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Notes on a conjecture by Paszkiewicz on an ordered product of positive

contractions

Hiroshi Ando

Abstract. Paszkiewicz’s conjecture asserts that given a decreasing sequence T1 ≥ T2 ≥ . . .

of positive contractions on a separable infinite-dimensional Hilbert space H, the product
Sn = TnTn−1 · · · T1 converges in the strong operator topology. In these notes, we give an
equivalent, more precise formulation of his conjecture. Moreover, we show that the conjecture
is true for the following two cases: (1) 1 is not in the essential spectrum of Tn for some n ∈ N.
(2) The von Neumann algebra generated by {Tn | n ∈ N} admits a faithful normal tracial
state. We also remark that the analogous conjecture for the weak convergence is true.

1. Introduction and Statement of the result

In the problem session of 2018 workshop “Noncommutative Harmonic Analysis”, at Bȩdlewo,
Paszkiewicz announced the following conjecture about a product of positive contractions.

Conjecture 1.1 (Adam Paszkiewicz, 2018). Let H be a separable infinite-dimensional Hilbert
space, T1 ≥ T2 ≥ . . . be a sequence of positive linear contractions on H. Then the sequence
Sn := TnTn−1 · · ·T1 converges strongly.

In fact, it is possible to make a guess about what the limit of Sn should be, if it exists.
Note that since T1 ≥ T2 ≥ is a non-increasing sequence of positive operators, the limit T :=
limn→∞ Tn (SOT) exists (SOT stands for the strong operator topology). We will use the
notation that for a Borel subsetA of R, 1A(T ) denotes the spectral projection of T corresponding
to A. Let P := 1{1}(T ). Now consider the following

Conjecture 1.2. Let T1 ≥ T2 ≥ . . . be as in Conjecture 1.1. Then lim
n→∞

Sn = P (∗-strongly).

The purpose of these notes is to show that the above two conjectures are actually equivalent.
Moreover, we verify the conjecture for some class of operators:

Theorem 1.3. The following statements hold.

(1) Conjecture 1.1 and Conjecture 1.2 are equivalent.
(2) Conjecture 1.1 is true if the operators T1, T2, . . . satisfy one of the following two
conditions.
(2-i) 1 is not in the essential spectrum of Tn for some n ∈ N.
(2-ii) {T1, T2, . . . } generates a finite von Neumann algebra.

In Proposition 2.3 (1), which will be used to prove the equivalence of the above conjectures,
we show that lim

n→∞
S∗
n = P (SOT) holds. Thus, (2-ii) is an immediate consequence of this

convergence. Note also that because the ∗-operation is continuous on norm-bounded sets in
the WOT (weak operator topology), the WOT analogue of Paszkiewicz’s conjecture is true:

Proposition 1.4. Let T1 ≥ T2 ≥ . . . be as in Conjecture 1.1. Then lim
n→∞

Sn = P weakly.

However, on an infinite-dimensional Hilbert space, the ∗-operation is highly discontinuous
on norm-bounded sets in the SOT. In this context, we remark that by the classical Amemiya–
Ando’s theorem, random products of projections always converge in the WOT (see [1] for details
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2 H. ANDO

and more general results), while the SOT-convergence of random products of projections was
shown not to hold in general by Paszkiewicz [4] for random products of 5 projections, and
later by Kopecká and Müller [2] for random products of 3 projections (see also [3]). Thus, the
difference between the SOT and the WOT is significant.

2. Proof of Theorem 1.3

For general facts about self-adjoint operators and spectral theory, we refer the reader to [5].
In the sequel, we fix a separable infinite-dimensional Hilbert space H . The set of all bounded
linear operators on the Hilbert space H is denoted by B(H).

2.1. Proof of Theorem 1.3 (1) and (2-ii). First, we show Theorem 1.3 (1) and (2-ii). The
following elementary lemma will be useful.

Lemma 2.1. Let T ∈ B(H) be a positive contraction. Then for ξ ∈ H, the following three
conditions are equivalent.

(1) Tξ = ξ.
(2) ‖Tξ‖ = ‖ξ‖.
(3) 〈Tξ, ξ〉 = ‖ξ‖2.

In particular, if T, T ′ ∈ B(H)+ satisfies 0 ≤ T ′ ≤ T ≤ 1, then 1{1}(T
′) ≤ 1{1}(T ) holds.

Proof. For the first part, (1) =⇒ (2) and (1) =⇒ (3) are clear. We show (2) =⇒ (1). Assume
(2). For 0 < ε < 1, let pε = 1[1−ε,1](T ). Then

‖ξ‖2 = ‖Tξ‖2 = ‖Tpεξ‖
2 + ‖Tp⊥ε ξ‖

2

≤ ‖pεξ‖
2 + (1− ε)2‖p⊥ε ξ‖

2

This implies, because ‖ξ‖2 = ‖pεξ‖2 + ‖p⊥ε ξ‖
2, that p⊥ε ξ = 0. Thus ξ = pεξ. Since lim

ε→+0
pε =

1{1}(T ) strongly, we obtain ξ = 1{1}(T )ξ, whence Tξ = ξ holds.

Finally, we show (3) =⇒ (1). By (3), we have ‖T
1
2 ξ‖ = ‖ξ‖, which by (2) =⇒ (1) applied to

T
1
2 implies that T

1
2 ξ = ξ. Thus Tξ = ξ holds.

For the last part, if ξ ∈ H satisfies T ′ξ = ξ, then by T ′ ≤ T , ‖ξ‖2 = 〈T ′ξ, ξ〉 ≤ 〈Tξ, ξ〉 ≤
‖ξ‖2. Therefore, 〈Tξ, ξ〉 = ‖ξ‖2 holds. By (3) =⇒ (1), we obtain Tξ = ξ. This shows that
1{1}(T

′) ≤ 1{1}(T ). �

Corollary 2.2. Let T1 ≥ T2 ≥ . . . be a decreasing sequence of positive contractions on a Hilbert
space H. Then Pn = 1{1}(Tn) converges to P = 1{1}(T ) in SOT, where T = lim

n→∞
Tn (SOT).

Proof. By Lemma 2.1, we know that P1 ≥ P2 ≥ . . . is a non-increasing sequence of projections.
Therefore the SOT-limit P ′ = limn→∞ Pn exists and P ′ is also a projection. Since Tn ≥ T for
every n ∈ N, we have Pn ≥ P by Lemma 2.1, whence P ′ ≥ P holds. If ξ ∈ P ′(H), then for
every n ∈ N, Pn ≥ P ′, whence Pnξ = ξ. Therefore Tnξ = ξ. Letting n → ∞, we obtain Tξ = ξ,
which shows that ξ ∈ P (H). Therefore P ′ ≤ P , and P ′ = P holds. �

Proof of Theorem 1.3 (1) follows from parts (1) and (2) of the next proposition (part (3) is
not needed, but we include the observation which might be useful for further study).

Proposition 2.3. Let T1 ≥ T2 ≥ · · · be a sequence of positive contractions on H and let
Sn := Tn · · ·T1. The following statements hold (WOT stands for the weak operator topology):

(1) lim
n→∞

S∗
n = P (SOT). In particular, lim

n→∞
Sn = P (WOT) holds.

(2) Let ξ ∈ H. If the set {Snξ | n ∈ N} is totally bounded, then lim
n→∞

‖Snξ − Pξ‖ = 0

holds.
(3) For every ξ ∈ H and every k ∈ N, lim

n→∞
‖Sn+kξ − Snξ‖ = 0 holds.
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Proof. (1) Let ξ ∈ H and k ∈ N. Then for each n ∈ N,

‖S∗
n+kP

⊥ξ‖ = ‖T1 · · ·Tn(Tn+1 · · ·Tn+kP
⊥ξ)‖ ≤ ‖Tn+1 · · ·Tn+kP

⊥ξ‖.

Since Tn+j
n→∞
→ T (1 ≤ j ≤ k) (SOT) and since the operator multiplication is jointly SOT-

continuous on the unit ball of B(H), Tn+1 · · ·Tn+k
n→∞
→ T k (SOT) holds. Thus

lim sup
n→∞

‖S∗
nP

⊥ξ‖ = lim sup
n→∞

‖S∗
n+kP

⊥ξ‖ ≤ ‖T kP⊥ξ‖.

By letting k → ∞, we obtain

‖T kP⊥ξ‖2 =

∫

[0,1)

t2kd‖eT (t)ξ‖
2 k→∞

→ 0

by the Lebesgue dominated convergence theorem. Here, eT (·) is the spectral resolution of T .
This shows that limn→∞ ‖S∗

nP
⊥ξ‖ = 0. On the other hand, TnPξ = Pξ, for every n ∈ N,

whence limn→∞ S∗
nPξ = Pξ. Hence limn→∞ ‖S∗

nξ − Pξ‖ = 0.
(2) Let ε > 0 and k ∈ N. Since {Snξ | n ∈ N} is totally bounded and since SnPξ = Pξ (n ∈ N),
the set {SnP

⊥ξ | n ∈ N} is totally bounded. Thus, there exists n0 ∈ N such that for every
n ∈ N, there exists kn ∈ {1, . . . , n0} such that ‖SnP

⊥ξ − Skn
P⊥ξ‖ < ε holds. Then

‖Sn+kP
⊥ξ‖ = ‖Tn+k · · ·Tn+1SnP

⊥ξ‖

≤ ‖Tn+k · · ·Tn+1(SnP
⊥ξ − Skn

P⊥ξ)‖ + ‖Tn+k · · ·Tn+1Skn
P⊥ξ‖

≤ ‖SnP
⊥ξ − Skn

P⊥ξ‖+ ‖Tn+k · · ·Tn+1Skn
P⊥ξ‖.

By a similar reasoning as in (i), we get

lim sup
n→∞

‖SnP
⊥ξ‖ = lim sup

n→∞
‖Sn+kP

⊥ξ‖ ≤ ε+ max
1≤j≤n0

‖T kSjP
⊥ξ‖.

Since SjP
⊥ξ ∈ P⊥(H) (1 ≤ j ≤ n0), it follows that limk→∞ max1≤j≤n0

‖T kSjP
⊥ξ‖ = 0.

Thus lim supn→∞ ‖SnP
⊥‖ ≤ ε. Since ε > 0 is arbitrary, it follows that limn→∞ ‖SnP

⊥ξ‖ = 0.
Therefore limn→∞ ‖Snξ − Pξ‖ = 0 holds.
(3) It suffices to show that limn→∞ ‖Sn+1ξ − Snξ‖ = 0. Define an = 〈Sn+1ξ, Snξ〉 and bn =
〈Snξ, Snξ〉 (n ∈ N). Since Tn+1 is a positive contraction, we have 0 ≤ an ≤ bn. Since Tn is a
contraction, (bn)

∞
n=1 is positive and non-increasing. Therefore, the limit β = limn→∞ bn exists.

On the other hand, for every n ∈ N,

bn+1 = 〈Sn+1ξ, Sn+1ξ〉 = 〈T 2
n+1Snξ, Snξ〉

≤ 〈Tn+1Snξ, Snξ〉 = an ≤ 〈Snξ, Snξ〉 = bn.

This implies that limn→∞ an = β holds. Then

‖Sn+1ξ − Snξ‖
2 = ‖Sn+1ξ‖

2 + ‖Snξ‖
2 − 2Re〈Sn+1ξ, Snξ〉

n→∞
→ β + β − 2β = 0.

This shows the claim. �

Remark 2.4. Let (ξn)
∞
n=1 be a sequence in H with the following properties.

(i) limn→∞ ξn = 0 weakly in H .
(ii) (‖ξn‖)∞n=1 is non-increasing (hence it is convergent).
(iii) For every k ∈ N, limn→∞ ‖ξn+k − ξn‖ = 0 holds.

If it follows that {ξn | n ∈ N} is totally bounded, then lim
n→∞

Sn = P (SOT) by Proposition 2.3

(ii) (put ξn = SnP
⊥ξ). We remark, however, that the set {ξn | n ∈ N} satisfying (i), (ii) and

(iii) need not be totally bounded in general.

Non-example 2.5. Let θn = π
2n (n ∈ N). Fix a CONS (en)

∞
n=1 for H . We will construct a

sequence S = {ηn,j | n ∈ N, 1 ≤ j ≤ n} of unit vectors in H with the following properties:

(a) ‖ηn,j+1 − ηn,j‖ = ‖ηn+1,1 − ηn,n‖ = 2 sin θn
2 (n ≥ 2, 1 ≤ j ≤ n− 1).

(b) ηn,1 = en (n ∈ N). In particular, {en | n ∈ N} ⊂ S holds.
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(c) ηn,j ∈ span{en, en+1} (n ∈ N, 1 ≤ j ≤ sn).

Define a linear ordering < on I = {(n, j) | n ∈ N, 1 ≤ j ≤ n} by (n, j) < (n′, j′) if n < n′ or
n = n′ and j < j′. Fix the order-preserving bijection 〈 · , · 〉 : I → N given by

〈n, j〉 = j +
(n− 1)n

2
, 1 ≤ j ≤ n.

We set

ηn,j := cos((j − 1)θn)en + sin((j − 1)θn)en, n ∈ N, 1 ≤ j ≤ n

By construction, (b) and (c) hold. Both the angle between ηn,j+1 and ηn,j and the angle
between ηn+1,1 and ηn,n are θn if n ≥ 2 and 1 ≤ j ≤ n. Therefore (a) holds.

Then the sequence (ξn)
∞
n=1 given by ξ〈n,j〉 = ηn,j ((n, j) ∈ I) does the job. Indeed, by (a),

(iii) holds. It is obvious that (ii) holds. (i) holds because of (c). However, by (b), {ξn}∞n=1

is not relatively compact, hence it is not totally bounded. Note that the sequence (ξn)
∞
n=1 we

constructed is of the form

ξn = UnUn−1 · · ·U1e1,

where each Un is a unitary such that rank(Un − 1) = 2 for every n ∈ N.

Proof of Theorem 1.3 (1) and (2-ii). It is clear that Conjecture 1.2 =⇒ Conjecture 1.1 holds.
Conversely, assume that Conjecture 1.1 holds and S = lim

n→∞
Sn (SOT). Then for each ξ ∈ H ,

(Snξ)
∞
n=1 converges, whence it is totally bounded. Therefore by Proposition 2.3 (i) and (ii),

lim
n→∞

Sn = P (S∗OT). Therefore Conjecture 1.2 holds. This proves (1).

(2-ii) follows from Proposition 2.3 (i) and the fact that the map V 7→ V ∗ is strongly continuous
on the unit ball of a finite von Neumann algebra. �

2.2. Proof of Theorem 1.3 (2). Here we prove Theorem 1.3 (2).

Definition 2.6. Let T1 ≥ T2 ≥ . . . be a decreasing sequence of positive contractions on a
Hilbert space H . We say that it has uniform spectral gap at 1, if there exist δ ∈ (0, 1) and
N ∈ N such that σ(Tn) ∩ (1− δ, 1) = ∅ for all n ≥ N .

Theorem 1.3 (2) follows from the next Proposition.

Proposition 2.7. Let T1 ≥ T2 ≥ . . . be a decreasing sequence of positive contractions on a
Hilbert space H.

(1) If T1 ≥ T2 ≥ · · · has uniform spectral gap at 1. Then the Conjecture 1.1 holds for
T1 ≥ T2 ≥ · · · .

(2) If 1 is not in the essential spectrum of Tn for some n ∈ N, then T1 ≥ T2 ≥ · · · has
uniform spectral gap at 1.

Proof of Proposition 2.7 (1). Fix δ and N witnessing the uniform spectral gap at 1 of T1 ≥
T2 ≥ . . . . Let ξ ∈ H . Assume first that ξ ∈ P (H). Then for all n ∈ N, Tnξ = ξ, so that
Snξ = ξ. Thus limn→∞ Snξ = ξ = Pξ. Next, assume that ξ ∈ P⊥(H) and ε > 0. Choose
n0 ∈ N such that n0 ≥ N and ‖ξ − P⊥

n0
ξ‖ < ε. Let η := Tn0

· · ·T1ξ and η′ := Tn0
· · ·T1P

⊥
n0
ξ.

Then because all T ′
i s are contractions, we have ‖η − η′‖ ≤ ‖ξ − P⊥

n0
ξ‖ < ε.

Note also that η′ ∈ P⊥
n0
(H), because all T1, . . . , Tn0

leave the range of Pn0
invariant, hence

the range of P⊥
n0

invariant. Since P⊥
n0

≤ P⊥
n0+1, we have η′ ∈ P⊥

n0+1(H). Thus Tn0+1η
′ ∈

P⊥
n0+1(H) ⊂ P⊥

n0+2(H), so that Tn0+2Tn0+1η
′ ∈ P⊥

n0+3(H). By induction, we obtain

η′j := Tn0+jTn0+j−1 · · ·Tn0+1η
′ ∈ P⊥

n0+j+1(H) = 1[0,1−δ](Tn0+j+1)(H), j ∈ N.
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Therefore

‖Tn0+j(Tn0+j−1 · · ·Tn0+1η
′

︸ ︷︷ ︸

=η′

j−1
∈P⊥

n0+j
(H)

)‖ ≤ ‖Tn0+j |P⊥

n0+j
(H)‖ ‖Tn0+j−1η

′
j−2‖

≤ · · · ≤

j
∏

k=1

‖Tn0+k|P⊥

n0+k
(H)‖ ‖η

′‖

≤ (1 − δ)j‖η′‖.

This shows that

‖Sn0+jξ‖ = ‖Tn0+j · · ·Tn0+1η‖

≤ ‖Tn0+j · · ·Tn0+1(η − η′)‖+ (1− δ)j‖η′‖

< ε+ (1 − δ)j‖η′‖.

Thus lim supj→∞ ‖Sn0+jξ‖ ≤ ε. Since ε > 0 is arbitrary, we get lim
n→∞

‖Snξ‖ = 0. Therefore for

general ξ ∈ H , we have

‖Snξ − Pξ‖ ≤ ‖Sn(Pξ)− Pξ‖+ ‖SnP
⊥ξ‖

n→∞
−−−−→ 0.

This shows that lim
n→∞

Sn = P (SOT). �

For the proof of Proposition 2.7 (2), we need the following lemma. We denote by σe(T ) the
essential spectrum of an operator T .

Lemma 2.8. Let T, T ′ be positive contractions on a Hilbert space H such that T ≥ T ′.

(1) If δ ∈ (0, 1) satisfies σ(T ) ∩ (1 − δ, 1) = ∅ and σ(T ′) ∩ (1 − δ, 1) 6= ∅, then P ′ � P
holds, where P := 1{1}(T ) and P ′ := 1{1}(T

′).
(2) If 1 ∈ σe(T

′), then 1 ∈ σe(T ) holds.

Proof. (1) By 0 ≤ T ′ ≤ T ≤ 1 and Lemma 2.1, we know that P ′ ≤ P holds. Assume by
contradiction that P ′ = P holds. Let t ∈ σ(T ′)∩ (1− δ, 1) and ε > 0 be such that 1− δ < t− ε
and t+ε < 1. Then there exists a nonzero vector ξ ∈ 1(t−ε,t+ε)(T

′)(H). Since P ′ = 1{1}(T
′) and

1(t−ε,t+ε)(T
′) are orthogonal, we have P ′ξ = Pξ = 0. This implies that ξ = P⊥ξ = 1[0,1−δ](T )ξ.

Then by T ′ ≤ T , we obtain

(1) (t− ε)‖ξ‖2 ≤ 〈T ′ξ, ξ〉 ≤ 〈Tξ, ξ〉 = 〈T 1[0,1−δ](T )ξ, ξ〉 ≤ (1− δ)‖ξ‖2,

which contradicts the condition t− ε > 1− δ. Therefore P ′ � P holds.
(2) By 1 ∈ σe(T

′), there exists an orthonormal sequence (ξn)
∞
n=1 in H such that lim

n→∞
‖T ′ξn −

ξn‖ = 0. Thus lim
n→∞

‖T ′ξn‖ = 1 = lim
n→∞

〈T ′ξn, ξn〉 holds. Then by 0 ≤ T ′ ≤ T ≤ 1, we have

‖Tξn − ξn‖
2 = ‖Tξn‖

2 − 2〈Tξn, ξn〉+ ‖ξn‖
2

≤ 2− 2〈Tξn, ξn〉

≤ 2− 2〈T ′ξn, ξn〉
n→∞
−−−−→ 0.

Thus, by Weyl’s criterion for the essential spectrum (see e.g., [5, Proposition 8.11]), 1 ∈ σe(T )
holds. �

Proof of Proposition 2.7 (2). Assume that 1 /∈ σe(Tn0
). Let Pn0

= 1{1}(Tn0
). By 1 /∈ σe(Tn0

),
1 is not an accumulation point of the spectrum σ(Tn0

) of Tn0
, and it is not an eigenvalue of Tn0

of infinite multiplicity either. Thus there exists δ0 ∈ (0, 1) such that σ(Tn0
)∩(1−δ0, 1) = ∅, and

d = rank(Pn0
) is finite (possibly d = 0). If there is no n > n0 such that σ(Tn)∩ (1− δ0, 1) 6= ∅,

then δ = δ0 and N = n0 work. If there is such an n > n0, let n1 be the smallest such number.
Then by σ(Tn1

)∩(1−δ0, 1) 6= ∅, Tn1
≤ T1 and Lemma 2.8 (1), we have rank(Pn1

) < rank(Pn0
) =

d < ∞ (thus d 6= 0 if such n1 exists). By Lemma 2.8 (2), 1 /∈ σe(Tn) for every n ≥ n0. Thus,
by the above argument, we may find 0 < δ1 < δ such that σ(Tn1

)∩ (1− δ1, 1) = ∅. If there is no
n > n1 such that σ(Tn)∩ (1− δ1, 1) 6= ∅, we set N = n1 and δ = δ1. If there is such an n > n1,
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let n2 be the smallest such number, and find 0 < δ2 < δ1 such that σ(Tn2
) ∩ (1 − δ2, 1) = ∅.

Then rank(Pn2
) < rank(Pn1

). Inductively, we find a sequence n1 < n2 < · · · and δ1 > δ2 > · · · .
These sequences must have the same length at most d. Let k be the length of these sequences.
Then N = nk and δ = δk work. �

As a corollary, we obtain the following result, which was in fact the earliest and motivational
result in this project, shown to us by Yasumichi Matsuzawa. The author would like to thank
him for sharing his proof.

Corollary 2.9 (Matsuzawa). Conjecture 1.1 holds if Tn is compact for some n ∈ N .
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