣

∣

∣

∣

∣

∣

≤ CM <∞ P -a.s.

for some constant CM and all L large enough.

We now state the following conditional CLT for joint convergence.

21Note that σL,ξ in (A.55) is a random variable. In order to emphasize it, we write ξ̃L,s ≡ ξL,s/σL,ξ(ω).
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Theorem A.4.2. Assume that Conditions 1 and 5 hold. Then, as n, T → ∞,

lim
T,n→∞

E
[

eιτL
−1/2

∑L
s=1 ξ̃L,s

∣

∣

∣
C
]

= e−
1
2
τ2 a.s.

If in addition, L−1σ2L,ξ (ω) → σ2ξ P-a.s. where σ2ξ is a constant, then it follows that

lim
T,n→∞

E
[

eιτL
−1/2

∑L
s=1 ξL,s

∣

∣

∣ C
]

= e−
1
2
τ2σ2

ξ a.s.

Proof. The proof follows the proof of Theorem 2 in Eagleson (1975). Lemma A.4.2

shows that {ξL,s,KL,s} is a NED process with coefficients βξ|C (m) of size −1/2 and is

based on a mixing sequence with coefficients α ξ|C (m) of size −1/2, where βξ|C (m,ω)

and α ξ|C (m,ω) are C-measurable random variables and where we add the ω argument

to emphasize this fact. By Lemma A.4.1, the conditional expectations on (Ω,X , P ) and
(Ω,X , Qω′) coincide with P -probability one. Therefore, for all ω′ ∈ Ω, except for a set

of P -measure zero,
{

ξit,Y i,t
−∞

}

satisfies the same NED process conditions with the same

mixing coefficients Qω-a.s. The quantities βξ|C (m,ω
′) and α ξ|C (m,ω

′) are constants for

the probability space (Ω,X , Qω′). Therefore, the remaining assumptions in Condition 5

guarantee that for all ω′ ∈ Ω, except for a set of P -measure zero, {ξn,s,KL,s} satisfies

the conditions of Theorem 2 in de Jong (1997) for the probability space (Ω,X , Qω′),

except on a set of Qω′-probability of zero. Then, for P -almost all ω′

lim
T,n→∞

E
[

eιτL
−1/2

∑L
s=1 ξ̃L,s

∣

∣

∣ C
]

= lim
T,n→∞

Eω′

[

eιτL
−1/2

∑L
s=1 ξ̃L,s

]

= e−
1
2
τ2 a.s. (A.57)

where the last equality follows from applying Theorem 2 in de Jong (1997) on (Ω,X , Qω′)

to a set of Qω′ probability one, which establishes the first result.

For the second statement, define the (Ω,X , Qω′)-constant random variable

σ2L,ξ(ω
′) = Eω′





(

L
∑

s=1

ξL,s

)2


 .

By Lemma A.4.1 σ2L,ξ(ω
′) is identical to σ2L,ξ defined in (A.55) except on a set of Qω′

probability zero. Then, it follows that L−1σ2L,ξ (ω
′) → σ2ξ with Qω′-probability one on

(Ω,X , Qω′) because of the maintained assumption of the theorem that L−1σ2L,ξ (ω) → σ2ξ
P -a.s. The result follows from applying the continuous mapping theorem to (A.57).

A.5 Proofs for Section 4.1

In this appendix we provide a formal justification of the inference procedure proposed in

Section 4.1 by relying on the high dimensional central limit theorem of Chernozhuokov et al.

(2022). To this end, we impose the following assumptions.
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Assumption A.5.1. There are {ψi}bni=1 that are independent conditionally on Gn and

satisfy ψi ∈ R
q, E[ψi|Gn] = 0 for all 1 ≤ i ≤ bn, and for any ̺ > 0

P

(∥

∥

∥

∥

∥

n
∑

i=1

f
(

Vi, θ̂n

)

−
bn
∑

i=1

ψi

∥

∥

∥

∥

∥

∞

>
̺
√
bn

√

log(q)

∣

∣

∣

∣

∣

Gn

)

≤ r1n (̺,Gn) .

Assumption A.5.2. For some Bn(Gn) satisfying 1 ≤ B(Gn) <∞ with probability one

max
1≤i≤bn

max
1≤k≤q

E

[

exp

( |ψki|
Bn(Gn)

)∣

∣

∣

∣

Gn

]

≤ 2.

Assumption A.5.3. There are σ > 0 and σ̄ <∞ not depending on Gn satisfying

P

(

σ2 ≤ min
1≤k≤q

1

bn

bn
∑

i=1

E[ψ2
ki|Gn], max

1≤k≤q

1

bn

bn
∑

i=1

E[ψ4
ki|Gn] ≤ σ̄2Bn(Gn)

∣

∣

∣

∣

∣

Gn

)

= 1.

Assumption A.5.4. For Dn ≡ ({Yi,Xi, Si}ni=1,Z,Gn) we have for any ̺ > 0 that

P





∥

∥

∥

∥

∥

∥

bn
∑

i=1

ωi



(ψ̂i − ψi)−
1

bn

bn
∑

j=1

(ψ̂j − ψj)





∥

∥

∥

∥

∥

∥

∞

>
̺
√
bn

√

log(q)

∣

∣

∣

∣

∣

∣

Dn



 ≤ r2n(̺,Dn).

Assumption A.5.5. The weights {ωi}bni=1 are independent of {Dn} and either: (i)

Follow a multinomial distribution with parameter bn and probabilities (1/bn, . . . , 1/bn),

or (ii) Are i.i.d. with ωi = ωi,1+ωi,2 with ωi,1 ∼ N(0, σ2ω) for some σ2ω ≥ 0 and |ωi,2| ≤ 3.

Assumption A.5.1 demands that the vector of moments be asymptotically equivalent

to a q-dimensional sample mean of random variables {ψi}bni=1. We note that Assumption

A.5.1 effectively requires that the null hypothesis be true by requiring that the vari-

ables {ψi}bni=1 have mean zero. In turn, Assumptions A.5.2 and A.5.3 imposes moment

restrictions on the variables {ψi}bni=1 that ensure that the high dimensional central limit

theorem of Chernozhuokov et al. (2022) is applicable. Finally, Assumption A.5.4 de-

mands a linearization requirement on our bootstrap statistic, while Assumption A.5.5

states requirements on the weights {ωi}bni=1 that we may employ. We note, in particular,

that Assumption A.5.5 allows for the empirical bootstrap (through Assumption A.5.5(i))

and the use of Standard Gaussian, Rademacher, or Mammen (1993) weights (through

Assumption A.5.5(ii)).

Our next result encompasses Proposition 4.1 as a special case. The first and second

parts of the result provide conditions under which the level of the test is 1 − α uncon-

ditionally on Gn and conditionally on Gn respectively. We view the unconditional result

as appropriate for the asymptotic framework in Adao et al. (2019) (in which elements

of Gn are resampled), and the conditional result as more suitable for the asymptotic

framework in Goldsmith-Pinkham et al. (2020) (in which Gn is not resampled).
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Lemma A.5.1. Let Assumptions A.5.1, A.5.2, A.5.3, A.5.4, and A.5.5 hold. (i) If

r1n(̺,Gn) ∨ r2n(̺,Dn) = oP (1) for any ̺ > 0 and B2
n(Gn) log

5(qbn)/bn = oP (1), then

lim
n→∞

P (Tn ≤ ĉn) = 1− α.

(ii) If for any constants ǫ, ̺ > 0 we have r1n(̺,Gn) = oas(1) and P (r2n(̺,Dn) > ǫ|Gn) =

oas(1), and in additiong B2
n(Gn) log

5(qbn)/bn = oas(1), then it follows that

lim
n→∞

P (Tn ≤ ĉn|Gn) = 1− α a.s.

Proof. We begin by defining the conditional covariance matrix Σ(Gn) to be given by

Σ(Gn) ≡
1

bn

bn
∑

i=1

E
[

ψiψ
′
i|Gn

]

and letting Tn ≡ ‖Gn‖∞ for Gn ∈ R
q a Gaussian vector satisfying Gn ∼ N(0,Σ(Gn)).

Further denote the linearized versions of Tn and T ∗
n by letting Ln and L∗

n equal

Ln ≡
∥

∥

∥

∥

∥

1√
bn

bn
∑

i=1

ψi

∥

∥

∥

∥

∥

∞

L∗
n ≡

∥

∥

∥

∥

∥

∥

1√
bn

bn
∑

i=1

ωi



ψi −
1

bn

bn
∑

j=1

ψj





∥

∥

∥

∥

∥

∥

∞

(A.58)

and for notational convenience set δn(Gn) ≡ (B2
n(Gn) log

5(qbn)/bn)
1/4. By Theorem 2.1

in Chernozhuokov et al. (2022) there then exists a C1 not depending on Gn such that

sup
t∈R

|P (Ln ≤ t| Gn)− P (Tn ≤ t| Gn)| ≤ C1δn(Gn). (A.59)

Next note that, for any constant ̺ > 0, result (A.58) allows us to conclude that

P
(

b−1/2
n Tn ≤ t

∣

∣

∣Gn

)

≥ P (Ln ≤ t− ̺| Gn)− P
(

|b−1/2
n Tn − Ln| > ̺

∣

∣

∣
Gn

)

≥ P (Tn ≤ t− ̺| Gn)− C1δn(Gn)− P
(

|b−1/2
n Tn − Ln| > ̺

∣

∣

∣
Gn

)

≥ P (Tn ≤ t| Gn)− C2̺
√

log(q)− C1δn(Gn)− P
(

|b−1/2
n Tn − Ln| > ̺

∣

∣

∣
Gn

)

≥ P (Ln ≤ t| Gn)− C2η − 2C1δn(Gn)− r1n(η,Gn), (A.60)

where the third inequality holds holds for some constant C2 not depending on Gn by

Lemma J.3 in Chernozhuokov et al. (2022), and the final inequality holds for any η > 0

by result (A.59), Assumption A.5.1, and setting ̺ = η/
√

log(q).
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For Dn ≡ ({Yi,Xi, Si}ni=1,Z,Gn) and any constant C3 > 0 next define the event

E(Dn) ≡ 1

{

sup
t∈R

|P (Ln ≤ t|Gn)− P (L∗
n ≤ t|Dn)| ≤ C3δn(Gn)

}

.

By Assumption A.5.5 and Lemmas 4.5 and 4.6 in Chernozhuokov et al. (2022) it then

follows that we may select a constant C3 not depending on Gn under which we have

P (E(Dn) = 1| Gn) ≥ 1− 2

bn
− 3vn(Gn), v2n(Gn) =

B2
n(Gn) log

3(qbn)

bn
. (A.61)

Applying (A.61) and the same arguments as in (A.60) we obtain that if E(Dn) = 1, then

P
(

b−1/2
n T ∗

n ≤ t
∣

∣

∣Dn

)

≤ P (L∗
n ≤ t+ ̺| Dn) + P

(

|b−1/2
n T ∗

n − L∗
n| > ̺

∣

∣

∣Dn

)

≤ P (L∗
n ≤ t| Dn) + C2̺

√

log(q) + 2(C1 + C3)δn(Gn) + P
(

|b−1/2
n T ∗

n − L∗
n| > ̺

∣

∣

∣
Dn

)

≤ P (L∗
n ≤ t| Dn) + C2η + 2(C1 +C3)δn(Gn) + r2n(η,Dn) (A.62)

for any constant η > 0. Next, plug in t = ĉnb
−1/2
n into result (A.62) and note that result

(A.60) then implies that whenever E(Dn) = 1 we must have

1− α ≤ P
(

L∗
n ≤ ĉnb

−1/2
n

∣

∣

∣
Dn

)

+ C2η + 2(C1 + C3)δn(Gn) + r2n(η,Dn)

≤ P
(

Ln ≤ ĉnb
−1/2
n

∣

∣

∣
Gn

)

+ C2η + (2C1 + 3C3)δn(Gn) + r2n(η,Dn)

≤ P (Tn ≤ ĉ| Gn) + 2C2η + 4(C1 + C3)δn(Gn) + r2n(η,Dn) + r1n(η,Gn)

≡ P (Tn ≤ ĉn| Gn) + sn(η,Dn), (A.63)

where the final equality is definitional.

To conclude, let An be a sigma field satisfying Gn ⊆ An and note that for any ̺ > 0

we obtain from result (A.61) and the law of iterated expectations that

P (E(Dn) = 1|An) ≥ E[1{vn(Gn) ≤ ̺}P (E(Dn) = 1|Gn)|An]

≥ P (vn(Gn) ≤ ̺|An)

(

1− 2

bn
− 3̺

)

. (A.64)

Similarly, for any ̺ > 0 we may select η > 0 sufficiently small so as to ensure that

P (sn(η,Dn) < ̺|An) ≥ P (δn(Gn) ∨ r1n(η,Gn) ∨ r2n(η,Dn) > ǫ̺|An) (A.65)
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for some ǫ > 0. Finally, observe that (A.63) and the law of iterated expectations yield

P (Tn ≤ ĉn|An) ≥ E[1{Tn ≤ ĉn}1{P (Tn ≤ ĉn|Gn) ≥ 1− α− ̺}|An]

≥ (1− α− ̺)E[1{P (Tn ≤ ĉn|Gn) ≥ 1− α− ̺}|An]

≥ (1− α− ̺)P (s(η,Dn) < ̺, E(Dn) = 1|An). (A.66)

Part (i) of the lemma therefore follows from ̺ being arbitrary, results (A.64), (A.65),

(A.66), and setting An to be the trivial sigma field. Part (ii) of the lemma similarly

follows from ̺ being arbitrary, results (A.64), (A.65), (A.66), and setting An = Gn.
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This supplemental appendix includes: (i) Calculations that justify the asymptotic

validity of the proposed overidentifiation tests; and (ii) A set of Monte Carlo experiments

evaluating the finite sample performance of such tests.

S.1 Influence Functions

In this section, we discuss how to verify the conditions of Lemma A.5.1, and hence

Proposition 4.1, in the context of the overidentification tests of Sections 4.2 and 4.3.

S.1.1 Conditioning on Shocks

We first examine the overidentification test introduced in Section 4.2, which is designed

for applications in which Gn denotes a set of aggregate shocks that include Z. Recall

that in Section 4.2 we set ψij ≡ Uij/σj and ψ̂ij ≡ Ûij/σ̂j with Uij and Ûij given by

Uij ≡ (Sijεi − (E[Sij(Xi,W
′
i )|Gn])(E[Ai(Xi,Wi)

′|Gn])
−1Aiεi

Ûij ≡ (Sij ε̂i − (
1

n

n
∑

i=1

Sij(Xi,W
′
i ))(

1

n

n
∑

i=1

Ai(Xi,Wi)
′)−1Aiε̂i, (S.1)

where Ai = (Zi,W
′
i )

′ and σ2j and σ̂2j denote the population and sample variances

σ2j ≡ var{Uij |Gn} σ̂2j ≡ 1

n

n
∑

i=1

(Ûij −
1

n

n
∑

k=1

Ûkj)
2. (S.2)
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It will also prove helpful to define the variables {Rij}ni=1 for 1 ≤ j ≤ p according to

Rij ≡ Sijεi − (
1

n

n
∑

k=1

Skj(Xk,W
′
k))(

1

n

n
∑

k=1

Ak(Xk,W
′
k))

−1Aiεi. (S.3)

In particular, by definition of Tn and standard manipulations it then follows that

Tn = max
1≤j≤p

∣

∣

∣

∣

∣

n
∑

i=1

Rij

σ̂j

∣

∣

∣

∣

∣

. (S.4)

In order to apply Lemma A.5.1(ii), to justify the asymptotic validity of the overi-

dentification test of Section 4.2, we require suitable moment conditions and that

max
1≤j≤p

|
√

log(p)√
n

n
∑

i=1

Rij − Uij

σj
| = oP (1) (S.5)

max
1≤j≤p

log2(p)

n

n
∑

i=1

(Ûij − Uij)
2

σ2j
= oP (1), (S.6)

where probability statements are understood to be conditionally on Gn and require-

ments (S.5) and (S.6) to hold almost surely in Gn. By relying on Lemma D.5 in

Chernozhukov et al. (2019), it is possible to show that requirement (S.6) in fact im-

plies that

log(p)× max
1≤j≤p

|σj
σ̂j

− 1| = oP (1), (S.7)

where, again, probabilities are understood to be conditionally on Gn and (S.7) to hold

almost surely in Gn. Moreover, by the triangle inequality and condition (S.5) we have

max
1≤j≤p

|
√

log(p)√
n

n
∑

i=1

Rij

σ̂j
− Uij

σj
|

≤ ( max
1≤j≤p

|
√

log(p)√
n

n
∑

i=1

Uij

σj
|+ oP (1)) × max

1≤j≤p
|σj
σ̂j

− 1| = oP (1), (S.8)

where the final result follows from result (S.7) and a standard maximal inequality; see,

e.g., Lemma 2.2.2 in van der Vaart and Wellner (1996). Result (S.8) together with (S.4)

and ψij ≡ Uij/σj imply that Assumption A.5.1 holds with bn = n, q = p, and r1n(̺,Gn)

satisfying r1n(̺,Gn) = oas(1) for any ̺ > 0.

In order to verify Assumption A.5.3, recall that Dn ≡ ({Yi,Xi, Si}ni=1,Z,Gn) and

note that if {ωi}ni=1 are i.i.d. standard normal random variables independent of Dn,
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then a standard maximal inequality yields that

E[ max
1≤j≤p

|
√

log(p)√
n

n
∑

i=1

ωi((ψ̂ij − ψij)−
1

n

n
∑

k=1

(ψ̂kj − ψkj)|]

.
√

log(p)× max
1≤j≤p

(
log(p)

n

n
∑

i=1

(ψ̂ij − ψij)
2)1/2. (S.9)

Moreover, employing that ψ̂ij ≡ Ûij/σ̂j and ψij ≡ Uij/σj we can bound (S.9) by

max
1≤j≤p

log2(p)

n

n
∑

i=1

(ψ̂ij − ψij)
2

.
log2(p)

n
× ( max

1≤j≤p

n
∑

i=1

(Ûij − Uij)
2

σ2j
(1 + oP (1)) + max

1≤j≤p

n
∑

i=1

U2
ij

σ2j
(
σj
σ̂j

− 1)2) = oP (1),

where the final result holds by (S.6) and a standard maximal inequality. By Markov’s

inequality and result (S.9) it follows that Assumption A.5.3 holds for some r2n(̺,Dn)

satisfying P (r2n(̺,Dn) > ǫ|Dn) = oas(1) for any ̺ > 0 as required by Lemma A.5.1.

S.1.2 Identification Through Shocks

We next discuss the overidentification test of Section 4.3, which is designed for applica-

tions in which identification is driven by exogeneity of the shocks Z. Recall that in the

corresponding asymptotic framework, originally developed by Adao et al. (2019), we set

Gn = {Si,Wi, εi}ni=1. Following the notation in Section 4.3, we further set

δj ≡
(

n
∑

i=1

WiW
′
i

)−1 n
∑

i=1

Wigj(εi,Wi, Si)

κj ≡
(

n
∑

i=1

E[S′
iEXi|Gn]

)−1( n
∑

i=1

E[S′
iEXi|Gn]

∂

∂ε
gj(εi,Wi, Si)

)

, (S.10)

where E ≡ Z − E[Z|Gn] and we note that δj and κj depend on n (through Gn), but we

suppress the dependence from the notation. As estimators for δj and κj we employ

δ̂j ≡
(

n
∑

i=1

WiW
′
i

)−1 n
∑

i=1

Wigj(ε̂i,Wi, Si)

κ̂j ≡
(

n
∑

i=1

(Zi −W ′
i π̂n)Xi

)−1( n
∑

i=1

(Zi −W ′
i π̂n)Xi

∂

∂ε
gj(ε̂i,Wi, Si)

)

,
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where π̂n denotes the coefficient from regressing {Zi}ni=1 on {Wi}ni=1. In addition let

Uij ≡ Ei ×
n
∑

k=1

Ski(gj(εk,Wk, Sk)−W ′
kδj − εkκj)

Ûij ≡ Êi ×
n
∑

k=1

Ski(gj(ε̂k,Wk, Sk)−W ′
k δ̂j − ε̂kκ̂j)

for Êi an estimator of Ei (see Remark 4.2), and recall that ψij ≡ Uij/σj and ψ̂ij ≡ Ûij/σ̂j ,

where σj and σ̂j respectively denote the population and finite sample variances

σ2j ≡ 1

p

p
∑

i=1

Var{Uij |Gn} σ̂2j ≡ 1

p

p
∑

i=1

(

Ûij −
1

p

p
∑

k=1

Ûkj

)2

.

It will also prove convenient to define the variables {Rij}ni=1 for 1 ≤ j ≤ q according to

Rij ≡ gj(ε̂i,Wi, Si)(Zi −W ′
i π̂n).

The asymptotic validity of the overidentification test of Section 4.3 may be justified

by employing Lemma A.5.1(i). In order to appeal to Lemma A.5.1(i), first note that if

{Ei}pi=1 are (uniformly) Sub-Gaussian almost surely in Gn, then Assumption A.5.2 can

be verified by setting Bn(Gn) = KCn for K large enough and Cn given by

Cn ≡ max
1≤i≤p

max
1≤j≤q

(

Var{Uij |Gn}
1
p

∑p
i=1Var{Uij |Gn}

)1/2

.

In turn, Assumptions A.5.1 and A.5.2 can be verified under the key requirements

max
1≤j≤q

√

log(q)

σj
√
p

|
n
∑

i=1

Rij −
p
∑

i=1

Uij | = oP (1) (S.11)

max
1≤j≤q

log2(q)

p

p
∑

i=1

(Ûij − Uij)
2

σ2j
= oP (1), (S.12)

where the convergence in probability statement should be understood as jointly over all

the data (rather than conditionally on Gn). In particular, under the condition that

C2
n log

2(q)

p(1−c)/2
= oP (1) (S.13)

for some 0 < c < 1, it is possible to argue by relying on Lemma D.5 in Chernozhukov et al.

(2019) that requirement (S.12) in fact implies that

log(q)× max
1≤j≤q

|σj
σ̂j

− 1| = oP (1). (S.14)
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Moreover, by applying Lemma D.3 in Chernozhukov et al. (2019) and relying on the

rate condition in (S.13) it is also possible to obtain the rate bounds

max
1≤j≤q

| 1√
p

p
∑

i=1

Uij

σj
| = OP (

√

log(q)) max
1≤j≤q

|1
p

p
∑

i=1

Uij

σj
|2 = OP (1). (S.15)

Combining results (S.14) and (S.15) with the same arguments employed in Section

S.1.1, it is then straightforward to show that conditions (S.11) and (S.12) imply As-

sumptions A.5.1 and A.5.4 hold with bn = p and r1n(̺,Gn) ∨ r2n(̺,Gn) = oP (1). To

conclude verifying the main requirements of Lemma A.5.1(i) we note that the condition

B2
n(Gn) log

5(qp)/p = oP (1) is implied by requirement (S.13) (up to logs).

Condition (S.11) is more challenging to verify than its analogue in Section S.1.1 (i.e.

(S.5)) because there are n terms {Rij} but p terms {Uij}. Fortunately, as we next

outline, it is possible to establish that (S.11) holds by building on the assumptions and

arguments in Adao et al. (2019). To this end, we start with the decomposition

n
∑

i=1

Rij =
n
∑

i=1

gj(εi,Wi, Si)(Zi −W ′
i π̂n) (S.16)

+

n
∑

i=1

(gj(ε̂i,Wi, Si)− gj(εi,Wi, Si))(Zi −W ′
iπn) (S.17)

+

n
∑

i=1

(gj(ε̂i,Wi, Si)− gj(εi,Wi, Si))W
′
i (π̂n − πn). (S.18)

It is also helpful to note that since Zi = S′
iZ, E[Zi|Gn] =W ′

iπn under the null hypothesis,

and E[Zi|Gn] = S′
iE[Z|Gn] due to Si ∈ Gn, it follows that

Zi −W ′
iπn = S′

iE . (S.19)

Next, note that (S.19), the definition of δj in (S.10), the equality S′
kE =

∑p
i=1 SkiEi, and

some algebra allows us to express term (S.16) as being equal to

n
∑

i=1

gj(εi,Wi, Si)(Zi −W ′
i π̂n) =

n
∑

i=1

gj(εi,Wi, Si){(Zi −W ′
iπn) +W ′

i (πn − π̂n)}

=

n
∑

i=1

gj(εi,Wi, Si){S′
iE −W ′

i (

n
∑

k=1

WkW
′
k)

−1
n
∑

l=1

WlS
′
lE}

=

p
∑

i=1

Ei × (

n
∑

k=1

Ski(gj(εk,Wk, Sk)−W ′
kδj)).
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We analyze the term in (S.17) through a linearization argument. To this end, we set

M1q ≡ max
1≤j≤q

‖ ∂
∂ε
gj‖∞ M2q ≡ max

1≤j≤q
‖ ∂

2

∂ε2
gj‖∞

and, following Adao et al. (2019), we let nk ≡ ∑n
i=1 Ski and set rn = (

∑p
k=1 n

2
k)

−1.

Then note that by result (S.19) and a standard Taylor expansion we obtain that

n
∑

i=1

(gj(ε̂i,Wi, Si)− gj(εi,Wi, Si))(Zi −W ′
iπn)

=

n
∑

i=1

∂

∂ε
gj(εi,Wi, Si)S

′
iE(Xi(β − β̂n) +W ′

i (γs − γ̂n))

+
n
∑

i=1

∂2

∂ε2
gj(ε̃i,Wi, Si)(ε̂i − εi)

2S′
iE , (S.20)

where ε̃i is some intermediate value between ε̂i and εi. If the covariates Wi are bounded

almost surely, then a maximal inequality (applied conditionally on Gn) yields

E[ max
1≤j≤q

‖
p
∑

i=1

Ei{
n
∑

k=1

Sik
∂

∂ε
gj(εk,Wk, Sk)W

′
k‖|Gn]

.
√

log(q)M1q × (

p
∑

i=1

(
n
∑

k=1

Sik)
2)1/2 =

√

log(q)M1q√
rn

,

where the final equality follows by definition of rn. We can therefore conclude that

max
1≤j≤q

|
n
∑

i=1

∂

∂ε
gj(εi,Wi, Si)S

′
iEW ′

i (γs − γ̂n)| = OP (

√

log(q)M1q√
rn

‖γs − γ̂n‖),

where the probability is understood to be over the entire data. Similarly, adapting the

arguments in the proof of Proposition 3 in Adao et al. (2019) (see in particular the proof

of their display (A.4)) and employing a maximal inequality for degenerate U-statistics

(see, e.g., equation (3.5) in Giné et al. (2000)) it is possible to establish that

max
1≤j≤q

|
n
∑

i=1

∂

∂ε
gj(εi,Wi, Si)(S

′
iEXi −E[S′

iEXi|Gn])(β − β̂n)| = OP (
log(q)M1q√

rn
|β̂n − β|).

Moreover, the arguments in Adao et al. (2019) can additionally be used to conclude that

β̂n − β =

∑n
i=1 S

′
iEεi

∑n
i=1E[S′

iEXi|Gn]
+OP (

‖γ̂ − γs‖
n
√
rn

+
1

n2rn
), (S.21)
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while sup norm bound on the quadratic term in (S.20) and the definition of M2q imply

max
1≤j≤q

|
n
∑

i=1

∂2

∂ε2
gj(ε̃i,Wi, Si)(ε̂i − εi)

2S′
iE| = OP (nM2q(|β̂n − β|2 + ‖γ̂ − γs‖2)).

Thus, since result (S.21) implies that |β̂n−β| = OP ((n
√
rn)

−1), our analysis so far yields

max
1≤j≤q

|
n
∑

i=1

(gj(ε̂i,Wi, Si)− gj(εi,Wi, Si))(Zi −W ′
iπn)− κj

n
∑

i=1

S′
iEεi|

= OP (

√

log(q)M1q√
rn

‖γ̂ − γs‖+ nM2q‖γ̂ − γs‖2 + log(q)
M1q ∨M2q

nrn
).

Finally, using that ‖π̂n − πn‖ ∨ |β̂ − β| = OP ((n
√
rn)

−1) and relying on the mean value

theorem allows to bound in probability the term in (S.18) by

max
1≤j≤q

|
n
∑

i=1

(gj(ε̂i,Wi, Si)− gj(εi,Wi, Si))W
′
i (π̂n − πn)| = OP (

M1q√
rn

(
1

n
√
rn

+ ‖γ̂ − γs‖)).

To simplify our bounds, we suppose that ‖γ̂ − γs‖ has the same rate of convergence

as |β̂ − β| so that ‖γ̂ − γs‖ = OP ((n
√
rn)

−1). Combining our analysis of the terms in

(S.16)-(S.18) together with the definition of Rij and Uij we can then conclude that

max
1≤j≤q

|
n
∑

i=1

Rij −
p
∑

i=1

Uij | = OP (log(q)
M1q ∨M2q

nrn
).

Thus, finally setting σ ≡ min1≤j≤q σj we obtain that (S.11) is implied by the condition

log3/2(q)(M1q ∨M2q)

σ
√
pnrn

= oP (1).

S.2 Simulation Evidence

We next conduct a series of Monte Carlo simulations to evaluate the finite sample

performance of the overidentification tests proposed in Section 4. With the goal of

informing the implementation of our tests in the empirical application of Section 5, we

employ simulation designs based on the Autor et al. (2013) dataset. In particular, as in

Autor et al. (2013), our designs consist of short panels with T = 2 time periods, n = 722

commuting zones, and p = 397 sectors defined by four digit SIC codes.

In what follows, we incorporate the short panel structure into our notation by letting

Yit, Xit, Wit, and Zit respectively denote the outcome, regressor, controls, and instru-

ment for commuting zone i at time periods t. We also note that in Autor et al. (2013)

both the regressor Xit and instrument Zit have a Bartik structure and hence we now
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index shares and aggregate shocks by subscripts x and z. Concretely, we have

Xit = S′
xitZxt Zit = S′

zitZzt (S.22)

where Sxit and Szit represent share vectors for commuting zone i at time t and Zxt and

Zzt denote aggregate shocks at time t. Finally, because Autor et al. (2013) weight all

observations by the start of period commuting zone population, in our simulations we

employ the same weights throughout the analysis.

S.2.1 Conditioning on Shocks

We begin by examining the finite sample performance of the overidentification test pro-

posed in Section 4.2, which recall was designed for applications that implicitly condition

on the aggregate shocks – i.e. that employ asymptotic approximations based on only

n growing. As discussed in Remark 2.1, implicitly conditioning on aggregate shocks in

short panels yields the overidentifying moment restrictions

E[Szitεit] = 0 for 1 ≤ t ≤ T. (S.23)

Since T = 2 and p = 397 in the context of Autor et al. (2013), result (S.23) represents a

total of 794 possible moment restrictions. Moreover, because Autor et al. (2013) cluster

observations at the state level, their effective number of observations is 48.

In designing our simulations, we aimed to reflect the clustering structure in Autor et al.

(2013) by employing a heteroskedastic version of the group shock model of Moulton

(1986). To this end, we let c denote a cluster, which consists of the commuting zone

time pairs (i, t) for which i belongs to the state represented by c, and let C denote the

collection of all clusters. Employing the Autor et al. (2013) dataset, we then estimate a

model in which the errors εit are assumed to have the structure

εit = ηc + ζit

where ηc are i.i.d. cluster level shocks and ζit are i.i.d. shocks and independent of ηc.

We further impose a parsimonious heteroskedasticity specification by supposing that

E[η2c |An] = aη + sη(
∑

(i,t)∈c

S′
zitSzit)

E[ζ2it|An] = aζ + sζ(S
′
zitSzit)

for some constants aη, sη, aζ , and sζ and An ≡ {Szit, Sxit,Wit}. In order to estimate

this model, we employ the fitted residuals {êit} from the weighted instrumental variable
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estimation in the main specification of Autor et al. (2013) and let

(âη , ŝη) ≡ arg min
a,s∈R

∑

c∈C

∑

(it)6=(̃i,t̃)∈c

(êitêĩt̃ − a− s(
∑

(i′t′)∈c

S′
zi′t′Szi′t′))

2

(âζ , ŝζ) ≡ arg min
a,s∈R

∑

c∈C

∑

(i,t)∈c

(ê2it − σ̂2η,c − a− s(S′
zitSzit))

2 (S.24)

where

σ̂2η,c ≡ max{âη + ŝη(
∑

(i,t)∈c

S′
zitSzit), 0}.

Given these estimates, we generate our Monte Carlo samples as follows:

Step 1. We employ the same controls {Wit}, aggregate shocks Zzt and Zxt, and re-

gression weights as in the main specification of Autor et al. (2013), which we keep fixed

across all the simulations.

Step 2. For each t ∈ {1, 2} we draw n observations {S∗
xit, S

∗
zit}ni=1 with replacement

from the original full sample set of shares {Sxit, Szit}ni=1.

Step 3. Given the sample {S∗
xit, S

∗
zit}, we create a sample of instruments {Z∗

it} and

endogenous variables {X∗
it} by setting Z∗

it ≡ (S∗
zit)

′Zzt and letting X∗
it ≡ (S∗

xit)
′Zxt.

Step 4. For each commuting zone time pair (i, t) and cluster c we create the variances

(σ̂∗ζ,it)
2 ≡ max{âζ + ŝζ(S

∗
zit)

′S∗
zit, 0}

(σ̂∗η,c)
2 ≡ max{âη + ŝη

∑

(i,t)∈c

(S∗
zit)

′S∗
zit, 0}

by employing the full sample estimates âη, ŝη, âζ and ŝζ from (S.24).

Step 5. To create a sample of outcomes for our simulations, we draw |C| i.i.d. standard
normal variables {Vc}c∈C , n× T i.i.d. standard normal variables {Uit}, and set

Y ∗
it ≡ X∗

itβ̂ +W ′
itγ̂s + Vcσ̂

∗
η,c + Uitσ̂

∗
ζ,it,

where (β̂, γ̂s) denote the weighted instrumental variable estimators from the main spec-

ification in Autor et al. (2013) and the “c” subscript is understood to refer to the state

to which commuting zone i belongs.

By repeating Steps 1-5 we generate one thousand samples {Y ∗
it ,X

∗
it, Z

∗
it,Wit} on

which we evaluate the finite sample properties of our test. We note that the number

of moment restrictions (p × T = 794) in (S.23) far exceeds the number of clusters in

the simulations (48 states). Since any linear combination of the moment restrictions in

(S.23) is also a valid moment restriction, we also examine the performance of our test

when adding restrictions across time periods and/or different levels of SIC codes. Table
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Table 3: Rejection Probabilities

Significance Level
Moment Restrictions # Moments 1% 5% 10% p-value

Four Digit SIC & all time periods 794 0.000 0.004 0.013 0.1274
Four Digit SIC & time aggregated 397 0.000 0.008 0.031 0.168
Three Digit SIC & all time periods 272 0.000 0.007 0.029 0.0488
Three Digit SIC & time aggregated 136 0.000 0.007 0.025 0.0748
Two Digit SIC & all time periods 40 0.001 0.030 0.072 0.0054
Two Digit SIC & time aggregated 20 0.004 0.034 0.095 0.0018

Finite sample rejection probabilities for overidentification tests of the validity of the moment restrictions
imposed when asymptotic approximation implicitly condition on aggregate shocks.

3 reports the finite sample rejection probabilities for tests based on different choices of

moments and significance levels. The final column of Table 3 additionally reports the

p-value obtained when the test is implemented in the data of Autor et al. (2013). All

critical values were obtained by following the procedure in Section 4.2 with one thousand

bootstrap draws.

Overall we find that the test is able to control size across all specifications. However,

for larger values of the number of moments, the finite sample rejection probability of the

test is significantly below its nominal level. The test performs best when aggregating

across time periods and two digit SIC codes. For this specification, which consists of

twenty moments, the finite sample rejection probabilities of the test are close to the

nominal levels. Because the design only has 48 clusters, we view this specification as

still employing a large number of moments relative to the sample size.

S.2.2 Identification Through Shocks

We conclude by examining the finite sample performance of the overidentification test

proposed in Section 4.3, which was designed for applications in which the exogeneity of

the instrument is due to the exogeneity of the aggregate shocks. Recall that in these

applications Gn = {Szit, Sxit,Wit, εit} and the overidentifying restriction is given by

E[Zit|Gn] =W ′
itπn (S.25)

where

πn = (

T
∑

t=1

n
∑

i=1

WitW
′
it)

−1
T
∑

t=1

n
∑

i=1

Wit(S
′
zitE[Zit|Gn]).

In order to ensure that the null hypothesis holds in our simulation design, we rely on

a model proposed by Adao et al. (2019) as a sufficient condition for (S.25). Specifically,
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we suppose that for some p× d matrix of shock Zwt and d× 1 vector Γ we have

E[Zzt|Gn] = ZwtΓ Wit = Z ′
wtSzit. (S.26)

To estimate this model in the original Autor et al. (2013) dataset, we first compute a

ridge regression of the coordinates of Wit ∈ R
d on Szit by setting

δ̂jt ≡ (

n
∑

i=1

SzitS
′
zit + λIp)

−1
n
∑

i=1

SzitWitj,

for each j and t, where Witj denotes the jth coordinate of the vector Wit ∈ R
d, Ip is a

p× p identity matrix, and we set the penalty λ to equal 0.1. Given these estimates, we

let Ẑwt ≡ [δ̂1t, . . . , δ̂dt] and estimate Γ through the regression

Γ̂ ≡ arg min
g∈Rd

T
∑

t=1

‖Zzt − Ẑwtg‖2.

In what follows, it will be helpful to define Ê[Zzt|Gn] ≡ ẐwtΓ̂ and ν̂t ≡ Zzt − ẐwtΓ̂.

We further aim to reflect the clustering structure in Autor et al. (2013). To this

end, we follow Adao et al. (2019) and Borusyak et al. (2022) who in re-examining the

empirical analysis of Autor et al. (2013) cluster shocks at the three digit SIC code. As

in Section S.2.1, we estimate a common shock model in which Zzt satisfies

Zztj = ηc + ζtj

where Zztj denotes the jth coordinate of Zzt, ηc are i.i.d. cluster level shocks, and ζtj

are i.i.d. shocks independent of ηc. We estimate the variance of these shocks by setting

σ̂2η ≡ 1

|C|
∑

c∈C

1

nc(nc − 1)

∑

(t,j)6=(t̃,j̃)∈c

ν̂tj ν̂t̃j̃

σ̂2ζ ≡ 1

|C|
∑

c∈C

1

nc

∑

(s,t)∈c

ν̂2tj − σ̂2η ,

where nc denotes the number of observations in cluster c and νtj denotes the jth coor-

dinate of the vector ν̂t ∈ R
p.

Finally, in order to reflect the strength of the instrument in Autor et al. (2013) in

our simulation design, we run the following regression on the aggregate shocks

(α̂, κ̂) ≡ arg min
a,k∈R

T
∑

t=1

p
∑

j=1

(Zxtj − a− kZztj)
2

and let σ̂2ξ denote the sample variance of the residuals ξ̂tj ≡ Zxtj − α̂− κ̂Zztj .
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Given these estimates, we generate our Monte Carlo samples as follows:

Step 1. We first create controls Ŵit ≡ Ẑ ′
wtSzit, which we note have the structure

required by model (S.26). We combine the controls {Ŵit} with the shares {Szit, Sxit} in

Autor et al. (2013) and keep all of them fixed across simulation designs.

Step 2. To generate our instrument, we first draw |C| i.i.d. standard normal variables

{Vc}c∈C , p× T i.i.d. standard normal variables {Uztj}, and set

Z∗
ztj = Ê[Zztj |Gn] + Vcσ̂η + Uztjσ̂ζ ,

where the “c” subscript refers to the three digit SIC code to which sector j belongs. As

our instrument we then employ Z∗
it ≡ S′

ztZ∗
zt. Note that, because Ê[Zzt|Gn] ≡ ẐwtΓ̂, the

shocks Z∗
zt have the structure required by model (S.26).

Step 3. Similarly, in order to generate aggregate shocks for our regressor, we draw

p× T i.i.d. standard normal random variables {Uxtj} and let

Z∗
xtj = α̂+ κ̂Z∗

ztj + Vxtj σ̂ξ.

As our regressor, we then employ X∗
it ≡ S′

xitZ∗
xt.

Step 4. Finally, we generate a sample of outcomes Y ∗
it by simply setting Y ∗

it to equal

Y ∗
it = X∗

itβ̂ + Ŵ ′
itγ̂s + êit,

where (β̂, γ̂s) and {êit} denote the estimators and residuals obtained from replacing Wit

with Ŵit in the main specification of Autor et al. (2013).

By repeating Steps 1-4 we generate one thousand samples {Y ∗
it ,X

∗
it, Z

∗
it, Ŵit} on

which we evaluate the performance of the overidentification test proposed in Section

4.3. In order to implement the test, we need to select the moments to employ (i.e. the

functions gj in (30)) and an estimator Ê∗
t for the demeaned shock

E∗
t ≡ Z∗

zt − E[Z∗
zt|Gn].

In the main specification of Autor et al. (2013), there are no control variables with the

structure required by the estimator for E∗
t proposed by Borusyak et al. (2022). We there-

fore instead adapt the estimator of E∗
t advocated by Adao et al. (2019) by employing

Ê∗
t = (

n
∑

i=1

SzitS
′
zit + λIp)

−1
n
∑

i=1

Szit(Z
∗
it − Ŵ ′

itπ̂
∗
n) (S.27)

for π̂∗n the coefficient obtained from a weighted regression of {Z∗
it} of {Ŵit}. We introduce

ridge regression in (S.27) because the design matrix is ill-conditioned. In this regard,
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Table 4: Rejection Probabilities

Significance Level
Ridge Parameter 1% 5% 10% p-value

λ = 1e− 3 0.029 0.103 0.177 0.0012
λ = 1e− 4 0.011 0.061 0.127 0.0074
λ = 1e− 5 0.008 0.049 0.114 0.0368
λ = 1e− 6 0.008 0.047 0.100 0.0650

Finite sample rejection probabilities for overidentification tests of the validity of the moment restrictions
imposed when identification is driven by the exogeneity of the aggregate shocks.

our estimator differs from that in Adao et al. (2019) who use ordinary regression (i.e.

λ = 0), but instead drop sectors from the regression to address the ill conditioning

of the design matrix.1 The p-values of the test can depend on λ, and we employ the

simulations to inform the choice of penalty λ for our application.2

Finally, for our moments we select the square of the residual and moments based on

the pdf of the Logit distribution, which may be interpreted as different kernel estimators.

Specifically, we employ a total of twenty moments by setting

gj(ε, w, s) =

{

ε2 if j = 1
exp(ε−aj)

(exp(ε−aj)+1)2 if 2 ≤ j ≤ 20

with a2, . . . , a20 = −2.25,−2, . . . , 2, 2.25. Table 4 reports the finite sample rejection

probabilities of the resulting test for different choices of the ridge parameter λ. The final

column of Table 4 additionally reports the p-value obtained when the test is implemented

in the data of Autor et al. (2013). The results are based on one thousand simulations

with the bootstrap implementation relying on one thousand replications. Overall, we

find that the rejection probability is close to the nominal level of the test provided that

the ridge parameter is sufficiently small.
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