
ar
X

iv
:2

40
4.

17
06

5v
1

 [
cs

.L
O

]
 2

5
A

pr
 2

02
4

DeLaM: A Dependent Layered Modal Type Theory for

Meta-programming

JASON Z. S. HU and BRIGITTE PIENTKA,McGill University, Canada

We scale layered modal type theory to dependent types, introducing DeLaM, dependent layered modal type theory. This
type theory is novel in that we have one uniform type theory in which we can not only compose and execute code, but
also intensionally analyze the code of types and terms. The latter in particular allows us to write tactics as meta-programs
and use regular libraries when writing tactics. DeLaM provides a sound foundation for proof assistants to support type-safe
tactic mechanism.

ACM Reference Format:

Jason Z. S. Hu and Brigitte Pientka. 2024. DeLaM: A Dependent Layered Modal Type Theory for Meta-programming. 1, 1
(April 2024), 138 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Hu and Pientka [2024a] develop a layeredmodal type theorywhich supports patternmatching on code. A critical
idea lying in this system is the layering principle. The layering principle begins with a core language, e.g. simply
typed _-calculus (STLC). Then we extend the core language with a layer of the�modality which supports meta-
programming and intensional analysis. Though only two layers are demonstrated by Hu and Pientka [2024a], in
principle, this extension can be iterated indefinite number of times, forming an arbitrary =-layered modal type
theory.

In another dimension, instead of adding more and more layers, we could also increase the expressive power
of the core language. One interesting candidate for a core language is Martin-Löf type theory (MLTT). MLTT is
the foundation for many type-theory-based proof assistants, including Coq, Agda and Lean. Treating MLTT as
the core language and applying the layering principle to it could yield a dependently typed system that allows
to meta-program and intensionally analyze code of itself without forgoing the consistency of the overall system.
This feature gives a solid foundation for proof assistants to support truly type-safe meta-programming. Due to
the layering principle, libraries written for bare MLTT can also be used during meta-programming. For exam-
ple, we can use the same data structures for natural numbers and lists for both programs and meta-programs.
Meanwhile in reality, e.g. in Coq, we have at least four unexchangeable notions natural numbers: the natural
numbers defined inductively in Gallina, Ltac’s natural numbers, failure levels and hint database’s search levels.
Therefore, we can foresee that the layering principle also has the additional benefit in engineering.

In this technical report, we first extend the previous layered modal type theory with contextual variables.
They are necessary to enable recursion on code. We justify the decidability of conversion checking follow-
ing Abel et al. [2017]’s reducibility proof. We then scale the setup all the way to MLTT, introducing DeLaM,
Dependent Layered Modal type theory. We then scale the reducibility proof to DeLaM and therefore justify
its decidability of conversion checking. A corollary is the consistency of DeLaM, hence showing that this type
theory can be used as a foundation for proof assistants.

Authors’ address: Jason Z. S. Hu, zhong.s.hu@mail.mcgill.ca; Brigitte Pientka, bpientka@cs.mcgill.ca, School of Computer Science, McGill

University, McConnell Engineering Bldg. , 3480 University St. Montréal, Québec, Canada, H3A 0E9.

2024. XXXX-XXXX/2024/4-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: April 2024.

http://arxiv.org/abs/2404.17065v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Jason Z. S. Hu and Brigi�e Pientka

2 SUPPORTING CONTEXTUAL VARIABLES

Hu and Pientka [2024a] present a layered modal type theory which supports pattern matching on code and
establish a normalization proof via a presheaf model. However, this form of intentional analysis is not in the
most desired form: we cannot perform recursion on the structure of code. This limitations comes from two
aspects:

• STLC lacks a generic notion of types. When we do recursion on, for example, a _ expression, the type
of the _ and the type of the body necessarily differ. Therefore, we are not able to formulate a recursion
principle without type variables as in System F, or a variable of type Set in dependent type theory. This
problem naturally goes away if we employ a stronger core type system, so it is not our primary concern.
• However, System F or dependent types does not give us a way to capture local contexts using a variable.
Consider again the _ case, even if we have type variables, the recursion on the body is in an extended local
context, so for the recursion to work, we must be able to capture contextual variables, which capture local
contexts as global variables.

In this section, we focus on contextual variables. We develop the syntactic theory for our 2-layered contextual
model type theory with contextual variables, and show its consistency via a reducibility predicate argument.

2.1 Well-formedness of Contexts and Types

With contextual variables, the type theory becomes “slightly” dependently typed, in that both global and local
contexts, and types can depend on contextual variables, so their well-formedness requires dedicated judgments.
The syntax of contexts and types is:

8 (Layer, 8 ∈ [0, 1])

G,~ (Local variables)

D (Global variables)

6 (Contextual variables)

(,) := Nat | �(Γ ⊢)) | (−→) | (6 : Ctx) ⇒) (Types, Typ)

� := D : (Γ ⊢)) | 6 : Ctx (Global bindings)

Φ,Ψ := · | Φ, � (Global contexts)

Γ,Δ := · | 6 | Γ, G :) (Local contexts)

Their well-formedness judgments are:

⊢ ·

⊢ Ψ

⊢ Ψ, 6 : Ctx

Ψ ⊢0 Γ Ψ ⊢0)

⊢ Ψ, D : (Γ ⊢))

⊢ Ψ

Ψ ⊢8 ·

⊢ Ψ 6 : Ctx ∈ Ψ

Ψ ⊢8 6

Ψ ⊢8 Γ Ψ ⊢8)

Ψ ⊢8 Γ, G :)

⊢ Ψ

Ψ ⊢8 Nat

Ψ ⊢8 (Ψ ⊢8)

Ψ ⊢8 (−→)

Ψ ⊢0 Δ Ψ ⊢0)

Ψ ⊢1 �(Δ ⊢))

Ψ, 6 : Ctx ⊢1)

Ψ ⊢1 (6 : Ctx) ⇒)

⊢ Ψ states the well-formedness of a global context Ψ. There are two kinds of bindings in a global context: either
G : (Γ ⊢)) as in previous modal type theory, or 6 : Ctx which is a contextual variable representing a local
context. Eventually, 6 will be substituted by a concrete and well-formed local context. Due to the introduction
of contextual variables, the system clearly becomes dependently typed. Ψ ⊢8 Γ states the well-formedness of a
local context Γ at layer 8 . Since we are dealing with a 2-layered system now, we know 8 ∈ [0, 1]. The base case
of a local context can either be an empty local context, or be a well-scoped contextual variable. The layer 8 is
propagated to the well-formedness judgment of types Ψ ⊢8) , which states that) is well-formed in Ψ at layer 8 .

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 3

Notice that the well-formedness of) does not depend on any local context. This judgment essentially combines
) core and) type predicates in Hu and Pientka [2024a], with contextual variables taken into consideration.
Contextual variables is introduced by a special meta-function type (6 : Ctx) ⇒) , which pushes a contextual
variable 6 to the global context. This type can be seen as a “meta-function space” in which we define macros
or meta-programs, so intuitively, this type and its terms can only live at layer 1. We prove the presupposition
lemma of these three judgments:

Lemma 2.1 (Presupposition).

• If Ψ ⊢8 Γ, then ⊢ Ψ.

• If Ψ ⊢8) , then ⊢ Ψ.

Lemma 2.2 (Lifting).

• If Ψ ⊢0 Γ, then Ψ ⊢1 Γ.

• If Ψ ⊢0) , then Ψ ⊢1) .

2.2 Weakenings

Similar to previous layered modal type theories, we need two notions of weakenings: a global one and a local one.
In this section, due to contextual variables, we change the definition of weakenings based on their counterparts
in Hu and Pientka [2024a]:

W := id | @(W) | ? (W) (Global weakenings)

g := id | @(g) | ? (g) (Local weakenings)

We will use a global weakening ? (id) in the typing rule of meta-functions in Γ [? (id)] to account for the insertion
of 6 : Ctx to the global context Ψ. In the following, we examine the properties of weakenings. First, we define
the composition of weakenings. We only define the one for global weakenings and the one for local weakenings
is completely identical:

id ◦ W ′ := W ′

W ◦ id := W

? (W) ◦ @(W ′) := ? (W ◦ W ′)

@(W) ◦ @(W ′) := @(W ◦ W ′)

W ◦ ? (W ′) := ? (W ◦ W ′)

Lemma 2.3 (Associativity).

• (W ◦ W ′) ◦ W ′′ = W ◦ (W ′ ◦ W ′′)

• (g ◦ g ′) ◦ g ′′ = g ◦ (g ′ ◦ g ′′)

Then we apply global weakenings to types and contexts:

Nat[W] := Nat

(−→) [W] := (([W]) −→ () [W])

�(Γ ⊢)) [W] := �(Γ [W] ⊢) [W])

(6 : Ctx) ⇒) [W] := (6 : Ctx) ⇒ () [@(W)])

·[W] := ·

6[W] := 6 (properly weakened depending on the name representation)

Γ, G :) [W] := (Γ [W]), G : () [W])

, Vol. 1, No. 1, Article . Publication date: April 2024.

4 • Jason Z. S. Hu and Brigi�e Pientka

This definition of global weakenings admits the following lemma:

Lemma 2.4 (Algebra of global weakenings).

•) [id] =)

• Γ [id] = Γ

•) [W] [W ′] =) [W ◦ W ′]

• Γ [W] [W ′] = Γ [W ◦ W ′]

The well-formedness of weakenings is given by the following rules:

⊢ Ψ

id : Ψ =⇒6 Ψ

W : Ψ =⇒6 Φ Ψ ⊢ �

? (W) : Ψ, � =⇒6 Φ

W : Ψ =⇒6 Φ Φ ⊢ � Ψ ⊢ � [W]

@(W) : Ψ, � [W] =⇒6 Φ, �

Ψ ⊢8 Γ

id : Ψ; Γ =⇒8 Γ

g : Ψ; Γ =⇒8 Δ Ψ ⊢8)

? (g) : Ψ; Γ, G :) =⇒8 Δ

g : Ψ; Γ =⇒8 Δ Ψ ⊢8)

@(g) : Ψ; Γ, G :) =⇒8 Δ, G :)

where the well-formedness of global bindings Ψ ⊢ � is given as follows:

⊢ Ψ

Ψ ⊢ 6 : Ctx

Ψ ⊢0 Γ Ψ ⊢0)

Ψ ⊢ D : (Γ ⊢))

The identity case for local weakenings is slightly more complex because we must take the contextual variables
into consideration.

Then we can prove the following global weakening lemma:

Lemma 2.5 (Global weakenings).

• If Φ ⊢8 Γ and W : Ψ =⇒6 Φ, then Ψ ⊢8 Γ [W].

• If Φ ⊢8) and W : Ψ =⇒6 Φ, then Ψ ⊢8) [W].

Proof. Mutual induction on Φ ⊢8 Γ and Φ ⊢8) . �

The action of global weakenings on a type at layer 0 is no-op:

Lemma 2.6. If Ψ ⊢0) , then) [W] =) .

Global weakenings do not really affect local weakenings:

Lemma 2.7. If W : Ψ =⇒6 Φ and g : Φ; Γ =⇒8 Δ, then g : Ψ; Γ [W] =⇒8 Δ[W].

Proof. Induction on g : Φ; Γ =⇒8 Δ. �

The actions of local weakenings only affect terms so they will be looked into in the next section, after we
consider the syntax of the type theory.

2.3 Syntax and Typing

In this section, we define the syntax of the type theory with contextual variables. To isolate concerns, we use
letbox for elimination, instead of pattern matching. Nevertheless, pattern matching on code should work with
proper adjustments to our development:

< (Natural numbers, N)

X := ·<6? | wk
<
6 | X, C/G (Local substitutions)

B, C := G | DX (Terms, Exp)

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 5

| zero | succ C (natural numbers)

| box C | letbox D � B in C (box)

| _G.C | B C (functions)

| Λ6.C | C $ Γ (meta-functions)

Similar to before, we have natural numbers as our base type. To construct and eliminate meta-functions, we
have Λ6.C and C $ Γ respectively. Since we have contextual types, each global variable must be associated with a
local substitution. In a local substitution, due to how a local context is structured, there are also two base cases:
it can either be an empty local substitution ·<6?, or a weakening wk<6 of a contextual variable 6. The number

< associated with both cases are the number of local weakening ?’s. Effectively, < equals to the length of the
codomain local context in the typing judgment, as we will specify later in this section. This number can be
fetched from a local substitution by the following function:

·̂<
6?

:=<

ŵk<6 :=<

�X, C/G := X̂

In addition, · is optionally associated with a contextual variable 6. If there is such a 6, it is the base case of the
codomain local context. These information are necessary in order to define the local and global substitution
operations. We rely on the following function to return the contextual variable inside of a local substitution, if
it exists:

q·<6? := 6?

}wk<6 := 6

~X, C/G := qX

Next, we define the action of global weakenings on terms and local substitutions:

G [W] := G

DX [W] := DX [W] (with D properly weakened depending on name representation)

zero[W] := zero

succ C [W] := succ (C [W])

box C [W] := box (C [W])

letboxD � B in C [W] := letbox D � B [W] in (C [@(W)])

_G.C [W] := _G.(C [W])

C B [W] := (C [W]) (B [W])

Λ6.C [W] := Λ6.(C [@(W)])

C $ Γ [W] := (C [W]) $ (Γ [W])

wk<6 [W] := wk<6 (with 6 properly weakened)

·<6?[W] := ·
<
6? (with 6 properly weakened if exists)

X, C/G [W] := (X [W]), (C [W])/G

The application of global weakenings satisfy the following lemma:

, Vol. 1, No. 1, Article . Publication date: April 2024.

6 • Jason Z. S. Hu and Brigi�e Pientka

Lemma 2.8 (Algebra of global weakenings).

• C [id] = C

• X [id] = X

• C [W] [W ′] = C [W ◦ W ′]

• X [W] [W ′] = X [W ◦ W ′]

Applying local weakenings on terms and local substitutions is defined as follows:

G [g] := G (properly weakened)

DX [g] := DX [g]

zero[g] := zero

succ C [g] := succ (C [g])

box C [g] := box C

letbox D � B in C [g] := letboxD � B [g] in (C [g])

_G.C [g] := _G.(C [@(g)])

C B [g] := (C [g]) (B [g])

Λ6.C [g] := Λ6.(C [g])

C $ Γ [g] := (C [g]) $ Γ

wk<6 [g] := wk<+<
′

6 (where<′ is the number of ? constructor in g)

·<6?[g] := ·
<+<′

6? (where<′ is the number of ? constructor in g)

X, C/G [g] := (X [g]), (C [g])/G

The application of local weakenings satisfy the following lemma:

Lemma 2.9 (Algebra of local weakenings).

• C [W] [g] = C [g] [W]

• X [W] [g] = X [g] [W]

• C [g] [g ′] = C [g ◦ g ′]

• X [g] [g ′] = X [g ◦ g ′]

• C [X] [g] = C [X [g]]

• (X ◦ X′) [g] = X ◦ (X′ [g])

Then the weakenings of dual-contexts are defined as just tuples of global and local weakenings:

W : Ψ =⇒6 Φ g : Ψ; Γ =⇒8 Δ[W]

W ; g : Ψ; Γ =⇒8 Φ;Δ

C [W ; g] := C [W] [g]

X [W ; g] := X [W] [g]

To disambiguate, when we apply a local weakening literal, we usually pair it with an identity global weakening.
For example, C [id; ? (id)] locally weakens C with a local weakening ? (id). When we write C [? (id)], we mean that
C is globally weakened by ? (id). The correctness lemma for these operations can only be proved after defining
the typing rules. In order to define the typing rules, we must first give the definition of global substitutions of
types and local contexts:

f := · | f, C/D | f, Γ/6 (Global substitutions)

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 7

Global substitutions can obviously be globally weakened by iteratively applying a global weakening to the terms
and local contexts within. The global substitution operation of types and local contexts is defined as follows:

Nat[f] := Nat

(−→) [f] := (([f]) −→ () [f])

�(Γ ⊢)) [f] := �(Γ [f] ⊢) [f])

(6 : Ctx) ⇒) [f] := (6 : Ctx) ⇒ () [f [? (id)], 6/6])

·[f] := ·

6[f] := f (6) (lookup 6 in f ; undefined if 6 is not bound or result is not a local context)

Γ, G :) [f] := (Γ [f]), G : () [f])

For consistency of notations, we oftenwrite@(f) forf [? (id)], 6/6 orf [? (id)],D id/D. This notation relates similar
operations of weakenings and substitutions. The global substitutions on types satisfy the following lemma:

Lemma 2.10 (Algebra of Global Substitutions).

•) [W] [W ′] =) [W ◦ W]

• f [W] [W ′] = f [W ◦ W]

•) [f] [W] =) [f [W]]

• Γ [f] [W] = Γ [f [W]]

• C [f] [W] = C [f [W]]

• X [f] [W] = X [f [W]]

Next, we give the application operation of local substitutions on terms and composition of local substitutions:

G [X] := X (G) (lookup of G in X)

DX
′

[X] := DX
′◦X

zero[X] := zero

succ C [X] := succ (C [X])

_G.C [X] := _G.(C [X [id; ? (id)], G/G])

C B [X] := (C [X]) (B [X])

box C [X] := box C

letbox D � B in C [X] := letbox D � B [X] in (C [X [? (id)]])

Λ6.C [X] := Λ6.(C [X [(? (id))]])

C $ Γ [X] := (C [X]) $ Γ

wk<6 ◦ X := wkX̂6

·< ◦ X := ·X̂
qX

·<6 ◦ X := ·X̂6

(X′, C/G) ◦ X := (X′ ◦ X), C [X]/G

Similarly, wemight also write@(X) for X [id; ? (id)], G/G . Notice that in the definition of composition, wemake use

of the X̂ function to fetch the number of weakenings. This number is used in the application operation of global
substitutions given below in the application of global substitutions to specify the number of local ? weakenings

, Vol. 1, No. 1, Article . Publication date: April 2024.

8 • Jason Z. S. Hu and Brigi�e Pientka

when a contextual variable is substituted by a concrete context. In the composition of ·< , we use qX to query
whether X’s codomain context starts from a contextual variable. If it does, then we use that contextual variable
in the result of the composition. Local substitutions and global weakenings interact in the following way:

Lemma 2.11 (Algebra of Local Substitutions).

• C [X] [W] = (C [W]) [X [W]]

• (X ◦ X′) [W] = (X [W]) ◦ (X′ [W])

Now, we define the application of global substitutions to terms and local substitutions:

G [f] := G

DX [f] := f (D) [X [f]] (lookup of D in f)

zero[f] := zero

succ C [f] := succ (C [f])

_G.C [f] := _G.(C [f])

C B [f] := (C [f]) (B [f])

box C [f] := box (C [f])

letbox D � B in C [f] := letboxD � B [f] in (C [f [? (id)],D id/D])

Λ6.C [f] := Λ6.(C [f [(? (id))], 6/6])

C $ Γ [f] := (C [f]) $ (Γ [f])

wk<6 [f] := idf (6) [id; ?
< (id)] (defined only when f (6) is a local context)

·< [f] := ·<

·<6 [f] := ·
|Γ |+< (if f (6) = Γ and Γ ends with a ·)

·<6 [f] := ·
|Γ |+<
6′ (if f (6) = Γ and Γ ends with a 6′)

(X, C/G) [f] := (X [f]), C [f]/G

In the definition of global substitution operation, we make use of the local identity substitution, which is defined
through local weakening substitutions as below:

wk<· := ·<

wk<6 := wk<6

wk<
Γ,G :) := wk1+<

Γ
, G/G

The local identity substitution is defined as a special case of the local weakening substitutions by setting< to
be 0:

idΓ := wk0
Γ

Though we make heavy use of symbol overloading, but hopefully the exact meanings of symbols should be
disambiguated by the surrounding textual contexts. Usually, the symbols are designed such that their behaviors
remain the same for their ambiguous readings (e.g. various uses of id and wk).

At last, we need to define the global identity substitution before giving the typing rules. The global identity
substitution is defined in the same principle; it is a special case of the global weakening substitutions:

wk<· := ·

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 9

wk<
Ψ,6:Ctx := wk1+<

Ψ
, 6/6

wk<
Ψ,D :(Γ⊢)) := wk1+<

Ψ
,D idΓ [?

1+< (id)]/D

Notice that in the cons case for D : (Γ ⊢)), the local identity substitution idΓ must be weakened by ?1+< (id),
because its global typing environment is weakened by wk1+<

Ψ
, which takes the same effect. This weakening is

necessary to make the typing to go through. Then identity is just a special case:

idΨ := wk0
Ψ

We sometimes omit the subscript for different id, as we know their effects on types, local contexts, terms and
local substitutions are just identity.

The composition of global substitutions is defined intuitively:

· ◦ f ′ := ·

(f, C/D) ◦ f ′ := (f ◦ f ′), C [f ′]/D

(f, Γ/6) ◦ f ′ := (f ◦ f ′), Γ [f ′]/6

Essentially, composition just iteratively applies f ′ to all terms and contexts in the first global substitution. Notice
that composition can only be defined, after the applications of global substitutions to both terms and local con-
texts are defined. This definition does lead to some complication when we tries to prove the global substitution
lemma of terms and local substitutions in the next section.

At last, the following gives the typing rules of terms and local substitutions.

Ψ ⊢8 Γ G :) ∈ Γ

Ψ; Γ ⊢8 G :)

Ψ; Γ ⊢8 X : Δ D : (Δ ⊢)) ∈ Ψ

Ψ; Γ ⊢8 D
X :)

Ψ ⊢8 Γ

Ψ; Γ ⊢8 zero : Nat

Ψ; Γ ⊢8 C : Nat

Ψ; Γ ⊢8 succ C : Nat

Ψ; Γ, G : (⊢8 C :)

Ψ; Γ ⊢8 _G.C : (−→)

Ψ; Γ ⊢8 C : (−→) Ψ; Γ ⊢8 B : (

Ψ; Γ ⊢8 C B :)

Ψ ⊢1 Γ Ψ;Δ ⊢0 C :)

Ψ; Γ ⊢1 box C : �(Δ ⊢))

Ψ; Γ ⊢1 B : �(Δ ⊢)) Ψ ⊢0 Δ Ψ ⊢0) Ψ ⊢1)
′

Ψ, D : (Δ ⊢)); Γ [? (id)] ⊢1 C :)
′ [? (id)]

Ψ; Γ ⊢1 letbox D � B in C :) ′

Ψ ⊢1 Γ Ψ, 6 : Ctx; Γ [? (id)] ⊢1 C :)

Ψ; Γ ⊢1 Λ6.C : (6 : Ctx) ⇒)

Ψ; Γ ⊢1 C : (6 : Ctx) ⇒) Ψ ⊢0 Δ

Ψ; Γ ⊢1 C $ Δ :) [idΨ,Δ/6]

Ψ ⊢8 Γ Γ ends with · |Γ | =<

Ψ; Γ ⊢8 ·
< : ·

Ψ ⊢8 Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | =<

Ψ; Γ ⊢8 ·
<
6 : ·

Ψ ⊢8 Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | =<

Ψ; Γ ⊢8 wk
<
6 : 6

Ψ; Γ ⊢8 X : Δ Ψ; Γ ⊢8 C :)

Ψ; Γ ⊢8 X, C/G : Δ, G :)

In the typing rules, there are premises highlighted by shades . These shaded premises are necessary to establish
the theorem of presupposition or syntactic validity. After establishing presupposition, these premises can be
derived from other premises and thus technically can be omitted afterwards. Moreover, in the rule for global
variables, the lookup of a global context Ψ must consider the effect of global weakenings as follows:

D : � [? (id)] ∈ Ψ, D : �

D : � ∈ Ψ

D : � [? (id)] ∈ Ψ, D′ : �′

, Vol. 1, No. 1, Article . Publication date: April 2024.

10 • Jason Z. S. Hu and Brigi�e Pientka

The typing rules also support lifting:

Lemma 2.12 (Lifting).

• If Ψ; Γ ⊢0 C :) , then Ψ; Γ ⊢1 C :) .

• If Ψ; Γ ⊢0 X : Δ, then Ψ; Γ ⊢1 X : Δ.

This lemma ensures that terms at layer 0 are included in layer 1.
Typing rules for global substitutions are defined as follows:

⊢ Ψ

Ψ ⊢ · : ·

Ψ ⊢ f : Φ Ψ ⊢0 Γ Ψ ⊢0) Ψ; Γ [f] ⊢0 C :) [f]

Ψ ⊢ f, C/D : Φ, D : (Γ ⊢))

Ψ ⊢ f : Φ Ψ ⊢0 Γ

Ψ ⊢ f, Γ/6 : Φ, 6 : Ctx

In the next section, we establish a set of syntactic properties as a basic sanity check of the definitions, which
are also useful in later section proving normalization.

2.4 Syntactic Properties of 2-layered Modal Type Theory with Contextual Variables

In this section, we list syntactic properties that eventually leads to the substitution lemma of terms and local
substitutions for global substitutions. This lemma is our “benchmark” to ensure that the rules for the system
make sense. During the process, we must establish other necessary syntactic properties. We elaborate the proofs
an important and selected few. Other proofs in this section have been mechanized in Agda.

Lemma 2.13.

• If = is the length of f ′, then C [@= (? (83))] [f, C/D, f ′] = C [@= (? (83))] [f, Γ/6,f ′] = C [f, f ′].

• If = is the length of f ′, then X [@= (? (83))] [f, C/D, f ′] = X [@= (? (83))] [f, Γ/6, f ′] = X [f, f ′].

This lemma allows to skip a binding in the middle of a global substitution according to a global weakening.
A similar lemma holds for local substitutions:

Lemma 2.14.

• If = is the length of X′ , then C [@= (? (83))] [X, C/G, X′] = C [X, X′].

• If = is the length of X′ , then X [@= (? (83))] ◦ (X, C/G, X′) = X ◦ (X, X′).

Lemma 2.15 (Composition of Global Substitutions).

•) [f] [f ′] =) [f ◦ f ′]

• Γ [f] [f ′] = Γ [f ◦ f ′]

Lemma 2.16 (Composition and Associativity of Local Substitutions).

• C [X] [X′] = C [X ◦ X′]

• (X ◦ X′) ◦ X′′ = X ◦ (X′ ◦ X′′)

Lemma 2.17 (Typing of Local Weakening Substitutions). If Ψ ⊢8 Δ, Γ, then Ψ;Δ, Γ ⊢8 wk
|Γ |

Δ
: Δ.

The corollary is the well-typedness of local identity substitution:

Corollary 2.18. If Ψ ⊢8 Γ, then Ψ; Γ ⊢8 idΓ : Γ.

The next few questions require well-formedness or typing judgments to work:

Lemma 2.19.

• If Ψ ⊢8) , then) [wk
=
Ψ
] =) [?= (id)].

• If Ψ ⊢8 Γ, then Γ [wk=
Ψ
] = Γ [?= (id)].

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 11

This lemma proves that the global weakening substitutions behaves exactly like global weakenings.

Lemma 2.20 (Naturality).

• If Ψ, 6 : Ctx ⊢8) and W : Φ =⇒6 Ψ, then) [idΨ, Γ/6] [W] =) [@(W)] [idΦ, Γ [W]/6].

• If Ψ, 6 : Ctx ⊢8 Δ and W : Φ =⇒6 Ψ, then Δ[idΨ, Γ/6] [W] = Δ[@(W)] [idΦ, Γ [W]/6].

The naturality lemma finds correspondence in the characterization of a presheaf category of a type theory in
general, which instructs how @ weakenings can be used to swap a global weakening and a global substitution.

Lemma 2.21 (Local Identity).

• If Ψ; Γ ⊢8 C :) , then C [idΓ] = C .

• If Ψ; Γ ⊢8 X : Δ, then X ◦ idΓ = X .

This lemma shows that the local identity substitution has no effect on terms and that the right identity property
of local substitutions.

Next, we establish the global weakening lemma for typing rules:

Lemma 2.22 (Global weakenings).

• If Ψ; Γ ⊢8 C :) and W : Ψ′ =⇒6 Ψ, then Ψ
′ ; Γ [W] ⊢8 C [W] :) [W].

• If Ψ; Γ ⊢8 X : Δ and W : Ψ′ =⇒6 Ψ, then Ψ
′; Γ [W] ⊢8 X [W] : Δ[W].

Proof. Mutual induction on Φ; Γ ⊢8 C :) and Φ; Γ ⊢8 X : Δ. We only consider a few interesting cases:

Case

Φ; Γ ⊢1 B : �(Δ ⊢)) Φ ⊢1)
′

Φ,D : (Δ ⊢)); Γ [? (id)] ⊢1 C :)
′ [? (id)]

Φ; Γ ⊢1 letbox D � B in C :) ′

Ψ; Γ [W] ⊢1 B [W] : �(Δ ⊢)) [W] (by IH)

Ψ, D : (Δ[W] ⊢) [W]); Γ [? (id)] [@(W)] ⊢1 C [@(W)] :)
′ [? (id)] [@(W)] (by IH)

Ψ, D : (Δ[W] ⊢) [W]); Γ [? (W)] ⊢1 C [@(W)] :)
′ [? (W)] (by computation)

Ψ, D : (Δ[W] ⊢) [W]); Γ [W] [? (id)] ⊢1 C [@(W)] :)
′ [W] [? (id)]

Ψ; Γ [W] ⊢1 letboxD � B in C [W] :) ′ [W] (by constructor)

Case

Φ, 6 : Ctx; Γ [? (id)] ⊢1 C :)

Φ; Γ ⊢1 Λ6.C : (6 : Ctx) ⇒)

@(W) : Ψ′, 6 : Ctx =⇒6 Ψ, 6 : Ctx (by typing rules)

Ψ
′, 6 : Ctx; Γ [? (id)] [@(W)] ⊢1 C [@(W)] :) [@(W)] (by IH)

Ψ
′, 6 : Ctx; Γ [? (id) ◦ @(W)] ⊢1 C [@(W)] :) [@(W)] (by algebraic law)

Ψ
′, 6 : Ctx; Γ [? (W)] ⊢1 C [@(W)] :) [@(W)]

Ψ
′, 6 : Ctx; Γ [W] [? (id)] ⊢1 C [@(W)] :) [@(W)]

Ψ
′; Γ [W] ⊢1 Λ6.(C [@(W)]) : (6 : Ctx) ⇒ () [@(W)]) (by typing rule)

Case

Φ; Γ ⊢1 C : (6 : Ctx) ⇒) Φ ⊢0 Δ

Φ; Γ ⊢1 C $ Δ :) [idΦ,Δ/6]

, Vol. 1, No. 1, Article . Publication date: April 2024.

12 • Jason Z. S. Hu and Brigi�e Pientka

Ψ; Γ [W] ⊢1 C [W] : (6 : Ctx) ⇒) [W] (by IH)

Ψ ⊢0 Δ[W] (by Lemma 2.5)

Ψ; Γ [W] ⊢1 (C [W]) $ (Δ[W]) :) [@(W)] [idΨ,Δ[W]/6] (by constructor)

Ψ; Γ [W] ⊢1 (C [W]) $ (Δ[W]) :) [idΦ,Δ/6] [W] (by naturality)

�

Lemma 2.23 (Global Weakening). If Ψ ⊢ f : Φ and W : Ψ′ =⇒6 Ψ, then Ψ
′ ⊢ f [W] : Φ.

Lemma 2.24 (Global Weakening Substitutions). If ⊢ Ψ,Φ, then Ψ,Φ ⊢ wk
|Φ |

Ψ
: Ψ.

Proof. This lemma is actually requires a bit preliminaries to establish and so this is the earliest point where
this lemma can be proven. From ⊢ Ψ,Φ, we know ⊢ Ψ, which we do induction on. We consider only one case:

Ψ ⊢0 Γ Ψ ⊢0)

⊢ Ψ, D : (Γ ⊢))

wk
|Φ |

Ψ,D :(Γ⊢))
= wk

1+|Φ |

Ψ
,D idΓ [?

1+|Φ| (id)]/D (by definition)

Ψ, D : (Γ ⊢)),Φ ⊢ wk
1+|Φ |

Ψ
: Ψ (by IH)

At last, we must prove Ψ, D : (Γ ⊢)),Φ; Γ [wk
1+|Φ |

Ψ
] ⊢0 D

idΓ [?
1+|Φ| (id)] :) [wk

1+|Φ |

Ψ
]. But we know that this goal is

the same as the following due to Lemma 2.19:

Ψ, D : (Γ ⊢)),Φ; Γ [?1+|Φ | (id)] ⊢0 D
idΓ [?

1+|Φ| (id)] :) [?1+|Φ | (id)]

It remains to prove that the substitution is well-typed:

Ψ, D : (Γ ⊢)),Φ; Γ [?1+|Φ | (id)] ⊢0 idΓ [?
1+|Φ | (id)] : Γ [?1+|Φ | (id)]

This goal is immediate due to Lemmas 2.21 and 2.22. �

Corollary 2.25. If ⊢ Ψ, then Ψ ⊢ idΨ : Ψ.

Finally, we can establish the presupposition of terms and local substitutions:

Lemma 2.26 (Presupposition).

• If Ψ; Γ ⊢8 C :) , then Ψ ⊢8 Γ and Ψ ⊢8) .

• If Ψ; Γ ⊢8 X : Δ, then Ψ ⊢8 Γ and Ψ ⊢8 Δ.

Proof. We do a mutual induction. �

Next, we need a similar lemma to Lemma 2.19 but for terms and local substitutions:

Lemma 2.27.

• If Ψ; Γ ⊢8 C :) , then C [wk
=
Ψ
] = C [?= (id)].

• If Ψ; Γ ⊢8 X : Δ, then X [wk=
Ψ
] = X [?= (id)].

Proof. The proof of this lemma requires an intrigued generalization in order to handle extensions of global
contexts due to letbox andΛ. Details of the generalization are technical and too elaborate to put in this technical
report, and thus we choose to leave them in the Agda mechanization for readers’ reference. �

Next, we should verify the identity rules of composition of global substitutions. Notice that by applying Lem-
mas 2.19 and 2.27, we obtain the right identity immediately:

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 13

Lemma 2.28. If Ψ ⊢ f : Φ, then f ◦ idΨ = f .

The left identity, on the other hand, requires certain generalization whichmust incorporate global weakenings.
We again leave the details in the Agda mechanization:

Lemma 2.29. If Ψ ⊢ f : Φ, then idΦ ◦ f = f .

Another useful equation is that global substitutions and local weakenings commute:

Lemma 2.30 (Commutativity of Global Substitutions and Local Weakenings).

• If Ψ; Γ ⊢8 C :) and g : Ψ;Δ =⇒8 Γ, then C [g] [f] = C [f] [g].

• If Ψ; Γ ⊢8 X : Γ′ and g : Ψ;Δ =⇒8 Γ, then X [g] [f] = X [f] [g].

Next, we move on to the global substitution lemma for terms and local substitutions. Prior to that, we must
first show the local weakening lemma and local substitution lemma:

Lemma 2.31 (Local Weakenings).

• If Ψ; Γ ⊢8 C :) and g : Ψ;Δ =⇒8 Γ, then Ψ;Δ ⊢8 C [g] :) .

• If Ψ; Γ ⊢8 X : Δ′ and g : Ψ;Δ =⇒8 Γ, then Ψ;Δ ⊢8 X [g] : Δ
′.

Lemma 2.32 (Local Substitutions).

• If Ψ; Γ ⊢8 C :) and Ψ;Δ ⊢8 X : Γ, then Ψ;Δ ⊢8 C [X] :) .

• If Ψ; Γ ⊢8 X : Δ and Ψ; Γ′ ⊢8 X
′ : Γ, then Ψ; Γ′ ⊢8 X ◦ X

′ : Δ.

Proof. We do a mutual induction. Notice that in this lemma, it is somewhat more cumbersome to establish
the proof for local substitutions. When X = ·< , then we must reason about the properties of qX′ . If qX′ = 6 for some
6, then we must show that both Γ and Γ

′ start with this 6. The details are given in the Agda mechanization. �

Finally, we give the global substitution lemma:

Lemma 2.33 (Global Substitutions).

• If Ψ; Γ ⊢8 C :) and Ψ
′ ⊢ f : Ψ, then Ψ

′ ; Γ [f] ⊢8 C [f] :) [f].

• If Ψ; Γ ⊢8 X : Δ and Ψ
′ ⊢ f : Ψ, then Ψ

′ ; Γ [f] ⊢8 X [f] : Δ[f].

Proof. We do a mutual induction. We consider a few interesting cases:

Case

Ψ; Γ ⊢1 B : �(Δ ⊢)) Ψ ⊢1)
′

Ψ, D : (Δ ⊢)); Γ [? (id)] ⊢1 C :)
′ [? (id)]

Ψ; Γ ⊢1 letbox D � B in C :) ′

Ψ
′ ; Γ [f] ⊢1 B [f] : �(Δ ⊢)) [f] = �(Δ[f] ⊢) [f]) (by IH)

Ψ
′, D : (Δ[f] ⊢) [f]) ⊢ f [? (id)],D idΔ[f [? (id)]]/D : Ψ, D : (Δ ⊢)) (by typing rule)

Ψ
′, D : (Δ[f] ⊢) [f]); Γ [? (id)] [f [? (id)],D idΔ[f [? (id)]]/D] ⊢1 C [f [? (id)],D

idΔ[f [? (id)]]/D] :) ′ [? (id)] [f [? (id)],D idΔ[f [? (id)]]/D]

(by IH)

Ψ
′, D : (Δ[f] ⊢) [f]); Γ [f [? (id)]] ⊢1 C [f [? (id)],D

idΔ[f [? (id)]]/D] :) ′ [f [? (id)]] (by Lemma 2.13)

Ψ
′, D : (Δ[f] ⊢) [f]); Γ [f] [? (id)] ⊢1 C [f [? (id)],D

idΔ[f] [? (id)]/D] :) ′ [f] [? (id)] (by algebraic laws)

Ψ
′ ; Γ [f] ⊢1 letboxD � B in C :) ′ [f] (by typing rule)

, Vol. 1, No. 1, Article . Publication date: April 2024.

14 • Jason Z. S. Hu and Brigi�e Pientka

Case

Ψ ⊢1 Γ Ψ, 6 : Ctx; Γ [? (id)] ⊢1 C :)

Ψ; Γ ⊢1 Λ6.C : (6 : Ctx) ⇒)

Basically we do the same as above, but instead of providing a global substitution of terms, we provide a
global substitution of a local context.

Case

Ψ; Γ ⊢1 C : (6 : Ctx) ⇒) Ψ ⊢0 Δ

Ψ; Γ ⊢1 C $ Δ :) [idΨ,Δ/6]

Ψ
′ ; Γ [f] ⊢1 C [f] : (6 : Ctx) ⇒) [f] = (6 : Ctx) ⇒ () [f [? (id)],6/6]) (by IH)

Ψ
′ ⊢0 Δ[f] (by IH)

Ψ
′ ; Γ [f] ⊢1 C $ Δ[f] :) [f [? (id)], 6/6] [idΨ′ ,Δ[f]/6] (by typing rule)

Finally we must show the following equation:

) [f [? (id)], 6/6] [idΨ′ ,Δ[f]/6] =) [idΨ,Δ/6] [f]

We reason as follows:

) [f [? (id)], 6/6] [idΨ′ ,Δ[f]/6] =) [(f [? (id)], 6/6) ◦ (idΨ′ ,Δ[f]/6)]

=) [(f [? (id)] ◦ (idΨ′ ,Δ[f]/6)),Δ[f]]

=) [(f ◦ idΨ′),Δ[f]] (by Lemma 2.13)

=) [f,Δ[f]] (by right identity)

On the right hand side,

) [idΨ,Δ/6] [f] =) [(idΨ ◦ f),Δ[f]/6]

=) [f,Δ[f]/6] (by left identity)

Thus both sides agree.
Case

Ψ ⊢8 Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | =<

Ψ; Γ ⊢8 ·
<
6 : ·

In this case, we must look up 6 in f , and branch depending on f (6).
Subcase If f (6) = 6′,Δ meaning that f (6) ends with a contextual variable 6′, then we must construct a typing

judgment for ·<
′

6′ for some<′. In this case, say if Γ = 6, Γ′, then Γ [f] = 6′,Δ, (Γ′ [f]). Therefore,<′ =

|Δ| + |Γ′ [f] | = |Δ| +<.
Subcase If f (6) = ·,Δ, then we proceed similarly except that we must construct a typing judgment for ·<

′
instead.

�

Lemma 2.34 (Distributivity of Global Substitutions).

• If Ψ; Γ ⊢8 C :) , Ψ;Δ ⊢8 X : Γ and Φ ⊢ f : Ψ, then C [X] [f] = (C [f] [X [f]]).

• If Ψ; Γ ⊢8 X : Δ, Ψ; Γ′ ⊢8 X
′ : Γ and Φ ⊢ f : Ψ, then (X ◦ X′) [f] = (X [f]) ◦ (X′ [f]).

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 15

Proof. We do a mutual induction on Ψ; Γ ⊢8 C :) and Ψ; Γ ⊢8 X : Δ. The difficulty is coming from the base
cases of local substitutions. Wemust incorporate the shape of X′ depending on the cases of X . We refer the readers
to the Agda mechanization for the detailed proof and how we do case analysis on the base cases.

�

2.5 Equivalence Rules

In this section, we describe the equivalence rules. They follow closely to the equivalence rules by Hu and Pientka
[2024a, Sec. 4]. We only show the rules for the newly added constructs.

Ψ ⊢1 Γ Ψ, 6 : Ctx; Γ [? (id)] ⊢1 C ≈ C
′ :)

Ψ; Γ ⊢1 Λ6.C ≈ Λ6.C ′ : (6 : Ctx) ⇒)

Ψ; Γ ⊢1 C ≈ C
′ : (6 : Ctx) ⇒) Ψ ⊢0 Δ

Ψ; Γ ⊢1 C $ Δ ≈ C
′ $ Δ :) [idΨ,Δ/6]

Ψ ⊢1 Γ Ψ, 6 : Ctx; Γ [? (id)] ⊢1 C :) Ψ ⊢0 Δ

Ψ; Γ ⊢1 (Λ6.C) $ Δ ≈ C [idΨ,Δ/6] :) [idΨ,Δ/6]

Ψ; Γ ⊢1 C : (6 : Ctx) ⇒)

Ψ; Γ ⊢1 C ≈ Λ6.(C [? (id)]) $ 6 : (6 : Ctx) ⇒)

In the rules above, we specify the congruence for meta-abstraction Λ and the meta-application. Moreover, they
also have V and [rules in the expected ways.

We also have a equivalence judgment for local substitutions

Ψ; Γ ⊢1 X ≈ X
′ : Δ

The only rules are the congruence rules determined by all possible constructors. Both equivalence judgments
for terms and local substitutions must be mutually defined.

Note that there is no need to define the equivalence for global substitutions. Effectively, the equivalence for
global substitutions is defined as the equality. This is because all terms stored in a global substitution are at
layer 0, and thus they do not have meaningful dynamics. Therefore, equivalent global substitutions must also
be equal.

We first establish the presupposition lemma for equivalence:

Lemma 2.35 (Presupposition).

• If Ψ; Γ ⊢1 C ≈ C
′ :) , then Ψ; Γ ⊢1 C :) and Ψ; Γ ⊢1 C

′ :) .

• If Ψ; Γ ⊢1 X ≈ X
′ : Δ, then Ψ; Γ ⊢1 X : Δ and Ψ; Γ ⊢1 X

′ : Δ.

Proof. We perform a mutual induction. For the V and [rules, we apply substitution lemmas proved in the
previous section. �

Lemma 2.36 (Local Weakenings).

• If Ψ;Δ ⊢1 C ≈ C
′ :) and g : Ψ; Γ =⇒1 Δ, then Ψ; Γ ⊢1 C [g] ≈ C

′ [g] :) .

• If Ψ;Δ ⊢1 X ≈ X
′ : Δ′ and g : Ψ; Γ =⇒1 Δ, then Ψ; Γ ⊢1 X [g] ≈ X

′ [g] : Δ′.

Proof. We follow the local weakening property for typing above. �

A counterpart is w.r.t to global weakenings:

Lemma 2.37 (Global Weakenings).

• If Φ; Γ ⊢1 C ≈ C
′ :) and W : Ψ =⇒6 Φ, then Ψ; Γ [W] ⊢1 C [W] ≈ C

′ [W] :) [W].

• If Φ; Γ ⊢1 X ≈ X
′ : Δ and W : Ψ =⇒6 Φ, then Ψ; Γ [W] ⊢1 X [W] ≈ X

′ [W] : Δ[W].

Proof. Similarly, we follow the global weakening property for typing above. �

Lemma 2.38 (Congruence of Local Substitutions).

, Vol. 1, No. 1, Article . Publication date: April 2024.

16 • Jason Z. S. Hu and Brigi�e Pientka

• If Ψ; Γ ⊢1 C :) and Ψ;Δ ⊢1 X ≈ X
′ : Γ, then Ψ;Δ ⊢1 C [X] ≈ C [X

′] :) .

• If Ψ; Γ ⊢1 X : Δ′ and Ψ;Δ ⊢1 X
′ ≈ X′′ : Γ, then Ψ;Δ ⊢1 X ◦ X

′ ≈ X ◦ X′′ : Δ′.

Proof. We do a mutual induction on Ψ; Γ ⊢1 C :) and Ψ; Γ ⊢1 X : Δ′. We only consider a few interesting cases.

Case

Ψ; Γ ⊢1 B : �(Δ
′ ⊢)) Ψ ⊢1)

′
Ψ, D : (Δ′ ⊢)); Γ [? (id)] ⊢1 C :)

′ [? (id)]

Ψ; Γ ⊢1 letbox D � B in C :) ′

In this case, we must use the global weakening lemma above to derive

Ψ;Δ[? (id)] ⊢1 X [? (id)] ≈ X
′ [? (id)] : Γ [? (id)]

and then we apply IH.
Case For all base cases of local substitutions, we realize that given Ψ;Δ ⊢1 X ≈ X

′ : Γ, we have

– qX =
qX′ , and

– X̂ = X̂′ .
because they characterize Δ, so the exact X and X′ are irrelevant.
The target goal follows immediate.

�

Lemma 2.39 (Local Substitutions).

• If Ψ; Γ ⊢1 C ≈ C
′ :) and Ψ;Δ ⊢1 X ≈ X

′ : Γ, then Ψ;Δ ⊢1 C [X] ≈ C
′ [X′] :) .

• If Ψ; Γ ⊢1 X
′′ ≈ X′′′ : Δ′ and Ψ;Δ ⊢1 X ≈ X

′ : Γ, then Ψ;Δ ⊢1 X
′′ ◦ X ≈ X′′′ ◦ X′ : Δ′.

Proof. We proceed by a mutual induction on Ψ; Γ ⊢1 C ≈ C ′ :) and Ψ; Γ ⊢1 X
′′ ≈ X′′′ : Δ′. We only look into

the V and [rule for meta-functions, because we cannot apply IH:

Case

Ψ ⊢1 Γ Ψ, 6 : Ctx; Γ [? (id)] ⊢1 C :) Ψ ⊢0 Δ
′

Ψ; Γ ⊢1 (Λ6.C) $ Δ
′ ≈ C [idΨ,Δ

′/6] :) [idΨ,Δ
′/6]

Ψ, 6 : Ctx;Δ[? (id)] ⊢1 C [X [? (id)]] ≈ C [X
′ [? (id)]] :) (by local substitution lemma)

Ψ;Δ ⊢1 (Λ6.(C [X [? (id)]])) $ Δ
′ ≈ C [X′ [? (id)]] [idΨ,Δ

′/6] :) [idΨ,Δ
′/6]

Now we have to align up the right hand side. The target right hand side is

C [idΨ,Δ
′/6] [X′]

We reason as follows

C [X′ [? (id)]] [idΨ,Δ
′/6] = C [idΨ,Δ

′/6] [X′ [? (id)] [idΨ,Δ
′/6]] (by distributivity of global substitutions)

= C [idΨ,Δ
′/6] [X′] (by Lemma 2.13)

and we have the target goal.
Case

Ψ; Γ ⊢1 C : (6 : Ctx) ⇒)

Ψ; Γ ⊢1 C ≈ Λ6.(C [? (id)]) $ 6 : (6 : Ctx) ⇒)

We apply the local weakening lemma:

Ψ;Δ ⊢1 C [X] ≈ C [X
′] :)

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 17

On the right hand side, we have

Λ6.(C [? (id)]) $ 6[X′] = Λ6.(C [? (id)] [X′ [? (id)]]) $ 6

= Λ6.(C [X′] [? (id)]) $ 6 (by algebraic rule)

�

Next, we consider the global substitution lemma:

Lemma 2.40 (Global Substitutions).

• If Ψ; Γ ⊢1 C ≈ C
′ :) and Φ ⊢ f : Ψ, then Φ; Γ [f] ⊢1 C [f] ≈ C

′ [f] :) [f].

• If Ψ; Γ ⊢1 X ≈ X
′ : Δ and Φ ⊢ f : Ψ, then Φ; Γ [f] ⊢1 X [f] ≈ X

′ [f] : Δ[f].

Proof. As we have noted above, there is no need for an equivalence judgment between two global substitu-
tions. Therefore we directly apply the same f on both sides. Let us consider the V and [rules for meta-functions:

Case

Ψ ⊢1 Γ Ψ, 6 : Ctx; Γ [? (id)] ⊢1 C :) Ψ ⊢0 Δ
′

Ψ; Γ ⊢1 (Λ6.C) $ Δ
′ ≈ C [idΨ,Δ

′/6] :) [idΨ,Δ
′/6]

Φ, 6 : Ctx ⊢ f [? (id)], 6/6 : Ψ, 6 : Ctx

Φ, 6 : Ctx; Γ [? (id)] [f [? (id)], 6/6] ⊢1 C [f [? (id)], 6/6] :) [f [? (id)], 6/6] (by global substitution lemma)

Φ, 6 : Ctx; Γ [f] [? (id)] ⊢1 C [f [? (id)], 6/6] :) [f [? (id)], 6/6]

Φ ⊢0 Δ
′ [f]

Φ; Γ [f] ⊢1 (Λ6.(C [f [? (id)], 6/6])) $ (Δ
′ [f]) ≈ C [f [? (id)], 6/6] [idΨ,Δ

′ [f]/6] :) [f [? (id)], 6/6] [idΨ,Δ
′ [f]/6]

We now reason a few equations:

(Λ6.(C [f [? (id)], 6/6])) $ (Δ′ [f]) = (Λ6.C) $ Δ′ [f]

and

C [f [? (id)], 6/6] [idΨ,Δ
′ [f]/6] = C [(f [? (id)], 6/6) ◦ (idΨ,Δ

′ [f]/6)]

= C [f [? (id)] ◦ (idΨ,Δ
′ [f]/6),Δ′ [f]/6]

= C [f ◦ idΨ,Δ
′ [f]/6]

= C [idΦ ◦ f,Δ
′ [f]/6]

= C [idΦ,Δ
′/6] [f]

Similarly, we have

) [f [? (id)],6/6] [idΨ,Δ
′ [f]/6] =) [idΦ,Δ

′/6] [f]

This concludes the goal.
Case

Ψ; Γ ⊢1 C : (6 : Ctx) ⇒)

Ψ; Γ ⊢1 C ≈ Λ6.(C [? (id)]) $ 6 : (6 : Ctx) ⇒)

Φ; Γ [f] ⊢1 C [f] : (6 : Ctx) ⇒) [f]

Φ; Γ [f] ⊢1 C [f] : (6 : Ctx) ⇒ () [f [? (id)], 6/6])

Φ; Γ [f] ⊢1 C [f] ≈ Λ6.C [f] [? (id)] $ 6 : (6 : Ctx) ⇒ () [f [? (id)], 6/6])

, Vol. 1, No. 1, Article . Publication date: April 2024.

18 • Jason Z. S. Hu and Brigi�e Pientka

We reason the right hand side

Λ6.(C [? (id)]) $ 6[f] = Λ6.(C [? (id)] [f [? (id)],6/6]) $ 6

= Λ6.(C [f [? (id)]]) $ 6

= Λ6.(C [f] [? (id)]) $ 6

and hence establish the goal.

�

2.6 Weak Head Reduction

To compute the decide whether two terms are equivalence based on the typing rules above, we take the approach
of reducibility candidates. This approach requires a reduction strategy, and then we use a type directed convert-
ibility checking to determine whether two normal forms after reduction are equivalent. In this approach, it is
sufficient to have a term reduced to weak head normal forms, specified as below:

F := E | zero | succ C | box C | _G.C | Λ6.C (Weak head normal form (Nf))

E := G | DX | E C | letbox D � E in C | E $ Γ (Neutral form (Ne))

Basically the one-step weak head reduction simply takes the V rules from the equivalence relations and adds
head reduction:

Head reductions:

Ψ; Γ ⊢ C C ′ : (−→) Ψ; Γ ⊢1 B : (

Ψ; Γ ⊢ C B C ′ B :)

Ψ; Γ ⊢ B B′ : �) Ψ, D :) ; Γ [? (id)] ⊢1 C :)
′ [? (id)]

Ψ; Γ ⊢ letbox D � B in C letbox D � B′ in C :) ′

Ψ; Γ ⊢ C C ′ : (6 : Ctx) ⇒) Ψ ⊢0 Δ

Ψ; Γ ⊢ C $ Δ C ′ $ Δ :) [idΨ,Δ/6]

V reductions:

Ψ; Γ, G : (⊢1 C :) Ψ; Γ ⊢1 B : (

Ψ; Γ ⊢ (_G.C) B C [idΓ, B/G] :)

Ψ ⊢1 Γ Ψ, 6 : Ctx; Γ [? (id)] ⊢1 C :) Ψ ⊢0 Δ

Ψ; Γ ⊢ (Λ6.C) $ Δ C [idΨ,Δ/6] :) [idΨ,Δ/6]

Ψ; · ⊢0 B :) Ψ ⊢1 Γ Ψ ⊢1)
′

Ψ, D :) ; Γ [? (id)] ⊢1 C :)
′ [? (id)]

Ψ; Γ ⊢ letboxD � box B in C C [idΨ, B/D] :)
′

Notice that weak head reduction only occurs at layer 1, so we do not need to rewrite down the layer explicitly.
This is because V reduction only occurs at layer 1 and all terms at layer 0 are identified by their exact syntactic
structure. We define the reflexive transitive closure Ψ; Γ ⊢ C ∗ C ′ :) of weak head reduction in the usual way.
In an implementation, we would repeatedly do one-step weak head reduction, until it reaches a normal form. To
compare two terms of the same type, we would first compute the weak head normal forms of both sides, and
then based on their type, we perform a type-directed convertibility check. This check also performs [expansion
when necessary, so the resulting algorithm is complete w.r.t. the equivalence relation.

Notice that the weak head reduction relation is a subrelation of the equivalence above. Therefore, several
theorems are simply carried over. We omit the proofs and only state the theorems below:

Lemma 2.41 (Local Weakenings). If Ψ;Δ ⊢ C C ′ :) and g : Ψ; Γ =⇒1 Δ, then Ψ; Γ ⊢ C [g] C ′ [g] :) .

Lemma 2.42 (Global Weakenings). If Φ; Γ ⊢ C C ′ :) and W : Ψ =⇒6 Φ, then Ψ; Γ [W] ⊢ C [W] C ′ [W] :) [W].

Theorem 2.43 (Preservation). If Ψ; Γ ⊢ C C ′ :) , then Ψ; Γ ⊢1 C :) and Ψ; Γ ⊢1 C
′ :) .

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 19

Lemma 2.44 (Local Substitutions). If Ψ; Γ ⊢ C C ′ :) and Ψ;Δ ⊢1 X : Γ, then Ψ;Δ ⊢ C [X] C ′ [X] :) .

Lemma 2.45 (Globale Substitutions). If Ψ; Γ ⊢ C C ′ :) and Φ ⊢ f : Ψ, then Φ; Γ [f] ⊢ C [f] C ′ [f] :) [f].

Lemma 2.46 (Uniqeness). If Ψ; Γ ⊢ C C ′ :) and Ψ; Γ ⊢ C C ′′ :) , then C ′ = C ′′ .

Proof. Induction on Ψ; Γ ⊢ C C ′ :) and analyze Ψ; Γ ⊢ C C ′′ :) . �

These conclusions can be generalized to its reflexive transitive closure.
In the next section, we will first look into the logical relations which establish normalization property, and

then we show that this checking strategy indeed is complete.

3 NORMALIZATION AND CONVERTIBILITY

In the previous section, we have developed the syntactic theory of contextual variables and the weak head reduc-
tion relation. In this section, our goal is to show the termination of the weak head reduction, i.e. normalization,
develop a type-directed convertibility checking algorithm, and show that this algorithm is sound and complete
w.r.t. the equivalence of terms. In the first step to normalization, we establish the reducibility predicate. This
predicate is defined inductively and then recursively in order to describe the semantic well-formedness of types
and terms. Then from the reducibility predicate, we prove the semantic soundness of the model and prove the
normalization property as a corollary. Next, we give the convertibility algorithm as a judgment. This judgment
will be shown equivalent to the equivalence of terms, which wraps up our discussion on simple types.

3.1 Generic Equivalence

We follow Abel et al. [2017] to define a modular generic equivalence to ease subsequent proof constructions.
Since we do not have type-level computation for this almost simply typed theory, we only have to be concerned
about two kinds of equivalence over terms: Ψ; Γ ⊢ C ≃ C ′ :) describes a generic equivalence between two terms,
and Ψ; Γ ⊢ E ∼ E ′ :) describes a generic equivalence between two neutral terms. Furthermore, Ψ; Γ ⊢ C ≃ C ′ :)

is generalized to Ψ; Γ ⊢ X ≃ X′ : Δ by recursion on Δ, which denotes a generic equivalence between local
substitutions and the base cases are just congruence. The definition is

Ψ ⊢1 Γ Γ ends with · |Γ | =<

Ψ; Γ ⊢ ·< ≃ ·< : ·

Ψ ⊢1 Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | =<

Ψ; Γ ⊢ ·<6 ≃ ·
<
6 : ·

Ψ ⊢1 Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | =<

Ψ; Γ ⊢ wk<6 ≃ wk<6 : 6

Ψ; Γ ⊢ X ≃ X′ : Δ Ψ; Γ ⊢ C ≃ C ′ :)

Ψ; Γ ⊢ X, C/G ≃ X′, C ′/G : Δ, G :)

The generic equivalence will be instantiated twice, once for each layer. Following the layering principle, the
laws for layer 0 are subsumed by those for layer 1. The reason why we also need an instantiation for layer 0
is that code from layer 0 can be lifted by letbox and become a program, so that its computation is recovered.
Therefore, a logical relation is needed to capture its computational behavior.

These two relations must satisfy the following laws. Law statements for � and meta-functions only apply
when the generic equivalence is indexed by layer 1.

Law 3.1 (Subsumption).

• If Ψ; Γ ⊢ E ∼ E ′ :) , then Ψ; Γ ⊢ E ≃ E ′ :) .

• If Ψ; Γ ⊢ C ≃ C ′ :) , then Ψ; Γ ⊢1 C ≈ C
′ :) .

From the subsumption of generic equivalence of terms, we have the subsumption of generic equivalence of
local substitutions as a lemma:

, Vol. 1, No. 1, Article . Publication date: April 2024.

20 • Jason Z. S. Hu and Brigi�e Pientka

Lemma 3.1 (Subsumption). If Ψ; Γ ⊢ X ≃ X′ : Δ, then Ψ; Γ ⊢1 X ≈ X
′ : Δ.

Law 3.2 (PER). Both relations are PERs.

Law 3.3 (Monotonicity). Given W ; g : Ψ; Γ =⇒ Φ;Δ, if Φ;Δ ⊢ C ≃ C ′ :) , or Φ;Δ ⊢ E ∼ E ′ :) , then

Ψ; Γ ⊢ C [W ; g] ≃ C ′ [W ; g] :) [W], or Ψ; Γ ⊢ E [W ; g] ∼ E ′ [W ; g] :) [W], respectively.

As a lemma, we have monotonicity generalized to local substitutions:

Lemma 3.2 (Monotonicity). Given W ; g : Ψ; Γ =⇒ Φ;Δ, if Φ;Δ ⊢ X ≃ X′ : Δ′, then Ψ; Γ ⊢ X [W ; g] ≃ X′ [W ; g] :

Δ
′ [W].

Law 3.4 (Weak head closure). If Ψ; Γ ⊢ C ∗ F :) , Ψ; Γ ⊢ C ′ ∗ F ′ :) and Ψ; Γ ⊢ F ≃ F ′ :) , then

Ψ; Γ ⊢ C ≃ C ′ :) .

Law 3.5 (Congruence).

• If Ψ ⊢1 Γ, then Ψ; Γ ⊢ zero ≃ zero : Nat.

• If Ψ; Γ ⊢ C ≃ C ′ : Nat, then Ψ; Γ ⊢ succ C ≃ succ C ′ : Nat.

• If Ψ; Γ ⊢1 C : (−→) , Ψ; Γ ⊢1 C ′ : (−→) and Ψ; Γ, G : (⊢ C [id; ? (id)] G ≃ C ′ [id; ? (id)] G :) , then

Ψ; Γ ⊢ C ≃ C ′ : (−→) .

• If Ψ ⊢1 Γ and Ψ;Δ ⊢0 C :) , then Ψ; Γ ⊢ box C ≃ box C :) .

• If Ψ; Γ ⊢1 C : (6 : Ctx) ⇒) , Ψ; Γ ⊢1 C
′ : (6 : Ctx) ⇒) and Ψ, 6 : Ctx; Γ ⊢ C [? (id)] $ 6 ≃ C ′ [? (id)] $ 6 :) ,

then Ψ; Γ ⊢ C ≃ C ′ : (6 : Ctx) ⇒) .

Law 3.6 (Congruence of neutrals).

• If Ψ; Γ ⊢1 G :) , then Ψ; Γ ⊢ G ∼ G :) .

• If D : (Δ ⊢)) ∈ Ψ and Ψ; Γ ⊢ X ≃ X′ : Δ, then Ψ; Γ ⊢ DX ∼ DX
′
:) .

• If Ψ; Γ ⊢ E ∼ E ′ : (−→) and Ψ; Γ ⊢ C ≃ C ′ : (, then Ψ; Γ ⊢ E C ∼ E C ′ :) .

• If Ψ ⊢1)
′, Ψ; Γ ⊢ E ∼ E ′ : �(Δ ⊢)) and Ψ, D : (Δ ⊢)); Γ ⊢ C ≃ C ′ :) ′ [? (id)], then Ψ; Γ ⊢ letbox D �

E in C ∼ letbox D � E ′ in C ′ :) ′.

• If Ψ; Γ ⊢ E ∼ E ′ : (6 : Ctx) ⇒) and Ψ ⊢0 Δ, then Ψ; Γ ⊢ E $ Δ ∼ E ′ $ Δ :) [idΨ,Δ/6]

From the congruence of local variables, we have that local weakening substitutions, specifically, local identity
substitutions, are reflexive in the generic equivalence:

Lemma 3.3 (Reflexivity of LocalWeakening Substitutions). If Ψ ⊢1 Δ, Γ, then Ψ;Δ, Γ ⊢ wk
|Γ |

Δ
≃ wk

|Γ |

Δ
: Δ.

Lemma 3.4 (Reflexivity of Local Identity Substitutions). If Ψ ⊢1 Γ, then Ψ; Γ ⊢ idΓ ≃ idΓ : Γ.

This further implies

Lemma 3.5 (Congruence of Global Variables). If ⊢ Ψ and D : (Γ ⊢)) ∈ Ψ, then Ψ; Γ ⊢ DidΓ ∼ DidΓ :) .

We give the first instantiation of both relations as follows:

• Ψ; Γ ⊢ C ≃ C ′ :) := Ψ; Γ ⊢1 C ≈ C
′ :) , and

• Ψ; Γ ⊢ E ∼ E ′ :) := Ψ; Γ ⊢1 E ≈ E ′ :) .

The laws are instantiated to appropriate rules. Later, we will instantiate the relations to algorithmic equivalence,
showing that the algorithmic rules are complete, following Abel et al. [2017]. Before that, let us first define the
reducibility predicates parameterized by the generic equivalence relations for terms.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 21

3.2 Reducibility Predicates

Following Abel et al. [2017], we first give the semantic well-formedness of types. The predicates do not need to
be defined recursive-inductively, because unlike dependent types, there is no type-level computation here in our
system.

⊢ Ψ

Ψ �8 Nat

∀W : Φ =⇒6 Ψ · Φ �8 ([W] ∀W : Φ =⇒6 Ψ · Φ �8) [W]

Ψ �8 (−→)

Ψ ⊢0 Δ ∀W : Φ =⇒6 Ψ · Φ �0) [W]

Ψ �1 �(Δ ⊢))

Ψ, 6 : Ctx ⊢1) ∀W : Φ =⇒6 Ψ and Φ ⊢0 Γ · Φ �1) [@(W)] [idΦ, Γ/6]

Ψ �1 (6 : Ctx) ⇒)

Compared to the syntactic well-formedness judgment in Sec. 2.1, the semantic counterpart has extra universal
quantifications over global weakenings. These universal quantifications are necessary when we give semantics
to terms. Moreover, the semantic well-formedness of types is monotonic w.r.t. global weakenings:

Lemma 3.6 (Monotonicity). If W : Φ =⇒6 Ψ and Ψ �8) , then Φ �8) [W].

Proof. Induction. �

The lifting lemma also has a semantic counterpart:

Lemma 3.7 (Lifting). If Ψ �0) , then Ψ �1) .

Proof. Induction. �

Lemma 3.8 (Escape). If Ψ �8) , then Ψ ⊢8) .

Proof. We do induction on Ψ �8) . In the meta-function case, we instantiate the global weakening to ? (id) :
Ψ, 6 : Ctx =⇒6 Ψ and Γ to 6. Apply IH again to obtain the goal. �

Now we move on to defining the reducibility for terms Ψ; Γ �8 C ≈ C ′ :) and local substitutions Ψ; Γ �8
X ≈ X′ : Δ. Both relations are defined first by recursion on the layer 8 . Then, the reducibility predicate for
terms Ψ; Γ �8 C ≈ C ′ :) is defined by recursion on Ψ �8) . The reducibility predicate for local substitutions
Ψ; Γ �8 X ≈ X

′ : Δ is defined inductively. The predicates are defined in this way because the layer-1 predicate for
terms refers to the predicates at layer 0, as in our presheaf models by Hu and Pientka [2024a]. The definition that
we present here does not focus too much on the layered nature to save space and be more modular. However,
we imagine that if this model must be put into a proof assistant, then attention must be paid to ensure the well-
foundness. The predicate for terms is a Kripke model, as it is indexed by both global and local contexts. We first
define the semantic natural numbers:

Ψ; Γ ⊢ C ∗ F : Nat Ψ; Γ ⊢ C ′ ∗ F ′ : Nat Ψ; Γ ⊢ F ≃ F ′ : Nat Ψ; Γ �Nf F ≈ F ′ : Nat

Ψ; Γ �8 C ≈ C
′ : Nat

Ψ; Γ �Nf zero ≈ zero : Nat

Ψ; Γ � C ≈ C ′ : Nat

Ψ; Γ �Nf succ C ≈ succ C ′ : Nat

Ψ; Γ ⊢ E ∼ E ′ : Nat

Ψ; Γ �Nf E ≈ E ′ : Nat

Then we let Ψ; Γ �8 C ≈ C
′ : Nat := Ψ; Γ � C ≈ C ′ : Nat.

Next, we define the case for function. Ψ; Γ �8 C ≈ C
′ : (−→) holds iff

• Ψ; Γ ⊢ C ∗ F : (−→) , and
• Ψ; Γ ⊢ C ′ ∗ F ′ : (−→) , and
• Ψ; Γ ⊢ F ≃ F ′ : (−→) , and

, Vol. 1, No. 1, Article . Publication date: April 2024.

22 • Jason Z. S. Hu and Brigi�e Pientka

• for any W ; g : Φ;Δ =⇒ Ψ; Γ, and given Φ;Δ �8 B ≈ B′ : ([W], then we have Φ;Δ �8 F [W ; g] B ≈ F ′ [W ; g] B′ :

) [W].

It means that C reduces to some weak head normal form, and the result of applying this weak head normal form
to a reducible term remains reducible.

Next, we define the reducibility for �(Δ ⊢)),

Ψ; Γ ⊢ C ∗ F : �(Δ ⊢)) Ψ; Γ ⊢ C ′ ∗ F ′ : �(Δ ⊢))

Ψ; Γ ⊢ F ≃ F ′ : �(Δ ⊢)) Ψ; Γ �Nf1 F ≈ F ′ : �(Δ ⊢))

Ψ; Γ �1 C ≈ C
′ : �(Δ ⊢))

Ψ;Δ ⊢0 C :) ∀ Ψ;Δ′ �0 X ≈ X
′ : Δ · Ψ;Δ′ �0 C [X] ≈ C [X

′] :)

Ψ; Γ �Nf1 box C ≈ box C : �(Δ ⊢))

Ψ; Γ ⊢ E ∼ E ′ : �(Δ ⊢))

Ψ; Γ �Nf1 E ≈ E ′ : �(Δ ⊢))

Similar to our presheaf models, we must refer to Ψ;Δ �0 X ≈ X′ : Γ when giving semantics for terms of type
�(Δ ⊢)), so the predicates at layer 0 must be finished before defining the predicate at layer 1. To support
pattern matching on code, instead of this universal quantification, we must use an inductively defined layer-0
model instead as done in Hu and Pientka [2024a, Sec. 5.4.1].

Next, we define the case for meta-functions. Ψ; Γ �1 C ≈ C
′ : (6 : Ctx) ⇒) holds iff

• Ψ; Γ ⊢ C ∗ F : (6 : Ctx) ⇒) , and
• Ψ; Γ ⊢ C ′ ∗ F ′ : (6 : Ctx) ⇒) , and
• Ψ; Γ ⊢ F ≃ F ′ : (6 : Ctx) ⇒) , and
• for any W ; g : Φ;Δ =⇒ Ψ; Γ, and given Φ ⊢0 Δ

′, then we have Φ;Δ �1 F [W ; g] $ Δ
′ ≈ F ′ [W ; g] $ Δ

′ :

) [@(W)] [idΦ,Δ
′/6].

We generalize the reducibility for terms to local contexts and local substitutions by doing an inductive-
recursive definition:

⊢ Ψ

Ψ �8 ·

Then Ψ; Γ �8 X ≈ X
′ : · holds by considering the cases for Γ,

• if Γ ends with ·, then X = X′ = · |Γ | ;

• if Γ ends with 6, then 6 : Ctx ∈ Ψ and X = X′ = ·
|Γ |
6 .

⊢ Ψ 6 : Ctx ∈ Ψ

Ψ �8 6

Then Ψ; Γ �8 X ≈ X
′ : 6 holds iff Γ ends with 6 and X = X′ = wk

|Γ |
6 .

Ψ �8 Δ Ψ �8)

Ψ �8 Δ, G :)

Then Ψ; Γ �8 X ≈ X
′ : Δ, G :) holds iff

• Ψ; Γ �8 X ≈ X
′ : Δ,

• Ψ; Γ �8 C ≈ C
′ :) .

Note that one should consider the rules above really give two predicates, one for layer 0 and one for layer 1. In
this technical report, however, we do not really type out the replication.

At this point, we have finished defining reducibility predicates for all types. We further let Ψ; Γ �8 C :) be
Ψ; Γ �8 C ≈ C :) . This predicate basically means that C can be reduced to some weak head normal form.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 23

By the definition of the predicates, we have the following lemmas:

Lemma 3.9. If Ψ; Γ �8 C ≈ C
′ :) , then Ψ; Γ ⊢ B ∗ C :) , and Ψ; Γ ⊢ B′ ∗ C ′ :) , and Ψ; Γ �8 B ≈ B

′ :) .

Proof. By induction on Ψ �8) . �

Lemma 3.10. If Ψ; Γ �8 C ≈ C
′ :) , then Ψ; Γ ⊢ C ∗ F :) , and Ψ; Γ ⊢ C ′ ∗ F ′ :) , and Ψ; Γ ⊢ F ≃ F ′ :) .

Proof. By induction on Ψ �8) and transitivity of multi-step weak head reduction. �

Corollary 3.11. If Ψ; Γ �8 C ≈ C
′ :) , then Ψ; Γ ⊢ C ≃ C ′ :) .

Lemma 3.12. If Ψ; Γ �8 X ≈ X
′ : Δ, then Ψ; Γ ⊢ X ≃ X′ : Δ.

Proof. Generalization of Corollary 3.11. �

Lemma 3.13 (Reducibility of Neutrals). If Ψ �8) , Ψ; Γ ⊢8 E :) and Ψ; Γ ⊢ E ∼ E ′ :) , then Ψ; Γ �8 E ≈ E
′ :) .

Proof. Induction by Ψ �8) and apply IHs. �

Lemma 3.14 (Reducibility of Weakenings). If Ψ �8 Γ,Δ, then Ψ; Γ,Δ �8 wk
|Δ |

Γ
≈ wk

|Δ |

Γ
: Γ.

Proof. A direct consequence of Lemma 3.13. �

Corollary 3.15 (Reducibility of Identity). If Ψ �8 Γ, then Ψ; Γ �8 idΓ ≈ idΓ : Γ.

Lemma 3.16. If Ψ �0) , then Ψ; Γ �0 C ≈ C
′ :) iff Ψ; Γ �1 C ≈ C

′ :) .

Proof. We only consider the cases for Nat and functions and apply IHs directly. �

This is derived from the fact that the predicate for Nat is invariant at different layers.
We verify several important properties for the reducibility predicates:

Lemma 3.17 (Escape). If Ψ; Γ �8 C ≈ C
′ :) , then Ψ; Γ ⊢1 C ≈ C

′ :) .

Proof. We do induction on Ψ �8) . Notice that generic equivalence eventually implies syntactic equivalence
by the subsumption law. �

Lemma 3.18 (Escape). If Ψ; Γ �8 X ≈ X
′ : Δ, then Ψ; Γ ⊢1 X ≈ X

′ : Δ.

Lemma 3.19 (Monotonicity). If Ψ �8) and Ψ; Γ �8 C ≈ C
′ :) , given W ; g : Φ;Δ =⇒ Ψ; Γ, then Φ;Δ �8 C [W ; g] ≈

C ′ [W ; g] :) [W].

Proof. We do induction on Ψ �8) .

Case) = Nat, then we have the goal by the monotonicity of multi-step weak head reduction and the generic
equivalence. We further do induction on Ψ; Γ �Nf F ≈ F ′ : Nat.

Case) = (−→) ′, then we assume another W ′; g ′ : Φ′;Δ′ =⇒ Φ;Δ and Φ
′;Δ′ �8 B ≈ B′ : ([W ◦ W ′], we must

show Φ
′;Δ′ �8 C [W ; g] [W

′; g ′] B ≈ C ′ [W ; g] [W ′; g ′] B′ : ([W ◦W ′]. But this is immediate due to the composition
of weakenings.

Case) = �(Δ ⊢) ′), then it is also immediate after a case analysis of Ψ; Γ �Nf F ≈ F ′ : �(Δ ⊢) ′). We apply
the monotonicity of multi-step weak head reduction and the generic equivalence appropriately.

Case) = (6 : Ctx) ⇒) ′, then this case is very similar to the function case.We assume anotherW ′; g ′ : Φ′;Δ′ =⇒
Φ;Δ and Φ

′ ⊢0 Γ
′. Our goal is to show

Φ
′;Δ′ �1 F [W ; g] [W

′; g ′] $ Γ′ ≈ F ′ [W ; g] [W ′; g ′] $ Γ′ :) [@(W ◦ W ′)] [idΦ′ , Γ
′/6]

This again has been given by the composition of weakenings and notice that @(W ◦ W ′) = @(W) ◦ @(W ′).

, Vol. 1, No. 1, Article . Publication date: April 2024.

24 • Jason Z. S. Hu and Brigi�e Pientka

�

Lemma 3.20 (Monotonicity). If Ψ; Γ �8 X ≈ X
′ : Δ′, given W ; g : Φ;Δ =⇒ Ψ; Γ, then Φ;Δ �8 X [W ; g] ≈ X

′ [W ; g] :

Δ
′ [W].

Lemma 3.21 (PER). The Ψ; Γ �8 C ≈ C
′ :) relation satisfies symmetry and transitivity.

Proof. Transitivity relies on the uniqueness of weak head reduction. �

Lemma 3.22 (PER). The Ψ; Γ �8 X ≈ X
′ : Δ relation satisfies symmetry and transitivity.

The following lemma is the semantic counterpart for the layering principle. It ensures that terms inhabiting
types in STLC have the same behaviors at both layers.

Lemma 3.23 (Layering Restriction).

• If Ψ �0) , then Ψ; Γ �0 C ≈ C
′ :) is equivalent to Ψ; Γ �1 C ≈ C

′ :) .

• If Ψ �0 Δ, then Ψ; Γ �0 X ≈ X
′ : Δ is equivalent to Ψ; Γ �1 X ≈ X

′ : Δ.

This lemma is particularly useful to help treat global variables the same at both layers.
Our goal is then to show the following theorem:

Theorem 3.24 (Completeness).

• If Ψ ⊢8) , then Ψ �8) .

• If Ψ; Γ ⊢8 C ≈ C
′ :) , then Ψ; Γ �8 C ≈ C

′ :) .

• If Ψ; Γ ⊢8 X ≈ X
′ : Δ, then Ψ; Γ �8 X ≈ X

′ : Δ.

If the Ψ; Γ ⊢ C ≃ C ′ :) is the algorithmic convertibility checking algorithm, then we show that syntactic equiv-
alence implies algorithmic equivalence. In other words, algorithmic convertibility is complete w.r.t. syntactic
equivalence. However, to arrive at that solution, we must first show that the completeness theorem above holds
w.r.t. the generic equivalence relations. Following Abel et al. [2017], however, we still have one step missing to
conclude this goal. We must define a set of validity judgments to handle the meta-function case in the semantic
well-formedness of types.

3.3 Validity Judgments

According to Abel et al. [2017], validity judgments are introduced to characterize the reducible terms that are
also closed under substitutions. In the same spirit, we also need the validity judgments to handle the case for
meta-functions:

Ψ, 6 : Ctx ⊢1) ∀W : Φ =⇒6 Ψ and Φ ⊢0 Γ · Φ �1) [@(W)] [idΦ, Γ/6]

Ψ �1 (6 : Ctx) ⇒)

When we attempt to prove the following statement from the completeness theorem:

If Ψ ⊢8) , then Ψ �1) .

This case breaks down, because the IH only provides

Ψ, 6 : Ctx �1)

and by monotonicity, we derive

Φ, 6 : Ctx �1) [@(W)]

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 25

but then we are stuck. We have no way to prove that the semantic well-formedness of types is closed under
substitutions. Following Abel et al. [2017], we define validity judgments which further restrict reducibility pred-
icates to subsets that are closed under substitutions. Since types are only affected by the global contexts, the
validity judgments are defined by induction-recursion on global contexts:

�
E ·

The validity equivalence for global substitutions Φ �E f : · is defined as ⊢ Φ and f = ·.

�
E
Ψ

�
E
Ψ, 6 : Ctx

Φ �
E f : Ψ, 6 : Ctx is defined as

• f = f1, Γ/6,
• Φ ⊢0 Γ, and
• Φ �

E f1 : Ψ.

�
E
Ψ Ψ �

E
0 Γ Ψ �

E
0)

�
E
Ψ, D : (Γ ⊢))

Φ �
E f : Ψ, D : (Γ ⊢)) is defined as

• f = f1, C/D,
• Φ �

E f1 : Ψ, and
• for all Φ;Δ �0 X ≈ X

′ : Γ [f1], we have Φ;Δ �0 C [X] ≈ C [X
′] :) [f1].

The validity of types Ψ �E8) is defined as: Ψ �8) and given Φ �
E f : Ψ, we have Φ �8) [f]. The validity of

local contextsΨ �E8 Γ is defined by applying the validity of types pointwise. The judgments are simplified because
there is no need to have an equivalence judgment between global substitutions. In a global substitution, there
are only two kinds of components: code of STLC and local contexts. The former is determined to be identified
by syntax. Local contexts are also identified by syntax because we are dealing with simple types.

With these definitions ready, we put a universal quantification on top of the reducibility predicates, which
specifies the reducible terms that are closed under valid global substitutions:

• Ψ; Γ �E8 C ≈ C ′ :) iff for any Φ �
E f : Ψ and Φ;Δ �8 X ≈ X′ : Γ [f], we have Φ;Δ �8 C [f] [X] ≈ C ′ [f] [X] :

) [f].
• Ψ; Γ �E8 X ≈ X′ : Δ iff for any Φ �

E f : Ψ and Φ;Δ′ �8 X
′′ ≈ X′′′ : Γ [f], we have Φ;Δ′ �8 X [f] ◦ X

′′ ≈

X′ [f] ◦ X′′ : Δ[f].

Now we work out several lemmas:

Lemma 3.25 (Escape). If Φ �E f : Ψ, then Φ ⊢ f : Ψ.

Proof. Wedo induction on�E Ψ. In the case for extension of code, we apply the escape lemma for semantically
well-formed types and reducible terms. �

Lemma 3.26 (Monotonicity). If Φ �E f : Ψ and W : Φ′ =⇒6 Φ, then Φ
′
�
E f [W] : Ψ.

Proof. We do induction on �E Ψ. Use monotonicity of reducible terms and the algebra of global substitutions.
�

Lemma 3.27 (Validity of Global Weakening Substitutions). If ⊢ Ψ,Φ and �E Ψ, then Ψ,Φ �E wk
|Φ |

Ψ
: Ψ.

, Vol. 1, No. 1, Article . Publication date: April 2024.

26 • Jason Z. S. Hu and Brigi�e Pientka

Proof. We do induction on �E Ψ. The most interesting case is the extension case for code. If Ψ = Ψ
′,D : (Γ ⊢

)), then our goal is given Ψ
′, D : (Γ ⊢)),Φ;Δ �0 X ≈ X

′ : Γ [wk
1+|Φ |

Ψ′
], to prove

Ψ
′,D : (Γ ⊢)),Φ;Δ �0 D

idΓ [?
1+|Φ| (id)] [X] ≈ D idΓ [?

1+|Φ| (id)] [X′] :) [wk
1+|Φ |

Ψ′
]

In the last section, we have established that [wk1+|Φ |
Ψ′
] has the same effect as [?1+|Φ | (id)], so this goal becomes

Ψ
′,D : (Γ ⊢)),Φ;Δ �0 D

idΓ [?
1+|Φ| (id)] [X] ≈ D idΓ [?

1+|Φ| (id)] [X′] :) [?1+|Φ | (id)]

By computation, the goal further becomes:

Ψ
′,D : (Γ ⊢)),Φ;Δ �0 D

X ≈ DX
′

:) [?1+|Φ | (id)]

But this is immediate due to Lemma 3.12, the reducibility of neutrals and congruence of the generic equivalence

Ψ
′,D : (Γ ⊢)),Φ;Δ ⊢ DX ∼ DX

′

:) [?1+|Φ | (id)]

�

In particular, it proves that the identity is valid:

Corollary 3.28. If ⊢ Ψ, then Ψ �
E id : Ψ.

Theorem 3.29 (Fundamental).

• If ⊢ Ψ, then �E Ψ.

• If Ψ ⊢8) , then Ψ �
E
8) .

• If Ψ ⊢8 Γ, then Ψ �
E
8 Γ.

Proof. We do induction. The cases for global contexts are simple.

Case

⊢ Ψ

Ψ ⊢8 Nat

Assuming Φ �
E f : Ψ, by escape, we have Φ ⊢ f : Ψ, and then ⊢ Φ by presupposition. We then conclude

the goal.
Case

Ψ ⊢8 (Ψ ⊢8)

Ψ ⊢8 (−→)

We assume Φ �E f : Ψ. We now should prove Φ �8 ((−→)) [f]. This can be concluded from Φ �8 ([f]

and Φ �8) [f]. They are immediate from Ψ �
E
8 (and Ψ �

E
8) by IH.

Case

Ψ ⊢0 Δ Ψ ⊢0)

Ψ ⊢1 �(Δ ⊢))

We assume Φ �E f : Ψ. We now should prove Φ �8 (�(Δ ⊢))) [f]. We further assume W : Φ′ =⇒6 Φ. The
goal can be concluded from Φ

′
�1) [f] [W]. Since) [f] [W] =) [f [W]] and Ψ �

E
0
) from IH, we only need

Φ
′
�
E f [W] : Ψ, which we get from monotonicity.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 27

Case

Ψ, 6 : Ctx ⊢1)

Ψ ⊢1 (6 : Ctx) ⇒)

We assume Φ �E f : Ψ. We now should prove Φ �8 ((6 : Ctx) ⇒)) [f]. We further assume W : Φ′ =⇒6 Φ

and Φ
′ ⊢0 Γ. The goal can be concluded from Φ

′
�1) [@(f)] [@(W)] [id, Γ/6]. We compute:

) [@(f)] [@(W)] [id, Γ/6] =) [@(f) [@(W)]] [id, Γ/6]

=) [@(f [W])] [id, Γ/6]

=) [f [W] [? (id)], 6/6] [id, Γ/6]

=) [(f [W] [? (id)] ◦ (id, Γ/6)), 6[id, Γ/6]/6]

=) [f [W], Γ/6]

Therefore the goal becomes to prove Φ′ �1) [f [W], Γ/6]. By IH, we have Ψ, 6 : Ctx �E
1
) . We simply need

Φ
′
�
E f [W], Γ/6 : Ψ, 6 : Ctx. This is immediate from monotonicity and definition.

�

Theorem 3.30 (Fundamental).

• If Ψ; Γ ⊢8 C :) , then Ψ; Γ �E8 C :) .

• If Ψ; Γ ⊢8 X : Δ, then Ψ; Γ �E8 X : Δ.

• If Ψ; Γ ⊢8 C ≈ C
′ :) , then Ψ; Γ �E8 C ≈ C

′ :) .

• If Ψ; Γ ⊢8 X ≈ X
′ : Δ, then Ψ; Γ �E8 X ≈ X

′ : Δ.

Proof. We again do mutual induction. We focus on modal cases.

Case

Ψ; Γ ⊢8 X ≈ X
′ : Δ D : (Δ ⊢)) ∈ Ψ

Ψ; Γ ⊢8 D
X ≈ DX

′

:)

�0 :Ψ; Γ �
E
8 X ≈ X

′ : Δ (by IH)

�1 :Φ �
E f : Ψ (by assumption)

Φ;Δ′ �8 X
′′ ≈ X′′′ : Γ [f] (by assumption)

�2 :Φ;Δ
′
�8 X [f] ◦ X

′′ ≈ X′ [f] ◦ X′′′ : Δ[f] (by �0)

�3 :Φ;Δ
′
�0 X [f] ◦ X

′′ ≈ X′ [f] ◦ X′′′ : Δ[f] (by layering restriction and Δ is well-formed at layer 0)

Φ;Δ′ �8 f (D) [X [f] ◦ X
′′] ≈ f (D) [X′ [f] ◦ X′′′] :) [f [?1+D (id)]] (by �1 and �3)

Case

Ψ ⊢1 Γ Ψ;Δ ⊢0 C ≈ C
′ :)

Ψ; Γ ⊢1 box C ≈ box C ′ : �(Δ ⊢))

�0 :Ψ;Δ �
E
0 C ≈ C

′ :) (by IH)

�1 :Φ �
E f : Ψ (by assumption)

�2 :Φ;Δ
′
�1 X ≈ X

′ : Γ [f] (by assumption)

Φ ⊢1 Δ
′ (by �2, escape and presupposition)

�3 :Φ;Δ
′′
�0 X

′′ ≈ X′′′ : Δ[f] (by assumption)

, Vol. 1, No. 1, Article . Publication date: April 2024.

28 • Jason Z. S. Hu and Brigi�e Pientka

C = C ′ (by static code)

Φ;Δ′′ �0 C [f] [X
′′] ≈ C ′ [f] [X′′′] :) [f] (by �0, �1 and �3)

Φ;Δ[f] �Nf1 box C [f] ≈ box C ′ [f] :) [f] (by definition)

Φ;Δ′ ⊢1 box C [f] [X] ≈ box C ′ [f] [X′] : �(Δ ⊢)) [f]

In the last step, notice that local substitutions do not propagate into box.
Case

Ψ; Γ ⊢1 B ≈ B
′ : �(Δ ⊢))

Ψ ⊢0 Δ Ψ ⊢0) Ψ ⊢1)
′

Ψ, D : (Δ ⊢)); Γ [? (id)] ⊢1 C ≈ C
′ :) ′ [? (id)]

Ψ; Γ ⊢1 letbox D � B in C ≈ letbox D � B′ in C ′ :) ′

�0 :Ψ; Γ �
E
1 B ≈ B

′ : �(Δ ⊢)) (by IH)

�1 :Ψ, D : (Δ ⊢)); Γ [? (id)] �E1 C ≈ C
′ :) ′ [? (id)] (by IH)

�2 :Φ �
E f : Ψ (by assumption)

�3 :Φ;Δ
′
�1 X ≈ X

′ : Γ [f] (by assumption)

Φ;Δ′ �0 B [f] [X] ≈ B
′ [f] [X′] : �(Δ ⊢)) [f] (by �0, �2 and �3)

Now, we consider �3, where we know for someF andF ′

Φ;Δ′ ⊢ B [f] [X] ∗ F : �(Δ[f] ⊢ () [f]))

Φ;Δ′ ⊢ B′ [f] [X] ∗ F ′ : �(Δ[f] ⊢ () [f]))

�4 :Φ;Δ
′
�
Nf
1 F ≈ F ′ : �(Δ[f] ⊢ () [f]))

We then case analyze �4:
Subcase

Φ;Δ[f] ⊢0 C
′′ :) [f] ∀Φ′;Δ′′ �0 X

′′ ≈ X′′′ : Δ[f] · Φ′;Δ′′ �0 C
′′ [X′′] ≈ C ′′ [X′′′] :)

Φ;Δ′ �Nf1 box C ′′ ≈ box C ′′ : �(Δ ⊢)) [f]

Then we have

�5 :Φ �
E f, C ′′/D : Ψ, D : (Δ ⊢)) (by definition)

Φ;Δ′ �1 C [f, C
′′/D] [X] ≈ C ′ [f, C ′′/D] [X′] :) ′ [? (id)] [f, C ′′/D] (by �1 and �5)

) ′ [? (id)] [f, C ′′/D] =) ′ [f] (by computation)

letboxD � B in C [f] [X]

=letboxD � B [f] [X] in (C [@(f)] [X [? (id)]])

∗letboxD � box C ′′ in (C [@(f)] [X [? (id)]])

 C [@(f)] [X [? (id)]] [id, C ′′/D]

=C [@(f) ◦ (id, C ′′/D)] [X [? (id)] [id, C ′′/D]]

=C [f, C ′′/D] [X] (by computation)

letboxD � B′ in C ′ [f] [X′] ∗ C ′ [f, C ′′/D] [X′] (similarly)

Φ;Δ′ �1 letbox D � B in C [f] [X] ≈ letbox D � B′ in C ′ [f] [X] :) ′ [f]

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 29

Subcase

Φ;Δ′ ⊢ E ∼ E ′ : �(Δ ⊢)) [f]

Φ;Δ′ �Nf1 E ≈ E ′ : �(Δ ⊢)) [f]

Then we have

�5 :Φ,D : (Δ[f] ⊢ () [f])) �E f [? (id)],D id/D : Ψ, D : (Δ ⊢)) (by monotonicity and Lemma 3.13)

�6 :Φ,D : (Δ[f] ⊢ () [f]));Δ′[? (id)] �1 X [? (id)] ≈ X
′ [? (id)] : Γ [f] [? (id)] (by monotonicity)

Γ [? (id)] [f [? (id)],D id/D] = Γ [f [? (id)]] = Γ [f] [? (id)] (by computation)

) ′ [? (id)] [f [? (id)],D id/D] =) ′ [f [? (id)]] =) ′ [f] [? (id)] (by computation)

Φ,D : (Δ[f] ⊢ () [f]));Δ′[? (id)] �1 C [f [? (id)],D
id/D] [X [? (id)]] ≈ C ′ [f [? (id)],D id/D] [X′ [? (id)]] :) ′ [f] [? (id)]

(by �1, �5 and �6)

Φ,D : (Δ[f] ⊢ () [f]));Δ′[? (id)] ⊢ C [f [? (id)],D id/D] [X [? (id)]] ≃ C ′ [f [? (id)],D id/D] [X′ [? (id)]] :) ′ [f] [? (id)]

(by Corollary 3.11)

letboxD � B in C [f] [X]

=letboxD � B [f] [X] in (C [@(f)] [X [? (id)]])

∗letboxD � E in (C [@(f)] [X [? (id)]]) (by computation)

letboxD � B′ in C ′ [f] [X′] ∗ letbox D � E ′ in (C ′ [@(f)] [X′ [? (id)]]) (similarly)

Φ;Δ′ ⊢ letbox D � E in (C [@(f)] [X [? (id)]]) ∼ letbox D � E ′ in (C ′ [@(f)] [X′ [? (id)]]) :) [f]

(neutral terms)

Φ;Δ′ �1 letbox D � E in (C [@(f)] [X [? (id)]]) ≈ letbox D � E ′ in (C ′ [@(f)] [X′ [? (id)]]) :) [f]

(by Lemma 3.13)

Φ;Δ′ �1 letbox D � B in C [f] [X] ≈ letbox D � B′ in C ′ [f] [X] :) ′ [f]

Case

Ψ ⊢1 Γ Ψ, 6 : Ctx; Γ [? (id)] ⊢1 C ≈ C
′ :)

Ψ; Γ ⊢1 Λ6.C ≈ Λ6.C ′ : (6 : Ctx) ⇒)

�0 :Ψ, 6 : Ctx; Γ [? (id)] �E1 C ≈ C
′ :) (by IH)

�1 :Φ �
E f : Ψ (by assumption)

�2 :Φ;Δ
′
�1 X ≈ X

′ : Γ [f] (by assumption)

�3 :W ; g : Φ′;Δ′′ =⇒ Φ;Δ′ (by assumption)

�4 :Φ
′ ⊢0 Γ

′ (by assumption)

�5 :Φ
′
�
E f [W], Γ′/6 : Ψ, 6 : Ctx (by monotonicity)

�6 :Φ
′;Δ′′ �1 X [W ; g] ≈ X

′ [W ; g] : Γ [f] [W] (by monotonicity)

Φ
′;Δ′′ �1 C [f [W], Γ

′/6] [X [W ; g]] ≈ C ′ [f [W], Γ′/6] [X′ [W ; g]] :) [f [W], Γ′/6] (by �0, �5 and �6)

Λ6.C [f] [X] [W ; g] $ Γ′

=Λ6.(C [@(f [W])] [X [W ; g] [? (id)]]) $ Γ′

 C [@(f [W])] [X [W ; g] [? (id)]] [id, Γ′/6]

, Vol. 1, No. 1, Article . Publication date: April 2024.

30 • Jason Z. S. Hu and Brigi�e Pientka

=C [@(f [W])] [id, Γ′/6] [X [W ; g] [? (id)] [id, Γ′/6]]

=C [f [W], Γ′/6] [X [W ; g]] (by computation)

Λ6.C ′ [f] [X′] [W ; g] $ Γ′ C ′ [f [W], Γ′/6] [X′ [W ; g]] (similarly)

Φ
′;Δ′′ �1 Λ6.C [f] [X] [W ; g] $ Γ

′ ≈ Λ6.C ′ [f] [X′] [W ; g] $ Γ′ :) [f [W], Γ′/6] (by Lemma 3.9)

Φ;Δ′ �1 Λ6.C [f] [X] ≈ Λ6.C ′ [f] [X′] : (6 : Ctx) ⇒) [f]

Case

Ψ; Γ ⊢1 C ≈ C
′ : (6 : Ctx) ⇒) Ψ ⊢0 Δ

Ψ; Γ ⊢1 C $ Δ ≈ C
′ $ Δ :) [idΨ,Δ/6]

�0 :Ψ; Γ �
E
1 C ≈ C

′ : (6 : Ctx) ⇒) (by IH)

�1 :Φ �
E f : Ψ (by assumption)

�2 :Φ;Δ
′
�8 X ≈ X

′ : Γ [f] (by assumption)

Φ;Δ′ �1 C [f] [X] ≈ C
′ [f] [X′] : (6 : Ctx) ⇒) [f]

Φ ⊢0 Δ[f]

Φ;Δ′ �1 C [f] [X] $ Δ[f] ≈ C
′ [f] [X′] $ Δ[f] :) [f] [id,Δ[f]/6]

) [f] [id,Δ[f]/6] =) [id,Δ/6] [f] (by computation)

The goal is then concluded.
Case

Ψ ⊢8 Γ Γ ends with · |Γ | =<

Ψ; Γ ⊢8 ·
< ≈ ·< : ·

Φ �
E f : Ψ (by assumption)

Φ;Δ′ �8 X ≈ X
′ : Γ [f] (by assumption)

We must compare ·< [f] ◦X = ·X̂
qX
and ·< [f] ◦X′ = ·X̂

′

qX′
. But they are immediately equal, as we can show that

Φ;Δ′ �8 X ≈ X
′ : Γ [f] implies qX =

qX′ and X̂ = X̂′ .
Case

Ψ ⊢8 Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | =<

Ψ; Γ ⊢8 ·
<
6 ≈ ·

<
6 : ·

Φ �
E f : Ψ (by assumption)

Φ;Δ′ �8 X ≈ X
′ : Γ [f] (by assumption)

We look up f (6) and consider what it ends with.

Subcase f (6) ends with ·. Then we must compare ·<6 [f] ◦ X = ·X̂
qX
and ·<6 [f] ◦ X

′
= ·X̂

′

qX′
, which we know are equal.

Subcase f (6) ends with some 6′. Then we must compare ·<6 [f] ◦ X = ·X̂6′ and ·
<
6 [f] ◦ X

′
= ·X̂

′

6′ , which we know are

also equal.
Case

Ψ ⊢8 Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | =<

Ψ; Γ ⊢8 wk
<
6 ≈ wk<6 : 6

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 31

Φ �
E f : Ψ (by assumption)

�0 :Φ;Δ
′
�8 X ≈ X

′ : Γ [f] (by assumption)

Then we have

wk<6 [f] ◦ X = idf (6) [83 ; ?
< (id)] ◦ X = wk<f (6) ◦ X

and

wk<6 [f] ◦ X
′
= idf (6) [83 ; ?

< (id)] ◦ X′ = wk<f (6) ◦ X
′

We show Φ;Δ′ �8 wk
<
f (6) ◦ X ≈ wk<f (6) ◦ X

′ : f (6) by unraveling �0 < times.

�

As a corollary of the fundamental theorems, we can prove the completeness theorem:

Proof of Theorem 3.24. Notice that the reducibility predicates are just special cases of the validity judgments.
�

3.4 Convertibility Checking

In this section, we will write down the converibility checking rules and instantiate the generic equivalence with
it, proving that equivalence terms can be checked. We define three judgments: Ψ; Γ ⊢ C ⇐̂⇒ C ′ :) checks the
convertibility of two terms C and C ′ . Ψ; Γ ⊢ F ⇐⇒ F ′ :) checks the convertibility of two normal formsF and
F ′. This operation is directed by types. Ψ; Γ ⊢ E ←→ E ′ :) checks the convertibility of two neutral forms E and
E ′ . This operation is structural on the neutral forms. We give all the rules below:

Ψ; Γ ⊢ C ∗ F :) Ψ; Γ ⊢ C ′ ∗ F ′ :) Ψ; Γ ⊢ F ⇐⇒ F ′ :)

Ψ; Γ ⊢ C ⇐̂⇒ C ′ :)

Ψ ⊢1 Γ

Ψ; Γ ⊢ zero⇐⇒ zero : Nat

Ψ; Γ ⊢ C ⇐̂⇒ C ′ : Nat

Ψ; Γ ⊢ succ C ⇐⇒ succ C ′ : Nat

Ψ; Γ ⊢ E ←→ E ′ : Nat

Ψ; Γ ⊢ E ⇐⇒ E ′ : Nat

Ψ; Γ, G : (⊢ F [id; ? (id)] G ⇐̂⇒ F ′ [id; ? (id)] G :)

Ψ; Γ ⊢ F ⇐⇒ F ′ : (−→)

Ψ ⊢1 Γ Ψ;Δ ⊢0 C :)

Ψ; Γ ⊢ box C ⇐⇒ box C : �(Δ ⊢))

Ψ; Γ ⊢ E ←→ E ′ : �(Δ ⊢))

Ψ; Γ ⊢ E ⇐⇒ E ′ : �(Δ ⊢))

Ψ, 6 : Ctx; Γ ⊢ F [? (id)] $ 6 ⇐̂⇒ F ′ [? (id)] $ 6 :)

Ψ; Γ ⊢ F ⇐⇒ F ′ : (6 : Ctx) ⇒)

Ψ ⊢1 Γ G :) ∈ Γ

Ψ; Γ ⊢ G ←→ G :)

Ψ; Γ ⊢ X ⇐⇒ X′ : Δ G : (Δ ⊢)) ∈ Ψ

Ψ; Γ ⊢ DX ←→ DX
′

:)

Ψ; Γ ⊢ E ←→ E ′ : (−→) Ψ; Γ ⊢ C ⇐̂⇒ C ′ : (

Ψ; Γ ⊢ E C ←→ E ′ C ′ :)

Ψ; Γ ⊢ E ←→ E ′ : �(Δ ⊢)) Ψ ⊢1)
′

Ψ, D : (Δ ⊢)); Γ [? (id)] ⊢ C ⇐̂⇒ C ′ :) ′ [? (id)]

Ψ; Γ ⊢ letbox D � E in C ←→ letboxD � E ′ in C ′ :) ′

Ψ; Γ ⊢ E ←→ E ′ : (6 : Ctx) ⇒) Ψ ⊢0 Δ

Ψ; Γ ⊢ E $ Δ←→ E ′ $ Δ :) [id,Δ/6]

We then instantiate the generic equivalence. We instantiate Ψ; Γ ⊢ C ≃ C ′ :) with Ψ; Γ ⊢ C ⇐̂⇒ C ′ :) and
Ψ; Γ ⊢ C ∼ C ′ :) with Ψ; Γ ⊢ C ←→ C ′ :) .
Most laws are immediate. We discuss a few of them.

Lemma 3.31 (PERs). All three relations above are PERs.

, Vol. 1, No. 1, Article . Publication date: April 2024.

32 • Jason Z. S. Hu and Brigi�e Pientka

Proof. When we prove transitivity of Ψ; Γ ⊢ C ⇐̂⇒ C ′ :) , we use the uniqueness of multi-step weak head
reduction. �

Lemma 3.32 (Congruence of box). IfΨ ⊢1 Γ,Ψ;Δ ⊢0 C :) andΨ;Δ ⊢ C ⇐̂⇒ C :) , then Ψ; Γ ⊢ box C ⇐̂⇒ box C :

) .

Proof. Notice that we are almost there, except that we must prove Ψ;Δ ⊢ C ⇐̂⇒ C :) for C at layer 0.
This premise is met due to our layered model, where we instantiate layer 0 and layer 1 separately, so that the
fundamental theorem of layer 0 gives Ψ;Δ ⊢ C ⇐̂⇒ C :) . �

A successful instantiation gives us the following desired completeness theorem for converibility checking:

Theorem 3.33 (Completeness).

• If Ψ; Γ ⊢1 C ≈ C
′ :) , then Ψ; Γ ⊢ C ⇐̂⇒ C ′ :) .

• If Ψ; Γ ⊢1 X ≈ X
′ : Δ, then Ψ; Γ ⊢ X ⇐̂⇒ X′ : Δ.

Soundness is easy by a simple induction:

Theorem 3.34 (Soundness).

• If Ψ; Γ ⊢ C ⇐̂⇒ C ′ :) , then Ψ; Γ ⊢1 C ≈ C
′ :) .

• If Ψ; Γ ⊢ F ⇐⇒ F ′ :) , then Ψ; Γ ⊢1 F ≈ F
′ :) .

• If Ψ; Γ ⊢ E ←→ E ′ :) , then Ψ; Γ ⊢1 E ≈ E ′ :) .

• If Ψ; Γ ⊢ X ⇐̂⇒ X′ : Δ, then Ψ; Γ ⊢1 X ≈ X
′ : Δ.

This concludes our discussion about contextual variables.

4 DEPENDENT LAYERED MODAL TYPE THEORY

In this section, we combine the work by Hu and Pientka [2024a] and what we have built up in the previous
sections and scale all the way up to dependent types. We present DeLaM, Dependent Layered Modal Type
Theory. With dependent types, we can not only analyze the syntax of programs, but also that of types. This
ability, therefore, gives us the power to write tactics that could potentially fill in proof obligations in a proof
environment. In particular, this type theory addresses a number of problems that we often see in proof assistants
like Coq, Lean, andAgda. InCoq, tactics arewritten in a separate language, Ltac or Ltac2, where the advantages of
dependent types in Gallina, the core language, are lost. Stratifying the tactic language and the core language into
two also cause duplications: there are multiple notions for natural numbers, functions, etc.. On the other hand, in
Lean and Agda, we use reflection to convert a Lean or an Agda term into an AST and then use the core language
to manipulate the AST. An instrumentation in the kernel is responsible for converting this AST back to a valid
term, if type-checked. This mechanism superficially provides a uniform way to tactics, but reflection generally
fails to guarantee the well-formedness of ASTs, making type malformedness run-time errors and necessitating
exception mechanisms exclusively for macro executions.

We believe that this type theory provides an example to address all aforementioned problems. Starting this
section, let us dive into dependent types.

4.1 Highlights

On a high level, we would continue to apply the layering principle inDeLaM to guide us in the design of this type
theory. In particular, we would want the layer for static code to be subsumed by layer for computing programs.
Moreover, with contextual variables, we are now able to formulate a recursive elimination principle for code,
which was not possible in simple types. However, these two requirements combining together causes some high-
level technical effects to the design of the type theory, which are worth mentioning before presenting the type
theory itself.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 33

4.1.1 Dynamic Leaks of Code. Since we are going to introduce elimination principle for terms with dependent
types, we must also consider how equivalences are handled for code. For example, if we know a given piece of
code has type (_G.G) Nat, should we regard this type the “same” as Nat? Intuitively, the answer should be yes.
After all, we only want to capture the syntax of the term, not its type. Effectively, for code of type �(Γ ⊢)), it
should also be regarded as an inhabitant of another type �(Γ ⊢) ′), as long as) ≈) ′ in Γ.

In the context of dependent types, however, that causes some problems in the presence of function applications.
Consider a function 5 : Π(G : ().) and an argument C : (. Then in general, the type of 5 C is) [C/G]. Now, let
us construct this term as code. Even though C is constructed as part of the code, the type of the overall code
�(Γ ⊢ () [C/G])) contains C and therefore part of the dynamics of C is in fact leaked in the type. For a more
concrete example, if 5 : Π(G : Ty0).G and let the argument be (_G.G) Nat, then box (5 ((_G.G) Nat)) has type
�(Γ ⊢ (_G.G) Nat), which we agree is just �(Γ ⊢ Nat). Clearly, the argument computes and is not purely static
code as in simple types. We cannot avoid this phenomenon because of dependent types, so we must handle it
with care. This phenomenon is call a dynamic leak.

4.1.2 Non-cumulativity. Due to dynamic leaks, we must permit non-trivial equivalences in types of code. This
causes particular problems when we want an elimination principle for code with intensional analyses. When
we split code into cases in the elimination form, we must specify in each case how do we construct the original
code from its components. Therefore, it is the most convenient, when each term has a unique type, leading to
a conclusion of preferring non-cumulative universes. Whereas with cumulative universes, types live in higher
universes for free. Cumulativity forms a pre-order of types which cannot be captured solely by equivalence
rules and makes the typing rule for the elimination principle extremely difficult to express, if not completely
impossible.

4.1.3 Universe Polymorphism. Though it is often omitted in other work, universe levels and universe polymor-
phism are important ingredients in dependent type theory. They are typically considered as “details” and are
not very much paid attention to. However, in this work, we must be explicit about universe polymorphism. Con-
sider some code for function application C B . We in general do not know the type of B , let alone its universe level
(though it must be uniquely determined due to non-cumulativity discussed above). Therefore, the elimination
principle for code must work for all universe levels, leading to a formalism of universe polymorphism.

4.1.4 Tarski-style Universes. Another ingredient to considerwhen approaching an elimination principle for code
with dependent types and intensional analyses is the separation between types and terms. Consider Russell-style
universes where types and terms are not distinguished naturally. It would probably suffice to say that �(Γ ⊢))
can represent code for both types and terms. In particular, code for some types just has type �(Γ ⊢ Ty0), for
example. Unfortunately, this thought is too naive. When we consider �(Γ ⊢)) as the type of code, we are
considering this type with two indices, the (local) context Γ and the type of the code body) . But what is the
type of) ? Well, it is�(Γ ⊢ Ty;) for some ; , which is just a special case of�(Γ ⊢))! A type clearly should not be
indexed by a special case of itself. The intertwine between types and terms in Russell-style universes seems to
even prevent a proper statement of indices of types for code. However, Tarski-style universes, where types and
terms are clearly distinguished, introduce mutually inductive relations between types and terms, and safely bail
us out of this problem, as we will see very soon.

4.2 Syntax

Let us start with the syntax of DeLaM. Since we employ Tarski-style universes, the syntax of terms and types
are separate. Due to non-cumulativity, certain constructs must remember universe levels. Due to the elimination
principle of code, some constructs must include additional sub-structures so that the elimination eventually

, Vol. 1, No. 1, Article . Publication date: April 2024.

34 • Jason Z. S. Hu and Brigi�e Pientka

checks out. Let us begin with the subset that is basically just Martin-Löf type theory (MLTT).

G,~ (Local variables)

ℓ (Universe variables)

; := ℓ | zero | succ ; | ; ⊔ ; ′ | l (Universe levels)

", (,) := Nat | Π;,; ′ (G : ().) | Ty; |
−→
ℓ ⇒;) | El; C (Types, Typ)

B, C := G (Terms, Exp)

| Nat | Π;,; ′ (G : B).C | Ty; (encoding of types)

| zero | succ C | elim;
Nat (G.") B (G,~.B

′) C (natural numbers #)

| _;,;
′

(G : ().C | (C : Π;,; ′ (G : ().)) B (dependent functions)

| Λ; −→ℓ .C | C $
−→
; (universe polymorphic functions)

Γ,Δ := · | 6 | Γ, G :) @ ; (Local contexts, Ctx)

! := · | !, ℓ (Universe contexts)

Due to three kinds of contexts and the scale of the system, we omit the discussion of weakenings, which we
diligently kept track of in the previous sections. We take various weakenings for granted. Nevertheless, they
will appear in the semantics. Weakenings in general are pretty obvious, as we permit arbitrary lookups for all
variables. Since we now must deal with universe levels, we use ℓ to range over variables for universe levels. The
syntax for universe levels follows Agda’s conventions. Universe levels form an idempotent commutative monoid,
the laws of which we will show in the next subsection. Here we use ⊔ to denote taking the max of two universe
levels. The ability to take maximum between two levels induces a partial order:

; ≤ ; ′ := ; ′ ≈ ; ⊔ ; ′

where we use ≈ to express the equivalence between universe levels. Thus, with ≤, universe levels form a bounded
inf-lattice. A strict order is given by requiring the pre-order to hold for the successor of ; :

; < ; ′ := ; ′ ≈ succ ; ⊔ ; ′

This strict order, as to be shown later, is well-founded, based on which we will give semantics to universes. Due
to universe polymorphism, we must also include an l level, which will be used to represent the universe level
of a universe-polymorphic function. The l level must not appear in any program, does not participate in the
bounded inf-lattice specified above, is only used in type-checking, and therefore can be ignored most of the time.

The formalization of universe polymorphism here follows Bezem et al. [2023] tightly. We use
−→
ℓ ⇒;) to denote

the type of a universe-polymorphic function. It introduce a non-empty list of universe variables at once, and

lives at Tyl . The type) lives at Ty; , where ; may refer to all variables from
−→
ℓ . Since ; cannot bel , we must have

all universe variables introduced in one go. The introduction form is Λ; −→ℓ .C , which also introduces a non-empty

list of universe variables first and then the function body as expected. The elimination form C $
−→
; symmetrically

eliminates a universe-polymorphic function with the same number of universe level expressions.
The rest of the expressions are pretty much standard fromMLTT.We have natural numbers (Nat), their intro-

duction forms and a recursion principle. We always use " to exclusively represent the motives of a recursion
principle. For regular dependent functions Π;,; ′ (G : ().) , we must specify the universe levels of (and) , follow-
ing Pujet and Tabareau [2023]. We might omit the universe levels if they are not important in the discussion.
The function abstraction _;,;

′
(G : ().C is standard; we might omit ; and (if they are not important or can be

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 35

inferred from the context. The function application (C : Π;,; ′ (G : ().)) B is arguably more complex. We explic-
itly specify the type of the function to prepare for a better formulation of the elimination principle for code
later in the section. By requiring explicit type annotations in elimination forms, types that are usually hidden in
the core syntax become sub-structures in the elimination form for code. This verbosity has no negative impact
for programmers: after all, we are discussing a core theory, and we can let a type-inferring front-end to fill in
these types for the users if they choose so. Following conventions, we may simply write B C if the types are not
important.

Since we are employing Tarski-style universes, as we have specified in the syntax, types and terms are sep-
arated. As terms, we use encodings of types, i.e. the overloaded Nat, Π;,; ′ (G : B).C and Ty; , which are members

of some universes. They are decoded into actual types through El; C , converting the encodings to actual cor-
responding types. This part is basically identical to Palmgren [1998]. For simplicity, we have omitted the type
lifter, which is responsible for raising the universe levels explicitly, similar to Lift in Agda’s standard library.
According Palmgren [1998], the type lifter bears additional equivalences and therefore we omit them here for
conciseness, as lifting of the levels is an orthogonal issue here.

4.3 Universe Levels

In the syntax, we deliberately group all the universe variables into a separate context. This is beneficial as both
local and global contexts (to be discussed later) will need to refer to universe variables. It is also helpful for
the future work of extending DeLaM to more layers, by simply inserting more contexts after !. In this section,
we state the well-formedness and equivalence judgments for universe levels. Note that all syntactically valid
universe contexts are already well-formed as they only contain universe variables.

ℓ ∈ !

! ⊢ ℓ : Level ! ⊢ zero : Level

! ⊢ ; : Level

! ⊢ succ ; : Level

! ⊢ ; : Level ! ⊢ ; ′ : Level

! ⊢ ; ⊔ ; ′ : Level

Notice that l is not well-formed. Indeed, the judgment ! ⊢ ; : Level only captures the well-formed universe
levels that can be written by a programmer. The level l , on the other hand, only appears during type-checking
to denote the type of universe-polymorphic functions.

As discussed above, universe levels themselves form an idempotent commutative monoid. Hence they have
the following equivalence rules:

! ⊢ ; : Level

! ⊢ ; ≈ ; : Level

! ⊢ ; ≈ ; ′ : Level

! ⊢ ; ′ ≈ ; : Level

! ⊢ ; ≈ ; ′ : Level ! ⊢ ; ′ ≈ ; ′′ : Level

! ⊢ ; ≈ ; ′′ : Level

First we specify the basic PER rules. Then we have congruence rules:

! ⊢ ; ≈ ; ′ : Level

! ⊢ succ ; ≈ succ ; ′ : Level

! ⊢ ; ≈ ; ′ : Level ! ⊢ ; ′′ ≈ ; ′′′ : Level

! ⊢ ; ⊔ ; ′′ ≈ ; ′ ⊔ ; ′′′ : Level

Finally we have the algebraic rules:

! ⊢ ; : Level

! ⊢ ; ⊔ zero ≈ ; : Level

! ⊢ ; : Level ! ⊢ ; ′ : Level ! ⊢ ; ′′ : Level

! ⊢ (; ⊔ ; ′) ⊔ ; ′′ ≈ ; ⊔ (; ′ ⊔ ; ′′) : Level

! ⊢ ; : Level ! ⊢ ; ′ : Level

! ⊢ ; ⊔ ; ′ ≈ ; ′ ⊔ ; : Level

! ⊢ ; : Level

! ⊢ ; ⊔ ; ≈ ; : Level

! ⊢ ; : Level ! ⊢ ; ′ : Level

! ⊢ succ (; ⊔ ; ′) ≈ succ ; ⊔ succ ; ′ : Level

ℓ ∈ !

! ⊢ ℓ ⊔ succ ℓ ≈ succ ℓ : Level

The second last rule is distributivity of succ over ⊔. The last rule is absorption of succ over ⊔. The equivalence
judgment confirms the well-formedness of both components:

, Vol. 1, No. 1, Article . Publication date: April 2024.

36 • Jason Z. S. Hu and Brigi�e Pientka

Lemma 4.1 (Presupposition). If ! ⊢ ; ≈ ; ′ : Level, then ! ⊢ ; : Level and ! ⊢ ; ′ : Level.

Proof. Induction. �

We can prove a more general absorption rule by doing a few inductions.

Lemma 4.2 (Absorption). If ! ⊢ ; : Level, then ! ⊢ ; ⊔ succ ; ≈ succ ; : Level.

Proof. Induction. Only the following case is interesting:

! ⊢ ; : Level ! ⊢ ; ′ : Level

! ⊢ ; ⊔ ; ′ : Level

We reason as follows:

; ⊔ ; ′ ⊔ succ ; ⊔ ; ′ ≈ (; ⊔ succ ;) ⊔ (; ′ ⊔ succ ; ′)

≈ succ ; ⊔ succ ; ′ (by IH)

≈ succ ; ⊔ ; ′

Hence the proof is complete. �

Then we generalize further:

Lemma 4.3 (Absorption). If ! ⊢ ; : Level, then for any natural number =, ! ⊢ ; ⊔ succ= ; ≈ succ= ; : Level.

Proof. We proceed by induction on =. The cases for = = 0 and = = 1 are simple. We consider the step case,
where = = 1 + =′ and we know ! ⊢ ; ⊔ succ=

′
; ≈ succ=

′
; : Level. We reason as follows:

; ⊔ succ1+=
′

; ≈ ; ⊔ succ (succ=
′

;)

≈ ; ⊔ succ (; ⊔ succ=
′

;) (by IH)

≈ ; ⊔ succ ; ⊔ succ1+=
′

;

≈ succ ; ⊔ succ1+=
′

; (by absorption)

≈ succ ; ⊔ succ=
′

(succ ;)

≈ succ=
′

(succ ;) (by IH)

≈ succ= ;

The proof is complete. �

As readers might have noticed, the theory for universe levels are self-contained and their equivalence is
decidable, as per implemented by Agda’s type-checker. For this reason, in the remainder of the discussion, we
undermine the importance of well-formedness and equivalence of universe levels, unless it is essential in the
surrounding context.

Next, we define substitutions for universe levels:

q := · | q, ;/ℓ (Substitutions for universe levels)

! ⊢ · : ·

! ⊢ q : !′ ! ⊢ ; : Level

! ⊢ q, ;/ℓ : !′, ℓ

Applying substitutions is intuitive:

ℓ [q] := q (ℓ)

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 37

zero[q] := zero

succ ; [q] := succ (; [q])

; ⊔ ; ′ [q] := (; [q]) ⊔ (; ′ [q])

l [q] := l

We then have the following lemmas:

Lemma 4.4. If ! ⊢ ; : Level and !′ ⊢ q : !, then !′ ⊢ ; [q] : Level.

Proof. Induction. �

Lemma 4.5. If ! ⊢ ; ≈ ; ′ : Level and !′ ⊢ q : !, then !′ ⊢ ; [q] ≈ ; ′ [q] : Level.

Proof. Induction. �

The well-foundedness of the strict order < is intuitive. The only bottom element is zero. We simply keep
removing succ from all components of ⊔, and we must eventually stop. Thus, the simplest way to argue the
well-foundedness of < is to define a measure based on the number of succ’s that can be removed from an ; . This
number is defined over all ! ⊢ ; : Level recursively as follows:

count(ℓ) := {ℓ ↦→ 0, zero ↦→ 0}

count(zero) := {zero ↦→ 0}

count(succ ;) := merge({ℓ ↦→ 1 + = | ℓ ↦→ = ∈ count(;)}, {zero ↦→ 1 + count(;) (zero)})

count(; ⊔ ; ′) := merge(count(;), count(; ′))

Here count returns a map that counts the number of succ’s over all universe variables and zero. The function
merge merges two maps and takes the maximum in a conflict. The following definition makes sure equivalent
universe levels to have the same representation as maps:

adjust(<) :=

{
{ℓ ↦→ = | <(ℓ) ↦→ =} if<(zero) ≤ maxℓ ↦→=∈< =

< otherwise

In the first branch, we check if there is a variable which has a higher universe level than the constant. If so, we
drop the constant completely. For example, in succ (succ zero) ⊔ succ (succ ℓ), succ (succ zero) is redundant, as
we know succ (succ ℓ) is at least as large as succ (succ zero). On the other hand, in succ (succ zero) ⊔ succ ℓ , it
is possible for succ ℓ to be smaller than succ (succ zero) when we take ℓ as zero. Therefore, in this case, we must
keep succ (succ zero). Thus, the finiteness of decreasing steps of the universe levels can be seen as taking some
finite steps by removing all succ from maps returned by adjust(count(;)). Then we can just take away variables
until we can no longer descend. In fact, adjust(count(;)) should be considered a normalization algorithm for
universe levels. We can simply compare equality between maps computed as such decide whether two universe
levels are equivalent. The correctness is as follows:

Lemma 4.6. If ! ⊢ ; ≈ ; ′ : Level, then adjust(count(;)) = adjust(count(; ′)).

Proof. Induction. Take advantage of the idempotent commutative monoidal nature of maximum. �

This lemma ensures that the procedure respects equivalence between universe levels. The other direction is
seen by providing a “decoding” function, which converts a map to a universe level. We give one possible function
that converts a map to a Level.

fla�en! (<) :=

{⊔
ℓ ↦→=∈< succ= ℓ if zero is not in<

succ< (zero) zero ⊔ (
⊔

ℓ ↦→=∈< succ= ℓ) otherwise

, Vol. 1, No. 1, Article . Publication date: April 2024.

38 • Jason Z. S. Hu and Brigi�e Pientka

where the order of ℓ’s respects their order in ! and all ⊔ are right associative. These requirements give a syntac-
tically unique flattening of a map. Then we prove

Lemma 4.7. If ! ⊢ ; : Level, then Γ ⊢ ; ≈ fla�en! (adjust(count(;))) : Level.

Proof. Weproceed by induction. It is rather immediate. For the succ case, we use its distributivity to propagate
it inwards. For the ⊔ case, we use commutativity to rearrange levels within and absorption to eliminate small
levels whenever necessary. �

4.4 Typing and Equivalence Judgments

In this section, we introduce the typing and equivalence judgments, only for the MLTT part. We will consider
the modal part next altogether. The typing and equivalence judgments are defined mutually as usual. All the
related judgments are:

• ! ⊢ Ψ denotes the well-formedness of the global context Ψ under !.
• ! | Ψ ⊢8 Γ denotes the well-formedness of Γ given the universe context ; and the global context Φ at layer
8 . In this section, we are not very concerned about layers yet as most parts about meta-programming and
intensional analysis come in a later section (Sec. 4.5).
• ! | Ψ ⊢8 Γ ≈ Δ denotes the equivalence between two local contexts Γ and Δ.
• ! | Ψ; Γ ⊢8) @ ; denotes the well-formedness of the type) living in the universe level ; at layer 8 in the
given contexts.
• ! | Ψ; Γ ⊢8 C :) @ ; denotes the well-typedness of C of type) , which is in the universe level ; at layer 8 . In
the special occasion of) being some Ty, we might write ! | Ψ; Γ ⊢8) : Ty; (@ succ ;) to simultaneously
denote two judgments at the same time to save space.
• ! | Ψ; Γ ⊢8) ≈) ′ @ ; denotes the equivalence between types) and) ′ living in the universe level ; at
layer 8 in the given contexts.
• ! | Ψ; Γ ⊢8 C ≈ C

′ :) @ ; denotes the equivalence between C and C ′ of type) , which is in the universe level
; at layer 8 . The shorthand ! | Ψ; Γ ⊢8) ≈)

′ : Ty; (@ succ ;) has a meaning similar to above.
• ! | Ψ; Γ ⊢8 X : Δ denotes the well-formedness of a local substitution X which substitute all local variables
in Δ into terms referring to Γ. We will introduce this judgment and the next when we discuss the modal
part.
• ! | Ψ; Γ ⊢8 X ≈ X

′ : Δ denotes the equivalence between local substitutions X and X′ .

The judgments for MLTT are rather routine. Many are just generalization of the judgments in Sec. 2. Let us
first consider the well-formedness and equivalence of local contexts:

! ⊢ Ψ

! | Ψ ⊢8 · ! | Ψ ⊢8 · ≈ ·

! ⊢ Ψ 6 : Ctx ∈ Ψ

! | Ψ ⊢8 6 ! | Ψ ⊢8 6 ≈ 6

! | Ψ ⊢8 Γ

! | Ψ; Γ ⊢8) @ ; ! ⊢ ; : Level

! | Ψ ⊢8 Γ, G :) @ ;

! | Ψ ⊢8 Γ ≈ Δ ! | Ψ; Γ ⊢8) ≈)
′ @ ;

! | Ψ;Δ ⊢8) ≈)
′ @ ; ! | Ψ; Γ ⊢8) @ ; ! | Ψ;Δ ⊢8)

′ @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ ⊢8 Γ, G :) @ ; ≈ Δ, G :) ′ @ ; ′

The well-formedness of types are also immediate, following Pujet and Tabareau [2023]. When we encounter El,
we resort that to the typing judgment of terms. Overlapping rules for well-typedness of encoding as terms are

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 39

also listed:

! | Ψ ⊢typeof(8) Γ

! | Ψ; Γ ⊢8 Nat : Tyzero (@ succ zero)

! ⊢ ; : Level ! ⊢ ; ′ : Level
! | Ψ; Γ ⊢8 (@ ; ! | Ψ; Γ, G : (@ ; ⊢8) @ ; ′

! | Ψ; Γ ⊢8 Π
;,; ′ (G : ().) @ ; ⊔ ; ′

! ⊢ ; : Level ! ⊢ ; ′ : Level

! | Ψ; Γ ⊢8 B : Ty; @ succ ; ! | Ψ; Γ, G : El; B @ ; ⊢8 C : Ty; ′ @ succ ; ′

! | Ψ; Γ ⊢8 Π
;,; ′ (G : B).C : Ty;⊔; ′ @ succ (; ⊔ ; ′)

! ⊢ ; : Level
! | Ψ; Γ ⊢8 C : Ty; @ succ ;

! | Ψ; Γ ⊢8 El
; C @ ;

! | Ψ ⊢typeof(8) Γ ! ⊢ ; : Level

! | Ψ; Γ ⊢8 Ty; : Tysucc ; (@ succ (succ ;))

! | Ψ ⊢< Γ !,
−→
ℓ | Ψ; Γ ⊢1) @ ;

|
−→
ℓ | > 0 !,

−→
ℓ ⊢ ; : Level

! | Ψ; Γ ⊢<
−→
ℓ ⇒;) @ l

! | Ψ; Γ ⊢8) @ ; ′

! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8) @ ;

Note that all type constructors with explicitly specified universe levels must not refer to l . Indeed, l level
only appears when we validate a universe-polymorphic function and nowhere else. Nor can we pass around
a universe-polymorphic function. Moreover, universe-polymorphic functions are only available at the highest
layer, which is the layer with capability to do meta-programming and recursive intensional analysis. This is
because that universe variables must also be visible by the bindings in global contexts. In the well-formedness
rule for Nat, we use a function typeof(8) which alters the layer, in which local contexts live. This treatment is
necessary to accommodate dynamic leaks and permit computation in the local contexts and on the type level.
We give the actual definition of typeof(8) in Sec. 4.5.

The equivalence between types is composed of three parts. The first part is the PER rules.

! | Ψ; Γ ⊢8) ≈)
′ @ ;

! | Ψ; Γ ⊢8)
′ ≈) @ ;

! | Ψ; Γ ⊢8) ≈)
′ @ ; ! | Ψ; Γ ⊢8)

′ ≈) ′′ @ ;

! | Ψ; Γ ⊢8) ≈)
′′ @ ;

Then we have the congruence rules, which simply straightforwardly propagate equivalence downwards:

! | Ψ ⊢typeof(8) Γ

! | Ψ; Γ ⊢8 Nat ≈ Nat : Tyzero (@ succ zero)

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level
! | Ψ; Γ ⊢8 (≈ (′ @ ;1 ! | Ψ; Γ, G : (@ ;1 ⊢8) ≈)

′ @ ;2

! | Ψ; Γ ⊢8 Π
;1,;2 (G : ().) ≈ Π

;3,;4 (G : (′).) ′ @ ;1 ⊔ ;2

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level

! | Ψ; Γ ⊢8 B ≈ B
′ : Ty;1 @ succ ;1 ! | Ψ; Γ, G : El;1 B @ ;1 ⊢8 C ≈ C

′ : Ty;2 @ succ ;2

! | Ψ; Γ ⊢8 Π
;1,;2 (G : B).C ≈ Π

;3,;4 (G : B′).C ′ : Ty;1⊔;2 @ succ (;1 ⊔ ;2)

! ⊢ ; ≈ ; ′ : Level ! | Ψ; Γ ⊢8 C ≈ C
′ : Ty; @ succ ;

! | Ψ; Γ ⊢8 El
; C ≈ El;

′

C ′ @ ;

! | Ψ ⊢typeof(8) Γ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 Ty; ≈ Ty; ′ : Tysucc ; (@ succ (succ ;))

!,
−→
ℓ | Ψ; Γ ⊢<) @ ; !,

−→
ℓ | Ψ; Γ ⊢<) ≈) ′ @ ;

|
−→
ℓ | > 0 !,

−→
ℓ ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢<
−→
ℓ ⇒;) ≈

−→
ℓ ⇒; ′) ′ @ l

! | Ψ; Γ ⊢8) ≈)
′ @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8) ≈)
′ @ ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

40 • Jason Z. S. Hu and Brigi�e Pientka

Finally, we have a number of computation rules that decode terms into types:

! | Ψ ⊢typeof(8) Γ

! | Ψ; Γ ⊢8 Nat ≈ Elzero Nat@ zero

! ⊢ ; : Level ! | Ψ ⊢typeof(8) Γ

! | Ψ; Γ ⊢8 Ty; ≈ Elsucc ; Ty; @ succ ;

! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ; Γ ⊢8 B : Ty; @ succ ; ! | Ψ; Γ, G : El; B @ ; ⊢8 C : Ty; ′ @ succ ; ′

! | Ψ; Γ ⊢8 Π
;,; ′ (G : El; B).El;

′

C ≈ El;⊔;
′

Π
;,; ′ (G : B).C @ ; ⊔ ; ′

We do not have an encoding for universe-polymorphic functions, so there is not a decoding rule for them.
Then we move on to defining the typing rules for terms. They are pretty much straightforward:

! | Ψ ⊢typeof(8) Γ G :) @ ; ∈ Γ

! | Ψ; Γ ⊢8 G :) @ ;

! | Ψ ⊢typeof(8) Γ

! | Ψ; Γ ⊢8 zero : Nat@ zero

! | Ψ; Γ ⊢8 C : Nat@ zero

! | Ψ; Γ ⊢8 succ C : Nat@ zero

! ⊢ ; : Level ! | Ψ; Γ, G : Nat@ zero ⊢8 " @ ; ! | Ψ; Γ ⊢8 B : " [zero/G] @ ;

! | Ψ; Γ, G : Nat@ zero,~ : " @ ; ⊢8 B
′ : " [succ G/G] @ ; ! | Ψ; Γ ⊢8 C : Nat@ zero

! | Ψ; Γ ⊢8 elim
;
Nat (G.") B (G,~.B

′) C : " [C/G] @ ;

! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ; Γ ⊢8 (@ ; ! | Ψ; Γ, G : (@ ; ⊢8 C :) @ ; ′

! | Ψ; Γ ⊢8 _
;,; ′ (G : ().C : Π;,; ′ (G : ().) @ ; ⊔ ; ′

! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ; Γ ⊢8 (@ ;

! | Ψ; Γ, G : (@ ; ⊢8) @ ; ′ ! | Ψ; Γ ⊢8 C : Π
;,; ′ (G : ().) @ ; ⊔ ; ′ ! | Ψ; Γ ⊢8 B : (@ ;

! | Ψ; Γ ⊢8 (C : Π
;,; ′ (G : ().)) B :) [B/G] @ ; ′

!,
−→
ℓ | Ψ; Γ ⊢< C :) @ ;

|
−→
ℓ | > 0 !,

−→
ℓ ⊢ ; : Level

! | Ψ; Γ ⊢< Λ
; −→ℓ .C :

−→
ℓ ⇒;) @ l

!,
−→
ℓ | Ψ; Γ ⊢<) @ ; ! | Ψ; Γ ⊢< C :

−→
ℓ ⇒;) @ l

|
−→
ℓ | = |

−→
; | > 0 ∀; ′ ∈

−→
; · ! ⊢ ; ′ : Level

! | Ψ; Γ ⊢< C $
−→
; :) [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ]

! | Ψ; Γ ⊢8 C :)
′ @ ; ! | Ψ; Γ ⊢typeof(8)) ≈)

′ @ ;

! | Ψ; Γ ⊢8 C :) @ ;

! | Ψ; Γ ⊢8 C :) @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 C :) @ ;

The equivalence rules for terms are also composed of three parts. The PER rules are immediate:

! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ;

! | Ψ; Γ ⊢8 C
′ ≈ C :) @ ;

! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ; ! | Ψ; Γ ⊢8 C

′ ≈ C ′′ :) @ ;

! | Ψ; Γ ⊢8 C ≈ C
′′ :) @ ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 41

The congruence rules are naturally induced by the typing rules:

! | Ψ ⊢typeof(8) Γ G :) @ ; ∈ Γ

! | Ψ; Γ ⊢8 G ≈ G :) @ ;

! | Ψ ⊢typeof(8) Γ

! | Ψ; Γ ⊢8 zero ≈ zero : Nat@ zero

! | Ψ; Γ ⊢8 C ≈ C
′ : Nat@ zero

! | Ψ; Γ ⊢8 succ C ≈ succ C ′ : Nat@ zero

! ⊢ ; ≈ ; ′ : Level ! | Ψ; Γ, G : Nat@ zero ⊢8 " ≈ "′ @ ; ! | Ψ; Γ ⊢8 B1 ≈ B3 : " [zero/G] @ ;

! | Ψ; Γ, G : Nat@ zero,~ : " @ ; ⊢8 B2 ≈ B4 : " [succ G/G] @ ; ! | Ψ; Γ ⊢8 C ≈ C
′ : Nat@ zero

! | Ψ; Γ ⊢8 elim
;
Nat (G.") B1 (G,~.B2) C ≈ elim; ′

Nat (G."
′) B3 (G,~.B4) C

′ : " [C/G] @ ;

! ⊢ ;1 ≈ ;3 : Level
! ⊢ ;2 ≈ ;4 : Level ! | Ψ; Γ ⊢8 (@ ;1 ! | Ψ; Γ ⊢8 (≈ (′ @ ;1 ! | Ψ; Γ, G : (@ ;1 ⊢8 C ≈ C

′ :) @ ;2

! | Ψ; Γ ⊢8 _
;1,;2 (G : ().C ≈ _;3,;4 (G : (′).C ′ : Π;,; ′ (G : ().) @ ;1 ⊔ ;2

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ; Γ ⊢8 (@ ;1 ! | Ψ; Γ ⊢8 (≈ (′ @ ;1
! | Ψ; Γ, G : (@ ;1 ⊢8) ≈)

′ @ ;2 ! | Ψ; Γ ⊢8 C ≈ C
′ : Π;1,;2 (G : ().) @ ;1 ⊔ ;2 ! | Ψ; Γ ⊢8 B ≈ B

′ : (@ ;1

! | Ψ; Γ ⊢8 (C : Π
;1,;2 (G : ().)) B ≈ (C ′ : Π;3,;4 (G : (′).) ′) B′ :) [B/G] @ ;2

!,
−→
ℓ | Ψ; Γ ⊢< C ≈ C ′ :) @ ; |

−→
ℓ | > 0 !,

−→
ℓ ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢< Λ
; −→ℓ .C ≈ Λ

; ′ −→ℓ .C ′ :
−→
ℓ ⇒;) @ l

!,
−→
ℓ | Ψ; Γ ⊢<) @ ;

! | Ψ; Γ ⊢< C ≈ C ′ :
−→
ℓ ⇒;) @ l |

−→
ℓ | = |

−→
; | = |

−→
; ′ | > 0 ∀0 ≤ = < |

−→
; | · ! ⊢

−→
; (=) ≈

−→
; ′ (=) : Level

! | Ψ; Γ ⊢< C $
−→
; ≈ C ′ $

−→
; ′ :) [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ]

! | Ψ; Γ ⊢8 C ≈ C
′ :) ′ @ ; ! | Ψ; Γ ⊢typeof(8)) ≈)

′ @ ;

! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ;

! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ;

4.5 Meta-programming Modalities

In this part, we introduce the modalities for meta-programming and intensional analysis. We use the�modality
to represent the type of code and we use layers to control the computational behaviors of the type theory.
However, there are two points that we need to pay attention to:

(1) Previously, we have discussed dynamic leaks. Dynamic leaks imply that we must permit computation of
code on the type level. This further implies that we must introduce an intermediate layer between layer
for code and that for meta-programs, which restricts the language to still MLTT but permits computation.

(2) Due to Tarski-style universes, we must introduce two kinds of contextual types, one for types and one for
terms. As seen in the syntax of types and terms, they are mutually defined, so the recursive principles for
code of types and terms must also be mutual.

Having set up the basic theme, let us begin with the syntax of the extension to MLTT:

8 := E | 2 | ? | < (Layers)

* (Global variables as types)

, Vol. 1, No. 1, Article . Publication date: April 2024.

42 • Jason Z. S. Hu and Brigi�e Pientka

Layer E 2 ? <

Language Variables only MLTT MLTT MLTT extended with meta-programming

Computation No No Yes Yes

Meta-programming No No No Yes

Layer of types ? ? ? <

Table 1. Features at each layer

D (Global variables as terms)

: (Natural numbers, N)

X := ·:6? | wk
:
6 | X, C/G (Local substitutions)

� := 6 : Ctx | * : (Γ ⊢8 @ ;) | D : (Γ ⊢8) @ ;) (Global bindings)

Φ,Ψ := · | Φ, � (Global contexts)

(,) := · · · | * X | (6 : Ctx) ⇒;) | (* : (Γ ⊢? @ ;)) ⇒; ′) | �(Γ ⊢2 @ ;) | �(Γ ⊢2) @ ;)

B, C := · · · | DX | Λ; 6.C | C $ Γ | Λ;,; ′

? * .C | C $?) | box) | box C

| letbox;
′

Typ ; Γ (G) .") (* .C ′) C | letbox;
′

Trm ; Γ) (GC .") (D.C
′) C

| elim
;1,;2
Typ

−→
"
−→
1 ; Γ C | elim

;1,;2
Trm

−→
"
−→
1 ; Γ) C

−→
" := (ℓ, 6, G) .") (ℓ, 6,*) , GC ."

′) (Two motives for mutual recursion of code)

−→
1 :=
−→
1 Typ

−→
1 Trm (Branches for mutual recursion of code)

1Typ := (6.CNat) | (ℓ, ℓ
′, 6,*(,*) , G(, G) .CΠ) | (ℓ, 6.CTy) | (ℓ, 6,DC , GC .CEl) (Branches for code of types)

1Trm := (ℓ, 6,*) , DG .CG) | (6.C
′
Nat) | (ℓ, ℓ

′, 6,DB ,DC , GB , GC .C
′
Π
) | (ℓ, 6.C ′Ty) (Branches for code of terms)

| (6.Czero) | (6,DC , GC .Csucc) | (ℓ, 6,*" ,DB , DB′ ,DC , G" , GB , GB′ , GC .CelimNat
)

| (ℓ, ℓ′, 6,*(,*) ,DC , G(, GC .C_) | (ℓ, ℓ
′, 6,*(,*) ,DC ,DB , G(, G) , GC , GB .Capp)

Following the layering principle before, we index our judgmentswith an layer index 8 . We include four layers and
these layers are summarized in Table 1. To elaborate, we begin with layer E , which is the layer that contains only
variables. This layer is needed to describe the base case of the recursive principles for code when a local variable
is hit. Layer E (for variables) is not available for most rules given in Sec. 4.4 other than the local variable rule and
its congruence.Wewill follow this convention for the rest of this report, unless we specifically state that layer E is
available for particular rules. Layer 2 (for code) is the layer for code ofMLTT. This layer is akin to layer 0 in Sec. 2
and 3, where static code resides and no computation is allowed. However, in order to capture dynamic leaks, we
must introduce another layer, ? (for programs), to permit computation of MLTT programs in local contexts and
on the type level. This layer is especially crucial in the recursive principle for terms for the argument) where
dynamic leaks are implicitly handled by definitional equivalence. However, no meta-programs are allowed at
layer ? ; in other words, the language at layer ? is virtually vanilla MLTT. Therefore, unlike simple types, there
are two layers in DeLaM permitting computation. At last, we have layer< (for meta-programs) where we have
the power to do meta-programming. At this layer, we have access to not only universe-polymorphic functions,
but also contextual types and recursive principles for code. All meta-functionsmust reside at this layer. All layers
are related by a strict order of E < 2 < ? <<.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 43

The reason to introduce layer ? becomes obvious by considering which layer the type of a given MLTT term
should live in. For instance, given a judgment ! | Ψ; Γ ⊢2 C :) @ ; , we know C lives at layer 2 as code, but what
about) ? Since) is a type and we want) to compute, it cannot live at layer 2 , but also not< as it must be a well-
formed pureMLTT type. Indeed,) ought to live at layer ? , i.e. ! | Ψ; Γ ⊢?) @ ; . What about ! | Ψ; Γ ⊢? C :) @ ;?
In this case, C lives at layer ? . Since) must still be a well-formed pure MLTT type and compute, we must have
! | Ψ; Γ ⊢?) @ ; . The type of a term living at layer< simply also lives at layer<. The relation of layers of terms
and types is summarized by the following function:

typeof(E) := ?

typeof(2) := ?

typeof(?) := ?

typeof(<) :=<

The judgment 8 computable quantifies computable layers:

? computable < computable

Then we extend our system with five types, following Sec. 2:

• * X is a global variable for types. Due to separation of types and terms, we need a way to refer to code of
types on the type level.
• (6 : Ctx) ⇒;) is a meta-function type for introducing a contextual variable 6 to the global context. We
also have this in Sec. 2.
• (* : (Γ ⊢? @ ;)) ⇒; ′) is similarly a meta-function type for introducing a type at layer ? to the global
context. This type is introduced to provide an index for the contextual type for terms to be discussed in
the second next item.
• �(Γ ⊢2 @ ;) is a contextual type for types in MLTT. It represents a static code of types.
• Finally, �(Γ ⊢2) @ ;) is a contextual type for terms in MLTT. This) may refer to the index type at layer
? introduced by meta-functions above.

Since there are two kinds of contextual types now, there four kinds of bindings in a global context:

• contextual variables 6 : Ctx representing a local context;
• global variables* : (Γ ⊢8 @ ;) representing a type in MLTT (note that 8 ∈ {2, ?});
• global variables D : (Γ ⊢8) @ ;) representing a term in MLTT (note that 8 ∈ {E, 2} and there is no way to
introduce a term at layer ? to global context).

Now, let us move on to discuss the extended terms.

• First, we also introduce global variables and local substitutions. Their syntax is identical to one in Sec. 2.
• Then we have the introduction and elimination forms for meta-functions of contextual variables, Λ; 6.C

and C $ Γ.
• Similarly, we have the introduction and elimination forms for meta-functions of types, Λ;,; ′

? * .C and C $?) .
• Then we have the introduction forms of two kinds of contextual types.
• Following Hu and Pientka [2024a, Sec. 4], we have two elimination forms for each kind of contextual
types, letbox and the recursive principles. Same as before, letbox is responsible for code composition
and evaluation. Intentional analyses are done through the recursive principles. In DeLaM, letbox is a bit
more complex as it requires a specified motive. We alter the syntax a little bit to make letbox more like
an operation: letbox;

′

Typ ; Γ (G) .") (D.C
′) C and letbox;

′

Trm ; Γ) (GC .") (D.C
′) C .

, Vol. 1, No. 1, Article . Publication date: April 2024.

44 • Jason Z. S. Hu and Brigi�e Pientka

• Finally, we extend the recursive principles for code. As indicated before, code of types and terms in
MLTT are mutually defined, so the recursive principles must also be mutual. The two recursive princi-

ples elim;1,;2
Typ

−→
"
−→
1 ; Γ C and elim

;1,;2
Trm

−→
"
−→
1 ; Γ) C require two motives, one for types and one for terms,

and contain all branches for code of types and terms. Their difference is what exactly eventually being

eliminated, as indicated by their subscript. The branches
−→
1 are a list of branches

−→
1 Typ and

−→
1 Trm, where

−→
1 Typ and

−→
1 Trm contain all branches for types and terms, respectively.

In the branches, there are four kinds of variables.

• There is a globally introduced contextual variable 6 which represents the local context where the code
lives.
• There could be some universe variables that are used to tell the universe levels of some types.
• There could be some global variables D and* represent the sub-structures of a given case. The subscripts
correspond tightly to the syntax given in Sec. 4.2.
• For each sub-structure, there is one corresponding recursive variable G . Again, the subscripts correspond
tightly to the sub-structure.

4.6 More Typing and Equivalence Judgments

In this section, we specify the remainder of the rules. We begin with the well-formedness rule for the global
contexts. Recall that layer E does not apply for most rules below, unless the otherwise is specifically stated.

! ⊢ ·

! ⊢ Ψ

! ⊢ Ψ, 6 : Ctx

! ⊢ Ψ ! | Ψ ⊢? Γ

! ⊢ ; : Level 8 ∈ {2, ?}

! ⊢ Ψ,* : (Γ ⊢8 @ ;)

! ⊢ Ψ ! | Ψ; Γ ⊢?) @ ;

! ⊢ ; : Level 8 ∈ {E, 2}

! ⊢ Ψ, D : (Γ ⊢8) @ ;)

The judgments for local substitutions follow very closely Sec. 2. In these rules, 8 might take E . This permission
has a particular effect on the step case, which forces all terms in a local substitution must be variables.

! | Ψ ⊢typeof(8) Γ

Γ ends with · |Γ | = :

! | Ψ; Γ ⊢8 ·
: : · ! | Ψ; Γ ⊢8 ·

: ≈ ·: : ·

! | Ψ ⊢typeof(8) Γ 6 : Ctx ∈ Ψ
Γ ends with 6 |Γ | = :

! | Ψ; Γ ⊢8 ·
:
6 : · ! | Ψ; Γ ⊢8 ·

:
6 ≈ ·

:
6 : ·

! | Ψ ⊢typeof(8) Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | = :

! | Ψ; Γ ⊢8 wk
:
6 : 6 ! | Ψ; Γ ⊢8 wk

:
6 ≈ wk:6 : 6

! ⊢ ; : Level ! | Ψ; Γ ⊢8 X : Δ ! | Ψ;Δ ⊢typeof(8)) @ ; ! | Ψ; Γ ⊢8 C :) [X] @ ;

! | Ψ; Γ ⊢8 X, C/G : Δ, G :) @ ;

! ⊢ ; : Level ! | Ψ; Γ ⊢8 X ≈ X
′ : Δ ! | Ψ;Δ ⊢typeof(8)) @ ;

! | Ψ; Γ ⊢8 C :) [X] @ ; ! | Ψ; Γ ⊢8 C
′ :) [X] @ ; ! | Ψ; Γ ⊢8 C ≈ C

′ :) [X] @ ;

! | Ψ; Γ ⊢8 X, C/G ≈ X
′, C ′/G : Δ, G :) @ ;

In the step case for equivalence above, we ask for two redundant premises of the well-typedness of C and C ′ to
provide an early presupposition for equivalence of local substitutions. We will need this early presupposition in
Lemma 5.15. It breaks the dependency loop so that reaching the full presupposition lemma becomes viable.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 45

Now let us consider the extended types and their equivalence.

! | Ψ ⊢typeof(8) Γ * : (Δ ⊢8 ′ @ ;) ∈ Ψ 8′ ∈ {2, ?} 8′ ≤ 8 ! | Ψ; Γ ⊢8 X : Δ

! | Ψ; Γ ⊢8 *
X @ ;

! | Ψ ⊢< Γ

! | Ψ, 6 : Ctx; Γ ⊢<) @ ; ! ⊢ ; : Level

! | Ψ; Γ ⊢< (6 : Ctx) ⇒;) @ ;

! | Ψ ⊢< Γ ! | Ψ,* : (Δ ⊢? @ ;); Γ ⊢<) @ ; ′

! ⊢ ; : Level ! ⊢ ; ′ : Level

! | Ψ; Γ ⊢< (* : (Δ ⊢? @ ;)) ⇒; ′) @ succ ; ⊔ ; ′

! | Ψ ⊢< Γ ! | Ψ ⊢? Δ ! ⊢ ; : Level

! | Ψ; Γ ⊢< �(Δ ⊢2 @ ;) @ succ ;

! | Ψ ⊢< Γ ! | Ψ;Δ ⊢?) @ ; ! ⊢ ; : Level

! | Ψ; Γ ⊢< �(Δ ⊢2) @ ;) @ ;

The additional equivalence rules are just their congruence rules:

! | Ψ ⊢typeof(8) Γ * : (Δ ⊢8 ′ @ ;) ∈ Ψ 8′ ∈ {2, ?} 8′ ≤ 8 ! | Ψ; Γ ⊢8 X ≈ X
′ : Δ

! | Ψ; Γ ⊢8 *
X ≈ * X′ @ ;

! | Ψ ⊢< Γ ! | Ψ, 6 : Ctx; Γ ⊢<) ≈) ′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢< (6 : Ctx) ⇒;) ≈ (6 : Ctx) ⇒; ′) ′ @ ;

! | Ψ ⊢< Γ

! | Ψ ⊢? Δ ≈ Δ
′ ! | Ψ, * : (Δ ⊢? @ ;); Γ ⊢<) ≈) ′ @ ; ′ ! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level

! | Ψ; Γ ⊢< (* : (Δ ⊢? @ ;1)) ⇒
;2) ≈ (* : (Δ′ ⊢? @ ;3)) ⇒

;4) ′ @ succ ;1 ⊔ ;2

! | Ψ ⊢< Γ ! | Ψ ⊢? Δ ≈ Δ
′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢< �(Δ ⊢2 @ ;) ≈ �(Δ′ ⊢2 @ ; ′) @ succ ;

! | Ψ ⊢< Γ ! | Ψ ⊢? Δ ≈ Δ
′ ! | Ψ;Δ ⊢?) ≈)

′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢< �(Δ ⊢2) @ ;) ≈ �(Δ′ ⊢2)
′ @ ; ′) @ ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

46 • Jason Z. S. Hu and Brigi�e Pientka

Next, we list the extended typing judgments:

! | Ψ ⊢typeof(8) Γ D : (Δ ⊢8 ′) @ ;) ∈ Ψ 8′ ∈ {E, 2} 8 ∈ {E, 2, ?,<} 8′ ≤ 8 ! | Ψ; Γ ⊢8 X : Δ

! | Ψ; Γ ⊢8 D
X :) [X] @ ;

! | Ψ ⊢< Γ

! | Ψ, 6 : Ctx; Γ ⊢< C :) @ ; ! ⊢ ; : Level

! | Ψ; Γ ⊢< Λ
; 6.C : (6 : Ctx) ⇒;) @ ;

! | Ψ, 6 : Ctx; Γ ⊢<) @ ;

! | Ψ; Γ ⊢< C : (6 : Ctx) ⇒;) @ ; ! | Ψ ⊢? Δ

! | Ψ; Γ ⊢< C $ Δ :) [Δ/6] @ ;

! | Ψ ⊢< Γ ! | Ψ,* : (Δ ⊢? @ ;); Γ ⊢< C :) @ ; ′ ! ⊢ ; : Level ! ⊢ ; ′ : Level

! | Ψ; Γ ⊢< Λ
;,; ′

? * .C : (* : (Δ ⊢? @ ;)) ⇒; ′) @ succ ; ⊔ ; ′

! | Ψ,* : (Δ ⊢? @ ;); Γ ⊢<) ′ @ ; ′

! | Ψ; Γ ⊢< C : (* : (Δ ⊢? @ ;)) ⇒; ′) ′ @ succ ; ⊔ ; ′ ! | Ψ;Δ ⊢?) @ ;

! | Ψ; Γ ⊢< C $?) :) ′ [) /*] @ ; ′

! | Ψ ⊢< Γ ! | Ψ;Δ ⊢2) @ ;

! | Ψ; Γ ⊢< box) : �(Δ ⊢2 @ ;) @ succ ;

! | Ψ ⊢< Γ ! | Ψ;Δ ⊢2 C :) @ ;

! | Ψ; Γ ⊢< box C : �(Δ ⊢2) @ ;) @ ;

! ⊢ ; ′ : Level ! ⊢ ; : Level ! | Ψ ⊢? Δ ! | Ψ; Γ ⊢< C : �(Δ ⊢2 @ ;) @ succ ;

! | Ψ; Γ, G) : �(Δ ⊢2 @ ;) @ succ ; ⊢< " @ ; ′ ! | Ψ, * : (Δ ⊢2 @ ;); Γ ⊢< C ′ : " [box* /G)] @ ; ′

! | Ψ; Γ ⊢< letbox;
′

Typ ; Δ (G) .") (* .C ′) C : " [C/G)] @ ; ′

! ⊢ ; ′ : Level ! ⊢ ; : Level ! | Ψ ⊢? Δ ! | Ψ;Δ ⊢?) @ ; ! | Ψ; Γ ⊢< C : �(Δ ⊢2) @ ;) @ ;

! | Ψ; Γ, GC : �(Δ ⊢2) @ ;) @ ; ⊢< " @ ; ′ ! | Ψ, D : (Δ ⊢2) @ ;); Γ ⊢< C ′ : " [box D/GC] @ ; ′

! | Ψ; Γ ⊢< letbox;
′

Trm ; Δ) (GC .") (D.C
′) C : " [C/GC] @ ; ′

For the typing rule of C $Δ, we require Δ to be a context at layer ? . This is because a contextual variable represents
a local context for an MLTT term. A local context for an MLTT term necessarily lives at layer ? , so we can only
substitute a context living at layer ? with a contextual variable.

Now we shall mentally prepare ourselves to write down the typing rules for the two recursive principles.
They are conceptually easy but simply verbose to write down. We will only write down the rules for this time
for completeness and in later discussions, we simply omit the premises. Our goal is to provide the following
conclusions:

! | Ψ; Γ ⊢< elim
;1,;2
Typ

−→
"
−→
1 ; ′ Δ C : " [; ′/;,Δ/6, C/G)] @ ;1

! | Ψ; Γ ⊢< elim
;1,;2
Trm

−→
"
−→
1 ; ′ Δ) C : "′ [; ′/;,Δ/6,) /*) , C/GC] @ ;2

We group the premises into different parts. First we give the premises related to the motives:

! ⊢ ;1 : Level ! ⊢ ;2 : Level !, ℓ | Ψ, 6 : Ctx; Γ, G) : �(6 ⊢2 @ ℓ) ⊢< " @ ;1

!, ℓ | Ψ, 6 : Ctx,*) : (6 ⊢? @ ℓ); Γ, GC : �(6 ⊢2 *
id
) @ ℓ) ⊢< "′ @ ;2

where
−→
" = (ℓ, 6, G) .") (ℓ, 6,*) , GC ."

′). In the premises above, we give the well-formedness of two motives for
code of types and terms, respectively. Let us call this group �" . We move on to considering the branches. We
first consider the branches for code of types. It is relatively easy as there are only four cases:

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 47

•

! | Ψ, 6 : Ctx; Γ ⊢< CNat : " [zero/ℓ, 6/6, box Nat/G)] @ ;1

• We explain this premise more carefully. Consider some code of type box Π
;,; ′ (G : ().) , then we have the

matching premise

!, ℓ, ℓ′ | Ψ′ ; Γ′ ⊢< CΠ : " [ℓ ⊔ ℓ′/ℓ, 6/6, box Πℓ,ℓ ′ (G : * id
().*

id
) /G)] @ ;1

where

Ψ
′ := Ψ

, 6 : Ctx

, *(: (6 ⊢2 @ ℓ) (the global variable for the input type, which captures ()

, *) : (6, G : * id
(@ ℓ ⊢2 @ ℓ′)

(the global variable for the output type, which captures) ; note that it lives in an extended local context)

and

Γ
′ := Γ

, G(: " [ℓ/ℓ, 6/6, box* id
(/G)] @ ;1 (the recursive call for (of type" that is properly substituted)

, G) : " [ℓ′/ℓ, (6, G : * id
(@ ℓ)/6, box* id

) /G)] @ ;1
(the recursive call for) ; see how the local context is extended)

• Further,
!, ℓ | Ψ, 6 : Ctx; Γ ⊢< CTy : " [succ ℓ/ℓ, 6/6, box Tyℓ/G)] @ ;1

•

!, ℓ | Ψ, 6 : Ctx,DC : (6 ⊢2 Tyℓ @ succ ℓ); Γ′ ⊢< CEl : " [ℓ/ℓ, 6/6, box (El
ℓ D idC)/G)] @ ;1

where
Γ
′ := Γ, GC : "

′ [succ ℓ/ℓ, 6/6, Tyℓ/*) , box D
id
C /GC] @ ;2

Let us call this group �Typ.
Lastly, let us consider the nine cases for terms.

•

!, ℓ | Ψ, 6 : Ctx,*) : (6 ⊢? @ ℓ), DG : (6 ⊢E *
id
) @ ℓ); Γ ⊢< CG : "′ [ℓ/ℓ, 6/6,* id

) /*) , box DG/GC] @ ;2

In this case, the type of the variable is captured by*) . It has to live at layer? because it is not a sub-structure
of the variable, i.e. it is obtained externally, from the indexing arguments of the recursive principles.
•

! | Ψ, 6 : Ctx; Γ ⊢< C ′Nat : "
′ [succ zero/ℓ, 6/6, Tyzero/*) , box Nat/GC] @ ;2

•

!, ℓ, ℓ′ | Ψ′; Γ′ ⊢< C ′
Π
: "′ [succ (ℓ ⊔ ℓ′)/ℓ, 6/6, Tyℓ⊔ℓ ′/*) , box Π

ℓ,ℓ ′ (G : D idB).D
id
C /GC] @ ;2

where
Ψ
′ := Ψ, 6 : Ctx, DB : (6 ⊢2 Tyℓ @ succ ℓ),DC : (6, G : Elℓ D idB ⊢2 Tyℓ ′ @ succ ℓ′)

and

Γ
′ := Γ

, GB : "
′ [succ ℓ/ℓ, 6/6, Tyℓ/*) , box D

id
B /GC] @ ;2

, GC : "
′ [succ ℓ′/ℓ, (6, G : Elℓ D idB)/6, Tyℓ ′/*) , box D

id
C /GC] @ ;2

, Vol. 1, No. 1, Article . Publication date: April 2024.

48 • Jason Z. S. Hu and Brigi�e Pientka

Notice that this premise for the encoding of Π is almost identical to the premise in �Typ above, with
necessary adjustment to return the proper motive "′ instead.
•

!, ℓ | Ψ, 6 : Ctx; Γ ⊢< C ′Ty : "
′ [succ succ ℓ/ℓ, 6/6,)~succ ℓ/*) , box Tyℓ/G)] @ ;2

•

! | Ψ, 6 : Ctx; Γ ⊢< Czero : "
′ [zero/ℓ, 6/6, Nat/*) , box zero/GC] @ ;2

•

! | Ψ, 6 : Ctx,DC : (6 ⊢2 Nat@ zero); Γ′ ⊢< Csucc : "
′ [zero/ℓ, 6/6, Nat/*) , box (succ D

id
C)/GC] @ ;2

where Γ′ := Γ, GC : "
′ [zero/ℓ, 6/6, Nat/*) , box D

id
C /GC] @ ;2.

• We carefully explain this premise for the code of the elimination of natural numbers. Recall that the syntax

is elim;
Nat (G.") B (G,~.B

′) C . We use corresponding global variables to capture the sub-structures.

!, ℓ | Ψ′ ; Γ′ ⊢< CelimNat
: "′ [ℓ/ℓ, 6/6,*

id6,D
id
C /G

"
/*) , elim

ℓ
Nat (G.*

id6,G
"
) D

id6
B (G,~.D

id6,G,~
B′) D

id6
C /GC] @ ;2

where

Ψ
′ := Ψ

, 6 : Ctx

, *" : (6, G : Nat@ zero ⊢2 @ ℓ)

(the global variable for the motive; it lives at layer 2 as it is a sub-structure)

, DB : (6 ⊢2 *
id6,zero/G

"
@ ℓ)

(the code for the base case; its type refers to the code of the motive with G for zero)

, DB′ : (6, G : Nat@ zero,~ : *
id6,G
"

@ ℓ ⊢2 *
id6,succ G/G

"
@ ℓ)

(the code for the step case; the local context is extended with the predecessor and the recursive call)

, DC : (6 ⊢2 Nat@ zero) (the code for the scrutinee)

and

Γ
′ := Γ

, G" : " [ℓ/ℓ, (6, G : Nat@ zero)/6, box*
id6,G
"
/G)] @ ;1

(since the motive is a sub-structure, a recursive call is available)

, GB : "
′ [ℓ/ℓ, 6/6,*

id6,zero/G

"
/*) , box D

id6
B /GC] @ ;2

(the recursive call for the base case; recall that*) is the type of GC ,)

(which in this case is also the type of DB)

, GB′ : "
′ [ℓ/ℓ, (6, G : Nat@ zero,~ : *

id6,G
"

@ ℓ)/6,*
id6,succ G/G

"
/*) , box D

id6,G,~
B′ /GC] @ ;2

(the recursive call for the step case; similar logic applies but more longer)

, GC : "
′ [ℓ/ℓ, 6/6, Nat/*) , box D

id
C /GC] @ ;2 (the recursive call for the scrutinee)

•

!, ℓ, ℓ′ | Ψ′ ; Γ′ ⊢< C_ : "′ [ℓ ⊔ ℓ′/ℓ, 6/6,Πℓ,ℓ ′ (G : *
id6
(
).*

id6,G
)
/*) , box _

ℓ,ℓ ′ (G : *
id6
(
).D

id6,G
C /GC] @ ;2

where

Ψ
′ := Ψ

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 49

, 6 : Ctx

, *(: (6 ⊢2 @ ℓ)

, *) : (6, G : *
id6
(

@ ℓ ⊢? @ ℓ′)

, DC : (6, G : *
id6
(

@ ℓ ⊢2 *
id6,G
)

@ ℓ′)

and

Γ
′ := Γ

, G(: " [ℓ/ℓ, 6/6, box*
id6
(
/G)] @ ;1

, GC : "
′ [ℓ′/ℓ, (6, G : *

id6
(

@ ℓ)/6,*
id6,G
)
/*) , box D

id6,G
C /GC] @ ;2

Note that here *) is at layer ? . This is because the return type of not a sub-structure in a function ab-
straction _;,;

′
(G : ().C , and therefore it must be captured externally from the indexing arguments of the

recursive principle. Since it is not a sub-structure, there also is not a recursive call for it. It is possible to
include the return type as a sub-structure, e.g. _;,;

′

(G : ().(C :)) but we decided to show this alternative
to demonstrate various design spaces.
• Finally,

!, ℓ, ℓ′ | Ψ′; Γ′ ⊢< Capp : "′ [ℓ′/ℓ, 6/6,*
id6,D

id6
C /G

)
/*) , box ((D

id6
C : Πℓ,ℓ ′ (G : *

id6
(
).*

id6,G
)
) D

id6
B)/GC] @ ;2

where

Ψ
′ := Ψ

, 6 : Ctx

, *(: (6 ⊢2 @ ℓ)

, *) : (6, G : *
id6
(

@ ℓ ⊢2 @ ℓ′)

, DC : (6 ⊢2 Π
ℓ,ℓ ′ (G : *

id6
(
).*

id6,G
)

@ ℓ ⊔ ℓ′)

, DB : (6 ⊢2 *
id6
(

@ ℓ)

and

Γ
′ := Γ

, G(: " [ℓ/ℓ, 6/6, box*
id6
(
/G)] @ ;1

, G) : " [ℓ/ℓ, (6, G : *
id6
(

@ ℓ)/6, box*
id6,G
)
/G)] @ ;1

, GC : "
′ [ℓ ⊔ ℓ′/ℓ, 6/6,Πℓ,ℓ ′ (G : *

id6
(
).*

id6,G
)
/*) , box D

id6
C /GC] @ ;2

, GB : "
′ [ℓ/ℓ, 6/6,*

id6
(
/*) , box D

id6
B /GC] @ ;2

This premise shows why we must use a more verbose syntax for application, i.e. (C : Π;,; ′ (G : ().)) B . In the
global context, we must introduce the global variables for the input and output types. However, a vanilla
function application C B has no such information at all. Since the current syntax has both input and output
types as sub-structures, we can also allow their recursive calls.

, Vol. 1, No. 1, Article . Publication date: April 2024.

50 • Jason Z. S. Hu and Brigi�e Pientka

All premises above conclude the group for terms, which we name �Trm. We collectively use �� for all three
groups above, i.e. �� := �" �Typ �Trm. Then we have the typing rule for the recursive principles as follows:

�� ! ⊢ ; ′ : Level ! | Ψ ⊢? Δ ! | Ψ; Γ ⊢< C : �(Δ ⊢2 @ ; ′) @ succ ; ′

! | Ψ; Γ ⊢< elim
;1,;2
Typ

−→
"
−→
1 ; ′ Δ C : " [; ′/ℓ,Δ/6, C/G)] @ ;1

�� ! ⊢ ; ′ : Level ! | Ψ ⊢? Δ ! | Ψ;Δ ⊢?) @ ; ′ ! | Ψ; Γ ⊢< C : �(Δ ⊢2) @ ; ′) @ ; ′

! | Ψ; Γ ⊢< elim;1,;2
Trm

−→
"
−→
1 ; ′ Δ) C : "′ [; ′/ℓ,Δ/6,) /*) , C/GC] @ ;2

4.7 More Congruence Rules for Typing

The congruence rules for the additional typing rules are naturally derived from the typing rules above.

! | Ψ ⊢typeof(8) Γ

D : (Δ ⊢8 ′) @ ;) ∈ Ψ 8′ ∈ {E, 2} 8 ∈ {E, 2, ?,<} 8′ ≤ 8 ! | Ψ; Γ ⊢8 X ≈ X
′ : Δ

! | Ψ; Γ ⊢8 D
X ≈ DX

′

:) [X] @ ;

! | Ψ ⊢< Γ ! | Ψ, 6 : Ctx; Γ ⊢< C ≈ C ′ :) @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢< Λ
; 6.C ≈ Λ

; ′ 6.C ′ : (6 : Ctx) ⇒;) @ ;

! | Ψ; Γ ⊢< C ≈ C ′ : (6 : Ctx) ⇒;) @ ; ! | Ψ ⊢? Δ ≈ Δ
′

! | Ψ; Γ ⊢< C $ Δ ≈ C ′ $ Δ′ :) [Δ/6] @ ;

! | Ψ ⊢< Γ ! | Ψ,* : (Δ ⊢? @ ;1); Γ ⊢< C ≈ C ′ :) @ ;2 ! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level

! | Ψ; Γ ⊢< Λ
;1,;2
? * .C ≈ Λ

;3,;4
? * .C ′ : (* : (Δ ⊢? @ ;1)) ⇒

;2) @ succ ;1 ⊔ ;2

! | Ψ; Γ ⊢< C ≈ C ′ : (* : (Δ ⊢? @ ;)) ⇒; ′) ′′ @ succ ; ⊔ ; ′ ! | Ψ;Δ ⊢?) ≈)
′ @ ;

! | Ψ; Γ ⊢< C $?) ≈ C
′ $?)

′ :) ′′ [) /*] @ ; ′

The following rules are related to meta-programming and intensional analysis.

! | Ψ ⊢< Γ ! | Ψ;Δ ⊢2) ≈)
′ @ ;

! | Ψ; Γ ⊢< box) ≈ box) ′ : �(Δ ⊢2 @ ;) @ succ ;

! | Ψ ⊢< Γ ! | Ψ;Δ ⊢2 C ≈ C
′ :) @ ;

! | Ψ; Γ ⊢< box C ≈ box C ′ : �(Δ ⊢2) @ ;) @ ;

! | Ψ ⊢< Γ ! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ ⊢? Δ ≈ Δ
′

! | Ψ; Γ ⊢< C ≈ C ′ : �(Δ ⊢2 @ ;2) @ succ ;2 ! | Ψ; Γ, G) : �(Δ ⊢2 @ ;2) @ succ ;2 ⊢< " ≈ "′ @ ;1
! | Ψ,* : (Δ ⊢2 @));2; Γ ⊢< C1 ≈ C2 : " [box*

id/G)] @ ;1

! | Ψ; Γ ⊢< letbox
;1
Typ

;2 Δ (G) .") (* .C1) C ≈ letbox
;3
Typ

;4 Δ
′ (G) ."

′) (* .C2) C
′ : " [C/G)] @ ;1

! | Ψ ⊢< Γ ! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ ⊢? Δ ≈ Δ
′ ! | Ψ; Γ ⊢?) ≈)

′ @ ;2
! | Ψ; Γ ⊢< C ≈ C ′ : �(Δ ⊢2) @ ;2) @ ;2 ! | Ψ; Γ, G) : �(Δ ⊢2) @ ;2) @ ;1 ⊢< " ≈ "′ @ ;1

! | Ψ, D : (Δ ⊢2 ;2 @ ;)Γ ⊢< C1 ≈ C2 : " [box D
id/GC] @ ;1

! | Ψ; Γ ⊢< letbox
;1
Trm

;2 Δ) (GC .") (* .C1) C ≈ letbox
;3
Trm

;4 Δ
′) ′ (G) ."

′) (* .C2) C
′ : " [C/GC] @ ;1

We omit the congruence rules for the recursive principles for code as they are conceptually simple but too long.
We simply let equivalence to propagate inwards to all the sub-terms of the recursive principles.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 51

4.8 Computation Rules

Finally, we list all the computation rules. In the rules below, we let 8 computable. We first list the V rules for
natural numbers:

! ⊢ ; : Level ! | Ψ; Γ, G : Nat@ zero ⊢8 " @ ;

! | Ψ; Γ ⊢8 B : " [zero/G] @ ; ! | Ψ; Γ, G : Nat@ zero,~ : " @ ; ⊢8 B
′ : " [succ G/G] @ ;

! | Ψ; Γ ⊢8 B ≈ elim;
Nat (G.") B (G,~.B

′) zero : " [zero/G] @ ;

! ⊢ ; : Level ! | Ψ; Γ, G : Nat@ zero ⊢8 " @ ; ! | Ψ; Γ ⊢8 B : " [zero/G] @ ;

! | Ψ; Γ, G : Nat@ zero,~ : " @ ; ⊢8 B
′ : " [succ G/G] @ ; ! | Ψ; Γ ⊢8 C : Nat@ zero

! | Ψ; Γ ⊢8 B
′ [C/G, elim;

Nat (G.") B (G,~.B
′) C/~] ≈ elim;

Nat (G.") B (G,~.B
′) (succ C) : " [succ C/G] @ ;

Then we have the V and [rules for dependent functions:

! ⊢ ; : Level ! ⊢ ; ′ : Level
! | Ψ; Γ ⊢8 (@ ; ! | Ψ; Γ, G : (@ ; ⊢8) @ ; ′ ! | Ψ; Γ, G : (@ ; ⊢8 C :) @ ; ′ ! | Ψ; Γ ⊢8 B : (@ ;

! | Ψ; Γ ⊢8 C [B/G] ≈ (_
;,; ′ (G : ().C : Π;,; ′ (G : ().)) B :) [B/G] @ ; ′

! ⊢ ; : Level

! ⊢ ; ′ : Level ! | Ψ; Γ ⊢8 (@ ; ! | Ψ; Γ, G : (@ ; ⊢8) @ ; ′ ! | Ψ; Γ ⊢8 C : Π
;,; ′ (G : ().) @ ; ⊔ ; ′

! | Ψ; Γ ⊢8 _
;,; ′ (G : ().(C : Π;,; ′ (G : ().)) G ≈ C : Π;,; ′ (G : ().) @ ; ⊔ ; ′

In the [rule, on the right hand side, all C , (and) should be properly locally weakened.
Finally we have V and [rules for universe-polymorphic functions:

! | Ψ ⊢< Γ !,
−→
ℓ | Ψ; Γ ⊢< C :) @ ; !,

−→
ℓ ⊢ ; : Level |

−→
ℓ | = |

−→
; | > 0 ∀; ′ ∈

−→
; · ! ⊢ ; ′ : Level

! | Ψ; Γ ⊢< C [
−→
; /
−→
ℓ] ≈ (Λ; −→ℓ .C) $

−→
; :) [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ]

! | Ψ; Γ ⊢< C :
−→
ℓ ⇒;) @ l

! | Ψ; Γ ⊢< Λ
; −→ℓ .(C $

−→
ℓ) ≈ C :

−→
ℓ ⇒;) @ l

Similarly, in the [rule, the universe variables appearing in C must also be properly weakened. This concludes all
the rules for the MLTT portion of DeLaM.

Then we move on to considering the computation rules for the extended types. Let us finish considering all
meta-function types.

! | Ψ ⊢< Γ ! | Ψ, 6 : Ctx; Γ ⊢< C :) @ ; ! ⊢ ; : Level ! | Ψ ⊢? Δ

! | Ψ; Γ ⊢< C [Δ/6] ≈ (Λ; 6.C) $ Δ :) [Δ/6] @ ;

! | Ψ; Γ ⊢< C : (6 : Ctx) ⇒;) @ ;

! | Ψ; Γ ⊢< Λ
; 6.(C $ 6) ≈ C : (6 : Ctx) ⇒;) @ ;

! | Ψ ⊢< Γ ! | Ψ,* : (Δ ⊢? @ ;); Γ ⊢< C :) ′ @ ; ′ ! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ;Δ ⊢?) @ ;

! | Ψ; Γ ⊢< C [) /*] ≈ (Λ;,; ′

? * .C) $?) :) ′ [) /*] @ ; ′

! | Ψ; Γ ⊢< C : (* : (Δ ⊢? @ ;)) ⇒; ′) ′ @ succ ; ⊔ ; ′

! | Ψ; Γ ⊢< Λ
;,; ′

? * .(C $? *
id) ≈ C : (* : (Δ ⊢? @ ;)) ⇒; ′) ′ @ succ ; ⊔ ; ′

, Vol. 1, No. 1, Article . Publication date: April 2024.

52 • Jason Z. S. Hu and Brigi�e Pientka

Now we consider the contextual types. They only have V rules. Let us consider letbox first.

! | Ψ ⊢< Γ ! ⊢ ; ′ : Level ! ⊢ ; : Level ! | Ψ ⊢? Δ ! | Ψ;Δ ⊢2) @ ;

! | Ψ; Γ, G) : �(Δ ⊢2 @ ;) @ succ ; ⊢< " @ ; ′ ! | Ψ, * : (Δ ⊢2 @ ;); Γ ⊢< C ′ : " [box* /G)] @ ; ′

! | Ψ; Γ ⊢< C ′ [) /*] ≈ letbox;
′

Typ ; Δ (G) .") (* .C ′) (box)) : " [box) /G)] @ ; ′

! | Ψ ⊢< Γ ! ⊢ ; ′ : Level ! ⊢ ; : Level ! | Ψ ⊢? Δ ! | Ψ;Δ ⊢?) @ ; ! | Ψ;Δ ⊢2 C :) @ ;

! | Ψ; Γ, GC : �(Δ ⊢2) @ ;) @ ; ⊢< " @ ; ′ ! | Ψ, D : (Δ ⊢2) @ ;); Γ ⊢< C ′ : " [box D/GC] @ ; ′

! | Ψ; Γ ⊢< C ′ [C/D] ≈ letbox;
′

Trm ; Δ) (GC .") (D.C
′) (box C) : " [box C/GC] @ ; ′

We can also give the V rules for the recursive principles for code. There are too many to list them all, and
moreover they follow the same pattern, so we just list a selected few of them. We begin with something easy:

�� ! | Ψ ⊢< Γ ! | Ψ ⊢? Δ

! | Ψ; Γ ⊢< CNat [Δ/6] ≈ elim;1,;2
Typ

−→
"
−→
1 zero Δ (box Nat) : " [zero/ℓ,Δ/6, box Nat/G)] @ ;1

In this case, we provide Nat to the recursive principle for code of types. It hits the base case described by CNat,
and thus the whole program is reduced to CNat with 6 for Δ. Note that the universe level for Nat must be zero
as specified by the typing judgment at layer 2 . The recursive principle for code of terms behaves very similarly
when encountering the code of Nat. Instead, it picks the right branch C ′

Nat
and returns the right motive instead:

�� ! | Ψ ⊢< Γ ! | Ψ ⊢? Δ ; = succ zero

! | Ψ; Γ ⊢< C ′Nat [Δ/6] ≈ elim;1,;2
Trm

−→
"
−→
1 ; Δ Tyzero (box Nat) : "

′ [;/ℓ,Δ/6, Tyzero/*) , box Nat/GC] @ ;2

In order to have the code to be box Nat as a term, this code must have type Tyzero, which lives at universe level
succ zero. Hence the indices are forced by the typing rules at layer 2 .

Then we specify the variable case:

�� ! | Ψ ⊢< Γ ! ⊢ ; ′ : Level ! | Ψ ⊢? Δ ! | Ψ;Δ ⊢?) @ ; ′ G :) @ ; ′ ∈ Δ

! | Ψ; Γ ⊢< CG [;
′/ℓ,Δ/6,) /*) , G/DG] ≈ elim

;1,;2
Trm

−→
"
−→
1 ; ′ Δ) (box G) : "′ [; ′/ℓ,Δ/6,) /*) , box G/GC] @ ;2

The subtlety here is that DG can only receive a variable as it is typed at layer E , but it is fine as G is precisely just
a variable.

Then let us consider a more complex case of Π types.

�� ! | Ψ ⊢< Γ

! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ ⊢? Δ ! | Ψ;Δ ⊢2 (@ ; ! | Ψ;Δ, G : (@ ; ⊢2) @ ; ′

C = box Π;,; ′ (G : ().) B(= elim
;1,;2
Typ

−→
"
−→
1 ; Δ (box () B) = elim

;1,;2
Typ

−→
"
−→
1 ; ′ (Δ, G : (@ ;) (box))

! | Ψ; Γ ⊢< CΠ [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , B(/G(, B) /G)] ≈ elim

;1,;2
Typ

−→
"
−→
1 (; ⊔ ; ′) Δ C : " [; ⊔ ; ′/ℓ,Δ/6, C/G)] @ ;1

Notice how B(and B) recurse down the sub-structures, i.e. (and) with the proper universe levels and local
contexts. We end our discussion by given the V rules for code of function abstractions and applications, as they
appear to be rather complex, but their essence is fundamentally simple.

�� ! | Ψ ⊢< Γ ! | Ψ ⊢? Δ ! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ;Δ ⊢2 (@ ;

! | Ψ;Δ, G : (@ ; ⊢2 C :) @ ; ′ ;Π = ; ⊔ ; ′)Π = Π
;,; ′ (G : ().) C ′ = box _;,;

′

(G : ().C

B(= elim
;1,;2
Typ

−→
"
−→
1 ; Δ (box () BC = elim

;1,;2
Trm

−→
"
−→
1 ; ′ (Δ, G : (@ ;)) (box C) X = B(/G(, BC/GC

! | Ψ; Γ ⊢< C_ [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , C/DC , X] ≈ elim

;1,;2
Trm

−→
"
−→
1 ;Π Δ)Π C ′ : "′ [;Π/ℓ,Δ/6,)Π/*) , C

′/GC] @ ;2

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 53

Similarly, the recursive principle for code of terms picks the right branch (C_) with variables properly substituted.
Since (is also a sub-structure, the recursive call B(invokes the recursive principle for code of types instead, hence
making the recursive principles mutually defined.

Last, we give the case for function applications.

�� ! | Ψ ⊢< Γ ! | Ψ ⊢? Δ ! ⊢ ; : Level

! ⊢ ; ′ : Level ! | Ψ;Δ ⊢2 (@ ; ! | Ψ;Δ, G : (@ ; ⊢2) @ ; ′ ! | Ψ;Δ ⊢2 C : Π
;,; ′ (G : ().) @ ; ⊔ ; ′

! | Ψ;Δ ⊢2 B : (@ ;)app =) [B/G] C ′ = box ((C : Π;,; ′ (G : ().)) B) B(= elim;1,;2
Typ

−→
"
−→
1 ; Δ (box ()

B) = elim;1,;2
Typ

−→
"
−→
1 ; ′ (Δ, G : (@ ;) (box)) BC = elim;1,;2

Trm

−→
"
−→
1 (; ⊔ ; ′) Δ (Π;,; ′ (G : ().)) (box C)

BB = elim
;1,;2
Trm

−→
"
−→
1 ; Δ ((box B) f = Δ/6, (/*(,) /*) , C/DC , B/DB X = B(/G(, B) /G) , BC/GC , BB/GB

! | Ψ; Γ ⊢< Capp [;/ℓ, ;
′/ℓ′, f, X] ≈ elim

;1,;2
Trm

−→
"
−→
1 ; ′ Δ)app C

′ : "′ [; ′/ℓ, Δ/6,)app/*) , C
′/GC] @ ;2

Similar to above, we can do recursion on all sub-structures, including (and) , which are handled by the recursive
principles for code of types. It is not only convenient to put (and) in the syntax of a function application, but
also necessary. If we look at BC and BB , the recursive calls on the function and the argument, we see that we must
supply their types, i.e. Π;,; ′ (G : ().) and (, respectively. This information, unfortunately, cannot be recovered, if
we employed the more common syntax of C B . In practice, the Π type can be filled in by a type inference algorithm
when we do not care, so it does not truly make the type theory more difficult, but rather enables the recursion
on code of function applications.

At this point, we conclude all rules for DeLaM. Next, we shall carefully define all syntactic operations and
examine the syntactic properties of DeLaM. Then we work out the semantics by following Sec. 2 and Abel et al.
[2017], from which we conclude the convertibility problem of DeLaM is decidable.

4.9 A Note on Layer E Rules

To summarize, only the following rules can be indexed by layer E :

• the typing rule for local variables and its congruence;
• the local substitution rules and their equivalence rules;
• the typing rule for global variables and its congruence;
• all conversion rules for terms and their equivalence.

In particular, we are not even obliged to include symmetry and transitivity, because they can be derived from
existing rules.

5 SYNTACTIC OPERATIONS AND PROPERTIES OF DELAM

In the previous section, we have introduced all judgments of DeLaM, but we have left out some details. For one,
we have not defined the substitution operations yet, though they are very intuitive. For the sake of completeness,
we will give their definitions. Then we examine the syntactic properties of DeLaM before entering the semantic
zone.

5.1 Substitution Operations

In Sec. 4.3, we have given the definition of substitutions for universe levels and how to apply one to a universe
level. Applying a substitution for universe levels to types and terms simply propagate the substitution down-
wards.

Nat[q] := Nat

Π
;,; ′ (G : ().) [q] := Π

; [q],; ′ [q] (G : ([q]).() [q])

, Vol. 1, No. 1, Article . Publication date: April 2024.

54 • Jason Z. S. Hu and Brigi�e Pientka

Ty; [q] := Ty; [q]
−→
ℓ ⇒;) [q] :=

−→
ℓ ⇒; [q,

−→
ℓ /
−→
ℓ] () [q,

−→
ℓ /
−→
ℓ])

El; C [q] := El; [q] (C [q])

* X [q] := * X [q]

(6 : Ctx) ⇒;) [q] := (6 : Ctx) ⇒; [q] () [q])

(* : (Γ ⊢? @ ;)) ⇒; ′) [q] := (* : (Γ [q] ⊢? @ ; [q])) ⇒; ′ [q] () [q])

�(Γ ⊢2 @ ;) [q] := �(Γ [q] ⊢2 @ ; [q])

�(Γ ⊢2) @ ;) [q] := �(Γ [q] ⊢2) [q] @ ; [q])

·[q] := ·
6[q] := 6

Γ, G :) @ ; [q] := Γ [q], G :) [q] @ ; [q]

·:6? [q] := ·:6?
wk:6 [q] := wk:6

X, C/G [q] := X [q], C [q]/G

G [q] := G

Nat[q] := Nat

Π
;,; ′ (G : B).C [q] := Π

; [q],; ′ [q] (G : B [q]).(C [q])
Ty; [q] := Ty; [q]
zero[q] := zero

succ C [q] := succ (C [q])

elim;
Nat (G.") B (G,~.B

′) C [q] := elim
; [q]

Nat
(G." [q]) (B [q]) (G,~.B′ [q]) (C [q])

_;,;
′
(G : ().C [q] := _; [q],;

′[q] (G : ([q]).(C [q])

(C : Π;,; ′ (G : ().)) B [q] := (C [q] : Π; [q],; ′ [q] (G : ([q]).) [q]) (B [q])

Λ
; −→ℓ .C [q] := Λ

; [q,
−→
ℓ /
−→
ℓ] −→ℓ .C [q,

−→
ℓ /
−→
ℓ]

C $
−→
; [q] := (C [q]) $ (

−→
; [q])

DX [q] := DX [q]

Λ
; 6.C [q] := Λ

; [q] 6.(C [q])

C $ Γ [q] := C [q] $ (Γ [q])

Λ
;,; ′

? * .C [q] := Λ
; [q],; ′[q]
? * .(C [q])

C $?) [q] := C [q] $? () [q])
box) [q] := box () [q])

box C [q] := box (C [q])

letbox;
′

Typ ; Γ (G) .") (* .C ′) C [q] := letbox
; ′ [q]

Typ
(; [q]) (Γ [q]) (G) ." [q]) (* .C ′ [q]) (C [q])

letbox;
′

Trm ; Γ) (GC .") (D.C
′) C [q] := letbox

; ′ [q]

Trm
(; [q]) (Γ [q]) () [q]) (GC ." [q]) (D.C

′ [q]) (C [q])

elim
;1,;2
Typ

−→
"
−→
1 ; Γ C [q] := elim

;1 [q],;2[q]

Typ
(
−→
" [q]) (

−→
1 [q]) (; [q]) (Γ [q]) (C [q])

elim
;1,;2
Trm

−→
"
−→
1 ; Γ) C [q] := elim

;1 [q],;2[q]

Trm
(
−→
" [q]) (

−→
1 [q]) (; [q]) (Γ [q]) () [q]) (C [q])

−→
" [q] := (ℓ, 6, G) ." [q, ℓ/ℓ]) (ℓ, 6,*) , GC ."

′ [q, ℓ/ℓ])

(6.CNat) [q] := (6.CNat [q])
(ℓ, ℓ′, 6,*(,*) , G(, G) .CΠ) [q] := (ℓ, ℓ′, 6,*(,*) , G(, G) .CΠ [q, ℓ/ℓ, ℓ

′/ℓ′])

(ℓ, 6.CTy) [q] := (ℓ, 6.CTy [q, ℓ/ℓ])

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 55

(ℓ, 6,DC , GC .CEl) [q] := (ℓ, 6,DC , GC .CEl [q, ℓ/ℓ])

(ℓ, 6,*) , DG .CG) [q] := (ℓ, 6,*) ,DG .CG [q, ℓ/ℓ])

(6.C ′
Nat
) [q] := (6.C ′

Nat
[q])

(ℓ, ℓ′, 6,DB , DC , GB , GC .C
′
Π
) [q] := (ℓ, ℓ′, 6,DB , DC , GB , GC .C

′
Π
[q, ℓ/ℓ, ℓ′/ℓ′])

(ℓ, 6.C ′
Ty
) [q] := (ℓ, 6.C ′

Ty
[q, ℓ/ℓ])

(6.Czero) [q] := (6.Czero [q])
(6,DC , GC .Csucc) [q] := (6,DC , GC .Csucc [q])

(ℓ, 6,*" ,DB ,DB′ ,DC , G" , GB , GB′ , GC .CelimNat
) [q] := (ℓ, 6,*" ,DB ,DB′ , DC , G" , GB , GB′ , GC .CelimNat

[q, ℓ/ℓ])

(ℓ, ℓ′, 6,*(,*) , DC , G(, GC .C_) [q] := (ℓ, ℓ′, 6,*(,*) ,DC , G(, GC .C_ [q, ℓ/ℓ, ℓ
′/ℓ′])

(ℓ, ℓ′, 6,*(,*) ,DC , DB , G(, G) , GC , GB .Capp) [q] := (ℓ, ℓ′, 6,*(,*) ,DC ,DB , G(, G) , GC , GB .Capp [q, ℓ/ℓ, ℓ
′/ℓ′])

The composition operation and the identity substitution are defined intuitively as:

· ◦ q := ·
(q ′, ;/ℓ) ◦ q := (q ′ ◦ q), ; [q]/ℓ

id· := ·
id!,ℓ := id!, ℓ/ℓ

The presentation of the identity substitution is simpler as we do not consider weakenings for universe contexts.
We sometimes omit the subscript when it can be inferred from the textual context. We will also need to apply a
universe substitution to global context, which does not need to be mutually defined:

·[q] := ·
(Ψ, 6 : Ctx) [q] := Ψ[q], 6 : Ctx

(Ψ, * : (Γ ⊢8 @ ;)) [q] := Ψ[q],* : (Γ [q] ⊢8 @ ; [q])

(Ψ, D : (Γ ⊢8) @ ;)) [q] := Ψ[q], D : (Γ [q] ⊢8) [q] @ ; [q])

Then we give the the application of a local substitution. Following Sec. 2, we need two auxiliary definitions
to query a local substitution in order to define its composition. We repeat their definitions as follows:

·̂:
6?

:= :

ŵk:6 := :

�X, C/G := X̂

q
·:6? := 6?

}
wk:6 := 6

~X, C/G := qX

Then we give the application of local substitutions:

Nat[X] := Nat

Π
;,; ′ (G : ().) [X] := Π

;,; ′ (G : ([X]).() [X, G/G])
Ty; [X] := Ty;

−→
ℓ ⇒;) [X] :=

−→
ℓ ⇒; () [X])

, Vol. 1, No. 1, Article . Publication date: April 2024.

56 • Jason Z. S. Hu and Brigi�e Pientka

El; C [X] := El; (C [X])

* X′ [X] :=* X′◦X

(6 : Ctx) ⇒;) [X] := (6 : Ctx) ⇒; () [X])

(* : (Γ ⊢? @ ;)) ⇒; ′) [X] := (* : (Γ ⊢? @ ;)) ⇒; ′ () [X])

�(Γ ⊢2 @ ;) [X] := �(Γ ⊢2 @ ;)

�(Γ ⊢2) @ ;) [X] := �(Γ ⊢2) @ ;)

G [X] := X (G) (lookup of G in X)
Nat[X] := Nat

Π
;,; ′ (G : B).C [X] := Π

;,; ′ (G : B [X]).(C [X, G/G])
Ty; [X] := Ty;
zero[X] := zero

succ C [X] := succ (C [X])

elim;
Nat (G.") B (G,~.B

′) C [X] := elim;
Nat (G." [X, G/G]) (B [X]) (G,~.B

′ [X, G/G,~/~]) (C [X])

_;,;
′
(G : ().C [X] := _;,;

′
(G : ([X]).(C [X, G/G])

(C : Π;,; ′ (G : ().)) B [X] := (C [X] : Π;,; ′ (G : ([X]).) [X, G/G]) (B [X])

Λ
; −→ℓ .C [X] := Λ

; −→ℓ .C [X]

C $
−→
; [X] := C [X] $

−→
;

DX
′
[X] := DX

′◦X

Λ
; 6.C [X] := Λ

; 6.(C [X])

C $ Γ [X] := C [X] $ Γ

Λ
;,; ′

? * .C [X] := Λ
;,; ′

? * .(C [X])

C $?) [X] := C [X] $?)
box) [X] := box)

box C [X] := box C

letbox;
′

Typ ; Γ (G) .") (* .C ′) C [X] := letbox;
′

Typ ; Γ (G) ." [X, G) /G)]) (* .C ′ [X]) (C [X])

letbox;
′

Trm ; Γ) (GC .") (D.C
′) C [X] := letbox;

′

Trm ; Γ) (GC ." [X, GC/GC]) (D.C
′ [X]) (C [X])

elim;1,;2
Typ

−→
"
−→
1 ; Γ C [X] := elim;1,;2

Typ
(
−→
" [X]) (

−→
1 [X]) ; Γ (C [X])

elim;1,;2
Trm

−→
"
−→
1 ; Γ) C [X] := elim;1,;2

Trm
(
−→
" [X]) (

−→
1 [X]) ; Γ) (C [X])

−→
" [X] := (ℓ, 6, G) ." [X, G) /G)]) (ℓ, 6,*) , GC ."

′ [X, GC/GC])

(6.CNat) [X] := (6.CNat [X])
(ℓ, ℓ′, 6,*(,*) , G(, G) .CΠ) [X] := (ℓ, ℓ′, 6,*(,*) , G(, G) .CΠ [X, G(/G(, G) /G)])

(ℓ, 6.CTy) [X] := (ℓ, 6.CTy [X])
(ℓ, 6,DC , GC .CEl) [X] := (ℓ, 6,DC , GC .CEl [X, GC/GC])

(ℓ, 6,*) ,DG .CG) [X] := (ℓ, 6,*) ,DG .CG [X])

(6.C ′
Nat
) [X] := (6.C ′

Nat
[X])

(ℓ, ℓ′, 6,DB ,DC , GB , GC .C
′
Π
) [X] := (ℓ, ℓ′, 6,DB , DC , GB , GC .C

′
Π
[X, GB/GB , GC/GC])

(ℓ, 6.C ′
Ty
) [X] := (ℓ, 6.C ′

Ty
[X])

(6.Czero) [X] := (6.Czero [X])
(6,DC , GC .Csucc) [X] := (6,DC , GC .Csucc [X, GC/GC])

(ℓ, 6,*" ,DB ,DB′ , DC , G" , GB , GB′ , GC .CelimNat
) [X] :=

(ℓ, 6,*" ,DB ,DB′ ,DC , G" , GB , GB′ , GC .CelimNat
[X, G"/G" , GB/GB , GB′/GB′ , GC/GC])

(ℓ, ℓ′, 6,*(,*) , DC , G(, GC .C_) [X] := (ℓ, ℓ′, 6,*(,*) ,DC , G(, GC .C_ [X, G(/G(, GC/GC])

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 57

(ℓ, ℓ′, 6,*(,*) , DC , DB , G(, G) , GC , GB .Capp) [X] :=
(ℓ, ℓ′, 6,*(,*) , DC , DB , G(, G) , GC , GB .Capp [X, G(/G(, G) /G) , GC/GC , GB/GB])

where composition is defined in the same way as Sec. 2:

wk:6 ◦ X := wkX̂6

·: ◦ X := ·X̂
qX

·:6 ◦ X := ·X̂6

(X′, C/G) ◦ X := (X′ ◦ X), C [X]/G

The identity local substitution is characterized as a generalization of local weakening wk.

wk:· := ·
:

wk:6 := wk:6

wk:
Γ,G :) @ ; := wk1+:

Γ
, G/G

Identity is just idΓ := wk0
Γ
.

Then we give the global substitutions.

f := · | f, Γ/6 | f,) /* | f, C/D (Global substitutions)

Then we define the typing rules as:

! ⊢ Ψ

! | Ψ ⊢ · : ·

! | Ψ ⊢ f : Φ ! | Ψ ⊢? Γ

! | Ψ ⊢ f, Γ/6 : Φ, 6 : Ctx

! | Ψ ⊢ f : Φ ! | Φ ⊢? Γ

! ⊢ ; : Level 8 ∈ {2, ?} ! | Ψ; Γ [f] ⊢8) @ ;

! | Ψ ⊢ f,) /* : Φ, D : (Γ ⊢8 @ ;)

! | Ψ ⊢ f : Φ ! | Φ; Γ ⊢?) @ ; ! ⊢ ; : Level 8 ∈ {E, 2} ! | Ψ; Γ [f] ⊢8 C :) [f] @ ;

! | Ψ ⊢ f, C/D : Φ, D : (Γ ⊢8) @ ;)

Then we consider the cases for application:

Nat[f] := Nat

Π
;,; ′ (G : ().) [f] := Π

;,; ′ (G : ([f]).() [f])
Ty; [f] := Ty;

−→
ℓ ⇒;) [f] :=

−→
ℓ ⇒; () [f])

El; C [f] := El; (C [f])

* X [f] := f (*) [X [f]] (lookup of * in f)

(6 : Ctx) ⇒;) [f] := (6 : Ctx) ⇒; () [f,6/6])

(* : (Γ ⊢? @ ;)) ⇒; ′) [f] := (* : (Γ [f] ⊢? @ ;)) ⇒; ′ () [f,* id/*])

�(Γ ⊢2 @ ;) [f] := �(Γ [f] ⊢2 @ ;)

�(Γ ⊢2) @ ;) [f] := �(Γ [f] ⊢2) [f] @ ;)

·[f] := ·
6[f] := f (6)

Γ, G :) @ ; [f] := Γ [f], G :) [f] @ ;

wk:6 [f] := wk:f (6)

, Vol. 1, No. 1, Article . Publication date: April 2024.

58 • Jason Z. S. Hu and Brigi�e Pientka

(a local weakening extending the local context by length<)

·: [f] := ·:

·:6 [f] := · |Γ |+< (if f (6) = Γ and Γ ends with a ·)

·:6 [f] := · |Γ |+<6′ (if f (6) = Γ and Γ ends with a 6′)

(X, C/G) [f] := (X [f]), C [f]/G

G [f] := G (no effect on local variables)
Nat[f] := Nat

Π
;,; ′ (G : B).C [f] := Π

;,; ′ (G : B [f]).(C [f])
Ty; [f] := Ty;
zero[f] := zero

succ C [f] := succ (C [f])

elim;
Nat (G.") B (G,~.B

′) C [f] := elim;
Nat (G." [f]) (B [f]) (G,~.B

′ [f]) (C [f])

_;,;
′
(G : ().C [f] := _;,;

′
(G : ([f]).(C [f])

(C : Π;,; ′ (G : ().)) B [f] := (C [f] : Π;,; ′ (G : ([f]).) [f]) (B [f])

Λ
; −→ℓ .C [f] := Λ

; −→ℓ .C [f]

C $
−→
; [f] := C [f] $

−→
;

DX [f] := f (D) [X [f]] (lookup of D in f)

Λ
; 6.C [f] := Λ

; 6.(C [f, 6/6])

C $ Γ [f] := (C [f]) $ (Γ [f])

Λ
;,; ′

? * .C [f] := Λ
;,; ′

? * .(C [f,* id/*])

C $?) [f] := (C [f]) $? () [f])
box) [f] := box () [f])

box C [f] := box (C [f])

letbox;
′

Typ ; Γ (G) .") (* .C ′) C [f] := letbox;
′

Typ ; Γ (G) ." [f]) (* .C ′ [f,* id/*]) (C [f])

letbox;
′

Trm ; Γ) (GC .") (D.C
′) C [f] := letbox;

′

Trm ; Γ) (GC ." [f]) (D.C
′ [f,D/D]) (C [f])

elim
;1,;2
Typ

−→
"
−→
1 ; Γ C [f] := elim

;1,;2
Typ
(
−→
" [f]) (

−→
1 [f]) ; (Γ [f]) (C [f])

elim;1,;2
Trm

−→
"
−→
1 ; Γ) C [f] := elim;1,;2

Trm
(
−→
" [f]) (

−→
1 [f]) ; (Γ [f]) () [f]) (C [f])

−→
" [f] := (ℓ, 6, G) ." [f, 6/6]) (ℓ, 6,*) , GC ."

′ [f,6/6,* id
)
/*)])

(6.CNat) [f] := (6.CNat [f,6/6])
(ℓ, ℓ′, 6,*(,*) , G(, G) .CΠ) [f] := (ℓ, ℓ′, 6,*(,*) , G(, G) .CΠ [f,6/6,*

id
(/*(,*

id
) /*)])

(ℓ, 6.CTy) [f] := (ℓ, 6.CTy [f,6/6])
(ℓ, 6,DC , GC .CEl) [f] := (ℓ, 6,DC , GC .CEl [f,6/6,D

id
C /DC])

(ℓ, 6,*) ,DG .CG) [f] := (ℓ, 6,*) , DG .CG [f,6/6,*
id
)
/*) ,D

id
G /DG])

(6.C ′
Nat
) [f] := (6.C ′

Nat
[f,6/6])

(ℓ, ℓ′, 6,DB ,DC , GB , GC .C
′
Π
) [f] := (ℓ, ℓ′, 6,DB ,DC , GB , GC .C

′
Π
[f,6/6,D idB /DB , D

id
C /DC])

(ℓ, 6.C ′
Ty
) [f] := (ℓ, 6.C ′

Ty
[f,6/6])

(6.Czero) [f] := (6.Czero [f,6/6])
(6,DC , GC .Csucc) [f] := (6,DC , GC .Csucc [f,6/6,D

id
C /DC])

(ℓ, 6,*" ,DB ,DB′ , DC , G" , GB , GB′ , GC .CelimNat
) [f] :=

(ℓ, 6,*" ,DB ,DB′ , DC , G" , GB , GB′ , GC .CelimNat
[f,6/6,* id

" /*" ,D
id
B /DB , D

id
B′ /DB′ , D

id
C /DC])

(ℓ, ℓ′, 6,*(,*) , DC , G(, GC .C_) [f] := (ℓ, ℓ′, 6,*(,*) , DC , G(, GC .C_ [f,6/6,*
id
(
/*(,*

id
)
/*) , D

id
C /DC])

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 59

(ℓ, ℓ′, 6,*(,*) , DC , DB , G(, G) , GC , GB .Capp) [f] :=
(ℓ, ℓ′, 6,*(,*) ,DC ,DB , G(, G) , GC , GB .Capp [f,6/6,*

id
(
/*(,*

id
)
/*) ,D

id
C /DC , D

id
B /DB])

Following Sec. 2, we give the identity global substitution as a special case of global weakenings, and compo-
sition.

wk:· := ·

wk:
Ψ,6:Ctx := wk1+:

Ψ
, 6/6

wk:
Ψ,* :(Γ⊢8@ ;) := wk1+:

Ψ
,* idΓ/*

wk:
Ψ,D :(Γ⊢8) @ ;) := wk1+:

Ψ
,D idΓ/D

As a special case, we have

idΨ := wk0
Ψ

Moreover, we have composition

· ◦ f ′ := ·

(f, Γ/6) ◦ f ′ := (f ◦ f ′), Γ [f ′]/6

(f,) /*) ◦ f ′ := (f ◦ f ′),) [f ′]/*

(f, C/D) ◦ f ′ := (f ◦ f ′), C [f ′]/D

5.2 Properties of Substitutions

In the next step, we examine the algebraic properties of all substitutions. In the lemmas below, we always as-
sume well-formedness or well-typedness of the subjects in the lemmas, unless the lemmas are about typing. For
conciseness, we do not spell out the conditions as they are routine.

Lemma 5.1.

• ! ⊢ id! : !
• If ! ⊢ q : !′ and !′ ⊢ q ′ : !′′, then ! ⊢ q ′ ◦ q : !′′ .

Proof. Analyze the definition of identity and composition. �

Lemma 5.2 (Algebra of Universe Substitutions).

• ; [q] [q ′] = ; [q ◦ q ′] () , Γ, X , C , Ψ resp.)

• ; [id] = ; () , Γ, X , C , Ψ resp.)

• id ◦ q = q and q ◦ id = q

• (q1 ◦ q2) ◦ q3 = q1 ◦ (q2 ◦ q3)

Proof. The proofs are routine; the first two statements are proved by induction on ; first, and then mutual
induction on all applications of universe substitutions. The last twowe analyze the definition of composition. �

Similar lemmas hold for local and global substitutions.

Lemma 5.3.

• ! | Ψ; Γ,Δ ⊢8 wk
|Δ |

Γ
: Γ

• ! | Ψ; Γ ⊢8 idΓ : Γ

Note that local substitutions permit 8 = E , so we have ! | Ψ; Γ ⊢E idΓ : Γ. This intuitively makes sense, as all
terms in idΓ are just local variables.

, Vol. 1, No. 1, Article . Publication date: April 2024.

60 • Jason Z. S. Hu and Brigi�e Pientka

Lemma 5.4 (Algebra of Local Substitutions).

•) [X] [X′] =) [X ◦ X′] (C resp.)

•) [id] =) (C resp.)

• id ◦ X = X and X ◦ id = X

• (X1 ◦ X2) ◦ X3 = X1 ◦ (X2 ◦ X3)

Proof. The first statement is mutually proved with associativity and by mutual induction. The second state-
ment is mutually proved with right identity and also by mutual induction. When proving right identity, we
realize that all extended local substitutions under binders are identities. �

Then we reason about global substitutions.

Lemma 5.5.

• ! | Ψ,Φ ⊢ wk
|Φ |

Ψ
: Ψ

• ! | Ψ ⊢ idΨ : Ψ

Lemma 5.6 (Algebra of Global Substitutions).

•) [f] [f ′] =) [f ◦ f ′] (Γ, X , C resp.)

•) [id] =) (Γ, X , C resp.)

• id ◦ f = f and f ◦ id = f

• (f1 ◦ f2) ◦ f3 = f1 ◦ (f2 ◦ f3)

Proof. The first two statements require mutual inductions on the applications of global substitutions. Right
identity is a natural consequence of the second statement. Left identity is proved by simply looking at the
definition of the identity global substitution. Associativity is routine. �

Finally, we conclude how all these kinds of substitutions interact.

Lemma 5.7 (Acting on Weakenings).

• wk:
Γ
[q] = wk:

Γ[q]

• wk:
Ψ
[q] = wk:

Ψ[q]

• wk:
Γ
[f] = wk:

Γ[f]

Proof. The first two statements are pretty straightforward as the lengths of the contexts are not altered. The
last one requires a bit more thought. We proceed by induction on Γ.

Case

wk:· [f] = ·
: [f]

= ·:

Case

wk:6 [f] = wk:f (6)

which already matches the definition of wk:6[f] .

Case

wk:
Γ,G :) @ ; [f] = (wk

1+<
Γ

, G/G) [f]

= wk1+<
Γ
[f], G/G

= wk1+<
Γ[f] , G/G (by IH)

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 61

= wk:
Γ[f],G :) [f] @ ;

�

Corollary 5.8 (Acting on Identities).

• idΓ [q] = idΓ[q]
• idΨ [q] = idΨ[q]
• idΓ [f] = idΓ[f]

Lemma 5.9 (Interactions between Different Substitutions).

•) [X] [q] =) [q] [X [q]] (C , resp.)

• (X ◦ X′) [q] = (X [q]) ◦ (X′ [q])

•) [f] [q] =) [q] [f [q]] (Γ, X , C , resp.)

•) [X] [f] =) [f] [X [f]] (C , resp.)

• (X ◦ X′) [f] = (X [f]) ◦ (X′ [f])

Proof. The first two statements are mutually proved. The last two statements are also mutually proved.
Most of them can be done by simply following the IHs. We give a few examples.

Case

(_;,;
′

(G : ().C) [X] [q] = _;,;
′

(G : ([X] [q]).(C [X, G/G] [q])

= _;,;
′

(G : ([q] [X [q]]).(C [q] [(X, G/G) [q]]) (by IH)

= _;,;
′

(G : ([q] [X [q]]).(C [q] [(X [q], G/G)])

= (_;,;
′

(G : ().C) [q] [X [q]]

Case

(ℓ, 6, G) .") [X] [q] = (ℓ, 6, G) ." [X, G) /G)] [q, ℓ/ℓ])

= (ℓ, 6, G) ." [q, ℓ/ℓ] [(X, G) /G)) [q, ℓ/ℓ]]) (by IH)

= (ℓ, 6, G) ." [q, ℓ/ℓ] [(X [q], G) /G))])

(X [q, ℓ/ℓ] = X [q] due to weakening of universe variables)

= (ℓ, 6, G) .") [q] [X [q]]

Case

(ℓ, 6,DC , GC .CEl) [f] [q] = (ℓ, 6,DC , GC .CEl [f,6/6,D
id
C /DC] [q, ℓ/ℓ])

= (ℓ, 6,DC , GC .CEl [q, ℓ/ℓ] [(f,6/6,D
id
C /DC) [q, ℓ/ℓ]]) (by IH)

= (ℓ, 6,DC , GC .CEl [q, ℓ/ℓ] [(f [q], 6/6,D
id
C /DC)]) (f is universe weakened; Lemma 5.7)

= (ℓ, 6,DC , GC .CEl) [q] [f [q]]

Case

wk:6 [f] [q] = wk:f (6) [q]

= wk:f (6) [q] (by Lemma 5.7)

= wk:6[f [q]]

= wk:6 [q] [f [q]]

, Vol. 1, No. 1, Article . Publication date: April 2024.

62 • Jason Z. S. Hu and Brigi�e Pientka

Case Then we consider ·:6 , and we case analyze Γ := f (6):
Subcase If Γ ends with ·.

·:6 [f] [q] = ·
|Γ |+< [q] = · |Γ |+<

Subcase If Γ ends with 6′.

·:6 [f] [q] = ·
|Γ |+<
6′ [q] = ·

|Γ |+<
6′

Case

(ℓ, 6,DC , GC .CEl) [X] [f] = (ℓ, 6,DC , GC .CEl [X, GC/GC] [f,D
id
C /DC])

= (ℓ, 6,DC , GC .CEl [f,D
id
C /DC] [(X, GC/GC) [f,D

id
C /DC]]) (by IH)

= (ℓ, 6,DC , GC .CEl [f,D
id
C /DC] [X [f], GC/GC]) (X is globally weakened)

= (ℓ, 6,DC , GC .CEl) [f] [X [f]]

Case Now we consider wk:6 ◦ X . This composition basically cancels out all terms from X and leave a weakening

behind. In this case, we know that X must end with wk:
′

6 for some 6. Moreover, in order to compose, we
have that |X | =<. Therefore,

(wk:6 ◦ X) [f] = wkX̂6 [f]

= wk:
′

f (6)

Moreover,

(wk:6 [f]) ◦ (X [f]) = wk
|X |

f (6)
◦ (X [f])

= wk:
′

f (6) (wk|X |
f (6)

projects away all leading terms kept by X so only wk:
′

6 [f] is left)

Therefore two expressions are equal. Similar reasoning holds for the case of ·:6 ◦ X .

Case Then we consider ·: and case analyze qX .

Subcase If qX is not a contextual variable, then X must end with ·:
′
and also |X | =< due to well-typedness.

(·: ◦ X) [f] = ·X̂ [f]

= ·:
′

= ·:
′

[f]

= (·: [f]) ◦ (X [f])

Subcase If qX is contextual variable 6, then X must end with ·:
′

6 and also |X | =< due to well-typedness.

(·: ◦ X) [f] = ·X̂6 [f]

= ·:
′

6 [f]

Moreover,

·: [f] ◦ (X [f]) = ·: ◦ (X [f])

= ·
�X [f]
~X [f]

= ·
|f (6) |+:′

~X [f]

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 63

Then we consider whether f (6) ends with another contextual variable or not.
Subsubcase If f (6) ends with ·, then

(·: ◦ X) [f] = ·:
′

6 [f]

= · |f (6) |+:
′

and also X [f] must also end with no global variable.
Subsubcase If f (6) ends with some 6′, then

(·: ◦ X) [f] = ·:
′

6 [f]

= ·
|f (6) |+:′

6′

Then ~X [f] must also return 6′.

�

Lemma 5.10 (Universe Substitutions).

• If !′ ⊢ Ψ and ! ⊢ q : !′, then ! ⊢ Ψ[q].

• If !′ | Ψ ⊢8 Γ and ! ⊢ q : !′, then ! | Ψ[q] ⊢8 Γ [q].

• If !′ | Ψ ⊢8 Γ ≈ Δ and ! ⊢ q : !′, then ! | Ψ[q] ⊢8 Γ [q] ≈ Δ[q].

• If !′ | Ψ; Γ ⊢8) @ ; and ! ⊢ q : !′, then ! | Ψ[q]; Γ [q] ⊢8) [q] @ ; [q].

• If !′ | Ψ; Γ ⊢8) ≈)
′ @ ; and ! ⊢ q : !′, then ! | Ψ[q]; Γ [q] ⊢8) [q] ≈)

′ [q] @ ; [q].

• If !′ | Ψ; Γ ⊢8 C :) @ ; and ! ⊢ q : !′, then ! | Ψ[q]; Γ [q] ⊢8 C [q] :) [q] @ ; [q].

• If !′ | Ψ; Γ ⊢8 C ≈ C
′ :) @ ; and ! ⊢ q : !′, then ! | Ψ[q]; Γ [q] ⊢8 C [q] ≈ C

′ [q] :) [q] @ ; [q].

• If !′ | Ψ; Γ ⊢8 X : Γ′ and ! ⊢ q : !′, then ! | Ψ[q]; Γ [q] ⊢8 X [q] : Γ
′ [q].

• If !′ | Ψ; Γ ⊢8 X ≈ X
′ : Γ′ and ! ⊢ q : !′, then ! | Ψ[q]; Γ [q] ⊢8 X [q] ≈ X

′ [q] : Γ′ [q].

Proof. Do a mutual induction. Most rules do not alter the universe context at all so they are discharged
naturally. When encountering the only changing cases, i.e. universe-polymorphic functions and branches of the
recursive principles for code, we extend the unvierse substitutions with sufficient new universe variables before
applying the IHs. When computation rules are encountered, we apply the composition lemma above before
applying the IHs.
We consider one complex computational rule in detail to illustrate the proof of the lemma:

�� ! | Ψ ⊢< Γ

!′ ⊢ ; : Level !′ ⊢ ; ′ : Level !′ | Ψ ⊢? Δ !′ | Ψ;Δ ⊢2 (@ ; !′ | Ψ;Δ, G : (@ ; ⊢2) @ ; ′

C = box Π;,; ′ (G : ().) B(= elim
;1,;2
Typ

−→
"
−→
1 ; Δ (box () B) = elim

;1,;2
Typ

−→
"
−→
1 ; ′ (Δ, G : (@ ;) (box))

!′ | Ψ; Γ ⊢< CΠ [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , B(/G(, B) /G)] ≈ elim;1,;2

Typ

−→
"
−→
1 (; ⊔ ; ′) Δ C : " [; ⊔ ; ′/ℓ,Δ/6, C/G)] @ ;1

On the right hand side, q simply propagates. By IH, we can show that all premises with the universe-substituted
sub-terms are well-formed. For example, we have

! | Ψ[q];Δ[q] ⊢2 ([q] @ ; [q]

and

! | Ψ[q];Δ[q], G : ([q] @ ; [q] ⊢2) [q] @ ; ′ [q]

Now we consider the left hand side.

CΠ [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , B(/G(, B) /G)] [q]

= CΠ [;/ℓ, ;
′/ℓ′] [q] [Δ[q]/6, ([q]/*(,) [q]/*) , B([q]/G(, B) [q]/G)] (by Lemma 5.9)

, Vol. 1, No. 1, Article . Publication date: April 2024.

64 • Jason Z. S. Hu and Brigi�e Pientka

= CΠ [q, ℓ/ℓ, ℓ
′/ℓ′] [; [q]/ℓ, ; ′ [q]/ℓ′] [Δ[q]/6, ([q]/*(,) [q]/*) , B([q]/G(, B) [q]/G)]

(by naturality of substitutions)

Note that CΠ [q, ℓ/ℓ, ℓ
′/ℓ′] is precisely how q should be propagated in CΠ .

Now we consider the type. A similar reasoning applies:

" [; ⊔ ; ′/ℓ,Δ/6, C/G)] [q] = " [; ⊔ ; ′/ℓ] [q] [Δ[q]/6, C [q]/G)] (by Lemma 5.9)

= " [q, ℓ/ℓ] [; [q] ⊔ ; ′ [q]/ℓ] [Δ[q]/6, C [q]/G)] (by naturality of substitutions)

This equality verifies the resulting type is correct. The same rule ensures the equivalence lives in the universe
level ;1 [q]. �

Then we consider the properties of local substitutions.

Lemma 5.11 (Partial Presupposition).

• If ! | Ψ ⊢8 Γ, then ! ⊢ Ψ.

• If ! | Ψ ⊢8 Γ ≈ Δ, then ! | Ψ ⊢8 Γ and ! | Ψ ⊢8 Δ.

• If ! | Ψ; Γ ⊢8 X : Δ, then ! | Ψ ⊢8 Γ.

• If ! | Ψ; Γ ⊢8 X ≈ X
′ : Δ, then ! | Ψ; Γ ⊢8 X : Δ and ! | Ψ; Γ ⊢8 X

′ : Δ.
• If ! | Ψ ⊢ f : Φ, then ! ⊢ Ψ and ! ⊢ Φ.

Proof. Induction on their respective premises. Note that in the second statement, the definition of ! | Ψ ⊢8
Γ ≈ Δ is adjusted so that a simple induction would suffice. The third statement requires the extra premises added
to the step case of the equivalence judgment. �

In fact the lemma above has given full presupposition for local contexts and their equivalence. Therefore, in
the forthcoming full presupposition lemma, we do not have to state these cases.

Lemma 5.12 (Symmetry and Transitivity of Local Substitutions).

• If ! | Ψ; Γ ⊢8 X ≈ X
′ : Δ, then ! | Ψ; Γ ⊢8 X

′ ≈ X : Δ.
• If ! | Ψ; Γ ⊢8 X ≈ X

′ : Δ and ! | Ψ; Γ ⊢8 X ≈ X
′′ : Δ, then ! | Ψ; Γ ⊢8 X ≈ X

′′ : Δ.

Proof. By induction. �

Lemma 5.13 (Reflexivity).

• If ! | Ψ; Γ ⊢8) @ ; , then ! | Ψ; Γ ⊢8) ≈) @ ; .

• If ! | Ψ; Γ ⊢8 C :) @ ; , then ! | Ψ; Γ ⊢8 C ≈ C :) @ ; .

• If ! | Ψ; Γ ⊢8 X : Δ, then ! | Ψ; Γ ⊢8 X ≈ X : Δ.
• If ! | Ψ ⊢8 Γ, then ! | Ψ ⊢8 Γ ≈ Γ.

Proof. The first two statements are proved by symmetry and then transitivity. The third (fourth) statement
is a natural consequence of the second (first, resp.) statement. �

Lemma 5.14 (Local Substitutions).

• If ! | Ψ; Γ′ ⊢8) @ ; and ! | Ψ; Γ ⊢8 X : Γ′, then ! | Ψ; Γ ⊢8) [X] @ ; .

• If ! | Ψ; Γ′ ⊢8) ≈)
′ @ ; and ! | Ψ; Γ ⊢8 X : Γ′, then ! | Ψ; Γ ⊢8) [X] ≈)

′ [X] @ ; .

• If ! | Ψ; Γ′ ⊢8 C :) @ ; and ! | Ψ; Γ ⊢8 X : Γ′, then ! | Ψ; Γ ⊢8 C [X] :) [X] @ ; .

• If ! | Ψ; Γ′ ⊢8 C ≈ C
′ :) @ ; and ! | Ψ; Γ ⊢8 X : Γ′, then ! | Ψ; Γ ⊢8 C [X] ≈ C

′ [X] :) [X] @ ; .

• If ! | Ψ; Γ′ ⊢8 X
′ : Γ′′ and ! | Ψ; Γ ⊢8 X : Γ′, then ! | Ψ; Γ ⊢8 X

′ ◦ X : Γ′′.
• If ! | Ψ; Γ′ ⊢8 X

′ ≈ X′′ : Γ′′ and ! | Ψ; Γ ⊢8 X : Γ′, then ! | Ψ; Γ ⊢8 X
′ ◦ X ≈ X′′ ◦ X : Γ′′.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 65

Proof. Do amutual induction. Many cases go through naturally if their premises do not alter the local context.
In the base cases, we use partial presupposition above to obtain ! | Ψ ⊢8 Γ and ! ⊢ Ψ. The global variable cases
depend on the composition of local substitutions. The local variable case depends on the reflexivity lemma.
We consider a few cases:

Case

! | Ψ; Γ′ ⊢< C ≈ C ′ : (* : (Δ ⊢? @ ;)) ⇒; ′) ′′ @ succ ; ⊔ ; ′ ! | Ψ;Δ ⊢?) ≈)
′ @ ;

! | Ψ; Γ′ ⊢< C $?) ≈ C
′ $?)

′ :) ′′ [) /*] @ ; ′

! | Ψ; Γ ⊢< C [X] ≈ C ′ [X] : (* : (Δ ⊢? @ ;)) ⇒; ′ () ′′ [X]) @ succ ; ⊔ ; ′ (by IH)

! | Ψ; Γ ⊢< C [X] $?) ≈ C
′ [X] $?)

′ :) ′′ [X] [) /*] @ ; ′ (by the same congruence rule)

Notice that

) ′′ [X] [) /*] =) ′′ [) /*] [X [) /*]] =) ′′ [) /*] [X]

where the second equation holds because X is not typed in a context with * .
Case

�� ! | Ψ ⊢< Γ
′

! | Ψ ⊢? Δ ! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ;Δ ⊢2 (@ ; ! | Ψ;Δ, G : (@ ; ⊢2 C :) @ ; ′

;Π = ; ⊔ ; ′)Π = Π
;,; ′ (G : ().) C ′ = box _;,;

′

(G : ().C B(= elim;1,;2
Typ

−→
"
−→
1 ; Δ (box () [X]

BC = elim;1,;2
Trm

−→
"
−→
1 ; ′ (Δ, G : (@ ;)) (box C) [X] X′ = B(/G(, BC/GC

! | Ψ; Γ′ ⊢< C_ [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , C/DC , X

′] ≈ elim
;1,;2
Trm

−→
"
−→
1 ;Π Δ)Π C ′ : "′ [;Π/ℓ,Δ/6,)Π/*) , C

′/GC] @ ;2

In this case, we first apply IHs so that X is propagated into all premises in �� and we must reason about
the left hand side and the result type.

C_ [X, G(/G(, GC/GC] [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , C/DC , X

′]

= C_ [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , C/DC] [X [;/ℓ, ;

′/ℓ′,Δ/6, (/*(,) /*) , C/DC], G(/G(, GC/GC] [X
′] (by Lemma 5.9)

= C_ [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , C/DC] [X, G(/G(, GC/GC] [X

′] (X has no those variables)

= C_ [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , C/DC] [B(/G(, BC/GC] [X] (naturality of local substitutions)

On the return type, we have

"′ [X, GC/GC] [;Π/ℓ, Δ/6,)Π/*) , C
′/GC]

="′ [;Π/ℓ, Δ/6,)Π/*)] [X, GC/GC] [C
′/GC] (by Lemma 5.9 similarly)

="′ [;Π/ℓ, Δ/6,)Π/*)] [C
′/GC] [X] (naturality of local substitutions)

Both equations conclude this case.

�

We also need a similar lemma about equivalent local substitutions.

Lemma 5.15 (Eqivalent Local Substitutions).

• If ! | Ψ; Γ′ ⊢8) @ ; and ! | Ψ; Γ ⊢8 X1 ≈ X2 : Γ
′, then ! | Ψ; Γ ⊢8) [X1] ≈) [X2] @ ; .

• If ! | Ψ; Γ′ ⊢8) ≈)
′ @ ; and ! | Ψ; Γ ⊢8 X1 ≈ X2 : Γ

′, then ! | Ψ; Γ ⊢8) [X1] ≈)
′ [X2] @ ; .

• If ! | Ψ; Γ′ ⊢8 C :) @ ; and ! | Ψ; Γ ⊢8 X1 ≈ X2 : Γ
′, then ! | Ψ; Γ ⊢8 C [X1] ≈ C [X2] :) [X1] @ ; .

• If ! | Ψ; Γ′ ⊢8 C ≈ C
′ :) @ ; and ! | Ψ; Γ ⊢8 X1 ≈ X2 : Γ

′, then ! | Ψ; Γ ⊢8 C [X1] ≈ C
′ [X2] :) [X1] @ ; .

• If ! | Ψ; Γ′ ⊢8 X : Γ′′ and ! | Ψ; Γ ⊢8 X1 ≈ X2 : Γ
′, then ! | Ψ; Γ ⊢8 X ◦ X1 ≈ X ◦ X2 : Γ

′′.

, Vol. 1, No. 1, Article . Publication date: April 2024.

66 • Jason Z. S. Hu and Brigi�e Pientka

• If ! | Ψ; Γ′ ⊢8 X ≈ X
′ : Γ′′ and ! | Ψ; Γ ⊢8 X1 ≈ X2 : Γ

′, then ! | Ψ; Γ ⊢8 X ◦ X1 ≈ X
′ ◦ X2 : Γ

′′.

Proof. We proceed by mutual induction. When we encounter well-formedness of types and well-typedness
of terms, we conclude by IHs and respective congruence rules. What is more difficult are the asymmetric equiv-
alence rules. We must apply IHs a bit more carefully to obtain the conclusions. We elaborate on a few cases.

Case

! | Ψ; Γ′ ⊢8 C ≈ C
′ :) @ ; ! | Ψ; Γ′ ⊢8 C

′ ≈ C ′′ :) @ ;

! | Ψ; Γ′ ⊢8 C ≈ C
′′ :) @ ;

! | Ψ; Γ ⊢8 X1 : Γ
′ (by presupposition)

! | Ψ; Γ ⊢8 C [X1] ≈ C
′ [X1] :) [X1] @ ; (by local substitution lemma)

! | Ψ; Γ ⊢8 C
′ [X1] ≈ C

′′ [X2] :) [X1] @ ; (by IH)

! | Ψ; Γ ⊢8 C [X1] ≈ C
′′ [X2] :) [X1] @ ; (by transitivity)

Case

! | Ψ; Γ′ ⊢8 C :)
′ @ ; ! | Ψ; Γ′ ⊢typeof(8)) ≈)

′ @ ;

! | Ψ; Γ′ ⊢8 C :) @ ;

! | Ψ; Γ ⊢8 X1 : Γ
′ (by presupposition)

! | Ψ; Γ ⊢typeof(8)) [X1] ≈)
′ [X1] @ ; (by local substitution lemma)

! | Ψ; Γ ⊢8 C [X1] ≈ C [X2] :)
′ [X1] @ ; (by IH)

! | Ψ; Γ ⊢8 C [X1] ≈ C [X2] :) [X1] @ ; (by conversion)

Case

! | Ψ ⊢< Γ
′

! | Ψ, * : (Δ ⊢? @ ;); Γ′ ⊢< C :) ′ @ ; ′ ! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ;Δ ⊢?) @ ;

! | Ψ; Γ′ ⊢< C [) /*] ≈ (Λ;,; ′

? * .C) $?) :) ′ [) /*] @ ; ′

! | Ψ; Γ ⊢< X1 : Γ
′ (by presupposition)

! | Ψ; Γ ⊢< C [) /*] [X1] ≈ (Λ
;,; ′

? * .C [X1]) $?) :) ′ [) /*] [X1] @ ; ′ (by local substitution lemma)

! | Ψ,* : (Δ ⊢? @ ;); Γ ⊢< C [X1] ≈ C [X2] :)
′ [X1] @ ; ′ (by IH)

! | Ψ; Γ ⊢< (Λ
;,; ′

? * .C [X1]) $?) ≈ (Λ
;,; ′

? * .C [X2]) $?) :) ′ [) /*] [X1] @ ; ′

(by congruence; note that) ′ [) /*] [X1] =) ′ [X1] [) /*] as* is not in X1)

! | Ψ; Γ ⊢< C [) /*] [X1] ≈ (Λ
;,; ′

? * .C [X2]) $?) :) ′ [) /*] [X1] @ ; ′ (by transitivity)

Case

! | Ψ ⊢< Γ
′ ! ⊢ ; ′ : Level ! ⊢ ; : Level ! | Ψ ⊢? Δ ! | Ψ;Δ ⊢2) @ ;

! | Ψ; Γ′, G) : �(Δ ⊢2 @ ;) @ succ ; ⊢< " @ ; ′ ! | Ψ, * : (Δ ⊢2 @ ;); Γ′ ⊢< C ′ : " [box* /G)] @ ; ′

! | Ψ; Γ′ ⊢< C ′ [) /*] ≈ letbox;
′

Typ ; Δ (G) .") (* .C ′) (box)) : " [box) /G)] @ ; ′

! | Ψ; Γ ⊢< X1 : Γ
′ (by presupposition)

! | Ψ ⊢< Γ (by presupposition)

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 67

! | Ψ; Γ ⊢< C ′ [) /*] [X1] ≈ letbox;
′

Typ ; Δ (G) ." [X1, G) /G)]) (* .C ′ [X1]) (box)) : " [box) /G)] [X1] @ ; ′

(by local substitution lemma)

! | Ψ; Γ, G) : �(Δ ⊢2 @ ;) @ succ ; ⊢< " [X1, G) /G)] ≈ " [X2, G) /G)] @ ; ′ (by IH)

! | Ψ, * : (Δ ⊢2 @ ;); Γ ⊢< C ′ [X1] ≈ C
′ [X2] : " [X1, G) /G)] [box* /G)] @ ; ′ (by IH)

letbox;
′

Typ ; Δ (G) ." [X1, G) /G)]) (* .C ′ [X1]) (box))

≈ letbox;
′

Typ ; Δ (G) ." [X2, G) /G)]) (* .C ′ [X2]) (box)) : " [X1, G) /G)] [box) /G)] (by congruence)

! | Ψ; Γ ⊢< C ′ [) /*] [X1] ≈ letbox;
′

Typ ; Δ (G) ." [X2, G) /G)]) (* .C ′ [X2]) (box)) : " [X1, G) /G)] [box) /G)] @ ; ′

(by transitivity)

Case Finally we consider a [rule.

! | Ψ; Γ′ ⊢< C : (6 : Ctx) ⇒;) @ ;

! | Ψ; Γ′ ⊢< Λ
; 6.(C $ 6) ≈ C : (6 : Ctx) ⇒;) @ ;

! | Ψ; Γ ⊢< X1 : Γ
′ (by presupposition)

! | Ψ; Γ ⊢< C [X1] : (6 : Ctx) ⇒; () [X1]) @ ; (by local substitution lemma)

! | Ψ; Γ ⊢< Λ
; 6.((C [X1]) $ 6) ≈ C [X1] : (6 : Ctx) ⇒; () [X1]) @ ; (by the same [rule)

! | Ψ; Γ ⊢< C [X1] ≈ C [X2] : (6 : Ctx) ⇒; () [X1]) @ ; (by IH)

! | Ψ; Γ ⊢< Λ
; 6.((C [X1]) $ 6) ≈ C [X2] : (6 : Ctx) ⇒; () [X1]) @ ; (by transitivity)

�

Remark. Note that the statement of this lemma is left-biased. For example, when considering terms, the types
are substituted by X1. This bias causes the whole formulation of equivalence judgment between terms to be left
biased as well. Otherwise, this lemma cannot be easily justified as above and requires the global substitution
lemma, which definitely causes issues as the latter depends on this very lemma in the global variable cases.

A visible effect of this left bias is especially evident in the computation rules. For example, if we define the
following V rule instead, then the lemma above suddenly becomes unprovable at this stage:

! | Ψ ⊢< Γ
′

! | Ψ, * : (Δ ⊢? @ ;); Γ′ ⊢< C :) ′ @ ; ′ ! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ;Δ ⊢?) @ ;

! | Ψ; Γ′ ⊢< (Λ
;,; ′

? * .C) $?) ≈ C [) /*] :)
′ [) /*] @ ; ′

Let us work on the proof to see what happens. We now must prove

! | Ψ; Γ ⊢< (Λ
;,; ′

? * .(C [X1])) $?) ≈ C [) /*] [X2] :)
′ [) /*] [X1] @ ; ′

The only way to introduce X2 on the right hand side now is to apply the local substitution lemma, which yields

! | Ψ; Γ ⊢< (Λ
;,; ′

? * .(C [X2])) $?) ≈ C [) /*] [X2] :)
′ [) /*] [X2] @ ; ′

Notice that the return type yields a local substitution X2 , instead of X1 as required by the goal. At this stage,
however, we are not able to prove the equivalence between) ′ [) /*] [X1] and)

′ [) /*] [X2] as we are missing the
global substitution lemma to justify that) ′ [) /*] remains well-formed.

, Vol. 1, No. 1, Article . Publication date: April 2024.

68 • Jason Z. S. Hu and Brigi�e Pientka

Similarly, we are not able to prove a lemma if some [rules are flipped either. Consider the following “innocent”
[rule:

! | Ψ; Γ′ ⊢< C : (6 : Ctx) ⇒;) @ ;

! | Ψ; Γ′ ⊢< C ≈ Λ
; 6.(C $ 6) : (6 : Ctx) ⇒;) @ ;

Since there is only one premise, we have no choice but to eventually use IH to obtain

! | Ψ; Γ ⊢< C [X1] ≈ C [X2] : (6 : Ctx) ⇒; () [X1]) @ ;

This leaves us to prove

! | Ψ; Γ ⊢< C [X2] ≈ Λ
; 6.((C [X2]) $ 6) : (6 : Ctx) ⇒; () [X1]) @ ;

Notice how the equivalence itself talks about X2 exclusively while the type refers to X1. This asymmetry forces
us to flip the equivalence to obtain a better proof.

Then we move on to the global substitution lemma. We must first establish a number of other lemmas. The
lifting lemma is one of the guiding lemmas of the layering principle, where we require that well-formedness can
be carried over to higher layers.

Lemma 5.16 (Lifting). If 8 ≤ 8′, and

• ! | Ψ ⊢8 Γ, then ! | Ψ ⊢8 ′ Γ;

• ! | Ψ ⊢8 Γ ≈ Δ, then ! | Ψ ⊢8 ′ Γ ≈ Δ;

• ! | Ψ; Γ ⊢8) @ ; , then ! | Ψ; Γ ⊢8 ′) @ ; ;

• ! | Ψ; Γ ⊢8) ≈)
′ @ ; , then ! | Ψ; Γ ⊢8 ′) ≈)

′ @ ; ;

• ! | Ψ; Γ ⊢8 C :) @ ; , then ! | Ψ; Γ ⊢8 ′ C :) @ ; .

• ! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ; , then ! | Ψ; Γ ⊢8 ′ C ≈ C

′ :) @ ; ;

• ! | Ψ; Γ ⊢8 X : Δ, then ! | Ψ; Γ ⊢8 ′ X : Δ;
• ! | Ψ; Γ ⊢8 X ≈ X

′ : Δ, then ! | Ψ; Γ ⊢8 ′ X ≈ X
′ : Δ.

Proof. First, we realize that the typeof function is monotonic, i.e. typeof(8) ≤ typeof(8′). We proceed by
a mutual induction. Most cases are obvious by IHs. Notice that there are cases where we have premises like
! | Ψ ⊢typeof(8) Γ, so we must apply IH to obtain ! | Ψ ⊢typeof(8 ′) Γ with the monotonicity property above. It
works similarly for the conversion rule, where we have ! | Ψ; Γ ⊢typeof(8)) ≈) ′ @ ; . In the cases of global
variables, the transitivity of ≤ eventually complete the proof of this lemma. We elaborate on one case:

! | Ψ ⊢typeof(8) Γ D : (Δ ⊢8 ′′) @ ;) ∈ Ψ 8′′ ∈ {E, 2} 8 ∈ {E, 2, ?,<} 8′′ ≤ 8 ! | Ψ; Γ ⊢8 X : Δ

! | Ψ; Γ ⊢8 D
X :) [X] @ ;

! | Ψ ⊢typeof(8 ′) Γ (by IH)

! | Ψ; Γ ⊢8 ′ X : Δ (by IH)

8′′ ≤ 8 ≤ 8′

! | Ψ; Γ ⊢8 ′ D
X :) [X] @ ; (by the same rule)

�

The inverse of lifting sometimes is possible

Lemma 5.17 (Unlifting).

• ! | Ψ; Γ ⊢?) @ ; , then ! | Ψ; Γ ⊢2) @ ; ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 69

• ! | Ψ; Γ ⊢? C :) @ ; , then ! | Ψ; Γ ⊢2 C :) @ ; .

• ! | Ψ; Γ ⊢? X : Δ, then ! | Ψ; Γ ⊢2 X : Δ;

Proof. Induction. Notice that typeof(?) = typeof(2) = ? . �

The unlifting lemma says that the typing at layer ? can be unlifted back to layer 2 .
As another guiding lemma, we have the static code lemma, which states that code at layer E and 2 has no

computational behavior.

Lemma 5.18 (Static Code). If 8 ∈ {E, 2},

• ! | Ψ; Γ ⊢8) ≈)
′ @ ; , then) =) ′;

• ! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ; , then C = C ′ ;

• ! | Ψ; Γ ⊢8 X ≈ X
′ : Δ, then X = X′ .

All equalities above are quotient over the equivalence of universe levels.

Proof. Mutual induction.We are not concerned about the equivalence of types due to the conversion rule. �

We emphasize again that the equalities hold modulo the equivalence of universe levels. For example, Tyℓ⊔ℓ ′
and Tyℓ ′⊔ℓ as code are considered equal, though their universe levels are not exactly syntactically identical. This
is fine as we know how to decide the equality between two universe levels as shown in Sec. 4.3.

Lemma 5.19 (Global Substitutions).

• If ! | Φ ⊢8 Γ, 8 ∈ {?,<} and ! | Ψ ⊢ f : Φ, then ! | Ψ ⊢8 Γ [f].

• If ! | Φ ⊢8 Γ ≈ Δ, 8 ∈ {?,<} and ! | Ψ ⊢ f : Φ, then ! | Ψ ⊢8 Γ [f] ≈ Δ[f].

• If ! | Φ; Γ ⊢8) @ ; and ! | Ψ ⊢ f : Φ, then ! | Ψ; Γ [f] ⊢8) [f] @ ; .

• If ! | Φ; Γ ⊢8) ≈)
′ @ ; and ! | Ψ ⊢ f : Φ, then ! | Ψ; Γ [f] ⊢8) [f] ≈)

′ [f] @ ; .

• If ! | Φ; Γ ⊢8 C :) @ ; and ! | Ψ ⊢ f : Φ, then ! | Ψ; Γ [f] ⊢8 C [f] :) [f] @ ; .

• If ! | Φ; Γ ⊢8 C ≈ C
′ :) @ ; and ! | Ψ ⊢ f : Φ, then ! | Ψ; Γ [f] ⊢8 C [f] ≈ C

′ [f] :) [f] @ ; .

• If ! | Φ; Γ ⊢8 X : Δ and ! | Ψ ⊢ f : Φ, then ! | Ψ; Γ [f] ⊢8 X [f] : Δ[f].
• If ! | Φ; Γ ⊢8 X ≈ X

′ : Δ and ! | Ψ ⊢ f : Φ, then ! | Ψ; Γ [f] ⊢8 X [f] ≈ X
′ [f] : Δ[f].

Proof. We proceed by a mutual induction. Notice that in the first two statements, 8 ∈ {?,<}, namely the
range of the typeof function. This ensures a lookup f (6) of a contextual variable 6 to be well-formed at layer 8 ,
due to Lemma 5.16. Most cases can be discharged by IHs directly. The complex cases are the computation rules
and the global variable cases.
We consider a few cases:

Case

! | Φ ⊢typeof(8) Γ

D : (Δ ⊢8 ′) @ ;) ∈ Φ 8′ ∈ {E, 2} 8 ∈ {E, 2, ?,<} 8′ ≤ 8 ! | Φ; Γ ⊢8 X ≈ X
′ : Δ

! | Φ; Γ ⊢8 D
X ≈ DX

′

:) [X] @ ;

! | Ψ;Δ[f] ⊢8 ′ f (D) :) [f] @ ; (by lookup)

! | Ψ;Δ[f] ⊢8 f (D) :) [f] @ ; (by lifting)

! | Ψ; Γ [f] ⊢8 X [f] ≈ X
′ [f] : Δ[f] (by IH)

! | Ψ; Γ [f] ⊢8 f (D) [X [f]] ≈ f (D) [X
′ [f]] :) [f] [X [f]] @ ; (by equivalent local substitution lemma)

Notice that
) [f] [X [f]] =) [X] [f]

, Vol. 1, No. 1, Article . Publication date: April 2024.

70 • Jason Z. S. Hu and Brigi�e Pientka

Case

! | Φ; Γ ⊢< C ≈ C ′ :
−→
ℓ ⇒;) @ l

|
−→
ℓ | = |

−→
; | = |

−→
; ′ | > 0 ∀0 ≤ = < |

−→
; | · ! ⊢

−→
; (=) ≈

−→
; ′ (=) : Level

! | Φ; Γ ⊢< C $
−→
; ≈ C ′ $

−→
; ′ :) [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ]

! | Ψ; Γ [f] ⊢< C [f] ≈ C ′ [f] :
−→
ℓ ⇒; () [f]) @ l (by IH)

! | Ψ; Γ [f] ⊢< (C [f]) $
−→
; ≈ (C ′ [f]) $

−→
; ′ :) [f] [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ]

Note that

) [f] [
−→
; /
−→
ℓ] =) [

−→
; /
−→
ℓ] [f [

−→
; /
−→
ℓ]] =) [

−→
; /
−→
ℓ] [f]

because all
−→
ℓ do not occur in f .

Case

�� ! | Ψ ⊢< Γ

! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Φ ⊢? Δ ! | Φ;Δ ⊢2 (@ ; ! | Φ;Δ, G : (@ ; ⊢2) @ ; ′

C = box Π;,; ′ (G : ().) B(= elim
;1,;2
Typ

−→
"
−→
1 ; Δ (box () B) = elim

;1,;2
Typ

−→
"
−→
1 ; ′ (Δ, G : (@ ;) (box))

! | Φ; Γ ⊢< CΠ [;/ℓ, ;
′/ℓ′,Δ/6, (/*(,) /*) , B(/G(, B) /G)] ≈ elim

;1,;2
Typ

−→
"
−→
1 (; ⊔ ; ′) Δ C : " [; ⊔ ; ′/ℓ,Δ/6, C/G)] @ ;1

We first proceed by using IHs on the premises, which include the following judgments:

! | Ψ ⊢? Δ[f]

! | Ψ;Δ[f] ⊢2 ([f] @ ;

! | Ψ;Δ[f], G : ([f] @ ; ⊢2) [f] @ ; ′

By using the same V rule, we must check the resulting left hand side and the result type are equal to the
target goal. Let us first consider the left hand side:

CΠ [f,6/6,*
id
(/*(,*

id
) /*)] [;/ℓ, ;

′/ℓ′,Δ[f]/6, ([f]/*(,) [f]/*) , B([f]/G(, B) [f]/G)]

= CΠ [;/ℓ, ;
′/ℓ′] [f,6/6,* id

(/*(,*
id
) /*)] [Δ[f]/6, ([f]/*(,) [f]/*) , B([f]/G(, B) [f]/G)]

(by Lemma 5.9; ℓ and ℓ′ do not occur in f)

= CΠ [;/ℓ, ;
′/ℓ′] [f,Δ[f]/6, ([f]/*(,) [f]/*)] [B([f]/G(, B) [f]/G)]

= CΠ [;/ℓ, ;
′/ℓ′] [Δ/6, (/*(,) /*)] [f] [B([f]/G(, B) [f]/G)] (by naturality)

= CΠ [;/ℓ, ;
′/ℓ′] [Δ/6, (/*(,) /*)] [B(/G(, B) /G)] [f] (by Lemma 5.9)

Then we consider the result type in a similar way:

" [f,6/6] [; ⊔ ; ′/ℓ,Δ[f]/6, C [f]/G)]

=" [; ⊔ ; ′/ℓ] [f,6/6] [Δ[f]/6, C [f]/G)]

=" [; ⊔ ; ′/ℓ] [Δ/6] [f] [C [f]/G)]

=" [; ⊔ ; ′/ℓ] [Δ/6] [C/G)] [f]

Both equations allow us to conclude the goal.

�

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 71

Next, we consider the effect of equivalent global substitutions on the judgments. We first define the equiva-
lence relation between global substitutions:

! ⊢ Ψ

! | Ψ ⊢ · ≈ · : ·

! | Ψ ⊢ f ≈ f ′ : Φ ! | Ψ ⊢? Γ ≈ Δ

! | Ψ ⊢ f, Γ/6 ≈ f ′,Δ/6 : Φ, 6 : Ctx

! | Ψ ⊢ f ≈ f ′ : Φ ! | Φ ⊢? Γ

! ⊢ ; : Level 8 ∈ {2, ?} ! | Ψ; Γ [f] ⊢8) @ ; ! | Ψ; Γ [f] ⊢8)
′ @ ; ! | Ψ; Γ [f] ⊢8) ≈)

′ @ ;

! | Ψ ⊢ f,) /* ≈ f ′,) ′/* : Φ, D : (Γ ⊢8 @ ;)

! | Ψ ⊢ f ≈ f ′ : Φ ! | Φ; Γ ⊢?) @ ; ! ⊢ ; : Level
8 ∈ {E, 2} ! | Ψ; Γ [f] ⊢8 C :) [f] @ ; ! | Ψ; Γ [f] ⊢8 C

′ :) [f] @ ; ! | Ψ; Γ [f] ⊢8 C ≈ C
′ :) [f] @ ;

! | Ψ ⊢ f, C/D ≈ f ′, C ′/D : Φ, D : (Γ ⊢8) @ ;)

We can then consider similar properties of this equivalence relation.

Lemma 5.20 (Presupposition). If ! | Ψ ⊢ f ≈ f ′ : Φ, then ! | Ψ ⊢ f : Φ and ! | Ψ ⊢ f ′ : Φ.

Proof. Induction. �

Lemma 5.21 (Eqivalent Global Substitutions).

• If ! | Φ ⊢8 Γ, 8 ∈ {?,<} and ! | Ψ ⊢ f ≈ f ′ : Φ, then ! | Ψ ⊢8 Γ [f] ≈ Γ [f ′].

• If ! | Φ ⊢8 Γ ≈ Δ, 8 ∈ {?,<} and ! | Ψ ⊢ f ≈ f ′ : Φ, then ! | Ψ ⊢8 Γ [f] ≈ Δ[f ′].

• If ! | Φ; Γ ⊢8) @ ; and ! | Ψ ⊢ f ≈ f ′ : Φ, then ! | Ψ; Γ [f] ⊢8) [f] ≈) [f
′] @ ; .

• If ! | Φ; Γ ⊢8) ≈)
′ @ ; and ! | Ψ ⊢ f ≈ f ′ : Φ, then ! | Ψ; Γ [f] ⊢8) [f] ≈)

′ [f ′] @ ; .

• If ! | Φ; Γ ⊢8 C :) @ ; and ! | Ψ ⊢ f ≈ f ′ : Φ, then ! | Ψ; Γ [f] ⊢8 C [f] ≈ C [f
′] :) [f] @ ; .

• If ! | Φ; Γ ⊢8 C ≈ C
′ :) @ ; and ! | Ψ ⊢ f ≈ f ′ : Φ, then ! | Ψ; Γ [f] ⊢8 C [f] ≈ C

′ [f ′] :) [f] @ ; .

• If ! | Φ; Γ ⊢8 X : Δ and ! | Ψ ⊢ f ≈ f ′ : Φ, then ! | Ψ; Γ [f] ⊢8 X [f] ≈ X [f
′] : Δ[f].

• If ! | Φ; Γ ⊢8 X ≈ X
′ : Δ and ! | Ψ ⊢ f ≈ f ′ : Φ, then ! | Ψ; Γ [f] ⊢8 X [f] ≈ X

′ [f ′] : Δ[f].

Proof. We apply mutual induction. This lemma is much less sensitive to the exact statement of rules com-
pared to Lemma 5.15. Since now we have proved the global substitution lemma, we could use conversion rules
whenever necessary. �

At this point, we have concluded that all substitutions are coherent with well-formedness and typing judg-
ments. Next, we shall move towards the full presupposition lemma and end our discussion on syntactic properties
with it.

5.3 Context Equivalence and Presupposition

In order to establish presupposition, we must concern ourselves with the asymmetry in the congruence rules
of the equivalence judgments. Presupposition, intuitively, requires us to show that this asymmetry “does not
matter”. This intuition is formalized by the context equivalence lemma. In fact, we need two such lemmas, as we
need to show one for local contexts and one for global contexts. In light of that, let us proceed with the lemma
for local contexts first.

Lemma 5.22 (Local Context Eqivalence).

• If ! | Ψ;Δ ⊢8) @ ; and ! | Ψ ⊢typeof(8) Δ ≈ Γ, then ! | Ψ; Γ ⊢8) @ ; .

• If ! | Ψ;Δ ⊢8) ≈)
′ @ ; and ! | Ψ ⊢typeof(8) Δ ≈ Γ, then ! | Ψ; Γ ⊢8) ≈)

′ @ ; .

• If ! | Ψ;Δ ⊢8 C :) @ ; and ! | Ψ ⊢typeof(8) Δ ≈ Γ, then ! | Ψ; Γ ⊢8 C :) @ ; .

, Vol. 1, No. 1, Article . Publication date: April 2024.

72 • Jason Z. S. Hu and Brigi�e Pientka

• If ! | Ψ;Δ ⊢8 C ≈ C
′ :) @ ; and ! | Ψ ⊢typeof(8) Δ ≈ Γ, then ! | Ψ; Γ ⊢8 C ≈ C

′ :) @ ; .

• If ! | Ψ;Δ ⊢8 X : Γ′ and ! | Ψ ⊢typeof(8) Δ ≈ Γ, then ! | Ψ; Γ ⊢8 X : Γ′.
• If ! | Ψ;Δ ⊢8 X ≈ X

′ : Γ′ and ! | Ψ ⊢typeof(8) Δ ≈ Γ, then ! | Ψ; Γ ⊢8 X ≈ X
′ : Γ′.

Proof. We start by mutual induction. The base case is the local variable cases, where we simply apply the con-
version rule to the equivalence given by ! | Ψ ⊢typeof(8) Δ ≈ Γ. We might also use presupposition (Lemma 5.11)
to derive ! | Ψ ⊢typeof(8) Δ. Otherwise, most cases can be handled by IHs. In cases where local contexts are
extended with variables, we shall carefully use IHs to obtain the necessary premises to extend the equivalence
of Δ and Γ as well.
We consider a few cases:

Case

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level
! | Ψ;Δ ⊢8 (@ ;1 ! | Ψ;Δ ⊢8 (≈ (

′ @ ;1 ! | Ψ;Δ, G : (@ ;1 ⊢8 C ≈ C
′ :) @ ;2

! | Ψ;Δ ⊢8 _
;1,;2 (G : ().C ≈ _;3,;4 (G : (′).C ′ : Π;,; ′ (G : ().) @ ; ⊔ ; ′

In this case, the crucial part is to be able to invoke IH on C ≈ C ′. We proceed as follows:

! | Ψ; Γ ⊢8 (@ ;1 (by IH)

! | Ψ ⊢typeof(8) Δ, G : (@ ;1 ≈ Γ, G : (@ ;1 (by lifting and step case of the equivalence)

! | Ψ; Γ, G : (@ ;1 ⊢8 C ≈ C
′ :) @ ;2 (by IH)

Then IHs will allow us to conclude the rest.
Case

! | Ψ ⊢< Δ ! ⊢ ; ′ : Level ! ⊢ ; : Level ! | Ψ ⊢? Δ
′ ! | Ψ;Δ′ ⊢2) @ ;

! | Ψ;Δ, G) : �(Δ′ ⊢2 @ ;) @ succ ; ⊢< " @ ; ′ ! | Ψ, * : (Δ′ ⊢2 @ ;);Δ ⊢< C ′ : " [box* /G)] @ ; ′

! | Ψ;Δ ⊢< C ′ [) /*] ≈ letbox;
′

Typ ; Δ
′ (G) .") (* .C ′) (box)) : " [box) /G)] @ ; ′

! | Ψ ⊢< Γ (by presupposition (Lemma 5.11))

! | Ψ ⊢< Δ, G) : �(Δ′ ⊢2 @ ;) @ succ ; ≈ Γ, G) : �(Δ′ ⊢2 @ ;) @ succ ;

(note that well-formedness of �(Δ′ ⊢2 @ ;) does not depend on Δ or Γ)

! | Ψ; Γ, G) : �(Δ′ ⊢2 @ ;) @ succ ; ⊢< " @ ; ′ (by IH)

! | Ψ,* : (Δ′ ⊢2 @ ;) ⊢< Δ ≈ Γ (by global weakening)

! | Ψ,* : (Δ′ ⊢2 @ ;); Γ ⊢< C ′ : " [box* /G)] @ ; ′ (by IH)

! | Ψ; Γ ⊢< C ′ [) /*] ≈ letbox;
′

Typ ; Δ
′ (G) .") (* .C ′) (box)) : " [box) /G)] @ ; ′

�

As a corollary, we can prove the following lemma.

Lemma 5.23 (Symmetry and Transitivity of Local Contexts).

• If ! | Ψ ⊢8 Γ ≈ Δ, then ! | Ψ ⊢8 Δ ≈ Γ.

• If ! | Ψ ⊢8 Γ1 ≈ Γ2 and ! | Ψ ⊢8 Γ2 ≈ Γ3, then ! | Ψ ⊢8 Γ1 ≈ Γ3.

Proof. Induction. Note that transitivity replies on the local context equivalence lemma. �

A similar lemma replaces the codomain local contexts of local substitutions. This variant is much simpler just
by conversion rules.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 73

Lemma 5.24 (Local Context Conversion).

• If ! | Ψ; Γ ⊢8 X : Γ′ and ! | Ψ ⊢typeof(8) Γ
′ ≈ Δ, then ! | Ψ; Γ ⊢8 X : Δ.

• If ! | Ψ; Γ ⊢8 X ≈ X
′ : Γ′ and ! | Ψ ⊢typeof(8) Γ

′ ≈ Δ, then ! | Ψ; Γ ⊢8 X ≈ X
′ : Δ.

Proof. By induction. Propagate conversion rules together with the local substitution lemma in the step case.
�

Then we work on the global context equivalence lemma. To state this lemma, we should first specify what
does that mean for two global contexts are equivalent.

! ⊢ · ≈ ·

! ⊢ Ψ ≈ Φ

! ⊢ Ψ, 6 : Ctx ≈ Φ, 6 : Ctx

! ⊢ Ψ ≈ Φ ! | Ψ ⊢? Γ ! | Φ ⊢? Δ ! | Ψ ⊢? Γ ≈ Δ ! ⊢ ; : Level 8 ∈ {2, ?}

! ⊢ Ψ,* : (Γ ⊢8 @ ;) ≈ Φ,* : (Δ ⊢8 @ ;)

! ⊢ Ψ ≈ Φ ! | Ψ ⊢? Γ ≈ Δ

! | Ψ; Γ ⊢?) @ ; ! | Φ;Δ ⊢?)
′ @ ; ! | Ψ; Γ ⊢?) ≈)

′ @ ; ! ⊢ ; : Level 8 ∈ {E, 2}

! ⊢ Ψ, D : (Γ ⊢8) @ ;) ≈ Φ, D : (Δ ⊢8)
′ @ ;)

Essentially, the equivalence of global contexts are just point-wise equivalence of typeswithin.We can reconstruct
the well-formedness of both components from the premises:

Lemma 5.25 (Presupposition of Eqivalence of Global Contexts). If ! ⊢ Ψ ≈ Φ, then ! ⊢ Ψ and ! ⊢ Φ.

For the global context equivalence lemma, we would like to take a shortcut by taking advantage of the global
substitution lemma.

Lemma 5.26. If ! | Ψ ⊢typeof(8) Γ ≈ Δ, then ! | Ψ; Γ ⊢8 id : Δ.

Lemma 5.27. If ! ⊢ Ψ ≈ Φ, then ! | Ψ ⊢ id : Φ.

Proof. We proceed by induction. In each step case, notice that weakening is used implicitly. Use Lemma 5.26
to derive ! | Ψ; Γ ⊢? id : Δ whenever necessary. �

Lemma 5.28 (Global Context Eqivalence).

• If ! | Φ ⊢8 Γ and ! ⊢ Φ ≈ Ψ, then ! | Ψ ⊢8 Γ.

• If ! | Φ ⊢8 Γ ≈ Δ and ! ⊢ Φ ≈ Ψ, then ! | Ψ ⊢8 Γ ≈ Δ.

• If ! | Φ; Γ ⊢8) @ ; and ! ⊢ Φ ≈ Ψ, then ! | Ψ; Γ ⊢8) @ ; .

• If ! | Φ; Γ ⊢8) ≈)
′ @ ; and ! ⊢ Φ ≈ Ψ, then ! | Ψ; Γ ⊢8) ≈)

′ @ ; .

• If ! | Φ; Γ ⊢8 C :) @ ; and ! ⊢ Φ ≈ Ψ, then ! | Ψ; Γ ⊢8 C :) @ ; .

• If ! | Φ; Γ ⊢8 C ≈ C
′ :) @ ; and ! ⊢ Φ ≈ Ψ, then ! | Ψ; Γ ⊢8 C ≈ C

′ :) @ ; .

• If ! | Φ; Γ ⊢8 X : Δ and ! ⊢ Φ ≈ Ψ, then ! | Ψ; Γ ⊢8 X : Δ.
• If ! | Φ; Γ ⊢8 X ≈ X

′ : Δ and ! ⊢ Φ ≈ Ψ, then ! | Ψ; Γ ⊢8 X ≈ X
′ : Δ.

Proof. We have ! | Ψ ⊢ id : Φ due to Lemma 5.27. Then by the global substitution lemma, we have our goal
by knowing that a global identity substitution id does no action. �

Finally, we prove the presupposition lemma, which is the last guiding lemma of the layering principle.

Lemma 5.29 (Presupposition).

• If ! | Ψ; Γ ⊢8) @ ; , then ! | Ψ ⊢typeof(8) Γ and ! ⊢ ; : Level or 8 =< ∧ ; = l .

, Vol. 1, No. 1, Article . Publication date: April 2024.

74 • Jason Z. S. Hu and Brigi�e Pientka

• If ! | Ψ; Γ ⊢8) ≈) ′ @ ; , then ! | Ψ ⊢typeof(8) Γ, ! | Ψ; Γ ⊢8) @ ; , ! | Ψ; Γ ⊢8)
′ @ ; and ! ⊢ ; : Level or

8 =< ∧ ; = l .

• If ! | Ψ; Γ ⊢8 C :) @ ; , then ! | Ψ ⊢typeof(8) Γ, ! | Ψ; Γ ⊢typeof(8)) @ ; and ! ⊢ ; : Level or 8 =< ∧ ; = l .

• If ! | Ψ; Γ ⊢8 C ≈ C ′ :) @ ; , then ! | Ψ ⊢typeof(8) Γ, ! | Ψ; Γ ⊢8 C :) @ ; , ! | Ψ; Γ ⊢8 C ′ :) @ ; ,

! | Ψ; Γ ⊢typeof(8)) @ ; and ! ⊢ ; : Level or 8 =< ∧ ; = l .

• If ! | Ψ; Γ ⊢8 X : Δ, then ! | Ψ ⊢typeof(8) Δ.

• If ! | Ψ; Γ ⊢8 X ≈ X
′ : Γ′, then ! | Ψ ⊢typeof(8) Δ.

Notice that in the statement of the lemma, we sometimes conclude 8 =< ∧ ; = l . The only occasion when l

is used is when universe polymorphic functions are involved. In that case, we know for sure that 8 = <. In any
other cases, we obtain ! ⊢ ; : Level, which excludes ; = l .

Proof. We proceed by a mutual induction. In certain congruence rules, we must apply Lemmas 5.15 and 5.21
to resolve the asymmetry in the rules. Otherwise, we simply apply the substitution lemmas whenever necessary.
Note that our rules are stated with redundant premises to make sure this lemma eventually checks out.

! | Ψ; Γ ⊢< C ≈ C ′ : (* : (Δ ⊢? @ ;)) ⇒; ′) ′′ @ succ ; ⊔ ; ′ ! | Ψ;Δ ⊢?) ≈)
′ @ ;

! | Ψ; Γ ⊢< C $?) ≈ C
′ $?)

′ :) ′′ [) /*] @ ; ′

! | Ψ; Γ ⊢< C : (* : (Δ ⊢? @ ;)) ⇒; ′) ′′ @ succ ; ⊔ ; ′ (by IH)

! | Ψ; Γ ⊢< C ′ : (* : (Δ ⊢? @ ;)) ⇒; ′) ′′ @ succ ; ⊔ ; ′ (by IH)

! | Ψ;Δ ⊢?) @ ; (by IH)

! | Ψ;Δ ⊢?)
′ @ ; (by IH)

! | Ψ; Γ ⊢< C ′ $?)
′ :) ′′ [) ′/*] @ ; ′

! | Ψ; Γ ⊢< (* : (Δ ⊢? @ ;)) ⇒; ′) ′′ @ succ ; ⊔ ; ′ (by IH)

! | Ψ, * : (Δ ⊢? @ ;); Γ ⊢<) ′′ @ ; ′ (by inversion)

Notice that

) /* ≈) ′/*

We then have the goal by Lemma 5.21. �

5.4 Coverage and Progress of Recursive Principles

Before moving to the semantics, let us pause a second and think about the recursive principles: is it guaranteed
to always pick a case from the branches? In this section, we would like to positively answer this question. The
ingredient lies in the typing judgment at layer 2 and how the recursive principle is formulated. Recall that the
recursive principle for code of terms is

�� ! ⊢ ; ′ : Level ! | Ψ ⊢? Δ ! | Ψ;Δ ⊢?) @ ; ′ ! | Ψ; Γ ⊢< C : �(Δ ⊢2) @ ; ′) @ ; ′

! | Ψ; Γ ⊢< elim
;1,;2
Trm

−→
"
−→
1 ; ′ Δ) C : "′ [; ′/ℓ,Δ/6,) /*) , C/GC] @ ;2

In this rule, we see that the type of C is indexed by ; , Δ and) , both of which live at layer ? . When C = box C ′,
then C ′ must be typed at layer 2 . Then coverage is provided by the exhaustiveness of the branches which should
enumerate all possible types and terms at layer 2 . This is simple as we simply check the syntax at layer 2 and
can confirm that the branches are indeed exhaustive. Progress, on the other hand, requires both Δ and) are in

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 75

the right form prescribed by the V rules. For example, the following rule gives the V rule for the Nat case as a
term:

�� ! | Ψ ⊢< Γ ! | Ψ ⊢? Δ ; = succ zero

! | Ψ; Γ ⊢< C ′Nat [Δ/6] ≈ elim
;1,;2
Trm

−→
"
−→
1 ; Δ Tyzero (box Nat) : "

′ [;/ℓ,Δ/6, Tyzero/*) , box Nat/GC] @ ;2

where) = Tyzero is required. In this section, we show that when C = box C ′ where C ′ is of some concrete form
prescribed by a V rule, then the indices must have the right form.

We first consider the well-formed types at layer 2:

Lemma 5.30. If ! | Ψ; Γ ⊢2 Nat@ ; , then ! ⊢ ; ≈ zero : Level.

Proof. By induction. The only applicable rules are the well-formedness rule and the conversion rule. �

Similar lemmas can be stated and proved.

Lemma 5.31. If ! | Ψ; Γ ⊢2 Π
;,; ′ (G : ().) @ ; ′′, then ! | Ψ; Γ ⊢2 (@ ; and ! | Ψ; Γ, G : (@ ; ⊢2) @ ; ′ and they

are sub-derivations of the assumption; moreover, ! ⊢ ; ′′ ≈ ; ⊔ ; ′ : Level.

Proof. Induction. �

That the judgments in the conclusion are sub-derivations ensures thewell-foundedness of the recursion. Effec-
tively, the recursive principles recurse on the structures of the typing derivations, so they are the most general
principles that can be formulated on top the syntax of MLTT.

Lemma 5.32. If ! | Ψ; Γ ⊢2 El
; C @ ; ′, then ! | Ψ; Γ ⊢2 C : Ty; @ succ ; as a sub-derivation and ! ⊢ ; ′ ≈ ; : Level.

Lemma 5.33. If ! | Ψ; Γ ⊢2 Ty; @ ; ′, then ! ⊢ ; ′ ≈ succ ; : Level.

Now we have exhausted all possible cases for types, so we move on to terms.

Lemma 5.34. If ! | Ψ; Γ ⊢2 G :) @ ; , then G :) ′ @ ; ′ ∈ Γ and ! | Ψ; Γ ⊢?) ≈)
′ @ ; and ! ⊢ ; ≈ ; ′ : Level.

The statement of lemmas for terms need to also consider the equivalence of types. The equivalence of types is
implicitly handled by when evaluating the recursive principles: since the equivalence is at layer ? , computation
applies, so the equivalence can be acknowledged by the conversion checking algorithm.

Lemma 5.35. If ! | Ψ; Γ ⊢2 Nat :) @ ; , then ! | Ψ; Γ ⊢?) ≈ Tyzero @ ; and ! ⊢ ; ≈ succ zero : Level.

Lemma 5.36. If ! | Ψ; Γ ⊢2 Π
;,; ′ (G : B).C :) @ ; ′′, then as sub-derivations ! | Ψ; Γ ⊢2 B : Ty; @ succ ; and

! | Ψ; Γ, G : El; B @ ; ⊢2 C : Ty; ′ @ succ ; ′, ! | Ψ; Γ ⊢?) ≈ Ty;⊔; ′ @ ; ′′ and ! ⊢ ; ′′ ≈ succ (; ⊔ ; ′) : Level.

Lemma 5.37. If ! | Ψ; Γ ⊢2 Ty; :) @ ; ′, then ! | Ψ; Γ ⊢?) ≈ Tysucc ; @ ; ′ and ! ⊢ ; ′ ≈ succ (succ ;) : Level.

Lemma 5.38. If ! | Ψ; Γ ⊢2 zero :) @ ; , then ! | Ψ; Γ ⊢?) ≈ Nat@ zero and ! ⊢ ; ≈ zero : Level.

Lemma 5.39. If ! | Ψ; Γ ⊢2 succ C :) @ ; , then as a sub-derivation ! | Ψ; Γ ⊢2 C : Nat @ zero, ! | Ψ; Γ ⊢?) ≈

Nat@ zero and ! ⊢ ; ≈ zero : Level.

Lemma 5.40. If ! | Ψ; Γ ⊢2 elim
;
Nat (G.") B (G,~.B

′) C :) @ ; ′, then as sub-derivations

• ! | Ψ; Γ, G : Nat@ zero ⊢2 " @ ; ,

• ! | Ψ; Γ ⊢2 B : " [zero/G] @ ; ,

• ! | Ψ; Γ, G : Nat@ zero, ~ : " @ ; ⊢2 B
′ : " [succ G/G] @ ;

• ! | Ψ; Γ ⊢2 C : Nat@ zero;

moreover ! | Ψ; Γ ⊢?) ≈ " [C/G] @ ; ′ and ! ⊢ ; ′ ≈ ; : Level.

, Vol. 1, No. 1, Article . Publication date: April 2024.

76 • Jason Z. S. Hu and Brigi�e Pientka

Lemma 5.41. If ! | Ψ; Γ ⊢2 _
;,; ′ (G : ().C :) ′ @ ; ′′, then as sub-derivations

• ! | Ψ; Γ ⊢2 (@ ; ,

• ! | Ψ; Γ, G : (@ ; ⊢2 C :) @ ; ′;

moreover ! | Ψ; Γ ⊢?)
′ ≈ Π

;,; ′ (G : ().) @ ; ′′ and ! ⊢ ; ′′ ≈ ; ⊔ ; ′ : Level.

Notice that in this case, we do not have the well-formedness of) as a sub-derivation. This is reflected in
the premises for the C_ branch that the global variable *) representing) lives at layer ? . In general, a global
assumption can live at layer 2 and have a recursive call only if it has a sub-derivation in the typing judgment.

Lemma 5.42. If ! | Ψ; Γ ⊢2 (C : Π
;,; ′ (G : ().)) B :) ′ @ ; ′′, then as sub-derivations

• ! | Ψ; Γ ⊢2 (@ ; ,

• ! | Ψ; Γ, G : (@ ; ⊢2) @ ; ′,

• ! | Ψ; Γ ⊢2 C : Π
;,; ′ (G : ().) @ ; ⊔ ; ′,

• ! | Ψ; Γ ⊢2 B : (@ ; ;

moreover ! | Ψ; Γ ⊢?)
′ ≈) [B/G] @ ; ′′ and ! ⊢ ; ′′ ≈ ; ′ : Level.

There is no other possible terms at layer 2 . These lemmas give us a syntactic account of coverage and progress
of the recursive principles. In the next section, we give a more rigorous semantic account.

6 REDUCTION AND CONVERTIBILITY

We have finished syntactic verification for DeLaM. In this section, let us consider its dynamics by providing the
reduction rules for types and terms and the convertibility checking algorithm between two terms. The reduction
relations to be given compute theweak head normal forms for types and terms, respectively, and are sub-relations
for equivalence judgments for types and terms. We first give the syntax for weak head normal forms and neutral
forms, and then give the rules for reduction. We will need the reduction relations to write down the Kripke
logical relations in the next section as well as in the convertibility checking algorithm.

6.1 Weak Head Normal Forms

The following gives the syntax for weak head normal forms and neutral forms for types and terms. As usual, we
use capital case for types and lower case for terms.

, := Nat | Π;,; ′ (G : ().) | Ty; |
−→
ℓ ⇒;) (Weak head normal form for types)

| (6 : Ctx) ⇒;) | (* : (Γ ⊢? @ ;)) ⇒; ′) | �(Γ ⊢2 @ ;) | �(Γ ⊢2) @ ;)

+ :=* X | El; ` (Neutral form for types)

F := ` | Nat | Π;,; ′ (G : B).C | Ty; | zero | succ C | _
;,; ′ (G : ().C (Weak head normal form for terms (Nf))

| Λ; −→ℓ .C | Λ; 6.C | Λ;,; ′

? * .C | box) | box C

` := G | DX | elim;
Nat (G.") B (G,~.B

′) ` | (` : Π;,; ′ (G : ().)) B | ` $
−→
; (Neutral form for terms (Ne))

| ` $ Γ | ` $?) | letbox
; ′

Typ ; Γ (G) .") (* .C ′) ` | letbox;
′

Trm ; Γ) (GC .") (D.C
′) `

| elim
;1,;2
Typ

−→
"
−→
1 ; Γ ` | elim

;1,;2
Typ

−→
"
−→
1 ; Γ (box* X) | elim

;1,;2
Trm

−→
"
−→
1 ; Γ) ` | elim

;1,;2
Trm

−→
"
−→
1 ; Γ) (box DX)

Notice that for the recursive principles, we block on global variables, following Hu and Pientka [2024a].

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 77

6.2 Reduction Relations

There are two required reduction relations, one for types and one for terms. The one for types simply compute
types from encodings via El. Unlike Abel et al. [2017] who employed typed reductions, we deliberately use
untyped reductions and use preservation later to make sure the reductions are well-defined. This deviation from
Abel et al. [2017] requires us to establish enough syntactic theorems before hand. It is particularly important
to use untyped reductions because of the way in which the logical relations relate terms. We let ∗ to be the
reflexive transitive closure of .

Elzero Nat Nat Elsucc ; Ty; Ty; El;⊔;
′

Π
;,; ′ (G : B).C Π

;,; ′ (G : El; B).El;
′

C
C C ′

El; C El; C ′

The reduction rules for terms are simply the V equivalence rules.

elim;
Nat (G.") B (G,~.B

′) zero B elim;
Nat (G.") B (G,~.B

′) (succ C) B′ [C/G, elim;
Nat (G.") B (G,~.B

′) C/~]

(_;,;
′

(G : ().C : Π;,; ′ (G : ().)) B C [B/G] (Λ; −→ℓ .C) $
−→
; C [

−→
; /
−→
ℓ] (Λ; 6.C) $ Δ C [Δ/6]

(Λ;,; ′

? * .C) $?) C [) /*] letbox;
′

Typ ; Δ (G) .") (* .C ′) (box)) C ′ [) /*]

letbox;
′

Trm ; Δ) (GC .") (D.C
′) (box C) C ′ [C/D]

The reduction rules for recursors follow the same principle. We write down only one rule as an example and
omit the rest as they are just V rules:

elim
;1,;2
Typ

−→
"
−→
1 zero Δ (box Nat) CNat [Δ/6]

The congruence rules reduce the terms at the weak head positions to discover further redices. There are at
least one congruence rules for all elimination forms.

C C ′

elim;
Nat (G.") B (G,~.B

′) C elim;
Nat (G.") B (G,~.B

′) C ′

C C ′

(C : Π;,; ′ (G : ().)) B (C ′ : Π;,; ′ (G : ().)) B

For elimination forms for meta-programming, we have

C C ′

C $
−→
; C ′ $

−→
;

C C ′

C $ Δ C ′ $ Δ

C C ′

C $?) C ′ $?)

C C ′

letbox;
′

Typ ; Δ (G) .") (* .B) C letbox;
′

Typ ; Δ (G) .") (* .B) C ′

C C ′

letbox;
′

Trm ; Δ) (GC .") (D.B) C letbox;
′

Trm ; Δ) (GC .") (D.B) C
′

There are also congruence rules for the recursive principles. For the recursive principle for code of terms, we
choose to reduce the type to weak head normal form first and then reduce the term itself. This order is arbitrary

, Vol. 1, No. 1, Article . Publication date: April 2024.

78 • Jason Z. S. Hu and Brigi�e Pientka

and can be flipped. We simply fix a choice here.

C C ′

elim
;1,;2
Typ

−→
"
−→
1 ; ′ Δ C elim

;1,;2
Typ

−→
"
−→
1 ; ′ Δ C ′

)) ′

elim
;1,;2
Trm

−→
"
−→
1 ; ′ Δ) C elim

;1,;2
Trm

−→
"
−→
1 ; ′ Δ) ′ C

C C ′

elim
;1,;2
Trm

−→
"
−→
1 ; ′ Δ, C elim

;1,;2
Trm

−→
"
−→
1 ; ′ Δ, C ′

We first verify the fact that reductions are just sub-relations of the equivalence judgments:

Lemma 6.1 (Soundness). Given 8 computable,

• if ! | Ψ; Γ ⊢8) @ ; and)) ′, then ! | Ψ; Γ ⊢8) ≈)
′ @ ; ;

• if ! | Ψ; Γ ⊢8 C :) @ ; and C C ′, then ! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ; .

Proof. We proceed by mutual induction on the typing judgments and then invert the reduction relations. We
use 8 computable to make sure computation rules are available. We select a few cases for discussion:

Case The following is the only possible rule for types:

! ⊢ ; : Level ! | Ψ; Γ ⊢8 C : Ty; @ succ ;

! | Ψ; Γ ⊢8 El
; C @ ;

Inversion of El; C) ′ gives four possible subcases. We only consider two:
Subcase

El;1⊔;2 Π;1,;2 (G : B).C Π
;1,;2 (G : El;1 B).El;2 C

Then we know

! | Ψ; Γ ⊢8 Π
;1,;2 (G : B).C : Ty; @ succ ;

We further do an inner induction on the typing judgment above after generalizing Ty; to some arbitrary
) . There are only three cases to consider:

Subsubcase

! ⊢ ;1 : Level

! ⊢ ;2 : Level ! | Ψ; Γ ⊢8 B : Ty;1 @ succ ;1 ! | Ψ; Γ, G : El;1 B @ ;1 ⊢8 C : Ty;2 @ succ ;2

! | Ψ; Γ ⊢8 Π
;1,;2 (G : B).C : Ty;1⊔;2 @ succ (;1 ⊔ ;2)

Then this case we derive the goal immediately from the El rule for Π types.
Subsubcase

! | Ψ; Γ ⊢8 Π
;1,;2 (G : B).C :) ′ @ ; ′ ! | Ψ; Γ ⊢typeof(8)) ≈)

′ @ ; ′

! | Ψ; Γ ⊢8 Π
;1,;2 (G : B).C :) @ ; ′

In this case, we simply apply the inner IH to obtain the goal.
Subsubcase

! | Ψ; Γ ⊢8 Π
;1,;2 (G : B).C :) @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 Π
;1,;2 (G : B).C :) @ ;

Similarly, we use the inner IH to obtain the goal.
In general, whenwe know the form of a term, an inner induction must reveal only three cases to consider.
This pattern appears a lot when we consider cases for types.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 79

Subcase We have this case

C C ′

El; C El; C ′

Then by IH, we have
! | Ψ; Γ ⊢8 C ≈ C

′ : Ty; @ succ ;

We obtain the goal by the congruence rule for El.
Case

! | Ψ; Γ ⊢8 C :)
′ @ ; ! | Ψ; Γ ⊢typeof(8)) ≈)

′ @ ;

! | Ψ; Γ ⊢8 C :) @ ;

By IH, we have
! | Ψ; Γ ⊢8 C ≈ C

′ :) ′ @ ;

We obtain the goal by the conversion rule.
Case

! | Ψ; Γ ⊢8 C :) @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 C :) @ ;

By IH, we have
! | Ψ; Γ ⊢8 C ≈ C

′ :) @ ; ′

We obtain the goal by the conversion rule.
Case For the recursive principle for natural numbers, there are three subcases after inverting the reduction

premise. We apply V rules or the congruence rule properly.
The same principle applies for the recursive principles for code, but a bit more complex. We will use
theorems from Sec. 5.4 in combination of the congruence rules to obtain our goals.

�

As a corollary,

Lemma 6.2 (Preservation).

• If ! | Ψ; Γ ⊢8) @ ; and)) ′, then ! | Ψ; Γ ⊢8)
′ @ ; .

• If ! | Ψ; Γ ⊢8 C :) @ ; and C C ′, then ! | Ψ; Γ ⊢8 C
′ :) @ ; .

Proof. We analyze 8 . If 8 = E , then there is no applicable reduction rule. If 8 = 2 , then we use lifting to lift 8
to ? , then use the soundness, presupposition and unlifting lemmas to obtain the goals. Otherwise, we use the
soundness lemma and the presupposition lemma. �

The substitution lemmas require the well-formedness of types and the well-typedness of terms to make use
of algebraic laws of substitutions.

Lemma 6.3 (Universe Substitutions). Given 8 computable,

• if !′ | Ψ; Γ ⊢8) @ ; ,)) ′ and ! ⊢ q : !′, then) [q]) ′ [q];

• if !′ | Ψ; Γ ⊢8 C :) @ ; , C C ′ and ! ⊢ q : !′, then C [q] C ′ [q].

Lemma 6.4 (Local Substitutions). Given 8 computable,

• if ! | Ψ;Δ ⊢8) @ ; ,)) ′ and ! | Ψ; Γ ⊢8 X : Δ, then) [X]) ′ [X];

• if ! | Ψ;Δ ⊢8 C :) @ ; , C C ′ and ! | Ψ; Γ ⊢8 X : Δ, then C [X] C ′ [X].

Lemma 6.5 (Global Substitutions). Given 8 computable,

, Vol. 1, No. 1, Article . Publication date: April 2024.

80 • Jason Z. S. Hu and Brigi�e Pientka

• if ! | Φ; Γ ⊢8) @ ; ,)) ′ and ! | Ψ ⊢ f : Φ, then) [f]) ′ [f];

• if ! | Φ; Γ ⊢8 C :) @ ; , C C ′ and ! | Ψ ⊢ f : Φ, then C [f] C ′ [f].

All lemmas above also work for the reflexive transitive closure versions of reduction.

Lemma 6.6 (Determinacy).

• If)) ′ and)) ′, then) ′ =) ′′.

• If C C ′ and C C ′′ , then C ′ = C ′′ .

If a multi-step reduction reaches a normal form, then we know this normal form is also uniquely determined:

Lemma 6.7 (Determinacy).

• If) ∗, and) ∗, ′, then, =, ′.

• If C ∗ F and C ∗ F ′, then F = F ′.

Proof. Induction. Use the fact that weak head normal forms do not reduce and determinacy of single-step
reduction. �

Due to preservation, we often are interested in keeping track of well-formedness and well-typedness of types
and terms. Therefore it is convenient to give the following convenient auxiliary judgments:

! | Ψ; Γ ⊢8) @ ;)) ′

! | Ψ; Γ ⊢8)) ′ @ ;

! | Ψ; Γ ⊢8) @ ;) ∗) ′

! | Ψ; Γ ⊢8)
∗) ′ @ ;

! | Ψ; Γ ⊢8 C :) @ ; C C ′

! | Ψ; Γ ⊢8 C C ′ :) @ ;

! | Ψ; Γ ⊢8 C :) @ ; C ∗ C ′

! | Ψ; Γ ⊢8 C
∗ C ′ :) @ ;

6.3 Convertibility Checking

The convertibility checking is standard: we first reduce types or terms to their weak head normal forms using
reduction, and then recursively compare the sub-structures. Either we detect a mismatch which causes a failure,
or everything checks out and the convertibility is verified.

Following this line, we give the following judgments for convertibility checking. Here we always quantify
8 computable. The layering index 8 restricts only types (i.e. those in MLTT or in DeLaM), but not terms. In other
words, it is possible for convertibility checking to relate at layer ? two terms only well-typed at layer<, as long
as these two terms have type well-formed at layer ? (i.e. MLTT). This is a critical property to establish a relation
between the logical relations at both layers.

• ! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ; denotes that) and) ′ are convertible at universe level ; .
• ! | Ψ; Γ ⊢8 , ⇐⇒, ′ @ ; denotes that, and, ′ are convertible normal types.
• ! | Ψ; Γ ⊢8 + ←→ + ′ @ ; denotes that + and + ′ are convertible neutral types.
• ! | Ψ ⊢8 Γ ⇐̂⇒ Δ denotes that Γ and Δ are convertible contexts. This judgment is defined by using
! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ; pairwise.
• ! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) @ ; denotes that C and C ′ of type) are convertible.
• ! | Ψ; Γ ⊢8 F ⇐⇒ F ′ :, @ ; denotes thatF andF ′ are convertible normal terms of a normal type, .
• ! | Ψ; Γ ⊢8 ` ←̂→ `′ :) @ ; denotes that ` and `′ are convertible neutral terms.) is the result of inference.
• ! | Ψ; Γ ⊢8 ` ←→ `′ :, @ ; denotes that ` and `′ are convertible neutral terms of a normal type, .,
is the result of inference.
• ! | Ψ; Γ ⊢8 X ⇐̂⇒ X′ : Δ denotes that X and X′ are convertible local substitutions. This judgment is defined
by using ! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) @ ; pairwise.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 81

We give the following convertibility checking rules for types first:

! | Ψ; Γ ⊢8)
∗, @ ; ! | Ψ; Γ ⊢8)

′

∗, ′ @ ; ! | Ψ; Γ ⊢8 , ⇐⇒, ′ @ ;

! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ;

! | Ψ ⊢8 Γ

! | Ψ; Γ ⊢8 Nat⇐⇒ Nat@ zero

! | Ψ ⊢8 Γ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 Ty; ⇐⇒ Ty; ′ @ succ ;

! | Ψ; Γ ⊢8 (⇐̂⇒ (′ @ ; ! | Ψ; Γ, G : (@ ; ⊢8) ⇐̂⇒) ′ @ ; ′

! | Ψ; Γ ⊢8 Π
;,; ′ (G : ().) ⇐⇒ Π

;,; ′ (G : (′).) ′ @ ; ⊔ ; ′

! | Ψ; Γ ⊢8 + ←→ + ′ @ ;

! | Ψ; Γ ⊢8 + ⇐⇒ + ′ @ ;

! | Ψ; Γ ⊢8 , ⇐⇒, ′ @ ; ′ Γ ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 , ⇐⇒, ′ @ ;

! | Ψ ⊢8 Γ * : (Δ ⊢8 ′ @ ;) ∈ Ψ 8′ ∈ {2, ?} 8′ ≤ 8 ! | Ψ; Γ ⊢8 X ⇐̂⇒ X′ : Δ

! | Ψ; Γ ⊢8 *
X ←→ * X′ @ ;

! ⊢ ; ≈ ; ′ : Level ! | Ψ; Γ ⊢8 ` ←→ `′ : Ty; @ succ ;

! | Ψ; Γ ⊢8 El
; ` ←→ El;

′

`′ @ ;

! | Ψ; Γ ⊢8 + ←→ + ′ @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 + ←→ + ′ @ ;

For the types only available at layer<:

! | Ψ ⊢< Γ !,
−→
ℓ | Ψ; Γ ⊢<) ⇐̂⇒) ′ @ ; !,

−→
ℓ ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢<
−→
ℓ ⇒;) ⇐⇒

−→
ℓ ⇒; ′) ′ @ l

! | Ψ ⊢< Γ ! | Ψ, 6 : Ctx; Γ ⊢<) ⇐̂⇒) ′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢< (6 : Ctx) ⇒;) ⇐⇒ (6 : Ctx) ⇒; ′) ′ @ ;

! | Ψ ⊢< Γ ! | Ψ, * : (Δ ⊢? @ ;1); Γ ⊢<) ⇐̂⇒) ′ @ ;2
! | Ψ ⊢? Δ ⇐̂⇒ Δ

′ ! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level

! | Ψ; Γ ⊢< (* : (Δ ⊢? @ ;1)) ⇒
;2) ⇐⇒ (* : (Δ′ ⊢? @ ;3)) ⇒

;4) ′ @ succ ;1 ⊔ ;2

! | Ψ ⊢< Γ ! | Ψ ⊢? Δ ⇐̂⇒ Δ
′

! | Ψ; Γ ⊢< �(Δ ⊢2 @ ;) ⇐⇒ �(Δ′ ⊢2 @ ;) @ succ ;

! | Ψ ⊢< Γ ! | Ψ ⊢? Δ ⇐̂⇒ Δ
′ ! | Ψ;Δ ⊢?) ⇐̂⇒) ′ @ ;

! | Ψ; Γ ⊢< �(Δ ⊢2) @ ;) ⇐⇒ �(Δ′ ⊢2)
′ @ ;) @ ;

We propagate the convertibility for types pairwise to obtain the convertibility for local contexts.

! ⊢ Ψ

! | Ψ ⊢8 · ⇐̂⇒ ·

! ⊢ Ψ 6 : Ctx ∈ Ψ

! | Ψ ⊢8 6 ⇐̂⇒ 6

! | Ψ ⊢8 Γ ⇐̂⇒ Δ ! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ ⊢8 Γ, G :) @ ; ⇐̂⇒ Δ, G :) ′ @ ; ′

, Vol. 1, No. 1, Article . Publication date: April 2024.

82 • Jason Z. S. Hu and Brigi�e Pientka

The convertibility of terms proceeds similarly. The following are checking rules that are available at both
layers:

) ∗, ! | Ψ; Γ ⊢8 C
∗ F :) @ ; ! | Ψ; Γ ⊢8 C

′

∗ F ′ :) @ ; ! | Ψ; Γ ⊢8 F ⇐⇒ F ′ :, @ ;

! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) @ ;

! | Ψ ⊢8 Γ

! | Ψ; Γ ⊢8 Nat⇐⇒ Nat : Tyzero @ succ zero

! | Ψ ⊢8 Γ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 Ty; ⇐⇒ Ty; ′ : Tysucc ; @ succ succ ;

! | Ψ; Γ ⊢8 B ⇐̂⇒ B′ : Ty; @ succ ; ! | Ψ; Γ, G : El; B @ ; ⊢8 C ⇐̂⇒ C ′ : Ty; ′ @ succ ; ′

! | Ψ; Γ ⊢8 Π
;,; ′ (G : B).C ⇐⇒ Π

;,; ′ (G : B′).C ′ : Ty;⊔; ′ @ succ (; ⊔ ; ′)

! | Ψ ⊢8 Γ

! | Ψ; Γ ⊢8 zero⇐⇒ zero : Nat@ zero

! | Ψ; Γ ⊢8 C ⇐⇒ C ′ : Nat@ zero

! | Ψ; Γ ⊢8 succ C ⇐⇒ succ C ′ : Nat@ zero

! | Ψ; Γ ⊢8 ` ←→ `′ : Nat@ zero

! | Ψ; Γ ⊢8 ` ⇐⇒ `′ : Nat@ zero

! | Ψ; Γ ⊢8 (@ ; ! | Ψ; Γ ⊢8 F : Π;,; ′ (G : ().) @ ; ⊔ ; ′ ! | Ψ; Γ ⊢8 F
′ : Π;,; ′ (G : ().) @ ; ⊔ ; ′

! | Ψ; Γ, G : (@ ; ⊢8 (F : Π;,; ′ (G : ().)) G ⇐̂⇒ (F ′ : Π;,; ′ (G : ().)) G :) @ ; ′

! | Ψ; Γ ⊢8 F ⇐⇒ F ′ : Π;,; ′ (G : ().) @ ; ⊔ ; ′

! | Ψ; Γ ⊢8 ` ←→ `′ :, @ ;

! | Ψ; Γ ⊢8 ` ⇐⇒ `′ : + @ ;

! | Ψ; Γ ⊢8 F ⇐⇒ F ′ :, @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 F ⇐⇒ F ′ :, @ ;

The following rules check terms that are available only at layer<:

! | Ψ; Γ ⊢< F :
−→
ℓ ⇒;) @ l ! | Ψ; Γ ⊢< F ′ :

−→
ℓ ⇒;) @ l !,

−→
ℓ | Ψ; Γ ⊢< C $

−→
ℓ ⇐̂⇒ C ′ $

−→
ℓ :) @ ;

! | Ψ; Γ ⊢< F ⇐⇒ F ′ :
−→
ℓ ⇒;) @ l

! | Ψ; Γ ⊢< F : (6 : Ctx) ⇒;) @ ;

! | Ψ; Γ ⊢< F ′ : (6 : Ctx) ⇒;) @ ; ! | Ψ, 6 : Ctx; Γ ⊢< F $ 6 ⇐̂⇒ F ′ $ 6 :) @ ;

! | Ψ; Γ ⊢< F ⇐⇒ F ′ : (6 : Ctx) ⇒;) @ ;

! | Ψ; Γ ⊢< F : (* : (Δ ⊢? @ ;)) ⇒; ′) @ succ ; ⊔ ; ′ ! | Ψ; Γ ⊢< F ′ : (* : (Δ ⊢? @ ;)) ⇒; ′) @ succ ; ⊔ ; ′

! | Ψ,* : (Δ ⊢? @ ;); Γ ⊢< F $? *
idΔ ⇐̂⇒F ′ $? *

idΔ :) @ ; ′

! | Ψ; Γ ⊢< F ⇐⇒ F ′ : (* : (Δ ⊢? @ ;)) ⇒; ′) @ succ ; ⊔ ; ′

! | Ψ ⊢< Γ ! | Ψ;Δ ⊢2) @ ;) =) ′

! | Ψ; Γ ⊢< box) ⇐⇒ box) ′ : �(Δ ⊢2 @ ;) @ succ ;

! | Ψ; Γ ⊢< ` ←→ `′ : �(Δ ⊢2 @ ;) @ succ ;

! | Ψ; Γ ⊢< ` ⇐⇒ `′ : �(Δ ⊢2 @ ;) @ succ ;

! | Ψ ⊢< Γ ! | Ψ;Δ ⊢2 C :) @ ; C = C ′

! | Ψ; Γ ⊢< box C ⇐⇒ box C ′ : �(Δ ⊢2) @ ;) @ ;

! | Ψ; Γ ⊢< ` ←→ `′ : �(Δ ⊢2) @ ;) @ ;

! | Ψ; Γ ⊢< ` ⇐⇒ `′ : �(Δ ⊢2) @ ;) @ ;

Notice here convertibility of box’ed types and terms are checked simply with syntactic equality. The convert-
ibility of neutral terms proceeds as follows. Similarly, we first give the checking rules that are available at both

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 83

layers:

! | Ψ; Γ ⊢8 ` ←̂→ `′ :) @ ;) ∗,

! | Ψ; Γ ⊢8 ` ←→ `′ :, @ ;

! | Ψ; Γ ⊢8 ` ←̂→ `′ :) @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ ⊢8 ` ←̂→ `′ :) @ ;

! | Ψ ⊢8 Γ G :) @ ; ∈ Γ

! | Ψ; Γ ⊢8 G ←̂→ G :) @ ;

! | Ψ ⊢8 Γ D : (Δ ⊢8 ′) @ ;) ∈ Ψ 8′ ∈ {E, 2} 8′ ≤ 8 ! | Ψ; Γ ⊢8 X ⇐̂⇒ X′ : Δ

! | Ψ; Γ ⊢8 D
X ←̂→ DX

′

:) [X] @ ;

! ⊢ ; ≈ ; ′ : Level ! | Ψ; Γ, G : Nat@ zero ⊢8 " ⇐̂⇒"′ @ ; ! | Ψ; Γ ⊢8 B1 ⇐̂⇒ B3 : " [zero/G] @ ;

! | Ψ; Γ, G : Nat@ zero,~ : " @ ; ⊢8 B2 ⇐̂⇒ B4 : " [succ G/G] @ ; ! | Ψ; Γ ⊢8 ` ←→ `′ : Nat@ zero

! | Ψ; Γ ⊢8 elim
;
Nat (G.") B1 (G,~.B2) ` ←̂→ elim; ′

Nat (G."
′) B3 (G,~.B4) `

′ : " [`/G] @ ;

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ; Γ ⊢8 (⇐̂⇒ (′ @ ;1 ! | Ψ; Γ, G : (@ ;1 ⊢8) ⇐̂⇒) ′ @ ;2
! | Ψ; Γ ⊢8 ` ←→ `′ : Π;1,;2 (G : (′′).) ′′ @ ;1 ⊔ ;2 ! | Ψ; Γ ⊢8 B ⇐̂⇒ B′ : (@ ;1

! | Ψ; Γ ⊢8 (` : Π;1,;2 (G : ().)) B ←̂→ (`′ : Π;3,;4 (G : (′).) ′) B′ :) [B/G] @ ;2

When checking applications, we simply ignore the type inferred by checking ` and `′ . This is fine because we
already know ` and `′ are well-typed so the type annotations must be equivalent.

Then we give the rules only available at layer<:

! | Ψ; Γ ⊢< ` ←→ `′ :
−→
ℓ ⇒;) @ l |

−→
ℓ | = |

−→
; | = |

−→
; ′ | > 2 ∀2 ≤ = < |

−→
; | · ! ⊢

−→
; (=) ≈

−→
; ′ (=) : Level

! | Ψ; Γ ⊢< ` $
−→
; ←̂→ `′ $

−→
; ′ :) [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ]

! | Ψ; Γ ⊢< ` ←→ `′ : (6 : Ctx) ⇒;) @ ; ! | Ψ ⊢? Δ ⇐̂⇒ Δ
′

! | Ψ; Γ ⊢< ` $ Δ ←̂→ `′ $ Δ′ :) [Δ/6] @ ;

! | Ψ; Γ ⊢< ` ←→ `′ : (* : (Δ ⊢? @ ;)) ⇒; ′) ′′ @ succ ; ⊔ ; ′ ! | Ψ;Δ ⊢?) ⇐̂⇒) ′ @ ;

! | Ψ; Γ ⊢< ` $?) ←̂→ `′ $?)
′ :) ′′ [) /*] @ ; ′

! | Ψ ⊢< Γ ! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ ⊢? Δ ⇐̂⇒ Δ
′

! | Ψ; Γ ⊢< ` ←→ `′ : �(Δ ⊢2 @ ;2) @ succ ;2 ! | Ψ; Γ, G) : �(Δ ⊢2 @ ;2) @ succ ;2 ⊢< " ⇐̂⇒"′ @ ;1
! | Ψ, * : (Δ ⊢2 @ ;2); Γ ⊢< C1 ⇐̂⇒ C2 : " [box* /G)] @ ;1

! | Ψ; Γ ⊢< letbox
;1
Typ

;2 Δ (G) .") (* .C1) ` ←̂→ letbox
;3
Typ

;4 Δ
′ (G) ."

′) (* .C2) `
′ : " [C/G)] @ ;1

! | Ψ ⊢< Γ ! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ ⊢? Δ ⇐̂⇒ Δ
′ ! | Ψ; Γ ⊢?) ⇐̂⇒) ′ @ ;2

! | Ψ; Γ ⊢< ` ←→ `′ : �(Δ ⊢2) @ ;2) @ ;2 ! | Ψ; Γ, G) : �(Δ ⊢2) @ ;2) @ ;1 ⊢< " ⇐̂⇒ "′ @ ;1
! | Ψ, D : (Δ ⊢2) @ ;2); Γ ⊢< C1 ⇐̂⇒ C2 : " [box D/GC] @ ;1

! | Ψ; Γ ⊢< letbox
;1
Trm

;2 Δ) (GC .") (* .C1) ` ←̂→ letbox
;3
Trm

;4 Δ
′) ′ (G) ."

′) (* .C2) `
′ : " [C/GC] @ ;1

The remaining piece of the convertibility checking for neutral recursive principles. The recursive principles get
stuck when the scrutinees are neutral or box’ed global variables. To check the convertibility of neutral recursive
principles, we recursively check the convertibility between motives, corresponding branches and the indexing

, Vol. 1, No. 1, Article . Publication date: April 2024.

84 • Jason Z. S. Hu and Brigi�e Pientka

universe levels, local contexts and potentially types. To derive the following two conclusions:

! | Ψ; Γ ⊢< elim
;1,;2
Typ

−→
"
−→
1 ; Δ ` ←̂→ elim

;3,;4
Typ

−→
"1

−→
11 ;
′
Δ
′ `′ : " [`/G)] @ ;1

! | Ψ; Γ ⊢< elim
;1,;2
Trm

−→
"
−→
1 ; Δ) ` ←̂→ elim

;3,;4
Typ

−→
"1

−→
11 ;
′
Δ
′) ′`′ : "′ [`/GC] @ ;1

We proceed by checking the convertibility of motives:

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level !, ℓ | Ψ, 6 : Ctx; Γ, G) : �(6 ⊢2 @ ℓ) ⊢< " ⇐̂⇒ "1 @ ;1

!, ℓ | Ψ, 6 : Ctx,*) : (6 ⊢? @ ℓ); Γ, GC : �(6 ⊢2 *
id
) @ ℓ) ⊢< "′ ⇐̂⇒ "′1 @ ;2

We do the same for all the branches as well. Following the previous conventions, we group all these checking
into �� for convertibility checking for all premises. Then what we have left is to make sure the scrutinees are
convertible.

�� ! ⊢ ; ≈ ; ′ : Level ! | Ψ ⊢? Δ ⇐̂⇒ Δ
′ ! | Ψ; Γ ⊢< ` ←→ `′ : �(Δ ⊢2 @ ;) @ ;

! | Ψ; Γ ⊢< elim;1,;2
Typ

−→
"
−→
1 ; Δ ` ←̂→ elim;3,;4

Typ

−→
"1

−→
11 ;
′
Δ
′ `′ : " [`/G)] @ ;1

�� ! ⊢ ; ≈ ; ′ : Level
! | Ψ ⊢? Δ ⇐̂⇒ Δ

′ ! | Ψ; Γ ⊢?) ⇐̂⇒) ′ @ succ ; ! | Ψ; Γ ⊢< ` ←→ `′ : �(Δ ⊢2) @ ;) @ succ ;

! | Ψ; Γ ⊢< elim
;1,;2
Trm

−→
"
−→
1 ; Δ) ` ←̂→ elim

;3,;4
Typ

−→
"1

−→
11 ;
′
Δ
′) ′`′ : "′ [`/GC] @ ;1

If the scrutinees are box’ed global variables, then the check is always the same, except that the global variables
are compared syntactically:

�� ! ⊢ ; ≈ ; ′ : Level ! | Ψ ⊢? Δ ⇐̂⇒ Δ
′ * : (Δ ⊢2 @ ;) ∈ Ψ ! | Ψ; Γ ⊢2 X : Δ

! | Ψ; Γ ⊢< elim;1,;2
Typ

−→
"
−→
1 ; Δ (box* X) ←̂→ elim

;3,;4
Typ

−→
"1

−→
11 ;
′
Δ
′ (box* X) : " [box* X/G)] @ ;1

�� ! ⊢ ; ≈ ; ′ : Level ! | Ψ ⊢? Δ ⇐̂⇒ Δ
′

! | Ψ; Γ ⊢?) ⇐̂⇒) ′ @ succ ; D : (Δ ⊢8 ′) @ ;) ∈ Ψ 8′ ∈ {E, 2} ! | Ψ; Γ ⊢2 X : Δ

! | Ψ; Γ ⊢< elim
;1,;2
Trm

−→
"
−→
1 ; Δ) (box DX) ←̂→ elim

;3,;4
Typ

−→
"1

−→
11 ;
′
Δ
′) ′ (box DX) : "′ [box DX/GC] @ ;1

Now we have finished all the convertibility rules for neutral terms.
We simply let the convertibility for terms to propagate pairwise to derive the convertibility for local substitu-

tions:

! | Ψ ⊢8 Γ Γ ends with · |Γ | =<

! | Ψ; Γ ⊢8 ·
< ⇐̂⇒ ·< : ·

! | Ψ ⊢8 Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | =<

! | Ψ; Γ ⊢8 ·
<
6 ⇐̂⇒ ·

<
6 : ·

! | Ψ ⊢8 Γ 6 : Ctx ∈ Ψ
Γ ends with 6 |Γ | =<

! | Ψ; Γ ⊢8 wk
<
6 ⇐̂⇒ wk<6 : 6

! | Ψ; Γ ⊢8 X ⇐̂⇒ X′ : Δ
! | Ψ;Δ ⊢8) @ ; ! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) [X] @ ;

! | Ψ; Γ ⊢8 X, C/G ⇐̂⇒ X′, C ′/G : Δ, G :) @ ;

The convertibility algorithm is obtained by reading all the components for convertibility rules as inputs and
the neutral judgments consider types as outputs. If there is no corresponding rule, then two terms are not con-
vertible; otherwise, two terms are convertible. We verify some basic properties as follows:

Lemma 6.8 (Soundness). Assuming 8 computable,

• if ! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ; , then ! | Ψ; Γ ⊢8) ≈)
′ @ ; ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 85

• if ! | Ψ; Γ ⊢8 , ⇐⇒, ′ @ ; , then ! | Ψ; Γ ⊢8 , ≈,
′ @ ; ;

• if ! | Ψ; Γ ⊢8 + ←→ + ′ @ ; , then ! | Ψ; Γ ⊢8 + ≈ +
′ @ ; ;

• if ! | Ψ ⊢8 Γ ⇐̂⇒ Δ, then ! | Ψ ⊢8 Γ ≈ Δ;

• if ! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) @ ; , then ! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ; ;

• if ! | Ψ; Γ ⊢8 F ⇐⇒ F ′ :, @ ; , then ! | Ψ; Γ ⊢8 F ≈ F
′ :, @ ; ;

• if ! | Ψ; Γ ⊢8 ` ←̂→ `′ :) @ ; , then ! | Ψ; Γ ⊢8 ` ≈ `′ :) @ ; ;

• if ! | Ψ; Γ ⊢8 ` ←→ `′ :, @ ; , then ! | Ψ; Γ ⊢8 ` ≈ `′ :, @ ; ;

• if ! | Ψ; Γ ⊢8 X ⇐̂⇒ X′ : Δ, then ! | Ψ; Γ ⊢8 X ≈ X
′ : Δ.

Proof. Mutual induction. Use [rules for all kinds of function types. Use congruence rules, presupposition
and conversion rules when checking neutral terms. �

Lemma 6.9.

• If ! | Ψ; Γ ⊢8 , ⇐⇒, ′ @ ; , then ! | Ψ; Γ ⊢8 , ⇐̂⇒, ′ @ ; .

• If ! | Ψ; Γ ⊢8 F ⇐⇒ F ′ :, @ ; , then ! | Ψ; Γ ⊢8 F ⇐̂⇒ F ′ :, @ ; .

Other lemmas like PER require the fundamental theorems so we postpone their proofs until we have the
semantic models.

7 LOGICAL RELATIONS FOR DELAM

Previously, we have given the judgments of DeLaM, verified its syntactic properties and given its reduction and
convertibility algorithms. Starting this section, we establish the logical relation and prove the (weak) normaliza-
tion and convertibility properties of DeLaM. Following Abel et al. [2017], we proceeds as follows:

• First we give a set of generic equivalence conditions for a parameterized discussion of the logical relation.
• Then we give the definition of the Kripke logical relations of types and terms. The logical relations are
parameterized by layers. In this step, we are only concerned about types that are available at all layers, i.e.
those in MLTT and unrelated to meta-programming.
• Then we give the definition of the Kripke logical relations of local contexts and local substitutions.
• Then we branch off two orthogonal developments.
– We give the definition of the Kripke logical relations of global contexts and global substitutions.
– We give the definition of the Kripke logical relations of types and terms, again. But in this case, we must
also give the definition for types that are related to meta-programming, i.e. contextual types.

In fact, the definitions given by the two sub-steps above must consider each other. Otherwise, we will not
able to extend related global substitutions during the proof of the fundamental theorems.
• Next we give the semantic judgments. The semantic judgments require types, terms, etc. to be stable under
all universe, global and local substitutions.
• Finally, we establish the fundamental theorems for the semantic judgments. Instantiating the generic equiv-
alence gives us the proof of convertibility.

Due to layering, following Sec. 3, the generic equivalence, logical relation and validity judgments are all layered.
In fact, since computation exists at both layers ? and<, the situation is very complex. Abel et al. [2017] instan-
tiate their generic equivalence twice to obtain the decidability of convertibility checking, and we will also be
doing the same. Due to the complication of layering, our fundamental theorems must talk about all layers. The
difficulties of the logical relations lie in that how we can support code running and recursions on code at the
same time and justify them in the semantics.

, Vol. 1, No. 1, Article . Publication date: April 2024.

86 • Jason Z. S. Hu and Brigi�e Pientka

7.1 Generic Equivalence

Similar to Sec. 3, we first quantify four generic equivalence relations, which will be instantiated to syntactic
equivalence and convertibility later, and their laws. This step provides modularity to logical relation argument:
we simply instantiate this generic equivalence to obtain different versions of the fundamental theorems. Due to
dependent types, we define generic equivalence over 8 ∈ {?,<}:

• ! | Ψ; Γ ⊢8 + ∼ +
′ @ ; describes a generic type equivalence between two neutral types at universe level ;

at layer 8 .
• ! | Ψ; Γ ⊢8) ≃)

′ @ ; describes a generic type equivalence between two types at universe level ; at layer
8 .
• ! | Ψ; Γ ⊢8 ` ∼ `′ :) @ ; describes a generic type equivalence between two neutral terms of type) at
universe level ; at layer 8 .
• ! | Ψ; Γ ⊢8 C ≃ C ′ :) @ ; describes a generic type equivalence between two terms of type) at universe
level ; at layer 8 .

From the four generic equivalence, we induce two equivalence of local contexts and local substitutions by
using the generic equivalence pairwise:

! ⊢ Ψ

! | Ψ ⊢8 · ≃ ·

! ⊢ Ψ 6 : Ctx ∈ Ψ

! | Ψ ⊢8 6 ≃ 6

! | Ψ ⊢8 Γ ≃ Δ ! | Ψ; Γ ⊢8) ≃)
′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ ⊢8 Γ, G :) @ ; ≃ Δ, G :) ′ @ ; ′

! | Ψ ⊢8 Γ Γ ends with · |Γ | =<

! | Ψ; Γ ⊢8 ·
< ≃ ·< : ·

! | Ψ ⊢8 Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | =<

! | Ψ; Γ ⊢8 ·
<
6 ≃ ·

<
6 : ·

! | Ψ ⊢8 Γ 6 : Ctx ∈ Ψ
Γ ends with 6 |Γ | =<

! | Ψ; Γ ⊢8 wk
<
6 ≃ wk<6 : 6

! | Ψ; Γ ⊢8 X ≃ X
′ : Δ

! | Ψ;Δ ⊢8) @ ; ! | Ψ; Γ ⊢8 C ≃ C
′ :) [X] @ ;

! | Ψ; Γ ⊢8 X, C/G ≃ X
′, C ′/G : Δ, G :) @ ;

The generic equivalence and the logical relations are invariant under all weakenings. Therefore, we should
make these notions clear here. Since there are three different contexts, we have three corresponding kinds
of weakenings. In particular, \ :: ! =⇒ !′ is the universe weakening. Following previous conventions, W ::
! | Ψ =⇒6 \ is a global weakening, and g :: ! | Ψ; Γ =⇒8 Δ is a local weakening. The subscript 8 denotes which
layer the contexts Γ and Δ live in. We can simultaneously weaken all three contexts at the same time. We simply
apply \ , W and g in this order. We letk represent this triple:

k := (\,W, g) :: ! | Ψ; Γ =⇒8 !
′ | Φ;Δ

where

\ :: ! =⇒ !′

W :: !′ | Ψ[\] =⇒6 Φ

g :: !′ | \ ; Γ [\] [W] =⇒8 Δ

Similarly we let

U := (\,W) :: ! | Ψ =⇒ !′ | Φ

We can apply weakenings like substitutions to universe levels, types, terms, contexts and substitutions as ex-
pected. The action is to shift the variables according to the specified weakenings. This is a standard action,
despite having three separate notions, so we take it for granted here. When it is clear from the context, we do
not write down the weakening action at all to avoid clutter.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 87

Then we give the laws of the generic equivalence. Since the generic equivalence at layer< subsumes that at
layer ? , we first give the laws that hold for both layers, and then incrementally add those that only hold at layer
<.

Law 7.1 (Subsumption).

• If ! | Ψ; Γ ⊢8 + ∼ +
′ @ ; , then ! | Ψ; Γ ⊢8 + ≃ +

′ @ ; .

• If ! | Ψ; Γ ⊢8) ≃)
′ @ ; , then ! | Ψ; Γ ⊢8) ≈)

′ @ ; .

• If ! | Ψ; Γ ⊢8 ` ∼ `′ :) @ ; , then ! | Ψ; Γ ⊢8 ` ≃ `′ :) @ ; .

• If ! | Ψ; Γ ⊢8 C ≃ C
′ :) @ ; , then ! | Ψ; Γ ⊢8 C ≈ C

′ :) @ ; .

As a lemma, subsumption propagates to contexts and local substitutions:

Lemma 7.1 (Subsumption).

• If ! | Ψ ⊢8 Γ ≃ Δ, then ! | Ψ ⊢8 Γ ≈ Δ.

• If ! | Ψ; Γ ⊢8 X ≃ X
′ : Δ, then ! | Ψ; Γ ⊢8 X ≈ X

′ : Δ.

Due to subsumption, we know that components in generic equivalence are well-formed or well-typed:

Lemma 7.2 (Presupposition).

• If ! | Ψ; Γ ⊢8) ≃)
′ @ ; , then ! | Ψ; Γ ⊢8) @ ; and ! | Ψ; Γ ⊢8)

′ @ ; .

• If ! | Ψ; Γ ⊢8 C ≃ C
′ :) @ ; , then ! | Ψ; Γ ⊢8 C :) @ ; and ! | Ψ; Γ ⊢8 C

′ :) @ ; .

Proof. By subsumption and presupposition. �

Law 7.2 (PER). All four relations are PERs.

Law 7.3 (Type Conversion).

• If ! | Ψ; Γ ⊢8 ` ∼ `′ :) @ ; and ! | Ψ; Γ ⊢8) ≈)
′ @ ; , then ! | Ψ; Γ ⊢8 ` ∼ `′ :) ′ @ ; .

• If ! | Ψ; Γ ⊢8 C ≃ C
′ :) @ ; and ! | Ψ; Γ ⊢8) ≈)

′ @ ; , then ! | Ψ; Γ ⊢8 C ≃ C
′ :) ′ @ ; .

Law 7.4 (Context Eqivalence).

• If ! | Ψ; Γ ⊢8 + ∼ +
′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then ! | Φ;Δ ⊢8 + ∼ +

′ @ ; .

• If ! | Ψ; Γ ⊢8) ≃)
′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then ! | Φ;Δ ⊢8) ≃)

′ @ ; .

• If ! | Ψ; Γ ⊢8 ` ∼ `′ :) @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then ! | Φ;Δ ⊢8 ` ∼ `′ :) @ ; .

• If ! | Ψ; Γ ⊢8 C ≃ C
′ :) @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then ! | Φ;Δ ⊢8 C ≃ C

′ :) @ ; .

Law 7.5 (Weakening).

• If ! | Ψ; Γ ⊢8 + ∼ +
′ @ ; andk :: ! | Ψ; Γ =⇒8 !

′ | Φ;Δ, then !′ | Φ;Δ ⊢8 + [k] ∼ +
′ [k] @ ; [k] .

• If ! | Ψ; Γ ⊢8) ≃)
′ @ ; andk :: ! | Ψ; Γ =⇒8 !

′ | Φ;Δ, then !′ | Φ;Δ ⊢8) [k] ≃)
′ [k] @ ; [k].

• If ! | Ψ; Γ ⊢8 ` ∼ `′ :) @ ; andk :: ! | Ψ; Γ =⇒8 !
′ | Φ;Δ, then !′ | Φ;Δ ⊢8 ` [k] ∼ `′ [k] :) [k] @ ; [k] .

• If ! | Ψ; Γ ⊢8 C ≃ C
′ :) @ ; andk :: ! | Ψ; Γ =⇒8 !

′ | Φ;Δ, then !′ | Φ;Δ ⊢8 C [k] ≃ C
′ [k] :) [k] @ ; [k].

Law 7.6 (Weak Head Closure).

• If ! | Ψ; Γ ⊢8)
∗ , @ ; , ! | Ψ; Γ ⊢8)

′

∗ , ′ @ ; and ! | Ψ; Γ ⊢8 , ≃ , ′ @ ; , then ! | Ψ; Γ ⊢8) ≃

) ′ @ ; .

• If ! | Ψ; Γ ⊢8 C ∗ F :) @ ; , ! | Ψ; Γ ⊢8 C ′ ∗ F ′ :) @ ; and ! | Ψ; Γ ⊢8 F ≃ F ′ :) @ ; , then

! | Ψ; Γ ⊢8 C ≃ C
′ :) @ ; .

Law 7.7 (Type Constructors). If ! | Ψ ⊢8 Γ,

• if ! ⊢ ; ≈ ; ′ : Level, then ! | Ψ; Γ ⊢8 Ty; ≃ Ty′
;
@ succ ; and ! | Ψ; Γ ⊢8 Ty; ≃ Ty′

;
: Tysucc ; @ succ (succ ;);

, Vol. 1, No. 1, Article . Publication date: April 2024.

88 • Jason Z. S. Hu and Brigi�e Pientka

• then ! | Ψ; Γ ⊢8 Nat ≃ Nat@ zero and ! | Ψ; Γ ⊢8 Nat ≃ Nat : Tyzero @ succ zero;

• if ! | Ψ; Γ ⊢8 (≃ (′ @ ; and ! | Ψ; Γ, G : (@ ; ⊢8) ≃) ′ @ ; ′,

then ! | Ψ; Γ ⊢8 Π
;,; ′ (G : ().) ≃ Π

;,; ′ (G : (′).) ′ @ ; ⊔ ; ′;

• if ! | Ψ; Γ ⊢8 B ≃ B′ : Ty; @ succ ; and ! | Ψ; Γ, G : El; B @ ; ⊢8 C ≃ C ′ : Ty; ′ @ succ ; ′,

then ! | Ψ; Γ ⊢8 Π
;,; ′ (G : B).C ≃ Π

;,; ′ (G : B′).C ′ : Ty;⊔; ′ @ succ (; ⊔ ; ′).

Law 7.8 (Neutral Types).

• If ! | Ψ ⊢8 Γ,* : (Δ ⊢8 ′ @ ;) ∈ Ψ, 8′ ∈ {2, ?}, 8′ ≤ 8 and ! | Ψ; Γ ⊢8 X ≃ X
′ : Δ, then ! | Ψ; Γ ⊢8 *

X ∼ * X′ @ ; .

• If ! ⊢ ; ≈ ; ′ : Level and ! | Ψ; Γ ⊢8 ` ∼ `′ : Ty; @ succ ; , then ! | Ψ; Γ ⊢8 El
; ` ∼ El;

′

`′ @ ; .

Law 7.9 (Congruence).

• If ! | Ψ ⊢8 Γ, then ! | Ψ; Γ ⊢8 zero ≃ zero : Nat@ zero.

• If ! | Ψ; Γ ⊢8 C ≃ C
′ : Nat@ zero, then ! | Ψ; Γ ⊢8 succ C ≃ succ C ′ : Nat@ zero.

• If ! | Ψ; Γ ⊢8 (@ ; , ! | Ψ; Γ ⊢8 C : Π
;,; ′ (G : ().) @ ; ⊔ ; ′, ! | Ψ; Γ ⊢8 C

′ : Π;,; ′ (G : ().) @ ; ⊔ ; ′ and ! | Ψ; Γ, G :
(@ ; ⊢8 (C : Π

;,; ′ (G : ().)) G ≃ (C ′ : Π
;,; ′ (G : ().)) G :) @ ; ′, then

! | Ψ; Γ ⊢8 C ≃ C
′ : Π;,; ′ (G : ().) @ ; ⊔ ; ′.

Law 7.10 (Congruence for Neutrals).

• If ! | Ψ ⊢8 Γ and G :) @ ; ∈ Γ, then ! | Ψ; Γ ⊢8 G ∼ G :) @ ; .

• If ! | Ψ ⊢8 Γ, D : (Δ ⊢8 ′) @ ;) ∈ Ψ, 8′ ∈ {E, 2}, 8′ ≤ 8 and ! | Ψ; Γ ⊢8 X ≃ X′ : Δ, then

! | Ψ; Γ ⊢8 D
X ∼ DX

′
:) [X] @ ; .

• If ! ⊢ ; ≈ ; ′ : Level, ! | Ψ; Γ, G : Nat @ zero ⊢8 " ≃ "′ @ ; , ! | Ψ; Γ ⊢8 B1 ≃ B3 : " [zero/G] @ ; ,

! | Ψ; Γ, G : Nat @ zero,~ : " @ ; ⊢8 B2 ≃ B4 : " [succ G/G] @ ; and ! | Ψ; Γ ⊢8 ` ∼ `′ : Nat @ zero, then

! | Ψ; Γ ⊢8 elim
;
Nat (G.") B1 (G,~.B2) ` ∼ elim; ′

Nat (G."
′) B3 (G,~.B4) `

′ : " [`/G] @ ; .

• If ! ⊢ ;1 ≈ ;3 : Level, ! ⊢ ;2 ≈ ;4 : Level, ! | Ψ; Γ ⊢8 (≃ (′ @ ;1, ! | Ψ; Γ, G : (@ ;1 ⊢8) ≃) ′ @ ;2,

! | Ψ; Γ ⊢8 ` ∼ `′ : Π
;1,;2 (G : (′′).) ′′ @ ;1 ⊔ ;2 and ! | Ψ; Γ ⊢8 B ≃ B′ : (@ ;1, then

! | Ψ; Γ ⊢8 (` : Π;1,;2 (G : ().)) B ∼ (`′ : Π;3,;4 (G : (′).) ′) B′ :) [B/G] @ ;2.

We derive that

Lemma 7.3 (Reflexivity of Local Identity Substitutions). If ! | Ψ ⊢8 Γ ≈ Δ, then ! | Ψ; Γ ⊢8 idΓ ≃ idΓ : Δ.

Lemma 7.4 (Congruence of Global Variables).

• If ! | Ψ ⊢8 Γ ≈ Δ, D : (Δ ⊢8 ′) @ ;) ∈ Ψ, 8′ ∈ {E, 2} and 8′ ≤ 8 , then ! | Ψ; Γ ⊢8 D
idΓ ∼ DidΓ :) @ ; .

• If ! | Ψ ⊢8 Γ ≈ Δ,* : (Δ ⊢8 ′ @ ;) ∈ Ψ, 8′ ∈ {2, ?} and 8′ ≤ 8 , then ! | Ψ; Γ ⊢8 *
idΓ ∼ * idΓ @ ; .

At this point, we give the laws that should hold for both layers. Next, we consider laws that only hold at layer
8 =<. We first give the laws for type constructors.

Law 7.11 (Type Constructors).

• If ! | Ψ ⊢< Γ, !,
−→
ℓ | Ψ; Γ ⊢<) ≃) ′ @ ; and !,

−→
ℓ ⊢ ; ≈ ; ′ : Level, then

! | Ψ; Γ ⊢<
−→
ℓ ⇒;) ≃

−→
ℓ ⇒; ′) ′ @ l .

• If ! | Ψ ⊢< Γ, ! | Ψ, 6 : Ctx; Γ ⊢<) ≃) ′ @ ; and ! ⊢ ; ≈ ; ′ : Level, then

! | Ψ; Γ ⊢< (6 : Ctx) ⇒;) ≃ (6 : Ctx) ⇒; ′) ′ @ ; .

• If ! | Ψ ⊢< Γ, ! | Ψ,* : (Δ ⊢? @ ;1); Γ ⊢<) ≃) ′ @ ;2, ! | Ψ ⊢? Δ ≃ Δ
′, ! ⊢ ;1 ≈ ;3 : Level and

! ⊢ ;2 ≈ ;4 : Level, then ! | Ψ; Γ ⊢< (* : (Δ ⊢? @ ;1)) ⇒
;2) ≃ (* : (Δ′ ⊢? @ ;3)) ⇒

;4) ′ @ succ ;1 ⊔ ;2.

• If ! | Ψ ⊢< Γ and ! | Ψ ⊢? Δ ≃ Δ
′, then ! | Ψ; Γ ⊢< �(Δ ⊢2 @ ;) ≃ �(Δ′ ⊢2 @ ;) @ succ ; .

• If ! | Ψ ⊢< Γ, ! | Ψ ⊢? Δ ≃ Δ
′ and ! | Ψ;Δ ⊢?) ≃) ′ @ ; , then

! | Ψ; Γ ⊢< �(Δ ⊢2) @ ;) ≃ �(Δ′ ⊢2)
′ @ ;) @ ; .

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 89

Law 7.12 (Congruence).

• If ! | Ψ; Γ ⊢< C :
−→
ℓ ⇒;) @ l , ! | Ψ; Γ ⊢< C ′ :

−→
ℓ ⇒;) @ l and !,

−→
ℓ | Ψ; Γ ⊢< C $

−→
ℓ ≃ C ′ $

−→
ℓ :) @ ; ,

then ! | Ψ; Γ ⊢< C ⇐⇒ C ′ :
−→
ℓ ⇒;) @ l .

• If ! | Ψ; Γ ⊢< C : (6 : Ctx) ⇒;) @ ; , ! | Ψ; Γ ⊢< C ′ : (6 : Ctx) ⇒;) @ ; and

! | Ψ, 6 : Ctx; Γ ⊢< C $ 6 ≃ C ′ $ 6 :) @ ; , then ! | Ψ; Γ ⊢< C ≃ C ′ : (6 : Ctx) ⇒;) @ ; .

• If ! | Ψ; Γ ⊢< C : (* : (Δ ⊢? @ ;)) ⇒; ′) @ succ ; ⊔ ; ′, ! | Ψ; Γ ⊢< C ′ : (* : (Δ ⊢? @ ;)) ⇒; ′) @ succ ; ⊔ ; ′,

and ! | Ψ,* : (Δ ⊢? @ ;); Γ ⊢< C $? * idΔ ≃ C ′ $? * idΔ :) @ ; ′, then

! | Ψ; Γ ⊢< F ≃ F ′ : (* : (Δ ⊢? @ ;)) ⇒; ′) @ succ ; ⊔ ; ′.

• If ! | Ψ ⊢< Γ and ! | Ψ;Δ ⊢2) @ ; , then ! | Ψ; Γ ⊢< box) ≃ box) : �(Δ ⊢2 @ ;) @ succ ; .

• If ! | Ψ ⊢< Γ and ! | Ψ;Δ ⊢2 C :) @ ; , then ! | Ψ; Γ ⊢< box C ≃ box C : �(Δ ⊢2) @ ;) @ ; .

Law 7.13 (Congruence for Neutrals).

• If ! | Ψ; Γ ⊢< ` ∼ `′ :
−→
ℓ ⇒;) @ l , |

−→
ℓ | = |

−→
; | = |

−→
; ′ | > 2 and ∀ 2 ≤ = < |

−→
; | · ! ⊢

−→
; (=) ≈

−→
; ′ (=) : Level,

then ! | Ψ; Γ ⊢< ` $
−→
; ∼ `′ $

−→
; ′ :) [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ].

• If ! | Ψ; Γ ⊢< ` ∼ `′ : (6 : Ctx) ⇒;) @ ; and ! | Ψ ⊢? Δ ≃ Δ
′, then

! | Ψ; Γ ⊢< ` $ Δ ∼ `′ $ Δ′ :) [Δ/6] @ ; .

• If ! | Ψ; Γ ⊢< ` ∼ `′ : (* : (Δ ⊢? @ ;)) ⇒; ′) ′′ @ succ ; ⊔ ; ′ and ! | Ψ;Δ ⊢?) ≃) ′ @ ; , then

! | Ψ; Γ ⊢< ` $?) ∼ `′ $?)
′ :) ′′ [) /*] @ ; ′.

• If ! | Ψ ⊢< Γ, ! ⊢ ;1 ≈ ;3 : Level, ! ⊢ ;2 ≈ ;4 : Level, ! | Ψ ⊢? Δ ≃ Δ
′,

! | Ψ; Γ ⊢< ` ∼ `′ : �(Δ ⊢2 @ ;2) @ succ ;2, ! | Ψ; Γ, G) : �(Δ ⊢2 @ ;2) @ succ ;2 ⊢< " ≃ "′ @ ;1 and

! | Ψ, * : (Δ ⊢2 @ ;2); Γ ⊢< C1 ≃ C2 : " [box * id/G)] @ ;1, then

! | Ψ; Γ ⊢< letbox
;1
Typ

;2 Δ (G) .") (* .C1) ` ∼ letbox
;3
Typ

;4 Δ
′ (G) ."

′) (* .C2) `
′ : " [C/G)] @ ;1.

• If ! | Ψ ⊢< Γ, ! ⊢ ;1 ≈ ;3 : Level, ! ⊢ ;2 ≈ ;4 : Level, ! | Ψ ⊢? Δ ≃ Δ
′, ! | Ψ; Γ ⊢?) ≃) ′ @ ;2,

! | Ψ; Γ ⊢< ` ∼ `′ : �(Δ ⊢2) @ ;2) @ ;2, ! | Ψ; Γ, G) : �(Δ ⊢2) @ ;2) @ ;1 ⊢< " ≃ "′ @ ;1 and

! | Ψ, D : (Δ ⊢2) @ ;2); Γ ⊢< C1 ≃ C2 : " [box Did/GC] @ ;1, then

! | Ψ; Γ ⊢< letbox
;1
Trm

;2 Δ) (GC .") (* .C1) ` ∼ letbox
;3
Trm

;4 Δ
′) ′ (G) ."

′) (* .C2) `
′ : " [C/GC] @ ;1.

Then we consider the law for neutral forms for recursive principles for code. The law follows a similar line
to the equivalence judgments and the convertibility checking: the evaluation is blocked when the scrutinee is
neutral or is a box’ed global variable.

Law 7.14 (Neutral Recursion on Code).

• If all motives and branches are related by corresponding generic equivalence, moreover, ! ⊢ ; ≈ ; ′ : Level,
! | Ψ ⊢? Δ ≃ Δ

′ and ! | Ψ; Γ ⊢< ` ∼ `′ : �(Δ ⊢2 @ ;) @ ; , then

! | Ψ; Γ ⊢< elim
;1,;2
Typ

−→
"
−→
1 ; Δ ` ∼ elim

;3,;4
Typ

−→
"1

−→
11 ;
′
Δ
′ `′ : " [`/G)] @ ;1.

• If all motives and branches are related by corresponding generic equivalence, moreover, ! ⊢ ; ≈ ; ′ : Level,
! | Ψ ⊢? Δ ≃ Δ

′, * : (Δ ⊢2 @ ;) ∈ Ψ and ! | Ψ; Γ ⊢2 X : Δ, then

! | Ψ; Γ ⊢< elim;1,;2
Typ

−→
"
−→
1 ; Δ (box* X) ∼ elim

;3,;4
Typ

−→
"1

−→
11 ;
′
Δ
′ (box* X) : " [box* X/G)] @ ;1.

• If all motives and branches are related by corresponding generic equivalence, moreover, ! ⊢ ; ≈ ; ′ : Level,
! | Ψ ⊢? Δ ≃ Δ

′, ! | Ψ; Γ ⊢?) ⇐̂⇒) ′ @ ; and ! | Ψ; Γ ⊢< ` ←→ `′ : �(Δ ⊢2) @ ;) @ ; , then

! | Ψ; Γ ⊢< elim
;1,;2
Trm

−→
"
−→
1 ; Δ) ` ∼ elim

;3,;4
Typ

−→
"1

−→
11 ;
′
Δ
′) ′`′ : "′ [`/GC] @ ;1.

• If all motives and branches are related by corresponding generic equivalence, moreover, ! ⊢ ; ≈ ; ′ : Level,
! | Ψ ⊢? Δ ≃ Δ

′, ! | Ψ; Γ ⊢?) ⇐̂⇒) ′ @ ; , D : (Δ ⊢8 ′) @ ;) ∈ Ψ, 8′ ∈ {E, 2} and ! | Ψ; Γ ⊢2 X : Δ, then

! | Ψ; Γ ⊢< elim;1,;2
Trm

−→
"
−→
1 ; Δ) (box DX) ∼ elim

;3,;4
Typ

−→
"1

−→
11 ;
′
Δ
′) ′ (box DX) : "′ [box DX/GC] @ ;1.

, Vol. 1, No. 1, Article . Publication date: April 2024.

90 • Jason Z. S. Hu and Brigi�e Pientka

We conclude all the laws here fore the generic equivalence.
This generic equivalence will be instantiated twice times: the syntactic equivalence judgments, and the con-

vertibility checking judgments. DeLaM is way more complex than Abel et al. [2017]’s work becauseDeLaM has
computations at two layers, ? and<. Therefore, we must derive the necessary properties from the fundamental
theorems to be proved shortly at each layer.

7.2 Kripke Logical Relations for MLTT

The Kripke logical relations are parameterized by the generic equivalence. It is additionally indexed by another
layering index 9 ∈ {?,<}, which quantifies the types described by the relations. When 9 = ? , we consider types
from MLTT. When 9 = <, we consider all possible types. The reason for this distinction is to handle the lifting
property from layer 2 (which has the terms as ?) or ? to <, where terms from MLTT are brought to DeLaM.
On the semantic side, we need to make sure that terms from MLTT can interact with “native” terms in DeLaM

coherent. We further restrict 9 = ? when 8 = ? .
The Kripke logical relations are defined by

(1) recursion on 8 ,
(2) recursion on 9 , which effectively means the logical relations are 2-layered; also note when 8 = ? , 9 = ? is

determined;
(3) a transfinite well-founded recursion on the universe levels, and
(4) induction-recursion on related types and terms.

In particular, the recursion on 9 is necessary, as the relations when 9 = < depend on the validity judgments of
9 = ? . When we do a recursion on universe levels, we must mind the well-foundedness of universe levels. As
we have discussed in Sec. 4.3, we are sure that all universe levels must find a finite number of steps to descend
to zero. The only problem is l , which is not finite. Thus we must include one large cardinal to handle this level,
hence the transfinite recursion. Luckily, we do not have to think about it most of the time as we cannot really
use l to do anything special at all. Note that our relations do not exactly follow Abel et al. [2017] tightly, where
two relations are defined for types and terms respectively. In our case, we provide simpler inductive-recursive
definitions, where only one relation is defined for types and for terms respectively. This style is more akin to
the PER models in untyped domains by Abel [2013]; Hu et al. [2023], except that our logical relations are Kripke.
We follow a proof schema that combines that of Abel et al. [2017] and that of Abel [2013]; Hu et al. [2023]. We
define the following judgments:

• D :: ! | Ψ; Γ �
9
8) ≈)

′@ ; denotes that two types) and) ′ are related. This relation is defined inductively.
We use D to mark give a name to the derivation as we will do recursion on it.

• ! | Ψ; Γ �
9
8 C ≈ C ′ : El(D) denotes that two terms C and) ′ related by D. This relation is defined by a

recursion on D.
• E :: ! | Ψ �98 Γ ≈ Δ denotes that two contexts are related. It is a generalization of D.

• ! | Ψ; Γ �98 X ≈ X′ : E denotes that two local substitutions X and X′ are related. It is a generalization of

! | Ψ; Γ �
9
8 C ≈ C

′ : El(D) by doing recursion on E.

For convenience, we define the following:

! | Ψ; Γ � 98) @ ; := ! | Ψ; Γ � 98) ≈) @ ;

! | Ψ; Γ �
9
8 C ≈ C

′ :) @ ; := for some) ′, D :: ! | Ψ; Γ �
9
8) ≈)

′ @ ; and ! | Ψ; Γ �
9
8 C ≈ C

′ : El(D)

! | Ψ; Γ � 98 C :) @ ; := ! | Ψ; Γ � 98 C ≈ C :) @ ;

! | Ψ �
9
8 Γ := ! | Ψ �

9
8 Γ ≈ Γ

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 91

! | Ψ; Γ �98 X ≈ X
′ : Δ := for some Δ′, E :: ! | Ψ � 98 Δ ≈ Δ

′ and ! | Ψ; Γ � 98 X ≈ X
′ : E

! | Ψ; Γ �98 X : Δ := ! | Ψ; Γ � 98 X ≈ X : Δ

Now we proceed to define the relations. We begin with the natural numbers.

D ::
! | Ψ; Γ ⊢8)

∗ Nat@ zero ! | Ψ; Γ ⊢8)
′

∗ Nat@ zero

! | Ψ; Γ � 98) ≈)
′ @ zero

Then ! | Ψ; Γ � 98 C ≈ C
′ : El(D) is defined by ! | Ψ; Γ �8 C ≈ C

′ : Nat, which we define as follows:

! | Ψ; Γ ⊢8 C
∗ F : Nat@ zero

! | Ψ; Γ ⊢8 C
′

∗ F ′ : Nat@ zero ! | Ψ; Γ ⊢8 F ≃ F

′ : Nat@ zero ! | Ψ; Γ �8 F ≃ F
′ : Nat

! | Ψ; Γ �8 C ≈ C
′ : Nat

! | Ψ; Γ �8 zero ≃ zero : Nat

! | Ψ; Γ �8 C ≈ C
′ : Nat

! | Ψ; Γ �8 succ C ≃ succ C ′ : Nat

! | Ψ; Γ ⊢8 ` ∼ `′ : Nat@ zero

! | Ψ; Γ �8 ` ≃ `′ : Nat

Then we consider universes.

D ::

! | Ψ; Γ ⊢8)
∗ Ty;1 @ succ ;1 ! | Ψ; Γ ⊢8)

′

∗ Ty;2 @ succ ;2

! ⊢ ;1 ≈ ; : Level ! ⊢ ;2 ≈ ; : Level

! | Ψ; Γ �
9
8) ≈)

′ @ succ ;

Then ! | Ψ; Γ � 98 C ≈ C
′ : El(D) is defined by

• ! | Ψ; Γ ⊢8 C
∗ F : Ty; @ succ ; ,

• ! | Ψ; Γ ⊢8 C
′

∗ F ′ : Ty; @ succ ; ,

• ! | Ψ; Γ ⊢8 F ≃ F
′ : Ty; @ succ ; , which means that C and C ′ are equivalent types at level ; ,

• ! | Ψ; Γ �
9
8 El

; F ≈ El; F ′ @ ; , which means that the corresponding types ofF andF ′ are related.

The last condition requires the well-founded recursion on the universe levels in order to refer back to the relation
for types. Notice that the universe level decreases by one so this definition is valid.

Then we define the relation for Π types.

D ::

! | Ψ; Γ ⊢8)
∗
Π
;,; ′ (G : (1).)1 @ ; ⊔ ; ′ ! | Ψ; Γ ⊢8)

′

∗
Π
;,; ′ (G : (2).)2 @ ; ⊔ ; ′

! | Ψ; Γ ⊢8 (1 @ ; ! | Ψ; Γ ⊢8 (2 @ ; ! | Ψ; Γ, G : (1 @ ; ⊢8)1 @ ; ′

! | Ψ; Γ, G : (2 @ ; ⊢8)2 @ ; ′ ! | Ψ; Γ ⊢8 Π
;,; ′ (G : (1).)1 ≃ Π

;,; ′ (G : (2).)2 @ ; ⊔ ; ′

E :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · !
′ | Φ;Δ �

9
8 (1 ≈ (2 @ ;)

F :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ and !′ | Φ;Δ � 98 B ≈ B
′ : El(E(k)) · !′ | Φ;Δ �98)1 [B/G] ≈)2 [B

′/G] @ ; ′)

! | Ψ; Γ �
9
8) ≈)

′ @ ; ⊔ ; ′

This case is particularly complex. Let us digest the premises one by one. First, we require that both types) and) ′

to reduce to someΠ types. The typing judgments require the components of theΠ types are well-formed. Further,
the Π types themselves are equivalent. Then E requires that (1 and (2 are related under any weakening. This
makes the relation Kripke. F is similar but require)1 and)2 remain related given any two related terms B and B′.
Furthermore, in reality, we should put down sufficient premises for equivalent universes to allow syntactically
different universes to appear in both) and) ′, but due to the size of this rule, we only use ; and ; ′ here. We apply
the same principle in other rules in the rest of this technical report.

Then ! | Ψ; Γ �
9
8 C ≈ C

′ : El(D) is defined by

, Vol. 1, No. 1, Article . Publication date: April 2024.

92 • Jason Z. S. Hu and Brigi�e Pientka

• ! | Ψ; Γ ⊢8 C
∗ F : Π;,; ′ (G : (1).)1 @ ; ⊔ ; ′,

• ! | Ψ; Γ ⊢8 C
′

∗ F ′ : Π;,; ′ (G : (2).)2 @ ; ⊔ ; ′,

• ! | Ψ; Γ ⊢8 F ≃ F
′ : Π;,; ′ (G : (1).)1 @ ; ⊔ ; ′,

• ! | Ψ; Γ ⊢8 F ≃ F
′ : Π;,; ′ (G : (2).)2 @ ; ⊔ ; ′, which is duplicated to make symmetry a simpler property,

• ∀ k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ and A :: !′ | Φ;Δ � 98 B ≈ B′ : El(E(k))·, moreover, we add equivalence
assumptions to remove the effect of type annotations, !′ | Φ;Δ ⊢8 (1 ≃ (′1 @ ; , !′ | Φ;Δ ⊢8 (2 ≃ (′2 @ ; ,
!′ | Φ;Δ, G : (1 @ ; ⊢8)1 ≃) ′

1
@ ; ′, !′ | Φ;Δ, G : (2 @ ; ⊢8)2 ≃) ′

2
@ ; ′, then

!′ | Φ;Δ � 98 (F : Π;,; ′ (G : (′1).)
′
1) B ≈ (F

′ : Π;,; ′ (G : (′2).)
′
2) B

′ : El(F (k,A)).

The next case is neutral types.

D ::
! | Ψ; Γ ⊢8)

∗ + @ ; ! | Ψ; Γ ⊢8)
′

∗ + ′ @ ; ! | Ψ; Γ ⊢8 + ∼ +

′ @ ;

! | Ψ; Γ � 98) ≈)
′ @ ;

Then ! | Ψ; Γ � 98 C ≈ C
′ : El(D) is defined by

• ! | Ψ; Γ ⊢8 C
∗ ` : + @ ; ,

• ! | Ψ; Γ ⊢8 C
′

∗ `′ : + ′ @ ; ,

• ! | Ψ; Γ ⊢8 ` ∼ `′ : + @ ; ,
• ! | Ψ; Γ ⊢8 ` ∼ `′ : + ′ @ ; .

Again, we duplicate ` ∼ `′ to make symmetry easy.
The last case possible for both layers is equivalence of universe levels. This case is introduced for bureaucratic

purposes and often ignored.

D ::
E :: ! | Ψ; Γ �98) ≈)

′ @ ; ′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ � 98) ≈)
′ @ ;

Then ! | Ψ; Γ � 98 C ≈ C
′ : El(D) is defined by ! | Ψ; Γ �98 C ≈ C

′ : El(E).
Nowwe have given all logical relations for types and terms that are available at both layers. In order to give the

logical relations for layer<, we need to first give the logical relations for local contexts and local substitutions,
as the semantics of contextual types depend on them. The complexity of our logical relations primarily comes
from the fact that we must be able to handle computation at two layers (? and<) and different lifting behaviors.

We proceed by defining related local contexts inductively and then the corresponding recursive case for local
substitutions.

E ::
! ⊢ Ψ

! | Ψ �
9
8 · ≈ ·

Then ! | Ψ; Γ � 98 X ≈ X
′ : E is defined by ! | Ψ ⊢8 Γ and then checking Γ:

• if Γ ends with ·, then X = X′ = · |Γ | ;

• if Γ ends with 6, then 6 : Ctx ∈ Ψ and X = X′ = ·
|Γ |
6 ;

E ::
! ⊢ Ψ 6 : Ctx ∈ Ψ

! | Ψ �
9
8 6 ≈ 6

Then ! | Ψ; Γ � 98 X ≈ X
′ : E is defined as ! | Ψ ⊢8 Γ and

• Γ also ends with 6,

• X = X′ = wk
|Γ |
6 .

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 93

E ::
F :: ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ �

9
8 Δ ≈ Δ

′ D :: ! | Ψ;F � 98) ≈)
′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ �
9
8 Δ, G :) @ ; ≈ Δ

′, G :) ′ @ ; ′

Then ! | Ψ; Γ � 98 X ≈ X
′ : E is defined as

• X = X1, C/G ,
• X′ = X′

1
, C ′/G ,

• C :: ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ; Γ � 98 X1 ≈ X
′
1
: F (U),

• ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ; Γ � 98 C ≈ C
′ : El(D(U, C(U))).

where we let D :: ! | Ψ;F �98) ≈)
′ @ ; to be

∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ; Γ �98 X ≈ X
′ : F (U) · !′ | Φ; Γ � 98) [X] ≈)

′ [X′] @ ;

The judgment ! | Ψ;F �98) ≈)
′ @ ; requires the stability under local substitutions of the relation between)

and) ′. We apply the same principle to related terms and derive the judgment ! | Ψ;F � 98 C ≈ C
′ : El(D), which

is given by

∀ U :: !′ | Φ =⇒ ! | Ψ · C :: !′ | Φ; Γ � 98 X ≈ X
′ : F (U) · !′ | Φ; Γ � 98 C [X] ≈ C

′ [X′] : El(D(U, C))

7.3 Properties for Logical Relations When 9 = ?

In this section, we pause our progress of defining the logical relations when 9 = <. Following previous lines
of work, when we give the Kripke logical relations to contextual types, we will have to refer to the validity
judgments of types and terms in the logical relations. Therefore, in this section, we first work out a list of
properties of the logical relations when 9 = ? , and then in the next section, we define semantic judgments
for global contexts and global substitutions, and then validity judgments. Once we have the validity judgments
when 9 = ? , we can then finish writing down the logical relations for contextual types. Without further ado, let
us start proving some lemmas. The list of lemmas mainly follows Abel [2013]; Hu et al. [2023] though we also
take Abel et al. [2017] into consideration.

Lemma 7.5 (Weakening).

• If D :: ! | Ψ; Γ �
?
8) ≈)

′ @ ; andk :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ, then E :: !′ | Φ;Δ �
?
8) ≈)

′ @ ; .

• If ! | Ψ; Γ �
?
8 C ≈ C ′ : El(D) andk :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ, then !′ | Φ;Δ �

?
8 C ′ ≈ C : El(E).

Proof. Induction onD. Note that typing judgments are invariant under weakenings. Also use the weakening
law for generic equivalence. �

Lemma 7.6 (Escape).

• If D :: ! | Ψ; Γ �
?
8) ≈)

′ @ ; , then ! | Ψ; Γ ⊢8) ≃)
′ @ ; .

• If ! | Ψ; Γ �
?
8 C ≈ C ′ : El(D), then ! | Ψ; Γ ⊢8 C ≃ C

′ :) @ ; and ! | Ψ; Γ ⊢8 C ≃ C
′ :) ′ @ ; .

Proof. Induction on D. Use the subsumption law of the generic equivalence. �

Lemma 7.7 (Reflexivity of Neutral). If D :: ! | Ψ; Γ �
?
8) ≈) ′ @ ; , ! | Ψ; Γ ⊢8 ` ∼ `′ :) @ ; and

! | Ψ; Γ ⊢8 ` ∼ `′ :) ′ @ ; , then ! | Ψ; Γ �
?
8 ` ≈ `′ : El(D).

Proof. Induction onD. Use the conversion and subsumption laws of generic equivalence and then the sound-
ness of multi-step reductions and the escape lemma to obtain the equivalence between ` and `′ as normal forms.
In the function case, we use the congruence for neutral law of generic equivalence to show that the results of
applying two neutral function are related. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

94 • Jason Z. S. Hu and Brigi�e Pientka

Lemma 7.8 (Weak Head Expansion).

• If D :: ! | Ψ; Γ �
?
8) ≈) ′ @ ; , ! | Ψ; Γ ⊢8)1

∗) @ ; and ! | Ψ; Γ ⊢8) ′
1

∗) ′ @ ; , then

! | Ψ; Γ �
?
8)1 ≈)

′
1
@ ; .

• If ! | Ψ; Γ �
?
8 C ≈ C ′ : El(D), ! | Ψ; Γ ⊢8 C1

∗ C :) @ ; and ! | Ψ; Γ ⊢8 C ′
1

∗ C ′ :) ′ @ ; , then

! | Ψ; Γ �
?
8 C1 ≈ C

′
1
: El(D).

Proof. Induction on D. Use transitivity of reductions. �

Lemma 7.9 (Symmetry).

• If D :: ! | Ψ; Γ �
?
8) ≈)

′ @ ; , then E :: ! | Ψ; Γ �
?
8)
′ ≈) @ ; .

• If ! | Ψ; Γ �
?
8 C ≈ C ′ : El(D), then ! | Ψ; Γ �

?
8 C ′ ≈ C : El(E).

Proof. We do induction on D. Since our definition is designed with symmetry in mind, symmetry is rather
immediate. �

Lemma 7.10 (Right Irrelevance). If D :: ! | Ψ; Γ �
?
8) ≈) ′ @ ; , E :: ! | Ψ; Γ �

?
8) ≈) ′′ @ ; and

! | Ψ; Γ �
?
8 C ≈ C ′ : El(D), then ! | Ψ; Γ �

?
8 C ≈ C ′ : El(E).

Proof. We do induction onD and then invert E. We consider the function case. In this case, we have premises

D1 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · !
′ | Φ;Δ �

?
8 (1 ≈ (2 @ ;1)

D2 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · ∀ !
′ | Φ;Δ �

?
8 B ≈ B′ : El(D1 (k)) · !

′ | Φ;Δ �
?
8)1 [B/G] ≈)2 [B

′/G] @ ;2)

E1 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · !
′ | Φ;Δ �

?
8 (1 ≈ (′2 @ ;1)

E2 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · ∀ !
′ | Φ;Δ �

?
8 B ≈ B′ : El(E1(k)) · !

′ | Φ;Δ �
?
8)1 [B/G] ≈)

′
2 [B
′/G] @ ;2)

from D and E. Here D1 and D2 are the premises of D, and likewise for E. By determinacy, we know that

) ∗ Π;1,;2 (G : (1).)1

must be unique. Moreover, we also know

) ′ ∗ Π;1,;2 (G : (2).)2

) ′′ ∗ Π;1,;2 (G : (′2).)
′
2

The most difficult part is to show that given

• k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ,
• A :: !′ | Φ;Δ �

?
8 B ≈ B′ : El(E1(k))

• !′ | Φ;Δ ⊢8 (1 ≃ (3 @ ; ,
• !′ | Φ;Δ ⊢8 (2 ≃ (4 @ ; ,
• !′ | Φ;Δ, G : (1 @ ;1 ⊢8)1 ≃)3 @ ;2, and
• !′ | Φ;Δ, G : (′2 @ ;1 ⊢8)

′
2 ≃)4 @ ;2,

then

!′ | Φ;Δ �
?
8 (F : Π;1,;2 (G : (3).)3) B ≈ (F

′ : Π;1,;2 (G : (4).)4) B
′ : El(E2(k,A))

From ! | Ψ; Γ �
?
8 C ≈ C ′ : El(D), together with

• B :: !′ | Φ;Δ �
?
8 B ≈ B′ : El(D1(k)) by IH,

• !′ | Φ;Δ, G : (2 @ ;1 ⊢8)2 ≃)4 @ ;2, where we know ! | Ψ; Γ ⊢8 (2 ≈ (′
2
@ ;1 by escape, the subsumption

law of generic equivalence, transitivity and local context equivalence of syntactic and generic equivalence.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 95

we have

!′ | Φ;Δ �
?
8 (F : Π;1,;2 (G : (3).)3) B ≈ (F

′ : Π;1,;2 (G : (4).)4) B
′ : El(D2 (k,B))

By another IH, we have the goal. �

Lemma 7.11 (Left Irrelevance). If D :: ! | Ψ; Γ �
?
8) ′ ≈) @ ; , E :: ! | Ψ; Γ �

?
8) ′′ ≈) @ ; and

! | Ψ; Γ �
?
8 C ≈ C ′ : El(D), then ! | Ψ; Γ �

?
8 C ≈ C ′ : El(E).

Proof. Immediate by symmetry and right irrelevance. �

The left and right irrelevance lemmas are called the irrelevance lemma. It says that the exact relation between
types is not important as long as their normal forms are related.

Lemma 7.12 (Reflexivity and Transitivity).

• If D1 :: ! | Ψ; Γ �
?
8)1 ≈)2 @ ; and D2 :: ! | Ψ; Γ �

?
8)2 ≈)3 @ ; , then D3 :: ! | Ψ; Γ �

?
8)1 ≈)3 @ ; .

• If E :: ! | Ψ; Γ �
?
8)1 ≈)1 @ ; , ! | Ψ; Γ �

?
8 C1 ≈ C2 : El(D1) and ! | Ψ; Γ �

?
8 C2 ≈ C3 : El(D2), then

! | Ψ; Γ �
?
8 C1 ≈ C3 : El(D3).

• F :: ! | Ψ; Γ �
?
8)1 ≈)1 @ ; .

• If ! | Ψ; Γ �
?
8 C1 ≈ C2 : El(D1), then ! | Ψ; Γ �

?
8 C1 ≈ C1 : El(F).

Proof. We do induction on D1 and then invert D2. The function case is the most complex one. We have the
following premises:

A1 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · !
′ | Φ;Δ �

?
8 (1 ≈ (2 @ ;1)

A2 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · ∀ !
′ | Φ;Δ �

?
8 B ≈ B′ : El(A1 (k)) · !

′ | Φ;Δ �
?
8 (′1 [B/G] ≈ (′2 [B

′/G] @ ;2)

B1 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · !
′ | Φ;Δ �

?
8 (2 ≈ (3 @ ;1)

B2 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · ∀ !
′ | Φ;Δ �

?
8 B ≈ B′ : El(E1(k)) · !

′ | Φ;Δ �
?
8 (′2[B/G] ≈ (′3[B

′/G] @ ;2)

from D and E. HereA1 andA2 are the premises of D1, and B1 and B2 are fromD2. By determinacy, we know
that

)1
∗
Π
;1,;2 (G : (1).(

′
1

)2
∗
Π
;1,;2 (G : (2).(

′
2

)3
∗
Π
;1,;2 (G : (3).(

′
3

Now, we should construct the transitivity for types and terms at the same time to understand how this proof
is going to check out. First we let

C1 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · !
′ | Φ;Δ �

?
8 (1 ≈ (3 @ ;1)

be the result of IH on A1 and B1. Then our goal is to show that
The most difficult part is to show that given

• k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ,
• F :: !′ | Φ;Δ �

?
8 B ≈ B′ : El(C1(k))

• !′ | Φ;Δ ⊢8 (1 ≃ (4 @ ; ,
• !′ | Φ;Δ ⊢8 (3 ≃ (5 @ ; ,
• !′ | Φ;Δ, G : (1 @ ;1 ⊢8 (

′
1
≃ (′

4
@ ;2, and

• !′ | Φ;Δ, G : (3 @ ;1 ⊢8 (
′
3
≃ (′

5
@ ;2,

then

, Vol. 1, No. 1, Article . Publication date: April 2024.

96 • Jason Z. S. Hu and Brigi�e Pientka

•

C2 :: !
′ | Φ;Δ �

?
8 (′1 [B/G] ≈ (′3 [B

′/G] @ ;2

•

!′ | Φ;Δ �
?
8 (F : Π,1(;1 : ;2).G) (4(

′
4B ≈ (F3 : Π

;1,;2 (G : (5).(
′
5) B
′ : El(C2)

where C:
∗ F: for : ∈ {1, 2, 3}.

Our plan is the following:

(1) We first relate (′
1
[B/G] and (′

2
[B/G], resp. (F1 : Π;1,;2 (G : (4).(

′
4
) B and (F2 : Π;1,;2 (G : (4).(

′
4
) B , which

requires
!′ | Φ;Δ �

?
8 B ≈ B : El(A1 (k))

which is derived from reflexivity and irrelevance;
(2) and then relate (′

2
[B/G] and (′

3
[B/G], resp. (F2 : Π;1,;2 (G : (4).(

′
4
) B and (F2 : Π;1,;2 (G : (5).(

′
5
) B′, which

requires
!′ | Φ;Δ �

?
8 B ≈ B′ : El(B1(k))

which is immediate from irrelevance.

The final missing piece is reflexivity. For types, it is just a result from transitivity and symmetry. For terms, it is
reflexivity and transitivity of related types and then irrelevance.

This concludes the function case. �

Next, we work on the properties for related local contexts and local substitutions. We first consider the built
property of weakening. Weakening can be seen as a case of the Yoneda lemma, where we only depend on
composition of weakenings.

Lemma 7.13 (Weakening).

• If D :: ! | Ψ �
?
8 Δ ≈ Δ

′ and U :: !′ | Φ =⇒ ! | Ψ, then E :: !′ | Φ �
?
8 Δ ≈ Δ

′.

• If ! | Ψ; Γ �
?
8 X ≈ X′ : D, U :: !′ | Φ =⇒ ! | Ψ and g :: !′ | Φ; Γ′ =⇒8 Γ, then !′ | Φ; Γ′ �

?
8 X ≈ X′ : E.

Proof. Induction on D. In the two base cases, we know !′ ⊢ Φ by weakening. In the step case, we simply
store the given weakenings in a composition. �

Notice that the second statement is a little bit strengthened. It is possible due to local weakening of related
types and terms.

We should first prove the reflexivity between identity local substitutions before proving the the escape lemma.

Lemma 7.14 (Reflexive Local Weakenings). If ! | Ψ ⊢8 Δ, Γ ≈ Δ
′, Γ and D :: ! | Ψ �

?
8 Δ ≈ Δ

′, then

! | Ψ;Δ, Γ �
?
8 wk

|Γ |

Δ
≈ wk

|Γ |

Δ
: D.

Proof. We do induction on D and consider the step case

D ::
E :: ∀U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ �

?
8 Δ ≈ Δ

′ F :: ! | Ψ; E �
?
8) ≈)

′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ �
?
8 Δ, G :) @ ; ≈ Δ

′, G :) ′ @ ; ′

B ::∀U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ;Δ, G :) @ ;, Γ �
?
8 wk

1+|Γ |

Δ
≈ wk

1+|Γ |

Δ
: E(U) (by IH)

U ::!′ | Φ =⇒ ! | Ψ (by assumption)

!′ | Φ;Δ, G :) @ ;, Γ �
?
8) [wk

1+|Γ |

Δ
] ≈) ′ [wk

1+|Γ |

Δ
] @ ; (as F (U,B(U)))

A ::!′ | Φ;Δ, G :) @ ;, Γ �
?
8) ≈)

′ @ ;

!′ | Φ ⊢8 Γ, G :) @ ;,Δ (by weakening and presupposition)

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 97

!′ | Φ;Δ, G :) @ ;, Γ ⊢8 G ∼ G :) @ ; (by congruence for neutrals of generic equivalence)

!′ | Φ;Δ, G :) @ ;, Γ �
?
8 G ≈ G : El(A) (by reflexivity of neutral)

! | Ψ; Γ, G :) @ ;,Δ �
?
8 wk

1+|Γ |

Δ
, G/G ≈ wk

1+|Γ |

Δ
, G/G : D

Thus we conclude the goal. �

Corollary 7.15 (Reflexive Local Identity Substitutions). If ! | Ψ ⊢8 Γ ≈ Δ and D :: ! | Ψ �
?
8 Γ ≈ Δ,

then

! | Ψ; Γ �
?
8 id ≈ id : D.

Proof. This is a specialization of the previous lemma. �

Knowing all local identity substitutions are reflexively related, we can then prove the escape lemma.

Lemma 7.16 (Escape).

• If D :: ! | Ψ �
?
8 Δ1 ≈ Δ2, then ! | Ψ ⊢8 Δ1 ≃ Δ2.

• If ! | Ψ; Γ �
?
8 X ≈ X′ : D, then ! | Ψ; Γ ⊢8 X ≃ X

′ : Δ1 and ! | Ψ; Γ ⊢8 X ≃ X
′ : Δ2.

Proof. Induction on D. We consider the step case.

D ::
E :: ∀U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ �

?
8 Δ1 ≈ Δ2 F :: ! | Ψ; E �

?
8) ≈)

′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ �
?
8 Δ1, G :) @ ; ≈ Δ2, G :) ′ @ ; ′

! | Ψ ⊢8 Δ1 ≃ Δ2 (by IH)

! | Ψ;Δ1 �
?
8 id ≈ id : E(id) (by Corollary 7.15)

! | Ψ;Δ1 �
?
8) ≈)

′ @ ; (as F (id, E(id)))

! | Ψ;Δ1 ⊢8) ≃)
′ @ ; (by escape)

Hence we conclude the first statement.
In the second statement, we have X = X1, C/G and X′ = X′

1
, C ′/G , then

! | Ψ; Γ �
?
8 X1 ≈ X

′
1 : E(id) (by assumption)

! | Ψ; Γ ⊢8 X1 ≃ X
′
1 : Δ1 and ! | Ψ; Γ ⊢8 X1 ≃ X

′
1 : Δ2 (by IH)

! | Ψ; Γ �
?
8 C ≈ C ′ : El(F (id, E(id))) (by assumption)

! | Ψ; Γ ⊢8 C ≃ C
′ :) [X1] @ ; (by escape of related terms)

Therefore we conclude the second statement as well. �

Lemma 7.17 (Symmetry).

• If D :: ! | Ψ �
?
8 Δ1 ≈ Δ2, then E :: ! | Ψ �

?
8 Δ2 ≈ Δ1.

• If ! | Ψ; Γ �
?
8 X ≈ X′ : D, then ! | Ψ; Γ �

?
8 X′ ≈ X : E.

Proof. Induction on D. Use the symmetry of related types to obtain the goal. �

Lemma 7.18 (Right Irrelevance). If D :: ! | Ψ �
?
8 Δ1 ≈ Δ2, E :: ! | Ψ �

?
8 Δ1 ≈ Δ3 and ! | Ψ; Γ �

?
8 X ≈ X′ :

D, then ! | Ψ; Γ �
?
8 X ≈ X′ : E.

Proof. Do induction on D and then invert E. Use the right irrelevance of related terms. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

98 • Jason Z. S. Hu and Brigi�e Pientka

Lemma 7.19 (Left Irrelevance). IfD :: ! | Ψ �
?
8 Δ1 ≈ Δ2, E :: ! | Ψ �

?
8 Δ3 ≈ Δ1 and ! | Ψ; Γ �

?
8 X ≈ X′ : D,

then ! | Ψ; Γ �
?
8 X ≈ X′ : E.

Proof. A direct consequence of right irrelevance and symmetry. �

Lemma 7.20 (Reflexivity and Transitivity).

• If D1 :: ! | Ψ �
?
8 Δ1 ≈ Δ2 and D2 :: ! | Ψ �

?
8 Δ2 ≈ Δ3, then D3 :: ! | Ψ �

?
8 Δ1 ≈ Δ3.

• If ! | Ψ; Γ �
?
8 X1 ≈ X2 : D1 and ! | Ψ; Γ �

?
8 X2 ≈ X3 : D2, then ! | Ψ; Γ �

?
8 X1 ≈ X3 : D3.

• E :: ! | Ψ �
?
8 Δ1 ≈ Δ1.

• If ! | Ψ; Γ �
?
8 X1 ≈ X2 : D1, then ! | Ψ; Γ �

?
8 X1 ≈ X1 : E.

Proof. Do induction on D1 and then invert D2. The proof proceeds very similarly to the relations for types
and terms. We only consider the step case. In this case, we have the following premises:

• F1 :: ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ �
?
8 Δ
′
1 ≈ Δ

′
2,

• F2 :: ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ �
?
8 Δ
′
2
≈ Δ

′
3
,

• A1 :: ! | Ψ;F1 �
?
8)1 ≈)2 @ ; ,

• A2 :: ! | Ψ;F2 �
?
8)2 ≈)3 @ ; ,

• If ! | Ψ;F1 �
?
8) ≈)

′ @ ; and ! | Ψ;F2 �
?
8)
′ ≈) ′′ @ ; , then ! | Ψ;F3 �

?
8) ≈)

′′ @ ; .

• ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ; Γ �
?
8 C1 ≈ C2 : El(A1 (U, F1(U))),

• ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ; Γ �
?
8 C2 ≈ C3 : El(A2 (U, F2(U))),

By IH, it is easy to show

F3 :: ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ �
?
8 Δ
′
1 ≈ Δ

′
3

The difficult goals are

• A3 :: ! | Ψ;F3 �
?
8)1 ≈)3 @ ; , and

• ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ; Γ �
?
8 C1 ≈ C3 : El(A3 (U, F3(U))).

We first assume U :: !′ | Φ =⇒ ! | Ψ. To prove the first statement, we further assume !′ | Φ; Γ �
9
8 X ≈ X

′ : F3(U).
Then we do a similar reasoning to the function case for transitivity of related types.

(1) We first relate)1 [X] and)2 [X] by using reflexivity.
(2) Then we related)2 [X] and)3 [X

′].
(3) Then we apply transitivity of related types.

To prove the second statement, we can simply use irrelevance so that transitivity can eventually apply on
A3 (U, F3(U)). �

Lemma 7.21 (Transitivity). Given

• F1 :: ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ �
?
8 Δ1 ≈ Δ2,

• F2 :: ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ �
?
8 Δ2 ≈ Δ3, and

• F3 :: ∀ U :: !′ | Φ =⇒ ! | Ψ · !′ | Φ �
?
8 Δ1 ≈ Δ3,

then

• if D1 : 4 : ! | Ψ;F1 �
?
8) ≈) ′ @ ; and D2 :: ! | Ψ;F2 �

?
8) ′ ≈) ′′ @ ; , then

D3 :: ! | Ψ;F3 �
?
8) ≈)

′ @ ; ;

• if ! | Ψ;F1 �
?
8 C ≈ C ′ : El(D1) and ! | Ψ;F2 �

?
8 C ′ ≈ C ′′ : El(D3), then ! | Ψ;F3 �

?
8 C ≈ C ′′ : El(D3).

Proof. The first statement is what we have proved in transitivity previously. The second statement uses the
transitivity of related terms. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 99

7.4 Semantic Well-formedness of Global Contexts and Related Global Substitutions

Following previous lines of work, when we give the Kripke logical relations to contextual types, we will have to
refer to related types and terms in the logical relations under some invariants. Therefore, as early as it might seem,
we must consider the semantics for global contexts and global substitutions to see what it needs to learn how
exactly the semantics of contextual types can be defined. We then describe the semantics of global contexts and
global substitutions, similar to that of local contexts and local substitutions, as inductive-recursive definitions.
Types and terms in a global substitution consist of two components:

(1) the use of logical relations showing related terms having related computation,
(2) together with the maintenance of syntactic structures, if the type or the term comes from layer E or 2 .

To handle the first component, we define several auxiliary definitions. These definitions essentially state that log-
ical relations should remain stable under weakenings and local substitutions. We give the definitions as follows.
We define ! | Ψ; Γ �

?
≥?) ≈)

′ @ ; to be given

• U :: !′ | Φ =⇒ ! | Ψ,
• : ≥ ? , and
• !′ | Φ;Δ �

?

:
X ≈ X′ : Γ,

it holds that

!′ | Φ;Δ �
?

:
) [X] ≈) ′ [X′] @ ;

Similarly, we define ! | Ψ; Γ �
?
≥? C ≈ C

′ :) @ ; to be given

• U :: !′ | Φ =⇒ ! | Ψ,
• : ≥ ? , and
• !′ | Φ;Δ �

?

:
X ≈ X′ : Γ,

we have

!′ | Φ;Δ �
?

:
C [X] ≈ C ′ [X′] :) [X] @ ;

We also need a similar relation for local contexts and local substitutions. ! | Ψ �
?
≥? Δ ≈ Δ

′ is defined as

∀ U :: !′ | Φ =⇒ ! | Ψ and : ≥ ? · !′ | Φ �
9

:
Δ ≈ Δ

We define ! | Ψ; Γ �
?
≥? X ≈ X

′ : Δ as

• U :: !′ | Φ =⇒ ! | Ψ,
• : ≥ ? , and
• !′ | Φ;Δ′ �

?

:
X1 ≈ X

′
1
: Γ,

we have

!′ | Φ;Δ′ �
?

:
X ◦ X1 ≈ X

′ ◦ X1 : Δ

We define their non-relational version:

! | Ψ; Γ �
?
≥?) @ ; := ! | Ψ; Γ �

?
≥?) ≈) @ ;

! | Ψ; Γ �
?
≥? C :) @ ; := ! | Ψ; Γ �

?
≥? C ≈ C :) @ ;

! | Ψ �
?
≥? Δ := ! | Ψ �

?
≥? Δ ≈ Δ

! | Ψ; Γ �
?
≥? X : Δ := ! | Ψ; Γ �

?
≥? X ≈ X : Δ

These would have been the semantic judgments for the fundamental theorems for MLTT. However, they are not
enough if we want to establish the fundamental theorems for the whole DeLaM. That is because the semantic

, Vol. 1, No. 1, Article . Publication date: April 2024.

100 • Jason Z. S. Hu and Brigi�e Pientka

judgments for DeLaM require stability under all sorts of substitutions, including universe, global and local sub-
stitutions. Thus, in this section, we will define when a global context and global substitutions are semantically
well-formed in order to state the semantic judgments.

These definitions are closed under weakenings and local substitutions by design:

Lemma 7.22 (Weakenings).

• If ! | Ψ; Γ �
?
≥?) ≈)

′ @ ; and U :: !′ | Φ =⇒ ! | Ψ, then !′ | Φ; Γ �
?
≥?) ≈)

′ @ ; .

• If ! | Ψ; Γ �
?
≥? C ≈ C ′ :) @ ; and U :: !′ | Φ =⇒ ! | Ψ, then !′ | Φ; Γ �

?
≥? C ≈ C

′ :) @ ; .

• If ! | Ψ �
?
≥? Δ ≈ Δ

′ and U :: !′ | Φ =⇒ ! | Ψ, then !′ | Φ �
?
≥? Δ ≈ Δ

′.

• If ! | Ψ; Γ �
?
≥? X ≈ X′ : Δ and U :: !′ | Φ =⇒ ! | Ψ, then !′ | Φ; Γ �

?
≥? X ≈ X

′ : Δ.

Lemma 7.23 (Local Substitutions).

• If ! | Ψ; Γ �
?
≥?) ≈)

′ @ ; and ! | Ψ;Δ �
?
≥? X ≈ X′ : Γ, then ! | Ψ;Δ �

?
≥?) [X] ≈)

′ [X′] @ ; .

• If ! | Ψ; Γ �
?
≥? C ≈ C ′ :) @ ; and ! | Ψ;Δ �

?
≥? X ≈ X

′ : Γ, then ! | Ψ;Δ �
?
≥? C [X] ≈ C

′ [X′] :) [X] @ ; .

• If ! | Ψ; Γ �
?
≥? X ≈ X′ : Δ and ! | Ψ;Δ′ �

?
≥? X1 ≈ X

′
1
: Γ, then ! | Φ;Δ′ �

?
≥? X ◦ X1 ≈ X

′ ◦ X′
1
: Δ.

Lemma 7.24 (Local Weakenings). If ! | Ψ ⊢? Δ, Γ ≈ Δ
′, Γ and ! | Ψ �

?
≥? Δ ≈ Δ

′, then

! | Ψ;Δ, Γ � 9≥8 wk
|Γ |

Δ
≈ wk

|Γ |

Δ
: Δ.

Proof. Notice that a local weakening only shorten a well-formed local substitution. �

Lemma 7.25 (Semantic Conversion). If ! | Ψ; Γ �
?
≥? C ≈ C ′ :) @ ; and ! | Ψ; Γ �

?
≥?) ≈) ′ @ ; ,

! | Ψ; Γ �
?
≥? C ≈ C

′ :) ′ @ ; .

Lemma 7.26 (PER). ! | Ψ; Γ �
?
≥?) ≈) ′ @ ; , ! | Ψ; Γ �

?
≥? C ≈ C ′ :) @ ; , ! | Ψ �

?
≥? Δ ≈ Δ

′ and

! | Ψ; Γ � 9≥8 X ≈ X
′ : Δ are PERs.

Next, we handle the second component to record the syntactic information of types and terms. Following
Hu and Pientka [2024a,b], we use an inductive definition to keep track of the syntactic structure, in which se-
mantic information is also maintained. In fact, we need three mutually inductive judgments very similar to
typing judgments.

• ! | Ψ; Γ �
?
2) @ ; stores the syntactic information and the semantic information of) and all its sub-

structures.
• ! | Ψ; Γ �

?
8 C :) @ ; stores the syntactic information and the semantic information of C and all its

sub-structures.
• ! | Ψ; Γ �

?
8 X : Δ stores the syntactic information and the semantic information of all terms in X .

We restrict the parameter layer 8 ∈ {E, 2}. These definitions will make use of ! | Ψ; Γ �
?
≥?) @ ; , ! | Ψ; Γ �

?
≥? C :

) @ ; and ! | Ψ; Γ �
?
≥? X : Δ.

Their definitions are designed to imply semantic information:

Lemma 7.27.

• If ! | Ψ; Γ �
?
2) @ ; , then ! | Ψ; Γ �

?
≥?) @ ; .

• If ! | Ψ; Γ �
?
8 C :) @ ; , then ! | Ψ; Γ �

?
≥? C :) @ ; .

• If ! | Ψ; Γ �
?
8 X : Δ, then ! | Ψ; Γ �

?
≥? X : Δ.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 101

Further we let

! | Ψ; Γ �
?
2) ≈)

′ @ ; := ! | Ψ; Γ �
?
2) @ ; and) =) ′

! | Ψ; Γ �
?
8 C ≈ C ′ :) @ ; := ! | Ψ; Γ �

?
8 C :) @ ; and C = C ′

! | Ψ; Γ �
?
8 X ≈ X′ : Δ := ! | Ψ; Γ �

?
8 X : Δ and X = X′

We first consider the judgment for types:

! ⊢ ; ≈ zero : Level ! | Ψ; Γ �
?
≥? Nat@ ;

! | Ψ; Γ �
?
2 Nat@ ;

! ⊢ ; ≈ succ ; ′ : Level ! | Ψ; Γ �
?
≥? Ty; ′ @ ;

! | Ψ; Γ �
?
2 Ty; ′ @ ;

! ⊢ ; ≈ ;1 ⊔ ;2 : Level ! ⊢ ;1 : Level

! ⊢ ;2 : Level ! | Ψ; Γ �
?
2 (@ ;1 ! | Ψ; Γ, G : (@ ;1 �

?
2) @ ;2 ! | Ψ; Γ �

?
≥? Π

;1,;2 (G : ().) @ ;

! | Ψ; Γ �
?
2 Π

;1,;2 (G : ().) @ ;

! ⊢ ; ≈ ; ′ : Level * : (Δ ⊢2 @ ; ′) ∈ Ψ ! | Ψ; Γ �
?
2 X : Δ ! | Ψ; Γ �

?
≥? *

X @ ;

! | Ψ; Γ �
?
2 * X @ ;

! ⊢ ; ′ ≈ ; : Level ! | Ψ; Γ �
?
2 C : Ty; ′ @ ; ! | Ψ; Γ �

?
≥? El;

′

C @ ;

! | Ψ; Γ �
?
2 El;

′

C @ ;

The judgment not only keeps track of the syntactic structure of types but also the semantic information for both
layers ? and<. The semantic information for both layers is critical to enable code running, when we refer to
the code of types at layer ? and<, resp..

The judgment for local substitutions is simple, which simply generalizes that for terms:

! | Ψ; Γ �
?
≥? ·

: : ·

! | Ψ; Γ �
?
8 ·

: : ·

! | Ψ; Γ �
?
≥? ·

:
6 : ·

! | Ψ; Γ �
?
8 ·

:
6 : ·

! | Ψ; Γ �
?
≥? wk:6 : 6

! | Ψ; Γ �
?
8 wk:6 : 6

! | Ψ; Γ �
?
8 X : Δ ! | Ψ; Γ �

?
8 C :) [X] @ ; ! | Ψ; Γ �

?
≥? X, C/G : Δ, G :) @ ;

! | Ψ; Γ �
?
8 X, C/G : Δ, G :) @ ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

102 • Jason Z. S. Hu and Brigi�e Pientka

We also keep track of both syntactic and semantic information of terms. We give the definition as follows (the
parameter 8 is restricted to be in {E, 2} when used only for the rules below):

G :) @ ; ′ ∈ Γ ! ⊢ ; ≈ ; ′ : Level ! | Ψ; Γ �
?
≥?)

′ ≈) @ ; ! | Ψ; Γ �
?
≥? G :) ′ @ ;

! | Ψ; Γ �
?
8 G :) ′ @ ;

D : (Δ ⊢8 ′) @ ; ′) ∈ Ψ 8′ ∈ {E, 2}

8′ ≤ 8 ! | Ψ; Γ �
?
8 X : Δ ! ⊢ ; ≈ ; ′ : Level ! | Ψ; Γ �

?
≥?)

′ ≈) [X] @ ; ! | Ψ; Γ �
?
≥? D

X :) ′ @ ;

! | Ψ; Γ �
?
8 D

X :) ′ @ ;

! ⊢ ; ≈ succ (succ ; ′) : Level ! | Ψ; Γ �
?
≥?) ≈ Tysucc ; ′ @ ; ! | Ψ; Γ �

?
≥? Ty; ′ :) @ ;

! | Ψ; Γ �
?
2 Ty; ′ :) @ ;

! ⊢ ; ≈ succ zero : Level ! | Ψ; Γ �
?
≥?) ≈ Tyzero @ ; ! | Ψ; Γ �

?
≥? Nat :) @ ;

! | Ψ; Γ �
?
2 Nat :) @ ;

! ⊢ ; ≈ zero : Level ! | Ψ; Γ �
?
≥?) ≈ Nat@ ; ! | Ψ; Γ �

?
≥? zero :) @ ;

! | Ψ; Γ �
?
2 zero :) @ ;

! | Ψ; Γ �
?
2 C : Nat@ zero

! ⊢ ; ≈ zero : Level ! | Ψ; Γ �
?
≥?) ≈ Nat@ ; ! | Ψ; Γ �

?
≥? succ C :) @ ;

! | Ψ; Γ �
?
2 succ C :) @ ;

! | Ψ; Γ, G : Nat@ zero �
?
2 " @ ; ! | Ψ; Γ �

?
2 B : " [zero/G] @ ;

! | Ψ; Γ, G : Nat@ zero, ~ : " @ ; �
?
2 B′ : " [succ G/G] @ ; ! | Ψ; Γ �

?
2 C : Nat@ zero

! ⊢ ; ′ ≈ ; : Level ! | Ψ; Γ �
?
≥?) ≈ " [C/G] @ ; ′ ! | Ψ; Γ �

?
≥? elim;

Nat (G.") B (G,~.B
′) C :) @ ; ′

! | Ψ; Γ �
?
2 elim;

Nat (G.") B (G,~.B
′) C :) @ ; ′

! ⊢ ;1 : Level

! ⊢ ;2 : Level ! | Ψ; Γ �
?
2 B : Ty;1 @ succ ;1 ! | Ψ; Γ, G : El;1 (@ ;1 �

?
2 C : Ty;2 @ succ ;2

! ⊢ ; ≈ succ (;1 ⊔ ;2) : Level ! | Ψ; Γ �
?
≥?) ≈ Ty;1⊔;2 @ ; ! | Ψ; Γ �

?
≥? Π

;1,;2 (G : B).C :) @ ;

! | Ψ; Γ �
?
2 Π

;1,;2 (G : B).C :) @ ;

! ⊢ ;1 : Level ! ⊢ ;2 : Level ! | Ψ; Γ �
?
2 (@ ;1 ! | Ψ; Γ, G : (@ ;1 �

?
2 C :) @ ;2

! ⊢ ; ≈ ;1 ⊔ ;2 : Level ! | Ψ; Γ �
?
≥?) ≈ Π

;1,;2 (G : ().) @ ; ! | Ψ; Γ �
?
≥? _;1,;2 (G : ().C :) ′ @ ;

! | Ψ; Γ �
?
2 _;1,;2 (G : ().C :) ′ @ ;

! ⊢ ;1 : Level ! | Ψ; Γ �
?
2 (@ ;1

! | Ψ; Γ, G : (@ ; �
?
2) @ ;2 ! | Ψ; Γ �

?
2 C : Π;1,;2 (G : ().) @ ;1 ⊔ ;2 ! | Ψ; Γ �

?
2 B : (@ ;1

! ⊢ ; ≈ ;2 : Level ! | Ψ; Γ �
?
≥?)

′ ≈) [B/G] @ ; ! | Ψ; Γ �
?
≥? (C : Π

;1,;2 (G : ().)) B :) ′ @ ;

! | Ψ; Γ �
?
2 (C : Π

;1,;2 (G : ().)) B :) ′ @ ;

These rules strictly decrease on the structures of types, terms and local substitutions. The purpose of these rules
are to remember all computational and syntactic information of all sub-structures. Notice that the annotated

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 103

types do not necessarily match up with the precise types which termsmight have. For example, zero is quantified
to have seemingly some arbitrary type) . This, however, is not an accurate understanding. In fact,) is quantified
by ! | Ψ; Γ �

?
≥? zero :) @ ; , so if we provide a proof of ! | Ψ; Γ �

?
≥?) ≈)

′ @ ; , then we obtain ! | Ψ; Γ �
?
≥?

zero :) ′ @ ; by irrelevance. More specifically,

Lemma 7.28 (Conversion). If ! | Ψ; Γ �
?
2 C :) @ ; and ! | Ψ; Γ �

?
≥?) ≈)

′ @ ; , then ! | Ψ; Γ �
?
2 C :) ′ @ ; .

The rules are designed in this way so that there is a semantic structure which the recursors can recurse on.
Moreover, these rules are closed under weakenings and local substitutions, which is particularly important for
use of global variables.

Lemma 7.29 (Weakenings).

• If ! | Ψ; Γ �
?
2) @ ; and U :: !′ | Φ =⇒ ! | Ψ, then !′ | Φ; Γ �

?
2) @ ; .

• If 8 ∈ {E, 2}, ! | Ψ; Γ �
?
8 C :) @ ; and U :: !′ | Φ =⇒ ! | Ψ, then !′ | Φ; Γ �

?
8 C :) @ ; .

• If 8 ∈ {E, 2}, ! | Ψ; Γ �
?
8 X : Δ and U :: !′ | Φ =⇒ ! | Ψ, then !′ | Φ; Γ �

?
8 X : Δ.

Lemma 7.30 (Local Substitutions).

• If ! | Ψ; Γ �
?
2) @ ; and ! | Ψ;Δ �

?
2 X : Γ, then ! | Ψ;Δ �

?
2) [X] @ ; .

• If 8 ∈ {E, 2}, ! | Ψ; Γ �
?
8 C :) @ ; and ! | Ψ;Δ �

?
8 X : Γ, then ! | Ψ;Δ �

?
8 C [X] :) [X] @ ; .

• If 8 ∈ {E, 2}, ! | Ψ; Γ �
?
8 X : Δ and ! | Ψ;Δ′ �

?
8 X′ : Γ, then ! | Φ;Δ′ �

?
8 X ◦ X′ : Δ.

Proof. Weproceed bymutual induction. The syntax is already closed under local substitutions. The semantics
is also closed under local substitutions by Lemma 7.23. �

We can lift from layer E to layer 2 .

Lemma 7.31 (Lifting).

• If ! | Ψ; Γ �
?
E C :) @ ; , then ! | Ψ; Γ �

?
2 C :) @ ; .

• If ! | Ψ; Γ �
?
E X : Δ, then ! | Ψ; Γ �

?
2 X : Δ.

Lemma 7.32 (Local Weakenings). If ! | Ψ ⊢? Δ, Γ ≈ Δ
′, Γ and ! | Ψ �

?
≥? Δ ≈ Δ

′, then

! | Ψ;Δ, Γ �
?
2 wk

|Γ |

Δ
: Δ.

In the semantic rules for global contexts and global substitutions, we use the auxiliary definitions above. Sim-
ilar to the counterparts for local contexts and local substitutions, the rules are defined in an induction-recursion.
The key idea is to make sure the relation is invariant under universe weakenings. We also impose invariance
under global substitutions for related local contexts, types and terms. We are going to define the following defi-
nitions:

• D :: ! � Ψ ≈ Φ denotes the semantic related global contexts.
• ! | Ψ � f ≈ f ′ : D denotes the semantic relation between the global substitutions f and f ′. The two
definitions above are defined inductive-recursively.
• F :: ! | E �

?
? Γ given E :: ∀ \ :: !′ =⇒ ! · ! � Φ denotes Γ is semantically well-formedness and is stable

under universe weakening and related global substitutions.
• ! | Ψ;F �

?
?) @ ; denotes that) is semantically well-formedness and is stable under universe weakening

and related global substitutions.

We now move on to the actual definitions.

D ::
! � · ≈ ·

! | Ψ � f ≈ f ′ : D is defined as ! ⊢ Ψ and f = f ′ = ·.

, Vol. 1, No. 1, Article . Publication date: April 2024.

104 • Jason Z. S. Hu and Brigi�e Pientka

D ::
E :: ∀ \ :: !′ =⇒ ! · !′ � Φ ≈ Φ

′

! � Φ, 6 : Ctx ≈ Φ
′, 6 : Ctx

! | Ψ � f ≈ f ′ : D is defined as

• f = f1, Γ/6 and f ′ = f ′
1
, Γ′/6,

• ∀ \ :: !′ =⇒ ! · !′ | Ψ � f1 ≈ f ′1 : E(\), and

• ! | Ψ �
?
≥? Γ ≈ Γ

′.

D ::
E :: ∀ \ :: !′ =⇒ ! · !′ � Φ ≈ Φ

′ ! | E �
?
? Γ ≈ Γ

′ 8 ∈ {2, ?}

! � Φ,* : (Γ ⊢8 @ ;) ≈ Φ
′,* : (Γ′ ⊢8 @ ;)

! | Ψ � f ≈ f ′ : D is defined as

• f = f1,) /* and f ′ = f ′1,)
′/* ,

• ∀ \ :: !′ =⇒ ! · !′ | Ψ � f1 ≈ f ′
1
: E(\),

• We analyze 8 .
– If 8 = 2 , then) =) ′, ! | Ψ; Γ �

?
2) @ ; and ! | Ψ; Γ′ �

?
2) @ ; .

– Otherwise, 8 = ? , then ! | Ψ; Γ �
?
≥?) ≈)

′ @ ; and ! | Ψ; Γ′ �
?
≥?) ≈)

′ @ ; .

where ! | E �
?
? Γ ≈ Δ is defined as

∀ \ :: !′ =⇒ ! and !′ | Ψ � f ≈ f ′ : E(\) and : ∈ {?,<} · !′ | Ψ �
?

:
Γ [f] ≈ Δ[f ′]

D ::
E :: ∀ \ :: !′ =⇒ ! · !′ � Φ ≈ Φ

′ F :: ! | E �
?
? Γ ≈ Γ

′ A :: ! | Ψ;F �
?
?) ≈)

′ @ ; 8 ∈ {E, 2}

! � Φ, D : (Γ ⊢8) @ ;) ≈ Φ
′, D : (Γ′ ⊢8)

′ @ ;)

! | Ψ � f ≈ f ′ : D is defined as

• f = f1, C/D and f ′ = f ′
1
, C ′/D,

• ∀ \ :: !′ =⇒ ! · !′ | Ψ � f1 ≈ f ′
1
: E(\),

• Since we know 8 ∈ {E, 2}, we have C = C ′, ! | Ψ; Γ [f1] �
?
8 C :) [f1] @ ; and

! | Ψ; Γ′ [f ′
1
] �

?
8 C :) ′ [f ′

1
] @ ; . In an extension where 8 = ? is possible, then we use

! | Ψ; Γ [f1] �
?
≥? C ≈ C

′ :) [f1] @ ; and ! | Ψ; Γ′ [f ′
1
] �

?
≥? C ≈ C

′ :) ′ [f ′
1
] @ ; .

where ! | Ψ;F �
?
?) ≈)

′ @ ; is defined as given

• \ :: !′ =⇒ !,
• B :: !′ | Ψ � f ≈ f ′ : E(\),
• : ∈ {?,<}, and
• !′ | Ψ;Δ �

?

:
X ≈ X′ : F (\,B, :),

we have
!′ | Ψ;Δ �

?

:
) [f] [X] ≈) ′ [f ′] [X′] @ ;

Now we consider the properties of the new definitions.

Lemma 7.33 (Weakening).

• If D :: ! � Φ ≈ Φ
′ and \ :: !′ =⇒ !, then D′ :: !′ � Φ ≈ Φ

′.

• If ! | Ψ � f ≈ f ′ : D and \ :: !′ =⇒ !, then !′ | Ψ � f ≈ f ′ : D′.

Proof. Immediate by induction on D. We simply use the composition of universe weakenings. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 105

Lemma 7.34 (Reflexive Global Weakening). If ! ⊢ Φ,Ψ and D :: ! � Φ ≈ Φ
′, then

! | Φ,Ψ � wk
|Ψ |

Φ
≈ wk

|Ψ |

Φ
: D.

Proof. We do induction on D.

Case

D ::
E :: ∀ \ :: !′ =⇒ ! · !′ � Φ1 ≈ Φ

′
1

! � Φ1, 6 : Ctx ≈ Φ
′
1, 6 : Ctx

We have given \ :: !′ =⇒ !,

! | Φ1, 6 : Ctx,Ψ � wk
1+|Ψ |

Φ1
≈ wk

1+|Ψ |

Φ1
: E(\) (by IH)

U :: !′′ | Ψ′ =⇒ !′ | Φ1, 6 : Ctx,Ψ

: ∈ {?,<} (by assumption)

!′′ | Ψ′ �
?

:
6 ≈ 6 (by definition)

In the last line, we know 6 exits in Ψ
′ because U is a weakening. Hence we have this case.

Case

D ::
E :: ∀ \ :: !′ =⇒ ! · !′ � Φ1 ≈ Φ

′
1 ! | E �

?
? Γ ≈ Γ

′ 8 ∈ {2, ?}

! � Φ1,* : (Γ ⊢8 @ ;) ≈ Φ
′
1,* : (Γ′ ⊢8 @ ;)

Subcase If 8 = ? , then given \ :: !′ =⇒ ! and : ∈ {?,<}, then we further assume
U :: !′′ | Ψ′ =⇒ !′ | Φ1,* : (Γ ⊢8 @ ;),Ψ and !′′ | Ψ′;Δ �

?

:
X ≈ X′ : Γ, we should prove

!′′ | Ψ′ ;Δ �
?

:
* X ≈ * X′ @ ;

There is a symmetric proof for Γ′ which we omit here. We proceed as follows:

!′′ | Ψ′ ;Δ ⊢: X ≃ X
′ : Γ (by escape, Lemma 7.27)

!′′ | Ψ′ ;Δ ⊢: *
X ∼ * X′ @ ; (by the neutral types law)

!′′ | Ψ′ ;Δ �
?

:
* X ≈ * X′ @ ; (by the neutral type case)

Subcase If 8 = 2 , then we know ! | Ψ; Γ �
?
2 id : Γ. Combining the previous case, we have the goal.

Case

D ::

E :: ∀ \ :: !′ =⇒ ! · !′ � Φ1 ≈ Φ
′
1

F :: ! | E �
?
? Γ ≈ Γ

′ A :: ! | Ψ;F �
?
?) ≈)

′ @ ; 8 ∈ {E, 2}

! � Φ1,D : (Γ ⊢8) @ ;) ≈ Φ
′
1,D : (Γ′ ⊢8) @ ′);

We first have

B :: ! | Φ1,D : (Γ ⊢8) @ ;),Ψ � wk
1+|Ψ |

Φ1
≈ wk

1+|Ψ |

Φ1
: E(\)

by IH.
Then without loss of generality, we should prove

! | Φ1, D : (Γ ⊢8) @ ;),Ψ; Γ �
?
2 D id :) @ ;

which in turn requires

! | Φ1, D : (Γ ⊢8) @ ;),Ψ; Γ �
?
≥? D

id :) @ ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

106 • Jason Z. S. Hu and Brigi�e Pientka

Given \ :: !′ =⇒ ! and : ≥ 8 , U :: !′′ | Ψ′ =⇒ !′ | Φ1, 6 : Ctx,Ψ and C :: !′′ | Ψ′ ;Δ �
?

:
X ≈ X′ : Γ, we

should prove

!′′ | Ψ′;Δ �
?

:
DX ≈ DX

′

:) [X] @ ;

We proceed as follows:

!′′ | Ψ′ ;Δ ⊢: X ≃ X
′ : Γ (by escape, Lemma 7.27)

!′′ | Ψ′ ;Δ �
?

:
) [wk

1+|Ψ |

Φ1
] [X] ≈) [wk

1+|Ψ |

Φ1
] [X′] @ ; (asA(\,B, :,C))

C′ :: !′′ | Ψ′ ;Δ �
?

:
) [X] ≈) [X′] @ ; (omit weakening)

!′′ | Ψ′ ;Δ ⊢: D
X ∼ DX

′

:) [X] @ ; (by the congruence for neutrals law)

!′′ | Ψ′ ;Δ �
?

:
DX ≈ DX

′

: El(C′) (by reflexivity of neutral)

�

Corollary 7.35 (Reflexive Global Identity). If ! ⊢ Φ and D :: ! � Φ, then ! | Φ � idΦ ≈ idΦ : D.

Lemma 7.36 (Escape).

• If D :: ! � Φ ≈ Φ
′, then ! ⊢ Φ and ! ⊢ Φ′.

• If ! | Ψ � f ≈ f ′ : D, then ! | Ψ ⊢ f ≈ f ′ : Φ and ! | Ψ ⊢ f ≈ f ′ : Φ′.

Proof. We do induction on D. We consider one case:

D ::

E :: ∀ \ :: !′ =⇒ ! · !′ � Φ1 ≈ Φ
′
1 F :: ! | E �

?
? Γ ≈ Γ

′ A :: ! | Ψ;F �
?
?) ≈)

′ @ ; 8 ∈ {E, 2}

! � Φ1,D : (Γ ⊢8) @ ;) ≈ Φ
′
1, D : (Γ′ ⊢8)

′ @ ;)

We proceed as follows:

! ⊢ Φ1 and ! ⊢ Φ
′
1 (by IH)

! | Ψ �
?
? Γ ≈ Γ

′ (by F)

! | Ψ ⊢? Γ ≈ Γ
′ (applying escape to the previous line)

! | Ψ; Γ �
?
?) @ ; (by A, using reflexive global and local identities)

! | Ψ; Γ ⊢?) @ ; and ! | Ψ; Γ ⊢?)
′ @ ; (by escape)

! ⊢ Φ1,D : (Γ ⊢8) @ ;) and ! ⊢ Φ′1, D : (Γ′ ⊢8)
′ @ ;) (by definition)

Then we consider the global substitutions. We know f = f1, C/D and f ′ = f ′1, C
′/D and C = C ′. Then by IH, we

have
! | Ψ ⊢ f1 ≈ f ′1 : Φ1 and ! | Ψ ⊢ f1 ≈ f ′1 : Φ

′
1

Since we know 8 ∈ {E, 2}, by passing in a local identity substitution, we have

! | Ψ; Γ [f1] �
?
? C ≈ C ′ :) [f1] @ ;

We then have ! | Ψ; Γ [f1] ⊢8 C ≈ C ′ :) [f1] @ ; by escape. We do it similarly for ! | Ψ; Γ′ [f1] ⊢? C ≈ C ′ :
) ′ [f1] @ ; . By presupposition, unlifting and analysis using 8 , we can conclude the desired goal. �

Lemma 7.37 (Symmetry).

• If D :: ! � Φ ≈ Φ
′, then E :: ! � Φ

′ ≈ Φ.

• If ! | Ψ � f ≈ f ′ : D, then ! | Ψ � f ′ ≈ f : E.
• If ! | Ψ; Γ �

?
≥?) ≈)

′ @ ; , then ! | Ψ; Γ �
?
≥?)

′ ≈) @ ; .

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 107

• If ! | Ψ; Γ �
?
≥? C ≈ C ′ :) @ ; , then ! | Ψ; Γ �

?
≥? C ≈ C

′ :) @ ; .

• If ! | Ψ �
?
≥? Δ ≈ Δ

′, then ! | Ψ �
?
≥? Δ

′ ≈ Δ.

• If ! | Ψ; Γ �
?
≥? X ≈ X′ : Δ, then ! | Ψ; Γ �

?
≥? X

′ ≈ X : Δ.

Proof. We only consider the first statement and do Induction on D. The other three statements are proved
as part of the first statement. Immediate as we only need to be concerned about global substitutions. Apply
symmetry for previous definitions. �

Lemma 7.38 (Right Irrelevance). If D :: ! � Φ ≈ Φ
′, E :: ! � Φ ≈ Φ

′′ and ! | Ψ � f ≈ f ′ : D, then

! | Ψ � f ≈ f ′ : E.

Proof. We do induction onD and then invert E. This lemma is proved similar to previous irrelevance lemma.
IHs are sufficient to discharge proof obligations. �

Lemma 7.39 (Left Irrelevance). If D :: ! � Φ
′ ≈ Φ, E :: ! � Φ

′′ ≈ Φ and ! | Ψ � f ≈ f ′ : D, then

! | Ψ � f ≈ f ′ : E.

Proof. Apply symmetry and right irrelevance. �

Lemma 7.40 (Transitivity).

• If D1 :: ! � Φ1 ≈ Φ2 and D2 :: ! � Φ2 ≈ Φ3, then D3 :: ! � Φ1 ≈ Φ3.

• If E :: ! � Φ1 ≈ Φ1, ! | Ψ � f1 ≈ f2 : D1 and ! | Ψ � f2 ≈ f3 : D2, then ! | Ψ � f1 ≈ f3 : D3.

• If 8 ≥ 2 , ! | Ψ; Γ �
?
≥8) ≈)

′ @ ; and ! | Ψ; Γ �
?
≥8)

′ ≈) ′′ @ ; , then ! | Ψ; Γ �
?
≥8) ≈)

′′ @ ; .

• If ! | Ψ; Γ �
?
≥8 C ≈ C

′ :) @ ; and ! | Ψ; Γ �
?
≥8 C
′ ≈ C ′′ :) @ ; , then ! | Ψ; Γ �

?
≥8 C ≈ C

′′ :) @ ; .

• If 8 ≥ ? , ! | Ψ �
?
≥8 Δ ≈ Δ

′ and ! | Ψ �
?
≥8 Δ

′ ≈ Δ
′′, then ! | Ψ �

?
≥8 Δ ≈ Δ

′′.

• If ! | Ψ; Γ �
?
≥? X ≈ X′ : Δ and ! | Ψ; Γ �

?
≥? X

′ ≈ X′′ : Δ, then ! | Ψ; Γ �
?
≥? X ≈ X

′′ : Δ.

Proof. We only focus on the first two statements and do induction onD1 and then invertD2. The other three
statements are proved during the process of proving the first two statements. The lemma is immediate after use
of reflexivity and transitivity of previous definitions.

�

7.5 Logical Relations When 9 =<

We are ready for defining the rest of the logical relations. The only cases left are those when 9 =<. In this case,
we also know that 8 =<. We first begin with the contextual types for types.

D ::

! | Ψ; Γ ⊢<) ∗ �(Δ ⊢2 @ ;) @ succ ; ! | Ψ; Γ ⊢<) ′ ∗ �(Δ′ ⊢2 @ ;) @ succ ; ! | Ψ ⊢< Γ

! | Ψ ⊢? Δ ! | Ψ ⊢? Δ
′ ! | Ψ; Γ ⊢< �(Δ ⊢2 @ ;) ≃ �(Δ′ ⊢2 @ ;) @ succ ; ! | Ψ �

?
≥? Δ ≈ Δ

′

! | Ψ; Γ �<<) ≈) ′ @ succ ;

Then ! | Ψ; Γ �<< C ≈ C ′ : El(D) is defined by

• ! | Ψ; Γ ⊢< C ∗ F : �(Δ ⊢2 @ ;) @ succ ; ,
• ! | Ψ; Γ ⊢< C ′ ∗ F ′ : �(Δ′ ⊢2 @ ;) @ succ ; ,
• ! | Ψ; Γ ⊢< F ≃ F ′ : �(Δ ⊢2 @ ;) @ succ ; ,
• ! | Ψ; Γ ⊢< F ≃ F ′ : �(Δ′ ⊢2 @ ;) @ succ ; ,
• then we have two auxiliary definitions ! | Ψ; Γ � F ≃ F ′ : �(Δ ⊢2 @ ;), and
• ! | Ψ; Γ � F ≃ F ′ : �(Δ′ ⊢2 @ ;).

, Vol. 1, No. 1, Article . Publication date: April 2024.

108 • Jason Z. S. Hu and Brigi�e Pientka

! | Ψ;Δ �
?
2)1 @ ;

! | Ψ; Γ � box)1 ≃ box)1 : �(Δ ⊢2 @ ;)

! | Ψ; Γ ⊢< ` ∼ `′ : �(Δ ⊢2 @ ;) @ succ ;

! | Ψ; Γ � ` ≃ `′ : �(Δ ⊢2 @ ;)

Notice how the relation relies on previous relations when 9 = ? . In particular, the local contexts Δ and Δ
′ are

related when : takes different values. This is because we need to make sure that they can be the domain of local
substitutions at any layer ≥ 2 . When we relate C and C ′, we do the routine: we first reduce them to weak head
normal forms, and say that the normal forms are generically equivalent under two types to make symmetry easy.
Then the real deal is the auxiliary relation ! | Ψ; Γ � F ≃ F ′ : �(Δ ⊢2 @ ;). This relation treats a contextual
type as a sum type. There are two possibilities: a normal form of a contextual type is either neutral, then there
is nothing else to do, or is the code of a type. Due to the static code lemma, we know that these types must
be syntactically equal. In this case, if the type is)1, we require ! | Ψ;Δ �

?
≥2)1 @ ; . This predicate is what

we just defined: it asks)1 to be stable under local substitutions at layer ≥ 2 . In this way, we can be sure that
)1 semantically works fine when its syntactic information and/or its semantic information is needed. The same
principle is applied to contextual types for terms.

D ::

! | Ψ; Γ ⊢<) ∗ �(Δ ⊢2)1 @ ;) @ ; ! | Ψ; Γ ⊢<) ′ ∗ �(Δ′ ⊢2)
′
1 @ ;) @ ; ! | Ψ ⊢< Γ

! | Ψ;Δ ⊢?)1 @ ; ! | Ψ;Δ′ ⊢?)
′
1 @ ; ! | Ψ; Γ ⊢< �(Δ ⊢2)1 @ ;) ≃ �(Δ′ ⊢2)

′
1 @ ;) @ ;

! | Ψ �
?
≥? Δ ≈ Δ

′ ! | Ψ;Δ �
?
≥?)1 ≈)

′
1 @ ; ! | Ψ;Δ′ �

?
≥?)

′
1 ≈)1 @ ;

! | Ψ; Γ �<<) ≈) ′ @ ;

Then ! | Ψ; Γ �<< C ≈ C ′ : El(D) is defined by

• ! | Ψ; Γ ⊢< C ∗ F : �(Δ ⊢2) @ ;) @ ; ,
• ! | Ψ; Γ ⊢< C ′ ∗ F ′ : �(Δ′ ⊢2)

′ @ ;) @ ; ,
• ! | Ψ; Γ ⊢< F ≃ F ′ : �(Δ ⊢2) @ ;) @ ; ,
• ! | Ψ; Γ ⊢< F ≃ F ′ : �(Δ′ ⊢2)

′ @ ;) @ ; ,
• then we have two auxiliary definitions ! | Ψ; Γ � F ≃ F ′ : �(Δ ⊢2) @ ;), and
• ! | Ψ; Γ � F ≃ F ′ : �(Δ′ ⊢2)

′ @ ;).

! | Ψ;Δ �
?
2 C1 :) @ ;

! | Ψ; Γ � box C1 ≃ box C1 : �(Δ ⊢2) @ ;)

! | Ψ; Γ ⊢< ` ∼ `′ : �(Δ ⊢2) @ ;) @ ;

! | Ψ; Γ � ` ≃ `′ : �(Δ ⊢2) @ ;)

Then we take a look at the two kinds of meta-functions. Let us first consider the meta-functions for local
contexts.

D ::

! | Ψ; Γ ⊢<) ∗ (6 : Ctx) ⇒;)1 @ ;

! | Ψ; Γ ⊢<) ′ ∗ (6 : Ctx) ⇒;) ′1 @ ; ! | Ψ ⊢< Γ ! | Ψ, 6 : Ctx; Γ ⊢<)1 @ ;

! | Ψ, 6 : Ctx; Γ ⊢<) ′1 @ ; ! | Ψ; Γ ⊢< (6 : Ctx) ⇒;)1 ≃ (6 : Ctx) ⇒;) ′1 @ ;

E :: ∀k :: !′ | Φ;Δ′′ =⇒8 ! | Ψ; Γ and !′ | Φ �
?
≥? Δ ≈ Δ

′ · !′ | Φ;Δ′′ �<<)1 [Δ/6] ≈)
′
1 [Δ

′/6] @ ;

! | Ψ; Γ �<<) ≈) ′ @ ;

Then ! | Ψ; Γ �<< C ≈ C ′ : El(D) is defined by

• ! | Ψ; Γ ⊢< C ∗ F : (6 : Ctx) ⇒;)1 @ ; ,
• ! | Ψ; Γ ⊢< C ′ ∗ F ′ : (6 : Ctx) ⇒;) ′

1
@ ; ,

• ! | Ψ; Γ ⊢< F ≃ F ′ : (6 : Ctx) ⇒;)1 @ ; ,
• ! | Ψ; Γ ⊢< F ≃ F ′ : (6 : Ctx) ⇒;) ′

1
@ ; , and

• given
– k :: !′ | Φ;Δ′′ =⇒8 ! | Ψ; Γ, and
– A :: !′ | Φ �

?
≥? Δ ≈ Δ

′,

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 109

then
!′ | Φ;Δ′′ �<< F $ Δ ≈ F ′ $ Δ′ : El(E(k,A))

We apply a similar principle to the meta-functions for types.

D ::

! | Ψ; Γ ⊢<) ∗ (* : (Δ ⊢? @ ;)) ⇒; ′)1 @ succ ; ⊔ ; ′

! | Ψ; Γ ⊢<) ′ ∗ (* : (Δ′ ⊢? @ ;)) ⇒; ′) ′1 @ succ ; ⊔ ; ′

! | Ψ ⊢< Γ ! | Ψ,* : (Δ ⊢? @ ;); Γ ⊢<)1 @ ; ! | Ψ,* : (Δ′ ⊢? @ ;); Γ ⊢<)1 @ ;

! | Ψ; Γ ⊢< (* : (Δ ⊢? @ ;)) ⇒; ′)1 ≃ (* : (Δ′ ⊢? @ ;)) ⇒; ′) ′1 @ succ ; ⊔ ; ′ !′ | Φ �
?
≥? Δ ≈ Δ

′

E1 :: ∀k :: !′ | Φ;Δ′′ =⇒8 ! | Ψ; Γ and !′ | Φ;Δ �
?
≥?)2 ≈)

′
2 @ ; · !′ | Φ;Δ′′ �<<)1 [)2/*] ≈)

′
1 [)

′
2 /*] @ ; ′

E2 :: ∀k :: !′ | Φ;Δ′′ =⇒8 ! | Ψ; Γ and !′ | Φ;Δ′ �
?
≥?)2 ≈)

′
2 @ ; · !′ | Φ;Δ′′ �<<) ′1 [)2/*] ≈)1 [)

′
2 /*] @ ; ′

! | Ψ; Γ �<<) ≈) ′ @ succ ; ⊔ ; ′

Notice the symmetry between E1 and E2. Then ! | Ψ; Γ �<< C ≈ C ′ : El(D) is defined by

• ! | Ψ; Γ ⊢< C ∗ F : (* : (Δ ⊢? @ ;)) ⇒; ′)1 @ succ ; ⊔ ; ′,

• ! | Ψ; Γ ⊢< C ′ ∗ F ′ : (* : (Δ′ ⊢? @ ;)) ⇒; ′) ′
1
@ succ ; ⊔ ; ′,

• ! | Ψ; Γ ⊢< F ≃ F ′ : (* : (Δ ⊢? @ ;)) ⇒; ′)1 @ succ ; ⊔ ; ′,

• ! | Ψ; Γ ⊢< F ≃ F ′ : (* : (Δ′ ⊢? @ ;)) ⇒; ′) ′
1
@ succ ; ⊔ ; ′, and

• given
– k :: !′ | Φ;Δ′′ =⇒8 ! | Ψ; Γ, and
– A :: !′ | Φ;Δ �

?
≥?)2 ≈)

′
2
@ ; ,

then
!′ | Φ;Δ′′ �<< F $?)2 ≈ F

′ $?)
′
2 : El(E1(k,A))

• and last symmetrically given
– k :: !′ | Φ;Δ′′ =⇒8 ! | Ψ; Γ, and
– A :: !′ | Φ;Δ′ �

?
≥?)2 ≈)

′
2
@ ; ,

then
!′ | Φ;Δ′′ �<< F ′ $?)2 ≈ F $?)

′
2 : El(E2(k,A))

The last type is the universe-polymorphic function types. They are special because they parameterize over
universe levels. Therefore, a universe-polymorphic function cannot live in any finite universe as it can be instan-
tiated to any small universe. Our semantics must incorporate this fact and introduce the l level, which further
requires a transfinite recursion on the universe levels.

D ::

! | Ψ; Γ ⊢<) ∗
−→
ℓ ⇒;)1 @ l ! | Ψ; Γ ⊢<) ′ ∗

−→
ℓ ⇒;) ′1 @ l ! | Ψ ⊢< Γ

!,
−→
ℓ | Ψ; Γ ⊢<)1 @ ; !,

−→
ℓ | Ψ; Γ ⊢<) ′1 @ ; ! | Ψ; Γ ⊢<

−→
ℓ ⇒;)1 ≃

−→
ℓ ⇒;) ′1 @ l |

−→
ℓ | > 0

E :: ∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ and |
−→
ℓ | = |

−→
; | = |

−→
; ′ | and

(∀0 ≤ = < |
−→
; | · !′ ⊢

−→
; (=) ≈

−→
; ′(=) : Level) · !′ | Φ;Δ �<<)1 [

−→
; /
−→
ℓ] ≈) ′1 [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ]

! | Ψ; Γ �<<) ≈) ′ @ l

Then ! | Ψ; Γ �<< C ≈ C ′ : El(D) is defined by

• ! | Ψ; Γ ⊢< C ∗ F :
−→
ℓ ⇒;)1 @ l ,

• ! | Ψ; Γ ⊢< C ′ ∗ F ′ :
−→
ℓ ⇒;) ′1 @ l ,

• ! | Ψ; Γ ⊢< F ≃ F ′ :
−→
ℓ ⇒;)1 @ l ,

, Vol. 1, No. 1, Article . Publication date: April 2024.

110 • Jason Z. S. Hu and Brigi�e Pientka

• ! | Ψ; Γ ⊢< F ≃ F ′ :
−→
ℓ ⇒;) ′

1
@ l , and

• given
– k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ,

– A :: |
−→
ℓ | = |

−→
; | = |

−→
; ′ |, and

– B :: ∀0 ≤ = < |
−→
; | · ! ⊢

−→
; (=) ≈

−→
; ′ (=) : Level,

then

!′ | Φ;Δ �<< F $
−→
; ≈ F $

−→
; ′ : El(E(k,A,B))

Notice how the premise E changes its universe levels based on different universes, where exactly transfinite
recursion becomes necessary.

Now we have finished defining all definitions, including the Kripke logical relations for types and terms. The
logical relations for local contexts and local substitutions have been given generally in Sec. 7.2. Then we will ex-
amine the properties of the logical relations when 8 = 9 =<. Then we are ready for giving the definitions for the
semantic judgments as well as establish the fundamental theorems. By instantiating the fundamental theorems
with syntactic equivalence, we are able to obtain a few consequence lemmas, which will be subsequently used
in our second instantiation. In the second instantiation of the fundamental theorems, we use the convertibility
checking judgments, fromwhich we derive our final desired the decidability theorem for convertibility checking.

7.6 Properties for Logical Relations When 8 = 9 =<

Now we move on to consider the properties of the logical relations at the final layers, i.e. when 8 = 9 = <. In
this case, we are considering the relations of all possible types among all possible terms. We first begin with
the regular properties, when we will state an important property, layering restriction, which states how the
logical relations are transferred between 8 ∈ {?,<} when 9 = <. Let us first begin with the simple ones. These
properties follow Sec. 7.3 quite closely as for the types that exist at both layers ? and< the lemma proceeds in
a similar way. The only difference comes in for types only available at layer<.

Lemma 7.41 (Weakening).

• If D :: ! | Ψ; Γ �<<) ≈) ′ @ ; andk :: !′ | Φ;Δ =⇒< ! | Ψ; Γ, then E :: !′ | Φ;Δ �<<) ≈) ′ @ ; .

• If ! | Ψ; Γ �<< C ≈ C ′ : El(D) andk :: !′ | Φ;Δ =⇒< ! | Ψ; Γ, then !′ | Φ;Δ �<< C ′ ≈ C : El(E).

Proof. Induction onD. For the cases that overlap with 9 = ? , they can be ported directly to this lemma. There-
fore, the only cases we need to consider are the new rules. The meta-functions are rather routine as weakenings
are built in their definitions. Let us consider contextual types.

D ::

! | Ψ; Γ ⊢<) ∗ �(Δ ⊢2)1 @ ;) @ ;

! | Ψ; Γ ⊢<) ′ ∗ �(Δ′ ⊢2)
′
1 @ ;) @ ; ! | Ψ; Γ ⊢< �(Δ ⊢2)1 @ ;) ≃ �(Δ′ ⊢2)

′
1 @ ;) @ ;

! | Ψ �
?
≥? Δ ≈ Δ

′ ! | Ψ;Δ �
?
≥?) @ ; ! | Ψ;Δ′ �

?
≥?)

′ @ ;

! | Ψ; Γ �<<) ≈) ′ @ ;

This case is almost immediate. For judgments like ! | Ψ �
?
≥? Δ ≈ Δ

′ and ! | Ψ;Δ �
?
≥?) @ ; , we know

we can extract from k :: !′ | Φ;Δ =⇒< ! | Ψ; Γ U :: !′ | Φ =⇒ ! | Ψ. In particular, the local context in
! | Ψ;Δ �

?
≥?) @ ; is not impacted by the weakening. For ! | Ψ; Γ �<< C ≈ C ′ : El(D), we shall also apply the

weakening lemma to U to weaken ! | Ψ;Δ �
?
2 C1 :) @ ; . �

Lemma 7.42 (Escape).

• If D :: ! | Ψ; Γ �<<) ≈) ′ @ ; , then ! | Ψ; Γ ⊢<) ≃) ′ @ ; .

• If ! | Ψ; Γ �<< C ≈ C ′ : El(D), then ! | Ψ; Γ ⊢< C ≃ C ′ :) @ ; and ! | Ψ; Γ ⊢< C ≃ C ′ :) ′ @ ; .

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 111

Proof. Case analyze D. The lemma holds by construction. �

Lemma 7.43 (Reflexivity of Neutral). If D :: ! | Ψ; Γ �<<) ≈) ′ @ ; , ! | Ψ; Γ ⊢< ` ∼ `′ :) @ ; and

! | Ψ; Γ ⊢< ` ∼ `′ :) ′ @ ; , then ! | Ψ; Γ �<< ` ≈ `′ : El(D).

Proof. Induction on D. We proceed similarly to the counterpart when 9 = ? . �

Lemma 7.44 (Weak Head Expansion).

• If D :: ! | Ψ; Γ �
<
<) ≈) ′ @ ; , ! | Ψ; Γ ⊢<)1

∗) @ ; and ! | Ψ; Γ ⊢<) ′
1

∗) ′ @ ; , then

! | Ψ; Γ �<<)1 ≈)
′
1 @ ; .

• If ! | Ψ; Γ �<< C ≈ C ′ : El(D), ! | Ψ; Γ ⊢< C1
∗ C :) @ ; and ! | Ψ; Γ ⊢< C ′

1

∗ C ′ :) ′ @ ; , then

! | Ψ; Γ �<< C1 ≈ C
′
1
: El(D).

Proof. Induction on D. Use transitivity of multi-step reductions. �

Lemma 7.45 (Symmetry).

• If D :: ! | Ψ; Γ �<<) ≈) ′ @ ; , then E :: ! | Ψ; Γ �<<) ′ ≈) @ ; .

• If ! | Ψ; Γ �<< C ≈ C ′ : El(D), then ! | Ψ; Γ �<< C ′ ≈ C : El(E).

Proof. Induction on D. Symmetry holds by design. The verbose case is the meta-functions for types. Effec-
tively, E1 and E2 are duplicated to make sure that symmetry can be easily proved. �

Lemma 7.46 (Right Irrelevance). If D :: ! | Ψ; Γ �<<) ≈) ′ @ ; , E :: ! | Ψ; Γ �<<) ≈) ′′ @ ; and

! | Ψ; Γ �<< C ≈ C ′ : El(D), then ! | Ψ; Γ �<< C ≈ C ′ : El(E).

Proof. Induction onD. Again, the overlapping cases for 9 ∈ {?,<} can still be ported immediately, with only
layers changed. For contextual types, it is obvious as the logical relations do not depend on the premises at all.
The remaining cases are meta-functions and universe-polymorphic functions. These cases are simpler than that
of dependent functions because they only take simple IH to go through. �

Lemma 7.47 (Left Irrelevance). If D :: ! | Ψ; Γ �<<) ′ ≈) @ ; , E :: ! | Ψ; Γ �<<) ′′ ≈) @ ; and

! | Ψ; Γ �<< C ≈ C ′ : El(D), then ! | Ψ; Γ �<< C ≈ C ′ : El(E).

Proof. Immediate by symmetry and right irrelevance. �

Lemma 7.48 (Reflexivity and Transitivity).

• If D1 :: ! | Ψ; Γ �
<
<)1 ≈)2 @ ; and D2 :: ! | Ψ; Γ �

<
<)2 ≈)3 @ ; , then D3 :: ! | Ψ; Γ �

<
<)1 ≈)3 @ ; .

• If E :: ! | Ψ; Γ �<<)1 ≈)1 @ ; , ! | Ψ; Γ �<< C1 ≈ C2 : El(D1) and ! | Ψ; Γ �<< C2 ≈ C3 : El(D2), then

! | Ψ; Γ �<< C1 ≈ C3 : El(D3).

• F :: ! | Ψ; Γ �<<)1 ≈)1 @ ; .

• If ! | Ψ; Γ �<< C1 ≈ C2 : El(D1), then ! | Ψ; Γ �<< C1 ≈ C1 : El(F).

Proof. We do induction on D1 and then invert D2. The cases available when 9 = ? still can be ported to
this lemma. In fact, all remaining cases are simpler than the case for dependent functions. This is because for
dependent functions, we must consider reflexivity of related input arguments, where for all new cases for meta-
programming, we only need transitivity from layer ? , which has been an established fact at this point. �

At last, we must prove one very important lemma which connects the logical relations when 9 takes different
values. We need this lemma to explain the fact that a variable at a lower layer suddenly can be substituted by
a term that is not well-typed at its original layer. This phenomenon typically occurs when we run code from
MLTT at layer<. In this case, a variable originally only expected to be substituted by a term from MLTT must

, Vol. 1, No. 1, Article . Publication date: April 2024.

112 • Jason Z. S. Hu and Brigi�e Pientka

also be able to handle a term only available at layer<, which might contain, for example, a recursion principle
for code. A similar lemma occurs in Sec. 2 and 3, and a dependently typed version must also be proved here.

Lemma 7.49 (Layering Restriction).

• If D :: ! | Ψ; Γ �
?
<) ≈) ′ @ ; , then E :: ! | Ψ; Γ �<<) ≈) ′ @ ; .

• The following two relations are equivalent:

! | Ψ; Γ �
?
< C ≈ C ′ : El(D) and ! | Ψ; Γ �<< C ≈ C ′ : El(E)

The idea of this lemma is that, if we know a type is coming from MLTT only, then it is possible to regard
its term as a term at both layers ? and<. The direction going from ? to< should be intuitive; it resembles the
lifting lemma on the syntactic side. The backward direction, however, might appear counter-intuitive. Yet, if we
consider the example we discussed above, then we should consider this lemma describing a process of bringing
a term from< back to ? , performing the substitution, and then finally lifting the result back to<.

Proof. We do induction on D. Since we know) and) ′ are related when 9 = ? , we do not need to consider
the cases for meta-programming. The most complex case is the function case. In this case, we have premises

D1 :: (∀k :: !′ | Φ;Δ =⇒< ! | Ψ; Γ · !′ | Φ;Δ �
?
< (1 ≈ (2 @ ;1)

D2 :: (∀k :: !′ | Φ;Δ =⇒< ! | Ψ; Γ · ∀ !′ | Φ;Δ �
?
< B ≈ B′ : El(D1(k)) · !

′ | Φ;Δ �
?
<)1 [B/G] ≈)2 [B

′/G] @ ;2)

By determinacy, we know that

) ∗ Π;1,;2 (G : (1).)1

) ′ ∗ Π;1,;2 (G : (2).)2

must be unique. First we show

E1 :: (∀k :: !′ | Φ;Δ =⇒8 ! | Ψ; Γ · !
′ | Φ;Δ �<< (1 ≈ (′2 @ ;1)

by a simple IH.
Next we must show that given

• k :: !′ | Φ;Δ =⇒< ! | Ψ; Γ,
• A :: !′ | Φ;Δ �<< B ≈ B′ : El(E1(k))

then

E2 :: !
′ | Φ;Δ �<<)1 [B/G] ≈)

′
2 [B
′/G] @ ;2)

holds. Notice that the goal is almost applicable for D2 except that A does not satisfy the required premise
!′ | Φ;Δ �

?
< B ≈ B′ : El(D1(k)). But this is fine as we apply IH to use the iff in the second statement to obtain

the required premise.
For the second statement, we must establish an iff relation. That boils down to a symmetric proof. Then in

this case, we are given

• k :: !′ | Φ;Δ =⇒< ! | Ψ; Γ,
• !′ | Φ;Δ ⊢8 (1 ≃ (3 @ ; ,
• !′ | Φ;Δ ⊢8 (2 ≃ (4 @ ; ,
• !′ | Φ;Δ, G : (1 @ ;1 ⊢8)1 ≃)3 @ ;2, and
• !′ | Φ;Δ, G : (2 @ ;1 ⊢8)2 ≃)4 @ ;2,

and then we have to show the following equivalence:

B :: !′ | Φ;Δ �
?
< B ≈ B′ : El(D1 (k))

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 113

implying

!′ | Φ;Δ �
?
< (F : Π;1,;2 (G : (3).)3) B ≈ (F

′ : Π;1,;2 (G : (4).)4) B
′ : El(D2 (k,B))

is equivalent to
!′ | Φ;Δ �<< B ≈ B′ : El(E1(k))

implying

!′ | Φ;Δ �<< (F : Π;1,;2 (G : (3).)3) B ≈ (F
′ : Π;1,;2 (G : (4).)4) B

′ : El(E2)

let us consider the inverse direction. In this case, we assume !′ | Φ;Δ �<< B ≈ B′ : El(E1(k)). By IH, we have
!′ | Φ;Δ �

?
< B ≈ B′ : El(D1(k)). From this, we further obtain

!′ | Φ;Δ �
?
< (F : Π;1,;2 (G : (3).)3) B ≈ (F

′ : Π;1,;2 (G : (4).)4) B
′ : El(D2 (k,B))

Another IH is sufficient to establish the goal. �

This lemma, when combined with premises like ! | Ψ;Δ �
?
≥?) @ ; , is the bridge to reveal the true complica-

tion of supporting lifting in DeLaM.
We also need a counterpart for local contexts and local substitutions.

Lemma 7.50 (Layering Restriction).

• If D :: ! | Ψ �
?
< Δ ≈ Δ

′, then E :: ! | Ψ �<< Δ ≈ Δ
′.

• The following two relations are equivalent:

! | Ψ; Γ �
?
< X ≈ X′ : D and ! | Ψ; Γ �<< X ≈ X′ : E

Proof. Induction on D. The step case is very similar to function case above. �

7.7 Semantic Judgments and Fundamental Theorems

After establishing all logical relations and their properties, we are ready for giving the definitions for semantic
judgments and thenmoving on to proving the fundamental theorems. The semantic judgments intuitively should
say that logical relations are stable under all substitutions. More concretely, we have

! Ψ := ∀ !′ ⊢ q ≈ q ′ : ! · !′ � Ψ[q] ≈ Ψ[q ′]

! | Ψ f ≈ f ′ : Φ is defined as ! Ψ, ! Φ and given

• !′ ⊢ q ≈ q ′ : !, and
• !′ | Ψ′ � f1 ≈ f

′
1 : Ψ[q],

then
!′ | Ψ′ � f [q] ◦ f1 ≈ f1 [q] ◦ f

′
1 : Φ[q]

We also define
! | Ψ f : Φ := ! | Ψ f ≈ f : Φ

! | Ψ 8 Γ ≈ Δ where 8 ∈ {?,<} is defined as ! Ψ and given

• !′ ⊢ q ≈ q ′ : !,
• !′ | Φ � f ≈ f ′ : Ψ[q], and
• : ≥ 8 ,

then
!′ | Φ �

typeof(8)

:
Γ [q] [f] ≈ Δ[q ′] [f ′]

We also define
! | Ψ 8 Γ := ! | Ψ 8 Γ ≈ Γ

! | Ψ; Γ 8) ≈)
′ @ ; is defined as ! Ψ and ! | Ψ typeof(8) Γ and given

, Vol. 1, No. 1, Article . Publication date: April 2024.

114 • Jason Z. S. Hu and Brigi�e Pientka

• !′ ⊢ q ≈ q ′ : !,
• !′ | Φ � f ≈ f ′ : Ψ[q],
• : ≥ 8 ,

• !′ | Φ;Δ �
typeof(8)

:
X ≈ X′ : Γ [q] [f],

then

!′ | Φ;Δ �
typeof(8)

:
) [q] [f] [X] ≈) ′ [q ′] [f ′] [X′] @ ; [q]

We also define

! | Ψ; Γ 8) @ ; := ! | Ψ; Γ 8) ≈) @ ;

! | Ψ; Γ 8 C ≈ C
′ :) @ ; is defined as ! Ψ and ! | Ψ typeof(8) Γ and ! | Ψ; Γ typeof(8)) @ ; given

• !′ ⊢ q ≈ q ′ : !,
• !′ | Φ � f ≈ f ′ : Ψ[q],
• : ≥ 8 ,

• !′ | Φ;Δ �
typeof(8)

:
X ≈ X′ : Γ [q] [f],

then

!′ | Φ;Δ �
typeof(8)

:
C [q] [f] [X] ≈ C ′ [q ′] [f ′] [X′] :) [q] [f] [X] @ ; [q]

We also define

! | Ψ; Γ 8 C :) @ ; := ! | Ψ; Γ 8 C ≈ C :) @ ;

! | Ψ; Γ 8 X ≈ X
′ : Δ is defined as ! Ψ and ! | Ψ typeof(8) Γ and ! | Ψ typeof(8) Δ given

• !′ ⊢ q ≈ q ′ : !,
• !′ | Φ � f ≈ f ′ : Ψ[q],
• : ≥ 8 ,

• !′ | Φ;Δ′ �
typeof(8)

:
X1 ≈ X

′
1
: Γ [q] [f],

then

!′ | Φ;Δ′ �
typeof(8)

:
X [q] [f] ◦ X1 ≈ X

′ [q ′] [f ′] ◦ X′1 : Δ[q] [f]

We also define

! | Ψ; Γ 8 X : Δ := ! | Ψ; Γ 8 X ≈ X : Δ

Notice that for definitions above, when : ∈ {E, 2} is possible, we can use the local substitution lemma and
ignore the local substitutions completely. This will be a frequent pattern in the proofs of the semantic rules.

Summarizing the semantic judgments, we shall arriving at our statement of the fundamental theorems:

Theorem 7.51 (Fundamental).

• If ! ⊢ Ψ, then ! Ψ.

• If ! | Ψ ⊢8 Γ and 8 ∈ {?,<}, then ! | Ψ 8 Γ.

• If ! | Ψ ⊢8 Γ ≈ Δ and 8 ∈ {?,<}, then ! | Ψ 8 Γ ≈ Δ.

• If ! | Ψ; Γ ⊢8) @ ; , then ! | Ψ; Γ 8) @ ; .

• If ! | Ψ; Γ ⊢8) ≈)
′ @ ; , then ! | Ψ; Γ 8) ≈)

′ @ ; .

• If ! | Ψ; Γ ⊢8 C :) @ ; , then ! | Ψ; Γ 8 C :) @ ; .

• If ! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ; , then ! | Ψ; Γ 8 C ≈ C

′ :) @ ; .

• If ! | Ψ; Γ ⊢8 X : Δ, then ! | Ψ; Γ 8 X : Δ.
• If ! | Ψ; Γ ⊢8 X ≈ X

′ : Δ, then ! | Ψ; Γ 8 X ≈ X
′ : Δ.

The following lemma is obvious.

Lemma 7.52 (PER). All semantic judgments are PER.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 115

Lemma 7.53 (Reduction Expansion).

• If ! | Ψ; Γ 8) ≈)
′ @ ; , 8 ∈ {?,<} and ! | Ψ; Γ ⊢8)1) ′ @ ; , then ! | Ψ; Γ 8) ≈)1 @ ; .

• If ! | Ψ; Γ 8 C ≈ C
′ :) @ ; , 8 ∈ {?,<} and ! | Ψ; Γ ⊢8 C1 C ′ :) @ ; , then ! | Ψ; Γ 8 C ≈ C1 :) @ ; .

Proof. It is easy to easy due to the weak head expansion lemma for the logical relations and the stability of
reduction under all substitutions. �

The escape lemma recovers Kripke logical relations by passing in corresponding identity substitutions:

Lemma 7.54 (Escape).

• If ! Ψ, then ! � Ψ ≈ Ψ.

• If ! | Ψ f ≈ f ′ : Φ, then ! | Ψ � f ≈ f ′ : Φ.

• If ! | Ψ 8 Γ ≈ Δ, 8 ∈ {?,<} and : ≥ 8 , then ! | Ψ �
typeof(8)

:
Γ ≈ Δ.

• If ! | Ψ; Γ 8) ≈)
′ @ ; and : ≥ 8 , then ! | Ψ; Γ �

typeof(8)

:
) ≈) ′ @ ; .

• If ! | Ψ; Γ 8 C ≈ C
′ :) @ ; and : ≥ 8 , then ! | Ψ; Γ �

typeof(8)

:
C ≈ C ′ :) @ ; .

• If ! | Ψ; Γ 8 X ≈ X
′ : Δ and : ≥ 8 , then ! | Ψ; Γ �

typeof(8)

:
X ≈ X′ : Δ.

By chaining escape lemmas, we can obtain that semantic equivalence judgments generic and syntactic equiv-
alences.

The semantic judgments are stable under substitutions.

Lemma 7.55 (Universe Substitutions).

• If ! Ψ and !′ ⊢ q : !, then !′ Ψ[q].

• If ! | Ψ f ≈ f ′ : Φ and !′ ⊢ q ≈ q ′ : !, then !′ | Ψ[q] f [q] ≈ f ′ [q ′] : Φ[q].
• If ! | Ψ 8 Γ ≈ Δ, 8 ∈ {?,<} and !′ ⊢ q ≈ q ′ : !, then !′ | Ψ[q] 8 Γ [q] ≈ Δ[q ′].

• If ! | Ψ; Γ 8) ≈)
′ @ ; and !′ ⊢ q ≈ q ′ : !, then !′ | Ψ[q]; Γ [q] 8) [q] ≈)

′ [q ′] @ ; [q].

• If ! | Ψ; Γ 8 C ≈ C
′ :) @ ; and !′ ⊢ q ≈ q ′ : !, then !′ | Ψ[q]; Γ [q] 8 C [q] ≈ C

′ [q ′] :) [q] @ ; [q].

• If ! | Ψ; Γ 8 X ≈ X
′ : Δ and !′ ⊢ q ≈ q ′ : !, then !′ | Ψ[q]; Γ [q] 8 X [q] ≈ X

′ [q ′] : Δ[q].

Proof. Use composition of universe substitutions. �

Lemma 7.56 (Global Substitutions).

• If ! | Ψ f ≈ f ′ : Φ and ! | Ψ′ f1 ≈ f ′
1
: Ψ, then ! | Ψ′ f ◦ f1 ≈ f ′ ◦ f ′

1
: Φ.

• If ! | Ψ 8 Γ ≈ Δ, 8 ∈ {?,<} and ! | Φ f ≈ f ′ : Ψ, then ! | Φ 8 Γ [f] ≈ Δ[f ′].

• If ! | Ψ; Γ 8) ≈)
′ @ ; and ! | Φ f ≈ f ′ : Ψ, then ! | Φ; Γ [f] 8) [f] ≈)

′ [f ′] @ ; .

• If ! | Ψ; Γ 8 C ≈ C
′ :) @ ; and ! | Φ f ≈ f ′ : Ψ, then ! | Φ; Γ [f] 8 C [f] ≈ C

′ [f ′] :) [f] @ ; .

• If ! | Ψ; Γ 8 X ≈ X
′ : Δ and ! | Φ f ≈ f ′ : Ψ, then ! | Φ; Γ [f] 8 X [f] ≈ X

′ [f ′] : Δ[f].

Proof. The principle is also to use the composition of global substitutions. We also make use of the commu-
tativity of substitutions, e.g.

C [q] [f [q]] = C [f] [q]

This equation allows us to swap f forwards, which will be frequently used in this proof. �

Lemma 7.57 (Local Substitutions).

• If ! | Ψ; Γ 8) ≈)
′ @ ; and ! | Ψ;Δ 8 X ≈ X

′ : Γ, then ! | Ψ;Δ 8) [X] ≈)
′ [X′] @ ; .

• If ! | Ψ; Γ 8 C ≈ C
′ :) @ ; and ! | Ψ;Δ 8 X ≈ X

′ : Γ, then ! | Ψ;Δ 8 C [X] ≈ C
′ [X′] :) [X] @ ; .

• If ! | Ψ; Γ 8 X ≈ X
′ : Δ and ! | Ψ; Γ′ 8 X1 ≈ X

′
1
: Γ, then ! | Ψ; Γ′ 8 X ◦ X1 ≈ X

′ ◦ X′
1
: Δ.

, Vol. 1, No. 1, Article . Publication date: April 2024.

116 • Jason Z. S. Hu and Brigi�e Pientka

Proof. We apply the similar technique here. We make use equations similar to below:

C [q] [X [q]] = C [X] [q]

C [f] [X [f]] = C [X] [f]

These equations will swap X forwards. �

The theorem proceeds by doing induction on the derivations. The proof though is rather verbose due to
how the semantic judgments are defined. One pattern that is worth mentioning is that the proof should work
“backwards” from the layers. That is, we should work out the proofs from layer<, and then ? and then 2 and
finally E . This pattern makes sense if we consider what information layers contain. The semantics of a term at
layer < only contains its computational contents at layer<. However, for a term at layer ? , due to lifting, its
semantics must explain how this term computes at both layers ? and<. For a term at layer 2 , in addition to its
collective information as a term at layer ? , it should also has all information about its sub-structures. At last, if
a term is at layer E , then we know it must be well-formed at layer 2 but also it represents a variable. Thus, due
to lifting, information contained at each layer strictly increases as the layer decreases. To build up information
at a smaller layer, we should prove the fundamental theorems from a higher layer. In the next section, we will
start proving the fundamental theorems and make sure that all syntactically well-formed types and terms at all
layers are semantically well-formed.

7.8 Proving Fundamental Theorems

To demonstrate the idea described at the end of the previous subsection, let us first consider the simplest case.
We often proceed by first proving the semantic rule for types and then go on and prove the rules for terms.

Lemma 7.58.

! | Ψ typeof(8) Γ

! | Ψ; Γ 8 Nat ≈ Nat@ zero

Proof. From ! | Ψ typeof(8) Γ, we also know ! Ψ. Now assume !′ ⊢ q ≈ q ′ : ! and !′ | Φ � f ≈ f ′ : Ψ[q],
we have to consider all 8 ≥ 2 .

Case 8 =< Then assuming !′ | Φ;Δ �<< X ≈ X′ : Γ [q] [f], we must show

!′ | Φ;Δ �<< Nat ≈ Nat@ zero

This holds by definition.
Case 8 = ? Then assuming some : ≥ ? and !′ | Φ;Δ �

?

:
X ≈ X′ : Γ [q] [f], we must show

!′ | Φ;Δ �
?

:
Nat ≈ Nat@ zero

Again, this also holds by definition as we see that : ∈ {?,<}.
Case 8 = 2 This is the last case. Assuming some : ≥ 2 and !′ | Φ;Δ �

?

:
X ≈ X′ : Γ [q] [f], we must show

!′ | Φ;Δ �
?

:
Nat ≈ Nat@ zero

In the previous case of 8 = ? , we have given the proof for : ∈ {?,<}, so essentially we only have one case
: = 2 left. In this case, we apply the local substitution lemma so we do not have to introduce any local
substitutions at all. Looking up the rules in Sec. 7.4, we need to show

!′ | Φ; Γ [q] [f] �
?
≥? Nat@ zero

This is again have been given by the case of 8 = ? , modulo converting weakenings to substitutions. Hence
we conclude the proof.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 117

�

Lemma 7.59.

! | Ψ typeof(8) Γ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ 8 Ty; ≈ Ty; ′ @ succ ;

Proof. Similar to the previous lemma. �

Lemma 7.60.

! | Ψ typeof(8) Γ

! | Ψ; Γ 8 zero ≈ zero : Nat@ zero

Proof. From the previous lemma, we obtain ! Ψ, ! | Ψ typeof(8) Γ and ! | Ψ; Γ 8 Nat@ zero. Simulating
the previous lemma, assuming !′ ⊢ q ≈ q ′ : ! and !′ | Φ � f ≈ f ′ : Ψ[q], we have to consider all 8 ≥ 2 .

Case 8 =< Then assuming !′ | Φ;Δ �<< X ≈ X′ : Γ [q] [f], we must show

!′ | Φ;Δ �<< zero ≈ zero : Nat@ zero

This is the same as showing

D :: !′ | Φ;Δ �<< Nat ≈ Nat@ zero and !′ | Φ;Δ �<< zero ≈ zero : El(D)

This is immediate by the congruence law of the generic equivalence and the definition of the logical
relations.

Case 8 = ? Then assuming some : ≥ ? and !′ | Φ;Δ �
?

:
X ≈ X′ : Γ [q] [f], we must show

D :: !′ | Φ;Δ �
?

:
Nat ≈ Nat@ zero and !′ | Φ;Δ �

?

:
zero ≈ zero : El(D)

Following a similar proof to the case above, we also establish this case knowing : ∈ {?,<}.
Case 8 = 2 Assuming some : ≥ 2 and !′ | Φ;Δ �

?

:
X ≈ X′ : Γ [q] [f], we must show

!′ | Φ;Δ �
?

:
zero ≈ zero : Nat@ zero

The only additional analysis is when : = 2 as other values for : have been considered in the previous case.
In this case, we apply local substitution lemma so we only need to prove

!′ | Φ; Γ [q] [f] �
?
≥? zero : Nat@ zero

This clearly has been proven in the previous case.

�

Lemma 7.61.

! | Ψ; Γ 8 C ≈ C
′ : Nat@ zero

! | Ψ; Γ 8 succ C ≈ succ C ′ : Nat@ zero

Proof. From ! | Ψ; Γ 8 C ≈ C ′ : Nat @ zero, we also know ! Ψ, ! | Ψ typeof(8) Γ and
! | Ψ; Γ 8 Nat ≈ Nat @ zero. Now assume !′ ⊢ q ≈ q ′ : ! and !′ | Φ � f ≈ f ′ : Ψ[q], we have to
consider all 8 ≥ 2 .

, Vol. 1, No. 1, Article . Publication date: April 2024.

118 • Jason Z. S. Hu and Brigi�e Pientka

Case 8 =< Then assuming !′ | Φ;Δ �<< X ≈ X′ : Γ [q] [f], we must show

D :: !′ | Φ;Δ �<< Nat ≈ Nat@ zero and !′ | Φ;Δ �<< succ C [q] [f] [X] ≈ succ C ′ [q ′] [f ′] [X′] : El(D)

From ! | Ψ; Γ 8 C ≈ C
′ : Nat@ zero, we obtain such D and also

!′ | Φ;Δ �<< C [q] [f] [X] ≈ C ′ [q ′] [f ′] [X′] : El(D)

From here we obtain ! | Ψ; Γ �8 succ C ≃ succ C ′ : Nat which leads to our desired goal.

Case 8 = ? Then assuming some : ≥ ? and !′ | Φ;Δ �
?

:
X ≈ X′ : Γ [q] [f], we must show

D :: !′ | Φ;Δ �
?

:
Nat ≈ Nat@ zero and !′ | Φ;Δ �

?

:
succ C [q] [f] [X] ≈ succ C ′ [q ′] [f ′] [X′] : El(D)

We follow the previous case.
Case 8 = 2 In this case, we only consider the most interesting case of : = 2 . In this case, we apply local substitution

lemma, so we know !′ | Φ; Γ [q] [f] �
?
≥? C [q] [f] : Nat@ zero and we must prove

!′ | Φ; Γ [q] [f] �
?
≥? succ C [q] [f] : Nat@ zero

This clearly has been given by the previous case. As we have seen in the last few proofs with : = 2 , it
is a common pattern that we use the local substitution lemma to get rid of the local substitution lemma.
Then what is left for the proof obligation is given by 8 = ? modulo converting weakenings to substitutions.
Essentially, the semantics of layer 2 simply remembers the derivation given by the semantic rules. For this
reason, we will keep cases of 8 = 2 short.

�

The semantic rules are pretty sensitive to the orders in which they are proved. To handle Π types, it is more
convenient if we have the rules for contexts ready.

Lemma 7.62.

! Ψ

! | Ψ 8 · ≈ ·

Proof. Immediate. �

Lemma 7.63.

! Ψ 6 : Ctx ∈ Ψ

! | Ψ 8 6 ≈ 6

Proof. Now assuming !′ ⊢ q ≈ q ′ : ! and !′ | Φ � f ≈ f ′ : Ψ[q], we have to consider all 8 ∈ {?,<}. We
only consider 8 = < here as the proof for 8 = ? is very similar. We know 6 : Ctx ∈ Ψ[q] as well. Then we have
the following after lookup

!′ | Φ �
?
≥? f (6) ≈ f ′ (6)

We are very close to our goal

!′ | Φ �<< f (6) ≈ f ′ (6)

First we obtain !′ | Φ �
?
< f (6) ≈ f ′(6). Then by layering restriction, we have the goal by lifting ? to<. �

Lemma 7.64.

! | Ψ 8 Γ ≈ Δ ! | Ψ; Γ 8) ≈)
′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ 8 Γ, G :) @ ; ≈ Δ, G :) ′ @ ; ′

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 119

Proof. Now assuming !′ ⊢ q ≈ q ′ : ! and !′ | Φ � f ≈ f ′ : Ψ[q], we have to consider all 8 ∈ {?,<}. We
only consider 8 =< here as the proof for 8 = ? is very similar. We should prove

!′ | Φ �<< Γ [q] [f], G :) [q] [f] @ ; [q] ≈ Δ[q ′] [f ′], G :) ′ [q ′] [f ′] @ ; ′ [q ′]

We first obtain
!′ | Φ �<< Γ [q] [f] ≈ Δ[q ′] [f ′]

To obtain the goal, we must show) [q] [f] ≈) ′ [q ′] [f ′] is stable under local substitutions. This is immediate
by the semantic judgment, after converting weakenings into universe and global substitutions. �

Lemma 7.65.

! | Ψ typeof(8) Γ Γ ends with · |Γ | = :′

! | Ψ; Γ 8 ·
:′ ≈ ·:

′

: ·

Proof. From ! | Ψ typeof(8) Γ, we also know ! Ψ. Assuming !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q]. We
should consider all possible 8 .

Case 8 =< Then assuming !′ | Φ;Δ �<< X ≈ X′ : Γ [q] [f], we must show

D :: !′ | Φ �<< · ≈ · and !
′ | Φ;Δ �<< ·

:′ ◦ X ≈ ·:
′

◦ X′ : D

D is immediate. Now we should consider the composition. We know

·:
′

◦ X = ·:
′

◦ X′ = ·X̂
qX

We then have the goal by definition.
Case 8 = ? Similar.
Case 8 = 2 By the local substitution lemma and the rule in Sec. 7.4, we conclude this case by repeating the previous

case.
Case 8 = E Similar.

�

Lemma 7.66.

! | Ψ typeof(8) Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | = :′

! | Ψ; Γ 8 ·
:′

6 ≈ ·
:′

6 : ·

Proof. Similar to the previous lemma. We will need to do a case analysis on the result of lookup of 6, but
otherwise the result is straightforward. �

Lemma 7.67.

! | Ψ typeof(8) Γ 6 : Ctx ∈ Ψ Γ ends with 6 |Γ | = :′

! | Ψ; Γ 8 wk
:′

6 ≈ wk:
′

6 : 6

Proof. From ! | Ψ typeof(8) Γ, we also know ! Ψ. The semantic well-formedness for 6 is established by a
previous lemma.

Now we assume !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q]. We should consider all possible 8 .

Case 8 =< Then assuming !′ | Φ;Δ �<< X ≈ X′ : Γ [q] [f], we must show

D :: !′ | Φ �<< f (6) ≈ f ′(6) and !′ | Φ;Δ �<< wk:
′

6 [f] ◦ X ≈ wk:
′

6 [f
′] ◦ X′ : D

D is obtained by looking up 6 in f , from which we get

!′ | Φ �
?
< f (6) ≈ f ′ (6)

, Vol. 1, No. 1, Article . Publication date: April 2024.

120 • Jason Z. S. Hu and Brigi�e Pientka

We have D by layering restriction.
For composition, we have

wk:
′

6 [f] ◦ X = wk:
′

f (6) ◦ X

wk:
′

6 [f
′] ◦ X′ = wk:

′

f ′ (6) ◦ X
′

Effectively, this is the same as popping off :′ terms from X and X′ simultaneously. We have the goal by
irrelevance.

Case 8 = ? Similar.
Case 8 ∈ {E, 2} Similarly, we use the previous case.

�

Lemma 7.68.

! ⊢ ; : Level ! | Ψ; Γ 8 X ≈ X
′ : Δ ! | Ψ;Δ typeof(8)) @ ; ! | Ψ; Γ 8 C ≈ C

′ :) [X] @ ;

! | Ψ; Γ 8 X, C/G ≈ X
′, C ′/G : Δ, G :) @ ;

Proof. From ! | Ψ; Γ 8 X ≈ X′ : Δ we have ! | Ψ typeof(8) Γ, ! | Ψ typeof(8) Δ and ! Ψ. Then from a
previous lemma, we further have ! | Ψ typeof(8) Δ, G :) @ ; .

Now we assume !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q]. We should consider all possible 8 .

Case 8 =< Then assuming !′ | Φ;Δ′ �<< X1 ≈ X
′
1 : Γ [q] [f], we must show

– D :: !′ | Φ �<< (Δ, G :) @ ;) [q] [f] ≈ (Δ, G :) @ ;) [q ′] [f ′] and
– !′ | Φ;Δ′ �<< (X, C/G) [q] [f] ◦ X1 ≈ (X

′, C ′/G) [q ′] [f ′] ◦ X′
1
: D.

We expand the composition:

(X, C/G) [q] [f] ◦ X1 = (X [q] [f] ◦ X1), (C [q] [f] [X1])/G

(X′, C ′/G) [q ′] [f ′] ◦ X′1 = (X
′ [q ′] [f ′] ◦ X′1), (C

′ [q ′] [f ′] [X′1])/G

We can conclude the goal by using ! | Ψ typeof(8) Δ, G :) @ ; , ! | Ψ; Γ 8 C ≈ C ′ :) [X] @ ; and
irrelevance.

Case 8 = ? Similar.
Case 8 = 2 Similar to the previous pattern, we apply the local substitution lemma and use the previous case to dis-

charge the obligations.
Case 8 = E Similar.

�

Lemma 7.69.

! ·

! Ψ

! Ψ, 6 : Ctx

! Ψ ! | Ψ ? Γ

! ⊢ ; : Level 8 ∈ {2, ?}

! Ψ,* : (Γ ⊢8 @ ;)

! Ψ ! | Ψ; Γ ?) @ ;

! ⊢ ; : Level 8 ∈ {E, 2}

! Ψ, D : (Γ ⊢8) @ ;)

Proof. Immediate. We take advantage of the fact that a universe weakening is a special universe substitution.
�

Lemma 7.70.

! | Ψ typeof(8) Γ G :) @ ; ∈ Γ

! | Ψ; Γ 8 G ≈ G :) @ ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 121

Proof. From ! | Ψ typeof(8) Γ, we also know ! Ψ.
To construct the semantic judgment for type) , we first assuming !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q] and

some : ≥ 8 . We have

!′ | Φ �
typeof(8)

:
Γ [q] [f] ≈ Γ [q ′] [f ′]

Our goal is to construct

!′ | Φ;Δ �
typeof(8)

:
) [q] [f] [X] ≈) ′ [q ′] [f ′] [X′] @ ; [q]

with further assuming !′ | Φ;Δ �
typeof(8)

:
X ≈ X′ : Γ [q] [f]. This is done by doing induction on G :) @ ; ∈ Γ.

Then we consider the term. Since it is the variable case, 8 can take all four layers.

Case 8 =< Then assuming !′ | Φ;Δ �<< X ≈ X′ : Γ [q] [f], we must show

D :: !′ | Φ;Δ �<<) [q] [f] [X] ≈) ′ [q ′] [f ′] [X′] @ ; [q] and !′ | Φ;Δ �<< X (G) ≈ X′ (G) : El(D)

We proceed by doing induction on G :) @ ; ∈ Γ. We weaken the universe and global contexts to obtain
the goal.

Case 8 = ? This case works similarly at different layers. We omit it here.
Case 8 = 2 In this case, we consider : = 2 and apply the local substitution lemma. Based on the rule in Sec. 7.4 and

the previous case, we have the goal.
Case 8 = E This case makes use of the entire previous case and also in addition must prove the same for : = E . But

this is virtually identical to the previous case.

�

Combining the semantic rules for local substitutions, we derive that

Corollary 7.71 (Local Weakening Substitutions). ! | Ψ; Γ,Δ 8 wk
|Δ |

Γ
: Γ

Lemma 7.72.

! | Ψ typeof(8) Γ

D : (Δ ⊢8 ′) @ ;) ∈ Ψ 8′ ∈ {E, 2} 8 ∈ {E, 2, ?,<} 8′ ≤ 8 A :: ! | Ψ; Γ 8 X ≈ X
′ : Δ

! | Ψ; Γ 8 D
X ≈ DX

′

:) [X] @ ;

Proof. From ! | Ψ typeof(8) Γ, we also know ! Ψ.
To construct the semantic judgment for type) , we first assuming !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q] and

some : ≥ 8 , and then !′ | Φ;Δ′ �
typeof(8)

:
X1 ≈ X

′
1
: Γ [q] [f]. We have

!′ | Φ �
typeof(8)

:
Γ [q] [f] ≈ Γ [q ′] [f ′]

Our goal is to construct

!′ | Φ;Δ′ �
typeof(8)

:
) [q] [f] [X [q] [f] ◦ X1] ≈) [q

′] [f ′] [X′ [q ′] [f ′] ◦ X′1] @ ; [q]

We obtain this by looking up !′ � Ψ[q] using D : (Δ ⊢8 ′) @ ;) ∈ Ψ, and use the invariant that) is stable under
global and local substitutions.
Then we consider the term.

Case 8 =< Then assuming !′ | Φ;Δ′ �<< X1 ≈ X
′
1 : Γ [q] [f], we must show

!′ | Φ;Δ′ �<< f (D) [X [q] [f] ◦ X1] ≈ f ′(D) [X′ [q ′] [f ′] ◦ X′1] :) [q] [f] [X [q] [f] ◦ X1] @ ; [q]

Looking up !′ | Φ � f ≈ f ′ : Ψ[q], we know that

B :: !′ | Φ;Δ[q] [f] �
?

≥8 ′ f (D) ≈ f ′(D) :) [q] [f] @ ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

122 • Jason Z. S. Hu and Brigi�e Pientka

and
!′ | Φ �

?
? Δ[q] [f]

We also know the following fromA

!′ | Φ;Δ′ �<< X [q] [f] ◦ X1 ≈ X
′ [q ′] [f ′] ◦ X′1 : Δ[q] [f]

Therefore, we can apply layering restriction and obtain

!′ | Φ;Δ′ �
?
< X [q] [f] ◦ X1 ≈ X

′ [q ′] [f ′] ◦ X′1 : Δ[q] [f]

This is because we are sure Δ[q] [f] only contains types from MLTT.
We want to lift f (D) and f ′ (D) to <, so we instantiate B with the related local substitutions above and
obtain

!′ | Φ;Δ′ �
?
< f (D) [X [q] [f] ◦ X1] ≈ f ′(D) [X′ [q ′] [f ′] ◦ X′1] :) [q] [f] [X [q] [f] ◦ X1] @ ; [q]

The goal is achieved by another layering restriction.
Case 8 = ? Similar to the previous case except that there is no need for layering restriction, as we are evaluating terms

right inside of MLTT and therefore no lifting occurs.
Case 8 ∈ {E, 2} In this case, we also follow similar footsteps as the results of looking up global substitutions must be stable

under local substitutions.

�

Lemma 7.73.

! | Ψ typeof(8) Γ * : (Δ ⊢8 ′ @ ;) ∈ Ψ 8′ ∈ {2, ?} 8′ ≤ 8 ! | Ψ; Γ 8 X ≈ X
′ : Δ

! | Ψ; Γ 8 *
X ≈ * X′ @ ;

Proof. Similar to above, but simpler. Use layering restriction as well when 8 =<. �

Lemma 7.74.

! Ψ

! | Ψ · ≈ · : ·

! | Ψ f ≈ f ′ : Φ ! | Ψ ? Γ ≈ Δ

! | Ψ f, Γ/6 ≈ f ′,Δ/6 : Φ, 6 : Ctx

Proof. Immediate. �

Lemma 7.75.

! | Ψ f ≈ f ′ : Φ
! | Φ; Γ ?) @ ; ! ⊢ ; : Level 8 ∈ {E, 2} A :: ! | Ψ; Γ [f] 8 C ≈ C

′ :) [f] @ ;

! | Ψ f, C/D ≈ f ′, C ′/D : Φ, D : (Γ ⊢8) @ ;)

Proof. Assuming !′ ⊢ q ≈ q ′ : ! and !′ | Ψ′ � f1 ≈ f ′1 : Ψ[q], we have to show

!′ | Ψ′ � f [q] ◦ f1, C [q] [f1]/D ≈ f ′ [q] ◦ f ′1, C [q] [f
′
1]/D : (Φ, D : (Γ ⊢8) @ ;)) [q]

Our goal is to show, without loss of generality,

! | Ψ; Γ [f [q] ◦ f1] �
?
≥8 C [q] [f1] ≈ C

′ [q] [f ′1] :) [f [q] ◦ f1] @ ;

This is given byA, modulo converting weakenings to substitutions. �

Lemma 7.76.

! | Ψ f ≈ f ′ : Φ ! | Φ ? Γ ! ⊢ ; : Level 8 ∈ {2, ?} ! | Ψ; Γ [f] 8) ≈)
′ @ ;

! | Ψ f,) /* ≈ f ′,) ′/* : Φ, D : (Γ ⊢8 @ ;)

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 123

Proof. Similar to the previous case but simpler. �

Corollary 7.77 (Global Weakening Substitutions). ! | Ψ,Φ wk
|Φ |

Ψ
: Ψ

Lemma 7.78.

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ; Γ 8 (≈ (′ @ ;1 ! | Ψ; Γ, G : (@ ;1 8) ≈)
′ @ ;2

! | Ψ; Γ 8 Π
;1,;2 (G : ().) ≈ Π

;3,;4 (G : (′).) ′ @ ;1 ⊔ ;2

Proof. From ! | Ψ; Γ 8 (≈ (′ @ ;1, we can conclude ! Ψ and ! | Ψ typeof(8) Γ. Now assuming
!′ ⊢ q ≈ q ′ : ! and !′ | Φ � f ≈ f ′ : Ψ[q], we have to consider all 8 ≥ 2 .

Case 8 =< Then assuming !′ | Φ;Δ �<< X ≈ X′ : Γ [q] [f], we must show

!′ | Φ;Δ �<< Π
;1,;2 (G : ().) [q] [f] [X] ≈ Π

;3,;4 (G : (′).) ′ [q ′] [f ′] [X′] @ (;1 ⊔ ;2) [q]

From escape lemmas, we are able to establish the reduction premises, typing premises and the generic
equivalence. We then only focus on the semantic premises. First, from ! | Ψ; Γ 8 (≈ (′ @ ;1, we obtain

!′ | Φ;Δ �<< ([q] [f] [X] ≈ (′ [q ′] [f ′] [X′] @ ;1 [q]

Then we further assume k :: !′′ | Φ′;Δ′ =⇒< !′ | Φ;Δ and !′′ | Φ′;Δ′ �<< B ≈ B′ : ([q] [f] [X] @ ;1 [q],
we should prove

!′′ | Φ′ ;Δ′ �<<) [q] [f] [X, B/G] ≈) ′ [q ′] [f ′] [X′, B′/G] @ ;1 [q]

We are almost there, as long as we can provide

!′′ | Φ′;Δ′ �<< X, B/G ≈ X′, B′/G : (Γ, G : (@ ;1) [q] [f]

To prove these two local substitutions are related, we are interested in showing
! | Ψ typeof(8) Γ, G : (@ ;1 ≈ Γ, G : (′ @ ;3, but this is immediate from a previous lemma.

Case 8 = ? This case follows similarly to the previous case. It must range over : ∈ {?,<} so a similar reasoning must
be repeated twice.

Case 8 = 2 This case is much simpler by using the local substitution lemma to remove the need to assume another local
substitution. Then we can simply apply identity local substitutions to all premises and use the previous
case to conclude

!′ | Φ; Γ [q] [f] �
?
≥? Π

;1,;2 (G : ().) @ (;1 ⊔ ;2) [q]

If we introduce another local substitution, then we must reason about extending a local variable to an
arbitrary local substitution, which is quite verbose and unnecessary.

�

Lemma 7.79.

! ⊢ ; ≈ ; ′ : Level ! | Ψ; Γ 8 C ≈ C
′ : Ty; @ succ ;

! | Ψ; Γ 8 El
; C ≈ El;

′

C ′ @ ;

Proof. We use the fact that Ty; reduces only to itself and therefore it is only possible to expand C ≈ C ′ to the
universe case. �

Lemma 7.80.

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level

! | Ψ; Γ 8 B ≈ B
′ : Ty;1 @ succ ;1 ! | Ψ; Γ, G : El;1 B @ ;1 8 C ≈ C

′ : Ty;2 @ succ ;2

! | Ψ; Γ 8 Π
;1,;2 (G : B).C ≈ Π

;3,;4 (G : B′).C ′ : Ty;1⊔;2 @ succ (;1 ⊔ ;2)

, Vol. 1, No. 1, Article . Publication date: April 2024.

124 • Jason Z. S. Hu and Brigi�e Pientka

Proof. Very similar to the previous proof. We use the previous lemma and know that

! | Ψ; Γ 8 El
;1 B ≈ El;3 B′ @ ;1

We do the same for C ≈ C ′ . This gives us

! | Ψ; Γ 8 Π
;1,;2 (G : El;1 B).El;2 C ≈ Π

;3,;4 (G : El;3 B′).El;4 C ′ @ ;1 ⊔ ;2

When 8 ∈ {?,<}, we use

El;1⊔;2 Π;1,;2 (G : B).C Π
;1,;2 (G : El;1 B).El;2 C

El;3⊔;4 Π;3,;4 (G : B′).C ′ Π
;3,;4 (G : El;3 B′).El;4 C ′

We have the goal using reduction expansion. �

Lemma 7.81.

! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ; Γ 8 B : Ty; @ succ ; ! | Ψ; Γ, G : El; B @ ; 8 C : Ty; ′ @ succ ; ′

! | Ψ; Γ 8 Π
;,; ′ (G : El; B).El;

′

C ≈ El;⊔;
′

Π
;,; ′ (G : B).C @ ; ⊔ ; ′

Proof. Here 8 ∈ {?,<}. The proof is similar to the previous lemma except that we only use reduction expan-
sion on one side. �

Lemma 7.82.

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ; Γ 8 (≈ (′ @ ;1 ! | Ψ; Γ, G : (@ ;1 8 C ≈ C
′ :) @ ;2

! | Ψ; Γ 8 _
;1,;2 (G : ().C ≈ _;3,;4 (G : (′).C ′ : Π;,; ′ (G : ().) @ ;1 ⊔ ;2

Proof. From ! | Ψ; Γ 8 (≈ (′ @ ;1, we can conclude ! Ψ and ! | Ψ typeof(8) Γ. The premise ! | Ψ; Γ, G :
(@ ;1 8 C ≈ C ′ :) @ ;2 also gives us ! | Ψ; Γ, G : (@ ;1 8) @ ;2. Combining symmetry, transitivity and the
previous lemma, we have

! | Ψ; Γ 8 Π
;1,;2 (G : ().) @ ;1 ⊔ ;2

Now assuming !′ ⊢ q ≈ q ′ : ! and !′ | Φ � f ≈ f ′ : Ψ[q], we have to consider all 8 ≥ 2 .

Case 8 =< Then assuming !′ | Φ;Δ �<< X ≈ X′ : Γ [q] [f], we must show
– D :: !′ | Φ;Δ �<< Π

;1,;2 (G : ().) [q] [f] [X] ≈ Π
;3,;4 (G : ().) [q ′] [f ′] [X′] @ (;1 ⊔ ;2) [q], and

– !′ | Φ;Δ �<< _;1,;2 (G : ().C [q] [f] [X] ≈ _;3,;4 (G : (′).C ′ [q ′] [f ′] [X′] : El(D).
To obtain the goal we shall proceed in two steps. First, we obtain

!′ | Φ;Δ, G : ([q] [f] [X] @ ;1 [q] �
<
< X, G/G ≈ X′, G/G : (Γ, G : (@ ;1) [q] [f]

. Giving it to ! | Ψ; Γ, G : (@ ;1 8 C ≈ C
′ :) @ ;2, we have

!′ | Φ;Δ, G : ([q] [f] [X] @ ;1 [q] �
<
< C [q] [f] [X, G/G] ≈ C ′ [q ′] [f ′] [X′, G/G] :) [q] [f] [X, G/G] @ ;2 [q]

A further escape gives us

!′ | Φ;Δ, G : ([q] [f] [X] @ ;1 [q] ⊢< C [q] [f] [X, G/G] ≃ C ′ [q ′] [f ′] [X′, G/G] :) [q] [f] [X, G/G] @ ;2 [q]

From this, we conclude

!′ | Φ;Δ ⊢< (_
;1,;2 (G : ().C) [q] [f] [X] ≃ (_;3,;4 (G : (′).C ′) [q ′] [f ′] [X′] :) [q] [f] [X] @ ;2 [q]

modulo the law of weak head closure.
In the second step, we assume k :: !′′ | Φ

′;Δ′ =⇒< !′ | Φ;Δ and
!′′ | Φ′ ;Δ′ �<< B ≈ B′ : ([q] [f] [X] @ ;1 [q], we should prove

!′′ | Φ′;Δ′ �<< C [q] [f] [X, B/G] ≈ C ′ [q ′] [f ′] [X′, B′/G] :) [q] [f] [X, B/G] @ ;1 [q]

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 125

then we have the goal modulo weak head expansion. We are almost there, as long as we can provide

!′′ | Φ′;Δ′ �<< X, B/G ≈ X′, B′/G : (Γ, G : (@ ;1) [q] [f]

But in the previous lemma, we have seen it obvious.
Case 8 = ? Repeat the previous case at different layers twice.
Case 8 = 2 This case is very similar to that of Π.

�

Lemma 7.83.

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ; Γ 8 (≈ (′ @ ;1 ! | Ψ; Γ, G : (@ ;1 8) ≈)
′ @ ;2

A :: ! | Ψ; Γ 8 C ≈ C
′ : Π;1,;2 (G : ().) @ ;1 ⊔ ;2 ! | Ψ; Γ 8 B ≈ B

′ : (@ ;1

! | Ψ; Γ 8 (C : Π
;1,;2 (G : ().)) B ≈ (C ′ : Π;3,;4 (G : (′).) ′) B′ :) [B/G] @ ;2

Proof. From ! | Ψ; Γ 8 (≈ (′ @ ;1, we can conclude ! Ψ and ! | Ψ typeof(8) Γ. To show
! | Ψ; Γ typeof(8)) [B/G] @ ;2, we first show ! | Ψ; Γ typeof(8) B/G : Γ, G : (@ ;1 and get the goal using
the local substitution lemma. This is immediate by the semantic rule for local substitutions and Corollary 7.71.

Now assuming !′ ⊢ q ≈ q ′ : ! and !′ | Φ � f ≈ f ′ : Ψ[q], we have to consider all 8 ≥ 2 .

Case 8 =< Then assuming !′ | Φ;Δ �<< X ≈ X′ : Γ [q] [f], we must show
– D :: !′ | Φ;Δ �<<) [q] [f] [X, B [q] [f] [X]/G] ≈) ′ [q ′] [f ′] [X′, B′ [q ′] [f ′] [X′]/G] @ ;2 [q], and
– !′ | Φ;Δ �<< (C : Π

;1,;2 (G : ().)) B [q] [f] [X] ≈ (C ′ : Π;3,;4 (G : (′).) ′) B′ [q ′] [f ′] [X′] : El(D).
D is easily concluded from ! | Ψ; Γ <) [B/G] @ ;2.
We obtain the goal by instantiating A, from which we get

!′ | Φ;Δ �<< C [q] [f] [X] ≈ C ′ [q ′] [f ′] [X′] : El(Π;1,;2 (G : ().) [q] [f] [X]) (;1 ⊔ ;2) [q]

The semantics of Π;1,;2 (G : ().) [q] [f] [X] gives us the goal, up to irrelevance.
Case 8 = ? Similar.
Case 8 = 2 Follow the previous pattern, we use the local substitution lemma.

�

Lemma 7.84.

! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ; Γ, G : (@ ; 8 C :) @ ; ′ ! | Ψ; Γ 8 B : (@ ;

! | Ψ; Γ 8 C [B/G] ≈ (_
;,; ′ (G : ().C : Π;,; ′ (G : ().)) B :) [B/G] @ ; ′

Proof. Here 8 ∈ {?,<}. We obtain ! Ψ, ! | Ψ typeof(8) Γ, and ! | Ψ; Γ typeof(8)) [B/G] @ ; ′ following
similar lines as the previous lemma.

From the local substitution lemma, we also have ! | Ψ; Γ 8 C [B/G] :) @ ; ′ so we are one reduction step
away, which can be concluded by the reduction expansion lemma. �

Lemma 7.85.

! ⊢ ; : Level

! ⊢ ; ′ : Level ! | Ψ; Γ 8 (@ ; ! | Ψ; Γ, G : (@ ; 8) @ ; ′ ! | Ψ; Γ 8 C : Π
;,; ′ (G : ().) @ ; ⊔ ; ′

! | Ψ; Γ 8 _
;,; ′ (G : ().(C : Π;,; ′ (G : ().)) G ≈ C : Π;,; ′ (G : ().) @ ; ⊔ ; ′

Proof. Here 8 ∈ {?,<}. We assume q ≈ q ′, f ≈ f ′ and X ≈ X′ , and finally B ≈ B′. Then see

(_;,;
′

(G : ().(C [q] [f] [X] : Π;,; ′ (G : ().)) G : Π;,; ′ (G : ().)) B

 (C [q] [f] [X] : Π;,; ′ (G : ().)) G [B/G]

, Vol. 1, No. 1, Article . Publication date: April 2024.

126 • Jason Z. S. Hu and Brigi�e Pientka

= (C [q] [f] [X] : Π;,; ′ (G : ().)) B

≈ (C [q ′] [f ′] [X′] : Π;,; ′ (G : ().)) B′

Therefore, we obtain the goal by weak head expansion of logical relations. �

Lemma 7.86. If

• (:, 8) ∈ {(?, ?), (<, ?), (<,<)},

• ! ⊢ ; ≈ ; ′ : Level,
• ! | Ψ; Γ, G : Nat@ zero 8 " ≈ "′ @ ; ,

• ! | Ψ; Γ 8 B1 ≈ B3 : " [zero/G] @ ; ,

• B :: ! | Ψ; Γ, G : Nat@ zero,~ : " @ ; 8 B2 ≈ B4 : " [succ G/G] @ ; ,

• !′ ⊢ q ≈ q ′ : !,
• !′ | Φ � f ≈ f ′ : Ψ[q],

• !′ | Φ;Δ �
typeof(8)

:
X ≈ X′ : Γ [q] [f],

• !′ | Φ;Δ ⊢: C ∗ F : Nat@ zero,

• !′ | Φ;Δ ⊢: C ′ ∗ F ′ : Nat@ zero,

• !′ | Φ;Δ ⊢: F ≃ F
′ : Nat@ zero,

• A :: !′ | Φ;Δ �: F ≃ F
′ : Nat,

• C1 = elim;
Nat (G." [q] [f] [X, G/G]) (B1 [q] [f] [X]) (G,~.B2 [q] [f] [X, G/G,~/~]) C ,

• C2 = elim;
Nat (G."

′ [q ′] [f ′] [X′, G/G]) (B3 [q
′] [f ′] [X′]) (G,~.B4 [q

′] [f ′] [X′, G/G,~/~]) C ′

then

!′ | Φ;Δ �
typeof(8)

:
C1 ≈ C2 : " [q] [f] [X, C/G] @ ; [q]

Proof. We do induction on A.

• If F = F ′ = zero, then we hit the base case. In this case, we use ! | Ψ; Γ 8 B1 ≈ B3 : " [zero/G] @ ; and
reduction expansion to almost obtain the goal. The only missing piece is to prove

" [q] [f] [X, C/G] ≈ " [q] [f] [X, zero/G]

This holds from symmetry and the fact that C ≈ zero, so that we can extend X ≈ X .
• IfF = succ B andF ′ = succ B′, then we apply IH and also B to obtain the relation between recursive calls
for B and B′. We perform a similar analysis to handle the types.
• IfF = E andF = E ′ for some neutrals, then we relate them using the reflexivity of neutral.

�

Lemma 7.87.

! ⊢ ; ≈ ; ′ : Level ! | Ψ; Γ, G : Nat@ zero 8 " ≈ "′ @ ; ! | Ψ; Γ 8 B1 ≈ B3 : " [zero/G] @ ;

! | Ψ; Γ, G : Nat@ zero,~ : " @ ; 8 B2 ≈ B4 : " [succ G/G] @ ; A :: ! | Ψ; Γ 8 C ≈ C
′ : Nat@ zero

! | Ψ; Γ 8 elim
;
Nat (G.") B1 (G,~.B2) C ≈ elim; ′

Nat (G."
′) B3 (G,~.B4) C

′ : " [C/G] @ ;

Proof. Instantiate A and use the previous lemma for 8 ∈ {?,<}. Notice that we know C and C ′ are related by
Nat which must reduce to itself so we can supply all premises required by the previous lemma. When 8 = 2 , we
reuse the proof when 8 = ? . �

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 127

Lemma 7.88.

! ⊢ ; : Level ! | Ψ; Γ, G : Nat@ zero 8 " @ ;

! | Ψ; Γ 8 B : " [zero/G] @ ; ! | Ψ; Γ, G : Nat@ zero, ~ : " @ ; 8 B
′ : " [succ G/G] @ ;

! | Ψ; Γ 8 B ≈ elim;
Nat (G.") B (G,~.B

′) zero : " [zero/G] @ ;

! ⊢ ; : Level ! | Ψ; Γ, G : Nat@ zero 8 " @ ; ! | Ψ; Γ 8 B : " [zero/G] @ ;

! | Ψ; Γ, G : Nat@ zero,~ : " @ ; 8 B
′ : " [succ G/G] @ ; ! | Ψ; Γ 8 C : Nat@ zero

! | Ψ; Γ 8 B
′ [C/G, elim;

Nat (G.") B (G,~.B
′) C/~] ≈ elim;

Nat (G.") B (G,~.B
′) (succ C) : " [succ C/G] @ ;

Proof. We use reduction expansion, semantic local substitution lemma and the previous lemma. �

Lemma 7.89.

! | Ψ; Γ 8 C ≈ C
′ :) ′ @ ; ! | Ψ; Γ typeof(8)) ≈)

′ @ ;

! | Ψ; Γ 8 C ≈ C
′ :) @ ;

Proof. Use irrelevance when 8 ∈ {?,<}. When 8 ∈ {E, 2}, we do a case analysis on the semantics of related
terms. Notice that all rules for terms in Sec. 7.4 contain a type relation. We apply transitivity of related types
and irrelevance. �

7.9 More Semantic Rules

In the previous section, we have considered all possible (non-trivial) rules for all layers. Among these rules,
we have looked at the rules for global variables and see how layering restriction enables code running in the
semantics. In this section, we will finish the proof by considering rules that are available at layer<. This will
make our proofs in some sense simpler; there is only one layer to consider. On the other hand, we will look into
another important feature, recursors for code, and how it is semantically justified.

Lemma 7.90.

! | Ψ < Γ ! | Ψ ? Δ ≈ Δ
′ ! | Ψ;Δ ?) ≈)

′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ < �(Δ ⊢2) @ ;) ≈ �(Δ′ ⊢2)
′ @ ; ′) @ ;

Proof. Assuming !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q] and !′ | Φ;Δ1 �
<
< X ≈ X′ : Γ [q] [f], the focuses are

• A :: !′ | Φ �
?
≥? Δ[q] [f] ≈ Δ

′ [q ′] [f ′],

• B :: !′ | Φ;Δ[q] [f] �
?
≥?) [q] [f] @ ; [q] and

• C :: !′ | Ψ;Δ′ [q] [f] �
?
≥?)

′ [q] [f] @ ; [q].

A is simple as we only need to convert weakenings to substitutions. Then we can use ! | Ψ ? Δ ≈ Δ
′. B

and C are symmetric so we only focus on C which is slightly more complex. We similarly want to convert
weakenings to substitutions so that we can apply ! | Ψ;Δ ?) ≈)

′ @ ; to obtain the goal. The local contexts
are mismatched, though it is not a problem. The local contexts are used when further assuming related local
substitutions, and by ! | Ψ ? Δ ≈ Δ

′, we can use irrelevance to swap the local contexts. �

Lemma 7.91.

! | Ψ < Γ ! | Ψ ? Δ ≈ Δ
′ ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ < �(Δ ⊢2 @ ;) ≈ �(Δ′ ⊢2 @ ; ′) @ succ ;

Proof. Similar to above but simpler. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

128 • Jason Z. S. Hu and Brigi�e Pientka

Lemma 7.92.

! | Ψ < Γ ! | Ψ;Δ 2 C :) @ ;

! | Ψ; Γ < box C ≈ box C : �(Δ ⊢2) @ ;) @ ;

Proof. Assuming !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q] and !′ | Φ;Δ′ �<< X ≈ X′ : Γ [q] [f], then the goal
requires

!′ | Φ;Δ �
?
2 C [q] [f] :) [q] [f] @ ; [q]

Notice that the effect of local substitutions is irrelevant anymore. This goal can be instantiate by ! | Ψ;Δ 2 C :
) @ ; by passing in the same universe and global substitutions, and the identity local substitution. �

Lemma 7.93.

! | Ψ < Γ ! | Ψ;Δ 2) @ ;

! | Ψ; Γ < box) ≈ box) : �(Δ ⊢2 @ ;) @ succ ;

Proof. Similar to above but simpler. �

Lemma 7.94.

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ ⊢? Δ ≈ Δ
′ ! | Ψ; Γ ?) ≈)

′ @ ;2
! | Ψ; Γ < C ≈ C ′ : �(Δ ⊢2) @ ;2) @ ;2 ! | Ψ; Γ, G) : �(Δ ⊢2) @ ;2) @ ;1 < " ≈ "′ @ ;1

! | Ψ, D : (Δ ⊢2) @ ;2); Γ < C1 ≈ C2 : " [box D
id/GC] @ ;1

! | Ψ; Γ < letbox
;1
Trm

;2 Δ) (GC .") (* .C1) C ≈ letbox
;3
Trm

;4 Δ
′) ′ (G) ."

′) (* .C2) C
′ : " [C/GC] @ ;1

Proof. Assuming !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q] and !′ | Φ;Δ′ �<< X ≈ X′ : Γ [q] [f], then the goal
requires

!′ | Φ;Δ �<< B1 ≈ B2 : " [q] [f] [X, C [q] [f] [X]/GC] @ ;1 [q]

where B1 = letbox
;1
Trm

;2 Δ) (GC .") (* .C1) C [q] [f] [X] and B2 = letbox
;3
Trm

;4 Δ
′) ′ (G) ."

′) (* .C2) C
′ [q ′] [f ′] [X′].

By instantiating ! | Ψ; Γ < C ≈ C ′ : �(Δ ⊢2) @ ;2) @ ;2, we have

!′ | Φ;Δ′ �<< C [q] [f] [X] ≈ C ′ [q ′] [f ′] [X′] : �(Δ ⊢2) @ ;2) [q] [f] [X] @ ;2 [q]

Unfolding it, there are two possibilities for this relation.

Case We know for some C ′′,
– !′ | Φ;Δ′ ⊢: C [q] [f] [X]

∗ box C ′′ : �(Δ ⊢2) @ ;2) [q] [f] [X] @ ;2 [q],
– !′ | Φ;Δ′ ⊢: C [q

′] [f ′] [X′] ∗ box C ′′ : �(Δ ⊢2) @ ;2) [q] [f] [X] @ ;2 [q], and
– !′ | Φ;Δ[q] [f] �

?
2 C ′′ :) [q] [f] @ ;2 [q]

We observe that

!′ | Φ � f, C ′′/D ≈ f ′, C ′′/D : Ψ[q], D : (Δ[q] [f] ⊢2) [q] [f] @ ;2 [q])

Giving it to ! | Ψ, D : (Δ ⊢2) @ ;2); Γ < C1 ≈ C2 : " [box D
id/GC] @ ;1, we obtain

!′ | Φ;Δ′ �<< C1 [q] [f, C
′′/D] [X] ≈ C2 [q

′] [f ′, C ′′/D] [X′] : " [q] [f] [X, box C ′′/GC] @ ;1 [q]

By reduction expansion, we have

!′ | Φ;Δ′ �<< B1 ≈ B2 : " [q] [f] [X, box C
′′/GC] @ ;1 [q]

which is almost the goal. To tame the goal, we observe that

!′ | Φ;Δ′ �<< C [q] [f] [X] ≈ box C ′′ : �(Δ ⊢2) @ ;2) [q] [f] [X] @ ;2 [q]

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 129

which further allows us to conclude

!′ | Φ;Δ′ �<< X, C [q] [f] [X]/GC ≈ X
′, box C ′′/GC : (Γ, G) : �(Δ ⊢2) @ ;2) @ ;1) [q] [f]

Apply ! | Ψ; Γ, G) : �(Δ ⊢2) @ ;2) @ ;1 < " ≈ "′ @ ;1 gives us the goal using irrelevance and weak
head expansion.

Case We know for some ` and `′ ,
– !′ | Φ;Δ′ ⊢: C [q] [f] [X]

∗ ` : �(Δ ⊢2) @ ;2) [q] [f] [X] @ ;2 [q],
– !′ | Φ;Δ′ ⊢: C [q

′] [f ′] [X′] ∗ `′ : �(Δ ⊢2) @ ;2) [q] [f] [X] @ ;2 [q], and
– !′ | Φ;Δ′ ⊢< ` ∼ `′ : �(Δ ⊢2) @ ;2) [q] [f] [X] @ ;2 [q]

The idea here is to use the law of congruence for neutrals to establish a generic equivalence between
neutrals, and then we use reflexivity for neutrals to relate two neutrals using the logical relations.
The process requires us to provide

!′ | Φ;Δ′, G) : �(Δ ⊢2) @ ;2) [q] [f] @ ;1 [q] �
<
< X, G) /G) ≈ X

′, G) /G) : (Γ, G) : �(Δ ⊢2) @ ;2) @ ;1) [q] [f]

This is immediate. We also need

!′ | Φ, D : (Δ ⊢2) @ ;2) [q] [f] � f,D
id/D ≈ f ′, D id/D : (Ψ, D : (Δ ⊢2) @ ;2)) [q]

In this case, we should prove

!′ | Φ, D : (Δ ⊢2) @ ;2) [q] [f];Δ[q] [f] �
?
≥? D

id :) [q] [f] @ ;2 [q]

This turns out to have been checked by the lemma of reflexive global weakening in Sec. 7.4. Finally,
!′ | Φ;Δ′ �<< X ≈ X′ : Γ [q] [f] is weakened before applying.

�

Lemma 7.95.

! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level ! | Ψ ⊢? Δ ≈ Δ
′

! | Ψ; Γ < C ≈ C ′ : �(Δ ⊢2 @ ;2) @ succ ;2 ! | Ψ; Γ, G) : �(Δ ⊢2 @ ;2) @ succ ;2 < " ≈ "′ @ ;1
! | Ψ,* : (Δ ⊢2 @ ;2); Γ < C1 ≈ C2 : " [box*

id/G)] @ ;1

! | Ψ; Γ < letbox
;1
Typ

;2 Δ (G) .") (* .C1) C ≈ letbox
;3
Typ

;4 Δ
′ (G) ."

′) (* .C2) C
′ : " [C/G)] @ ;1

Proof. Similar to above but simpler. �

Next, we consider the semantics for the recursive principles. The following lemma needs to be mutually
proved.

Lemma 7.96. If

• (�,

• !′ ⊢ q ≈ q ′ : !,
• !′ | Φ � f ≈ f ′ : Ψ[q],
• !′ | Φ;Δ1 �

<
< X ≈ X′ : Γ [q] [f],

• !′ ⊢ ; ≈ ; ′ : Level,
• !′ | Φ �

?
≥? Δ ≈ Δ

′,

• !′ | Φ;Δ1 ⊢< C ∗ box)1 : �(Δ ⊢2 @ ;) @ succ ; ,

• !′ | Φ;Δ1 ⊢< C ′ ∗ box)1 : �(Δ ⊢2 @ ;) @ succ ; ,

• A :: !′ | Ψ;Δ �
?
2)1 @ ; ,

• C1 = elim
;1 [q],;2 [q]

Typ
(
−→
" [q] [f] [X]) (

−→
1 [q] [f] [X]) ; Δ C , and

• C2 = elim
;1 [q],;2 [q]

Typ
(
−→
"′ [q] [f] [X]) (

−→
1 ′ [q] [f] [X]) ; ′ Δ′ C ′,

, Vol. 1, No. 1, Article . Publication date: April 2024.

130 • Jason Z. S. Hu and Brigi�e Pientka

then

!′ | Φ;Δ1 �
<
< C1 ≈ C2 : " [;/ℓ, Δ/6, C/G)] [q] [f] [X] @ ;1 [q]

Lemma 7.97. If

• (�,

• !′ ⊢ q ≈ q ′ : !,
• !′ | Φ � f ≈ f ′ : Ψ[q],
• !′ | Φ;Δ1 �

<
< X ≈ X′ : Γ [q] [f],

• !′ ⊢ ; ≈ ; ′ : Level,
• !′ | Φ �

?
≥? Δ ≈ Δ

′,

• !′ | Φ;Δ �
?
≥?) ≈)

′ @ ; ,

• !′ | Φ;Δ1 ⊢< C ∗ box C : �(Δ ⊢2) @ ;) @ ; ,

• !′ | Φ;Δ1 ⊢< C ′ ∗ box C1 : �(Δ ⊢2) @ ;) @ ; ,

• B :: !′ | Ψ;Δ �
?
2 C1 :) @ ; ,

• C1 = elim
;1 [q],;2 [q]

Trm
(
−→
" [q] [f] [X]) (

−→
1 [q] [f] [X]) ; Δ) C , and

• C2 = elim
;1 [q],;2 [q]

Trm
(
−→
"′ [q] [f] [X]) (

−→
1 ′ [q] [f] [X]) ; ′ Δ′) ′ C ′,

then

!′ | Φ;Δ1 �
<
< C1 ≈ C2 : "

′ [;/ℓ,Δ/6,) /*) , C/GC] [q] [f] [X] @ ;2 [q]

where (� is the set containing all semantic judgments for motives and branches in ! | Ψ; Γ.

Proof. The idea is to do a mutual induction onA and B. Recall that they are mutually defined structures as
shown in Sec. 7.4. Let us pick two cases to discuss:

Case

D : (Δ2 ⊢8 ′)2 @ ; ′′) ∈ Φ 8′ ∈ {E, 2} !′ | Φ;Δ �
?
2 X2 : Δ2

! ⊢ ; ≈ ; ′′ : Level !′ | Φ;Δ �
?
≥?) ≈)2 [X2] @ ; !′ | Φ;Δ �

?
≥? D

X2 :) @ ;

!′ | Φ;Δ �
?
2 DX2 :) @ ;

In this case, we must block the evaluation. The idea follows closely to the neutral case for letbox and we
should apply the law of neutral recursion on code. In this case, we see that !′ | Φ ⊢? Δ ≃ Δ

′, !′ | Φ;Δ ⊢?
) ⇐̂⇒) ′ @ succ ; . Then we have to show that the motives and the branches are related by generic
equivalence. The idea is to extend all substitutions if necessary. We have shown that all substitutions can
be extended by identities in the semantics (and universe substitutions are the same in both syntax and
semantics).

Case

!′ ⊢ ;3 : Level !′ ⊢ ;4 : Level
!′ | Φ;Δ �

?
2 (2 @ ;3 !′ | Φ;Δ, G : (2 @ ;3 �

?
2 C2 :)2 @ ;4 !′ ⊢ ; ≈ ;3 ⊔ ;4 : Level

!′ | Φ;Δ �
?
≥?) ≈ Π

;3,;4 (G : (2).)2 @ ; !′ | Φ;Δ �
?
≥? _;3,;4 (G : (2).C2 :) @ ;

!′ | Φ;Δ �
?
2 _;3,;4 (G : (2).C2 :) @ ;

In this case, we should go down and recurse on (2 and C2. We then use the semantic rule for C_ to substitute
in the results of the recursive calls for (2 and C2. We also obtain !′ | Φ;Δ, G : (2 @ ;3 �

?
≥?)2 @ ; . Therefore

we have everything we need to use the semantic rule for C_ . The only missing piece is that the conclusion
requires relation between) and) ′. Meanwhile, C_ only gives us Π;3,;4 (G : (2).)2 . The solution lies in

!′ | Φ;Δ �
?
≥?) ≈)

′ @ ;

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 131

!′ | Φ;Δ �
?
≥?) ≈ Π

;3,;4 (G : (2).)2 @ ;

Thus these three types are related. Since Π
;3,;4 (G : (2).)2 is already in normal form, so we know both) ′

and) ′ must reduce to it. Together with the V rule when hitting the _ case, we use weak head expansion
to obtain the desired goal.

�

These two lemmas in the semantics give the recursions on code of types and terms and actual do the recursions.
For the semantic rules for the recursors, we first use these lemmas to prove the congruence rules. We are almost
done wit the congruence rules except that we have to handle the neutral cases. This is virtually identical to the
global variable cases, where we use the law of neutral recursion of code to relate neutral terms and use reflexivity
for neutrals to establish the logical relations. The rest are the V rules. They are even simpler due to access to the
congruence rules. Then we use reduction expansion to achieve the goals.

What are left now are the meta-functions including universe-polymorphic functions. Fist the meta-functions
for local contexts and types are very similar.

Lemma 7.98.

! | Ψ < Γ

! | Ψ ? Δ ≈ Δ
′ ! | Ψ,* : (Δ ⊢? @ ;); Γ <) ≈) ′ @ ; ′ ! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level

! | Ψ; Γ < (* : (Δ ⊢? @ ;1)) ⇒
;2) ≈ (* : (Δ′ ⊢? @ ;3)) ⇒

;4) ′ @ succ ;1 ⊔ ;2

Proof. Assuming !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q] and !′ | Φ;Δ′ �<< X ≈ X′ : Γ [q] [f], then we should
prove

!′ | Φ;Δ′ �<< (* : (Δ ⊢? @ ;1)) ⇒
;2) [q] [f] [X] ≈ (* : (Δ′ ⊢? @ ;3)) ⇒

;4) ′ [q ′] [f ′] [X′] @ succ ;1 ⊔ ;2 [q]

Most premises are simple. The tricky part is to show E1 and E2, which are symmetric. Knowing ! | Ψ ? Δ ≈ Δ
′,

it is sufficient to only prove one of them. Using ! | Ψ,* : (Δ ⊢? @ ;); Γ <) ≈) ′ @ ; ′, it is easy to see that
both E1 and �2 hold, by extending f and f ′. �

Lemma 7.99.

! | Ψ < Γ ! | Ψ, 6 : Ctx; Γ <) ≈) ′ @ ; ! ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ < (6 : Ctx) ⇒;) ≈ (6 : Ctx) ⇒; ′) ′ @ ;

Proof. Similar to above but simpler. �

Lemma 7.100.

! | Ψ < Γ ! | Ψ, * : (Δ ⊢? @ ;1); Γ < C ≈ C ′ :) @ ;2 ! ⊢ ;1 ≈ ;3 : Level ! ⊢ ;2 ≈ ;4 : Level

! | Ψ; Γ < Λ
;1,;2
? * .C ≈ Λ

;3,;4
? * .C ′ : (* : (Δ ⊢? @ ;1)) ⇒

;2) @ succ ;1 ⊔ ;2

Proof. In this proof, we are asked to prove two symmetric proof which is essentially to show that the results

of applying Λ
;1,;2
? * .C and Λ

;3,;4
? * .C ′ are related. This is immediate by extending related global substitutions and

applying them to ! | Ψ, * : (Δ ⊢? @ ;1); Γ < C ≈ C ′ :) @ ;2. �

Lemma 7.101.

! | Ψ; Γ < C ≈ C ′ : (* : (Δ ⊢? @ ;)) ⇒; ′) ′′ @ succ ; ⊔ ; ′ ! | Ψ;Δ ?) ≈)
′ @ ;

! | Ψ; Γ < C $?) ≈ C
′ $?)

′ :) ′′ [) /*] @ ; ′

Proof. We obtain the goal quite easily by using the semantics of related terms of type
(* : (Δ ⊢? @ ;)) ⇒; ′) ′′. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

132 • Jason Z. S. Hu and Brigi�e Pientka

Lemma 7.102.

! | Ψ < Γ

! | Ψ, * : (Δ ⊢? @ ;); Γ < C :) ′ @ ; ′ ! ⊢ ; : Level ! ⊢ ; ′ : Level ! | Ψ;Δ ?) @ ;

! | Ψ; Γ < C [) /*] ≈ (Λ;,; ′

? * .C) $?) :) ′ [) /*] @ ; ′

! | Ψ; Γ < C : (* : (Δ ⊢? @ ;)) ⇒; ′) ′ @ succ ; ⊔ ; ′

! | Ψ; Γ < Λ
;,; ′

? * .(C $? *
id) ≈ C : (* : (Δ ⊢? @ ;)) ⇒; ′) ′ @ succ ; ⊔ ; ′

Proof. These two rules are also very simple to prove and follow similar lines to those of Π types. For the V
rule, we use reduction expansion. For the [rule, we see it by noticing applying related global substitutions. �

The corresponding introduction, elimination, V and [rules for meta-functions for local contexts are proved
similarly but just simpler.

Now the only last piece is universe-polymorphic functions.

Lemma 7.103.

!,
−→
ℓ | Ψ; Γ <) @ ; !,

−→
ℓ | Ψ; Γ <) ≈) ′ @ ; |

−→
ℓ | > 0 !,

−→
ℓ ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ <
−→
ℓ ⇒;) ≈

−→
ℓ ⇒; ′) ′ @ l

Proof. Assuming !′ ⊢ q ≈ q ′ : !, !′ | Φ � f ≈ f ′ : Ψ[q] and !′ | Φ;Δ′ �<< X ≈ X′ : Γ [q] [f], then we should
prove

!′ | Φ;Δ′ �<<
−→
ℓ ⇒;) [q] [f] [X] ≈

−→
ℓ ⇒; ′) ′ [q ′] [f ′] [X′] @ l

Looking at the semantics of universe-polymorphic functions, we see that !,
−→
ℓ | Ψ; Γ <) @ ; has already

provided the goal. It is important to see that !′ ⊢ ; [q,
−→
; /
−→
ℓ] : Level if all universe levels in

−→
; are well-formed

so it is strictly smaller than l . Therefore, we still have a well-founded semantics. �

Lemma 7.104.

!,
−→
ℓ | Ψ; Γ < C ≈ C ′ :) @ ; |

−→
ℓ | > 0 !,

−→
ℓ ⊢ ; ≈ ; ′ : Level

! | Ψ; Γ < Λ
; −→ℓ .C ≈ Λ

; ′ −→ℓ .C ′ :
−→
ℓ ⇒;) @ l

!,
−→
ℓ | Ψ; Γ <) @ ;

! | Ψ; Γ < C ≈ C ′ :
−→
ℓ ⇒;) @ l |

−→
ℓ | = |

−→
; | = |

−→
; ′ | > 0 ∀0 ≤ = < |

−→
; | · ! ⊢

−→
; (=) ≈

−→
; ′(=) : Level

! | Ψ; Γ < C $
−→
; ≈ C ′ $

−→
; ′ :) [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ]

! | Ψ < Γ !,
−→
ℓ | Ψ; Γ < C :) @ ; !,

−→
ℓ ⊢ ; : Level |

−→
ℓ | = |

−→
; | > 0 ∀; ′ ∈

−→
; · ! ⊢ ; ′ : Level

! | Ψ; Γ < C [
−→
; /
−→
ℓ] ≈ (Λ; −→ℓ .C) $

−→
; :) [

−→
; /
−→
ℓ] @ ; [

−→
; /
−→
ℓ]

! | Ψ; Γ < C :
−→
ℓ ⇒;) @ l

! | Ψ; Γ < Λ
; −→ℓ .(C $

−→
ℓ) ≈ C :

−→
ℓ ⇒;) @ l

Proof. All these rules are relatively simple. The congruence rule for introduction can be proved by following

the definition of related terms of type
−→
ℓ ⇒;) .

The congruence rule for elimination can be proved by using the definition of related terms of type
−→
ℓ ⇒;) .

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 133

The V rule can be derived from using reduction expansion.
The [rule can be given after applying arbitrary equivalent universe substitutions. �

At this point, we have proved all semantic rules and thus the fundamental theorems hold.

8 CONSEQUENCES AND DECIDABILITY OF CONVERTIBILITY

In the previous section, we have established the fundamental theorems, and using the escape lemma, we see
that all syntactic equivalent types and terms are also semantically related by the Kripke logical relations. In this
section, we will instantiate the generic equivalence so that we can obtain desired properties that are difficult to
prove syntactically.

8.1 First Instantiation: Syntactic Equivalence

First we instantiate the generic equivalence with syntactic equivalences of types and terms. The laws are all
easily instantiated by the corresponding equivalence rules. We also see that the derived equivalences between
local contexts and local substitutions are equivalent to the corresponding syntactic equivalences. From the fun-
damental theorems and the escape lemma, we are able to derive the following lemmas.

Lemma 8.1 (Injectivity of Type Constructors).

• If ! | Ψ; Γ ⊢8 Π
;,; ′ (G : ().) ≈ Π

;,; ′ (G : (′).) ′ @ ; ⊔ ; ′ and 8 ∈ {?,<}, then ! | Ψ; Γ ⊢8 (≈ (′ @ ; and

! | Ψ; Γ, G : (@ ; ⊢8) ≈)
′ @ ; ′.

• If ! | Ψ; Γ ⊢8 Π
;,; ′ (G : B).C ≈ Π

;,; ′ (G : B′).C ′ : Ty;⊔; ′ @ succ (; ⊔ ; ′) and 8 ∈ {?,<}, then

! | Ψ; Γ ⊢8 B ≈ B
′ : Ty; @ succ ; and ! | Ψ; Γ, G : El; B @ ; ⊢8 C ≈ C

′ : Ty; ′ @ succ ; ′.

• If ! | Ψ; Γ ⊢< �(Δ ⊢2 @ ;) ≈ �(Δ′ ⊢2 @ ;) @ succ ; , then ! | Ψ ⊢? Δ ≈ Δ
′.

• If ! | Ψ; Γ ⊢< �(Δ ⊢2) @ ;) ≈ �(Δ′ ⊢2) @ ;) @ ; , then ! | Ψ ⊢? Δ ≈ Δ
′ and ! | Ψ;Δ ⊢?) ≈)

′ @ ; .

• If ! | Ψ; Γ ⊢< (6 : Ctx) ⇒;) ≈ (6 : Ctx) ⇒;) ′ @ ; , then ! | Ψ, 6 : Ctx; Γ ⊢<) ≈) ′ @ ; .

• If ! | Ψ; Γ ⊢< (* : (Δ ⊢? @ ;)) ⇒; ′) ≈ (* : (Δ′ ⊢? @ ;)) ⇒; ′) ′ @ succ ; ⊔ ; ′, then ! | Ψ ⊢? Δ ≈ Δ
′ and

! | Ψ,* : (Δ ⊢? @ ;); Γ ⊢<) ≈) ′ @ ; ′.

• If ! | Ψ; Γ ⊢<
−→
ℓ ⇒;) ≈

−→
ℓ ⇒;) ′ @ l , then !,

−→
ℓ | Ψ; Γ ⊢<) ≈) ′ @ ; .

Proof. By fundamental theorems, we pass in all identity substitutions and then we can extract this fact from
the logical relations of types. �

We follow Hu et al. [2023] and give us the consistency proof of DeLaM.

Lemma 8.2 (Consistency). There is no term C that satisfies this typing judgment:

ℓ | ·; · ⊢< C : Πsucc ℓ,ℓ (G : Tyℓ).G @ succ ℓ

That is, there is not a generic way to construct a term of an arbitrary type.

Proof. The lemma effectively asks to reject the following derivation after applying the fundamental theorems:

ℓ | ·; G : Tyℓ @ succ ℓ ⊢< C : G @ ℓ

Now by the logical relations of the neutral type G , we know that C must also be neutral, so we now move on to
rejecting

ℓ | ·; G : Tyℓ @ succ ℓ ⊢< E : G @ ℓ

Then we do induction on E . It is impossible to do any operation on E but to refer to G ultimately, but then G has
type Tyℓ which cannot be equivalent to G , as they both have reached normal forms and it is not possible to relate
any two distinguished normal forms in any case by the logical relations. �

, Vol. 1, No. 1, Article . Publication date: April 2024.

134 • Jason Z. S. Hu and Brigi�e Pientka

8.2 Second Instantiation: Convertibility Checking

In this section, we perform our second instantiation by specifying the generic equivalence to be the convertibility
checking judgments. This second instantiation is not very immediate for some laws for the generic equivalence,
so we must do some verification, using the results from the first instantiation.

• ! | Ψ; Γ ⊢8 + ∼ +
′ @ ; is ! | Ψ; Γ ⊢8 + ←→ + ′ @ ; .

• ! | Ψ; Γ ⊢8) ≃)
′ @ ; is ! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ; .

• ! | Ψ; Γ ⊢8 ` ∼ `′ :) @ ; is ! | Ψ; Γ ⊢8 ` ←̂→ `′ :) ′ @ ; and ! | Ψ; Γ ⊢8) ≈)
′ @ ; .

• ! | Ψ; Γ ⊢8 C ≃ C
′ :) @ ; is ! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) @ ; .

Most laws are quite straightforward, except the conversion laws and the PER laws. Let us consider the conver-
sion laws first. We must show that the convertibility checking algorithm is invariant under contexts and types.
Intuitively, this should be true, but it is not very easy to prove, until we obtain the injectivity lemma after the
first instantiation.

Lemma 8.3 (Conversion).

• if ! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then ! | Φ;Δ ⊢8) ⇐̂⇒) ′ @ ; .

• if ! | Ψ; Γ ⊢8 , ⇐⇒, ′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then ! | Φ;Δ ⊢8 , ⇐⇒, ′ @ ; .

• if ! | Ψ; Γ ⊢8 + ←→ + ′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then ! | Φ;Δ ⊢8 + ←→ + ′ @ ; .

• if ! | Ψ ⊢8 Γ ⇐̂⇒ Δ and ! ⊢ Φ ≈ Ψ, then ! | Φ ⊢8 Γ ⇐̂⇒ Δ.

• if ! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) @ ; , ! ⊢ Φ ≈ Ψ, ! | Φ ⊢8 Δ ≈ Γ and ! | Φ;Δ ⊢8) ′ ≈) @ ; , then

! | Φ;Δ ⊢8 C ⇐̂⇒ C ′ :) ′ @ ; .

• if ! | Ψ; Γ ⊢8 F ⇐⇒ F ′ : , @ ; , ! ⊢ Φ ≈ Ψ, ! | Φ ⊢8 Δ ≈ Γ and ! | Φ;Δ ⊢8 ,
′ ≈ , @ ; , then

! | Φ;Δ ⊢8 F ≈ F
′ :, ′ @ ; ;

• if ! | Ψ; Γ ⊢8 ` ←̂→ `′ :) @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then ! | Φ;Δ ⊢8 ` ←̂→ `′ :) ′ @ ; and

! | Ψ; Γ ⊢8)
′ ≈) @ ; for some) ′.

• if ! | Ψ; Γ ⊢8 ` ←→ `′ : , @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then ! | Φ;Δ ⊢8 ` ≈ `′ : , ′ @ ; and

! | Ψ; Γ ⊢8 ,
′ ≈, @ ; for some, ′.

• if ! | Ψ; Γ ⊢8 X ⇐̂⇒ X′ : Δ, ! ⊢ Φ ≈ Ψ, ! | Φ ⊢8 Γ
′ ≈ Γ and ! | Φ ⊢8 Δ

′ ≈ Δ, then ! | Φ; Γ′ ⊢8 X ⇐̂⇒ X′ : Δ′.

Proof. We do induction on all derivations. Most cases are immediate. When we get under binders, we need
to extend the context equivalences, in which case we should use the soundness lemma to obtain the well-
formedness of the type that needs to be extended to the contexts.
We consider a few cases.

Case

) ∗,

! | Ψ; Γ ⊢8 C
∗ F :) @ ; ! | Ψ; Γ ⊢8 C

′

∗ F ′ :) @ ; ! | Ψ; Γ ⊢8 F ⇐⇒ F ′ :, @ ;

! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) @ ;

The most important thing to notice is that by ! | Φ;Δ ⊢8)
′ ≈) @ ; and) ∗, , we know that) ′ ∗, ′

for some, ′. Therefore we can prove this case using IH. Other premises are satisfied by syntactic context
equivalence lemmas.

Case

! | Ψ; Γ ⊢8 (@ ; ! | Ψ; Γ ⊢8 F : Π;,; ′ (G : ().) @ ; ⊔ ; ′ ! | Ψ; Γ ⊢8 F
′ : Π;,; ′ (G : ().) @ ; ⊔ ; ′

! | Ψ; Γ, G : (@ ; ⊢8 (F : Π;,; ′ (G : ().)) G ⇐̂⇒ (F ′ : Π;,; ′ (G : ().)) G :) @ ; ′

! | Ψ; Γ ⊢8 F ⇐⇒ F ′ : Π;,; ′ (G : ().) @ ; ⊔ ; ′

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 135

In this case, we know ! | Φ;Δ ⊢8 ,
′ ≈ Π

;,; ′ (G : ().) @ ; ⊔ ; ′. By the fundamental theorems, we know
that, ′ can only reduce to some Π type. Since, ′ is already normal, it is only possible for, ′ to be some
Π type. Say, ′ = Π

;,; ′ (G : (′).) ′ . Then by injectivity, we know (≈ (′ and) ≈) ′. We obtain our goal by
extending the local contexts.

Case

! | Ψ; Γ ⊢8 ` ←→ `′ :, @ ;

! | Ψ; Γ ⊢8 ` ⇐⇒ `′ : + @ ;

In this case, the type equivalence is irrelevant. When hitting neutral types, we simply ignore the type,
inferred by ! | Ψ; Γ ⊢8 ` ←→ `′ :, @ ; .

Case

! | Ψ; Γ ⊢8 ` ←̂→ `′ :) @ ;) ∗,

! | Ψ; Γ ⊢8 ` ←→ `′ :, @ ;

In this case, we simply apply IH. Then we know

) ∗, and) ′ ∗, ′

Our goal is to show, ≈, ′. But this is immediate from the determinacy lemma of multi-step reduction
and the fundamental theorems.

Case

! | Ψ ⊢8 Γ G :) @ ; ∈ Γ

! | Ψ; Γ ⊢8 G ←̂→ G :) @ ;

The goal is given by the equivalence between Γ and Δ.
Case

! ⊢ ;1 ≈ ;3 : Level
! ⊢ ;2 ≈ ;4 : Level ! | Ψ; Γ ⊢8 (⇐̂⇒ (′ @ ;1 ! | Ψ; Γ, G : (@ ;1 ⊢8) ⇐̂⇒) ′ @ ;2

! | Ψ; Γ ⊢8 ` ←→ `′ : Π;1,;2 (G : (′′).) ′′ @ ;1 ⊔ ;2 ! | Ψ; Γ ⊢8 B ⇐̂⇒ B′ : (@ ;1

! | Ψ; Γ ⊢8 (` : Π;1,;2 (G : ().)) B ←̂→ (`′ : Π;3,;4 (G : (′).) ′) B′ :) [B/G] @ ;2

By IH, we know from ! | Ψ; Γ ⊢8 ` ←→ `′ : Π;1,;2 (G : (′′).) ′′ @ ;1 ⊔ ;2 that there must be, ′, so that

! | Ψ; Γ ⊢8 ,
′ ≈ Π

;1,;2 (G : (′′).) ′′ @ ;1 ⊔ ;2

By the fundamental theorems, we know, ′ must be some Π types. The return type is fixed so we do not
have to do anything.

�

From the conversion lemma, we see that both ! | Ψ; Γ ⊢8 ` ←̂→ `′ :) @ ; and ! | Ψ; Γ ⊢8 ` ←→ `′ :
, @ ; return some equivalent types because they are in fact inference steps. Therefore, it makes sense when
we instantiate ! | Ψ; Γ ⊢8 ` ∼ `′ :) @ ; , we hide a syntactic equivalence judgment inside.

For the PER laws, we see that the difficulties primarily come from the convertibility checking of neutrals,
because again they are inference steps. Moreover, due to their left-biased design, in general it is not true that
the inferred types can be replaced by their equivalence. However, since we are hiding an equivalence judgment
in ! | Ψ; Γ ⊢8 ` ∼ `′ :) @ ; during instantiation, following the same principle as the conversion lemma, we are
able to erase the effect of the left bias and establish the PER laws.

The instantiation immediately gives us the convertibility lemma once we apply the escape lemma:

Theorem 8.4 (Convertibility).

, Vol. 1, No. 1, Article . Publication date: April 2024.

136 • Jason Z. S. Hu and Brigi�e Pientka

• If ! | Ψ; Γ ⊢8) @ ; , then ! | Ψ; Γ ⊢8) ⇐̂⇒) @ ; .

• If ! | Ψ; Γ ⊢8) ≈)
′ @ ; , then ! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ; .

• If ! | Ψ; Γ ⊢8 C :) @ ; , then ! | Ψ; Γ ⊢8 C ⇐̂⇒ C :) @ ; .

• If ! | Ψ; Γ ⊢8 C ≈ C
′ :) @ ; , then ! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) @ ; .

In particular, we see that the convertibility checking algorithm is both sound and complete w.r.t. the syntactic
equivalence judgments. The decidability of type checking requires the following lemma by attempting to relate
two reflexively convertible types or terms.

Lemma 8.5 (Decidability).

• if ! | Φ;Δ ⊢8) ⇐̂⇒) @ ; , ! | Ψ; Γ ⊢8)
′ ⇐̂⇒) ′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then whether

! | Φ;Δ ⊢8) ⇐̂⇒) ′ @ ; is decidable.

• if ! | Φ;Δ ⊢8 , ⇐⇒ , @ ; , ! | Ψ; Γ ⊢8 ,
′ ⇐⇒ , ′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then whether

! | Φ;Δ ⊢8 , ⇐⇒, ′ @ ; is decidable.

• if ! | Φ;Δ ⊢8 + ←→ + @ ; , ! | Ψ; Γ ⊢8 +
′ ←→ + ′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then whether

! | Φ;Δ ⊢8 + ←→ + ′ @ ; is decidable.

• if ! | Φ ⊢8 Γ ⇐̂⇒ Γ, ! | Ψ ⊢8 Δ ⇐̂⇒ Δ and ! ⊢ Φ ≈ Ψ, then whether ! | Φ ⊢8 Γ ⇐̂⇒ Δ is decidable.

• if ! | Φ;Δ ⊢8 C ⇐̂⇒ C :) @ ; , ! | Ψ; Γ ⊢8 C
′ ⇐̂⇒ C ′ :) @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then whether

! | Φ;Δ ⊢8 C ⇐̂⇒ C ′ :) @ ; is decidable.

• if ! | Φ;Δ ⊢8 F ⇐⇒ F : , @ ; , ! | Ψ; Γ ⊢8 F
′ ⇐⇒ F ′ : , @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then

whether ! | Φ;Δ ⊢8 F ≈ F
′ :, @ ; is decidable.

• if ! | Φ;Δ ⊢8 ` ←̂→ ` :) @ ; , ! | Ψ; Γ ⊢8 `
′ ←̂→ `′ :) ′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then whether

! | Φ;Δ ⊢8 ` ←̂→ `′ :) ′′ @ ; for some) ′′ is decidable.

• if ! | Φ;Δ ⊢8 ` ←→ ` :, @ ; , ! | Ψ; Γ ⊢8 `
′ ←→ `′ :, ′ @ ; , ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Δ ≈ Γ, then whether

! | Φ;Δ ⊢8 ` ≈ `′ :, ′′ @ ; is decidable.

• if ! | Φ; Γ′ ⊢8 X ⇐̂⇒ X : Δ, ! | Ψ; Γ ⊢8 X
′ ⇐̂⇒ X′ : Δ, ! ⊢ Φ ≈ Ψ and ! | Φ ⊢8 Γ

′ ≈ Γ, then whether

! | Φ; Γ′ ⊢8 X ⇐̂⇒ X′ : Δ is decidable.

Proof. We do a mutual induction on the first derivations and then invert the second ones. We can reject most
cases when they have different root derivations. We consider a few cases.

Case

! | Φ;Δ ⊢8)
∗, @ ;

! | Ψ; Γ ⊢8 , ⇐⇒, @ ;

! | Φ;Δ ⊢8) ⇐̂⇒) @ ;

! | Ψ; Γ ⊢8)
′

∗, ′ @ ;

! | Ψ; Γ ⊢8 ,
′ ⇐⇒, ′ @ ;

! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ;

In this case, we apply IH to decide whether, and, ′ are convertible.
Case

! | Φ;Δ ⊢8 (⇐̂⇒ (@ ; ! | Φ;Δ, G : (@ ; ⊢8) ⇐̂⇒) @ ; ′

! | Φ;Δ ⊢8 Π
;,; ′ (G : ().) ⇐⇒ Π

;,; ′ (G : ().) @ ; ⊔ ; ′

! | Ψ; Γ ⊢8 (
′ ⇐̂⇒ (′ @ ; ! | Ψ; Γ, G : (′ @ ; ⊢8)

′ ⇐̂⇒) ′ @ ; ′

! | Ψ; Γ ⊢8 Π
;,; ′ (G : (′).) ′ ⇐⇒ Π

;,; ′ (G : (′).) ′ @ ; ⊔ ; ′

We can decide whether (and (′ are convertible by IH. When we decide) and) ′, we must extend the
equivalent local contexts.

, Vol. 1, No. 1, Article . Publication date: April 2024.

DeLaM: A Dependent Layered Modal Type Theory for Meta-programming • 137

Case

) ∗, ! | Φ;Δ ⊢8 C
∗ F :) @ ;

! | Φ;Δ ⊢8 F ⇐⇒ F :, @ ;

! | Φ;Δ ⊢8 C ⇐̂⇒ C :) @ ;

) ′ ∗, ′ ! | Ψ; Γ ⊢8 C
′

∗ F ′ :) ′ @ ;

! | Ψ; Γ ⊢8 F
′ ⇐⇒ F ′ :, ′ @ ;

! | Ψ; Γ ⊢8 C
′ ⇐̂⇒ C ′ :) @ ;

By fundamental theorems, we know, ≈, ′. Then by IH, we can decide whetherF andF ′ are convertible.
Case

! | Φ;Δ ⊢8 (@ ; ! | Φ;Δ ⊢8 F : Π;,; ′ (G : ().) @ ; ⊔ ; ′

! | Φ;Δ, G : (@ ; ⊢8 (F : Π;,; ′ (G : ().)) G ⇐̂⇒ (F : Π;,; ′ (G : ().)) G :) @ ; ′

! | Φ;Δ ⊢8 F ⇐⇒ F : Π;,; ′ (G : ().) @ ; ⊔ ; ′

! | Ψ; Γ ⊢8 (@ ; ! | Ψ; Γ ⊢8 F
′ : Π;,; ′ (G : ().) @ ; ⊔ ; ′

! | Ψ; Γ, G : (@ ; ⊢8 (F
′ : Π;,; ′ (G : ().)) G ⇐̂⇒ (F ′ : Π;,; ′ (G : ().)) G :) @ ; ′

! | Ψ; Γ ⊢8 F
′ ⇐⇒ F ′ : Π;,; ′ (G : ().) @ ; ⊔ ; ′

Again, it is quite immediate by IH.
Case

! | Φ;Δ ⊢8 ` ←→ ` :, @ ;

! | Φ;Δ ⊢8 ` ⇐⇒ ` : + @ ;

! | Ψ; Γ ⊢8 `
′ ←→ `′ :, ′ @ ;

! | Ψ; Γ ⊢8 `
′ ⇐⇒ `′ : + @ ;

By IH, we know ! | Φ;Δ ⊢8 ` ←→ `′ :, ′′ @ ; for some, ′′ .
Case

! | Φ;Δ ⊢8 ` ←̂→ ` :) @ ;) ∗,

! | Φ;Δ ⊢8 ` ←→ ` :, @ ;

! | Ψ; Γ ⊢8 `
′ ←̂→ `′ :) ′ @ ;) ′ ∗, ′

! | Ψ; Γ ⊢8 `
′ ←→ `′ :, ′ @ ;

By IH, we have ! | Ψ; Γ ⊢8 `
′ ←̂→ `′ :) ′′ @ ; for some) ′′.) ′′ will reduce to some normal form by the

fundamental theorems.

�

Theorem 8.6 (Decidability of Convertibility).

• If ! | Ψ; Γ ⊢8) @ ; and ! | Ψ; Γ ⊢8)
′ @ ; , then whether ! | Ψ; Γ ⊢8) ⇐̂⇒) ′ @ ; is decidable.

• If ! | Ψ; Γ ⊢8 C :) @ ; and ! | Ψ; Γ ⊢8 C
′ :) @ ; , then whether ! | Ψ; Γ ⊢8 C ⇐̂⇒ C ′ :) @ ; is decidable.

Proof. First we use the fundamental theorems from the second instantiation to show that both types (or
terms, resp.) are reflexively convertible. Then we use the decidability lemma above. �

At this point, we have justified the decidability of convertibility checking of DeLaM and therefore conclude
our investigations.

REFERENCES

Andreas Abel. 2013. Normalization by evaluation: dependent types and impredicativity. Habilitation thesis. Ludwig-Maximilians-

Universität München.

Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2017. Decidability of conversion for type theory in type theory. Proceedings of the ACM

on Programming Languages 2, POPL (Dec. 2017), 23:1–23:29. https://doi.org/10.1145/3158111

Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Escardó. 2023. Type Theory with Explicit Universe Polymor-

phism. In DROPS-IDN/v2/document/10.4230/LIPIcs.TYPES.2022.13. Schloss-Dagstuhl - Leibniz Zentrum für Informatik.

https://doi.org/10.4230/LIPIcs.TYPES.2022.13

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1145/3158111
https://doi.org/10.4230/LIPIcs.TYPES.2022.13

138 • Jason Z. S. Hu and Brigi�e Pientka

Jason Z. S. Hu, Junyoung Jang, and Brigitte Pientka. 2023. Normalization by evaluation for modal dependent type theory. Journal of

Functional Programming 33 (2023), e7. https://doi.org/10.1017/S0956796823000060

Jason Z. S. Hu and Brigitte Pientka. 2024a. Layered Modal Type Theories. arXiv:2305.06548 [cs.LO]

Jason Z. S. Hu and Brigitte Pientka. 2024b. Layered Modal Type Theory: Where Meta-programming Meets Intensional Analysis. In

Programming Languages and Systems, Stephanie Weirich (Ed.). Springer Nature Switzerland, Cham, 52–82.

Erik Palmgren. 1998. On universes in type theory. In Twenty Five Years of Constructive Type Theory. Oxford University Press.

https://doi.org/10.1093/oso/9780198501275.003.0012

Loïc Pujet and Nicolas Tabareau. 2023. Impredicative Observational Equality. Proceedings of the ACM on Programming Languages 7, POPL

(Jan. 2023), 74:2171–74:2196. https://doi.org/10.1145/3571739

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1017/S0956796823000060
http://arxiv.org/abs/2305.06548
https://doi.org/10.1093/oso/9780198501275.003.0012
https://doi.org/10.1145/3571739

	Abstract
	1 Introduction
	2 Supporting Contextual Variables
	2.1 Well-formedness of Contexts and Types
	2.2 Weakenings
	2.3 Syntax and Typing
	2.4 Syntactic Properties of 2-layered Modal Type Theory with Contextual Variables
	2.5 Equivalence Rules
	2.6 Weak Head Reduction

	3 Normalization and Convertibility
	3.1 Generic Equivalence
	3.2 Reducibility Predicates
	3.3 Validity Judgments
	3.4 Convertibility Checking

	4 Dependent Layered Modal Type Theory
	4.1 Highlights
	4.2 Syntax
	4.3 Universe Levels
	4.4 Typing and Equivalence Judgments
	4.5 Meta-programming Modalities
	4.6 More Typing and Equivalence Judgments
	4.7 More Congruence Rules for Typing
	4.8 Computation Rules
	4.9 A Note on Layer v Rules

	5 Syntactic Operations and Properties of DeLaM
	5.1 Substitution Operations
	5.2 Properties of Substitutions
	5.3 Context Equivalence and Presupposition
	5.4 Coverage and Progress of Recursive Principles

	6 Reduction and Convertibility
	6.1 Weak Head Normal Forms
	6.2 Reduction Relations
	6.3 Convertibility Checking

	7 Logical Relations for DeLaM
	7.1 Generic Equivalence
	7.2 Kripke Logical Relations for MLTT
	7.3 Properties for Logical Relations When j = p
	7.4 Semantic Well-formedness of Global Contexts and Related Global Substitutions
	7.5 Logical Relations When j = m
	7.6 Properties for Logical Relations When i = j = m
	7.7 Semantic Judgments and Fundamental Theorems
	7.8 Proving Fundamental Theorems
	7.9 More Semantic Rules

	8 Consequences and Decidability of Convertibility
	8.1 First Instantiation: Syntactic Equivalence
	8.2 Second Instantiation: Convertibility Checking

	References

