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PARTIAL REPRESENTATIONS OF CONNECTED AND
SMASH PRODUCT HOPF ALGEBRAS

TIAGO LUIZ FERRAZZA, WILLIAM HAUTEKIET, AND ARTHUR ALVES NETO

Abstract. We show that every partial representation of a connected Hopf algebra is global.
Some interesting classes of partial representations of smash product Hopf algebras are studied,
and a description of the partial “Hopf” algebra if the first tensorand is connected is given.
If H is cocommutative and has finitely many grouplikes, this allows to see Hpar as the weak
Hopf algebra coming from a Hopf category.
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Introduction

Over the last two decades, partial representations of groups and Hopf algebras have been
intensively studied. Partial actions of groups originated in the theory of C∗-algebras [12],
describing those C∗-algebras that have an action of the circle group, as generalized crossed
products using partial automorphisms. The notion of partial representation of groups was
introduced in [13] and it was shown in [11] that the partial representations of a finite group
G correspond to representations of a groupoid Γ(G). This result was generalized in [1], where
partial representations of Hopf algebras were studied. The category of partial representations
of a Hopf algebra H is isomorphic to the category of usual representations of a suitably
constructed Hopf algebroid Hpar. One interesting feature of partial representations is that
they are not only based on the algebraic properties of the Hopf algebra, but also on the
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coalgebraic properties. This indicates that studying partial representations can probe deeper
in the structure of a Hopf algebra.

However, until now, partial representations have only been explicitly described for 3 classes
of Hopf algebras, which we list here in increasing order of complexity of their partial repre-
sentation theory:

(1) Universal enveloping algebras of Lie algebras. These Hopf algebras do not admit
partiality [1, Example 4.4], i. e. every partial representation is a global (usual) repre-
sentation and the partial “Hopf” algebra Hpar is just the Hopf algebra itself.

(2) Finite group algebras. In this case the partial representations correspond to repre-
sentations of a groupoid [11], hence the partial group algebra kparG is a weak Hopf
algebra.

(3) Sweedler’s 4-dimensional Hopf algebra (and more generally, the Hopf-Ore extensions
of kC2, as studied in [18, Chapter 4]). The base algebra Apar of the Hopf algebroid
Hpar becomes infinite-dimensional in this case, which implies that the Hopf algebroid
is not associated to a weak Hopf algebra.

The aim of this paper is to develop tools to describe the partial representations for more
general classes of Hopf algebras. First, we show that there exists a larger class of Hopf
algebras that do not possess partiality: the connected Hopf algebras. More precisely, we
show that if a partial representation of H is multiplicative on the coradical H0, then it is
in fact a global representation. If H is connected (i. e. H0 is trivial), this shows that any
partial representation of H is global. This way we obtain new examples of Hopf algebras that
do not have partiality, thus broadly extending the example of universal enveloping algebras.
Conversely, we show that any Hopf algebra that has a nontrivial cosemisimple Hopf quotient
admits at least one partial representation which is not global. This hypothesis is satisfied by
large classes of Hopf algebras, such as cocommutative Hopf algebras in characteristic 0 which
are not connected. Indeed, recall that if H is a cocommutative Hopf algebra over a field of
characteristic 0, then by the famous Cartier-Gabriel-Konstanz-Milnor-Moore theorem (see for
instance [17, Theorem 5.6.5]), H is a smash product of a universal enveloping of a Lie algebra
gH and a group algebra kGH . From this one can easily deduce that the coradical of H is
exactly kGH , and that the projection π : H → kGH is a Hopf algebra map. Hence there are
always nontrivial partial representations if the group is nontrivial. This again indicates that
the coalgebraic properties (such as the coradical) play an important role in understanding
the partial representations of Hopf algebras.

We aim to go a step further here, and fully describe the partial representations of cocom-
mutative Hopf algebras (over an algebraically closed field of characteristic zero). This is what
we will do in the second part of the paper, but we approach the problem in a more general
setting. Following [7], we consider two Hopf algebras U and H , together with a smash prod-
uct map R : H ⊗ U → U ⊗ H turning U#RH into a Hopf algebra (to have this, it suffices
that R satisfies just three conditions; it has to be normal, multiplicative and a coalgebra
map). Examples of such smash product Hopf algebras are obtained from actions of one Hopf
algebra on the other, and by exact factorizations of groups. In Section 3.2, we study partial
representations π of U#RH that split as a product of a partial representation of U and a
partial representation of H , i. e.

π(u⊗ h) = π(u⊗ 1H)π(1U ⊗ h),

π(R(h⊗ u)) = π(1U ⊗ h)π(u⊗ 1H),
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for all u ∈ U, h ∈ H . We show that these are equivalent to representations of a certain smash
product of the partial “Hopf” algebras Upar and Hpar, with a smash product map R induced
by R.

The partial representations of U#RH that restrict to a global representation of U form
an interesting subcategory of these; they remind of the partial representations of a group G
that are global on a given subgroup as studied in [10]. We show that they are equivalent
to the category of representations of U#THpar, where T : Hpar ⊗ U → U ⊗ Hpar is again
obtained from R. This is of particular interest if U is a Hopf algebra without partiality, and
allows to describe the partial “Hopf” algebra of any cocommutative Hopf algebra as a smash
product: since U(g) is connected, all of its partial representations are global, so any partial
representation of U(g)#RkG restricts to a global representation of U(g). We obtain that

(U(g)#RkG)par ∼= U(g)#T kparG.

If the number of grouplikes is finite, then kparG is isomorphic to a groupoid algebra, and
U(g)#T kparG is in fact a weak Hopf algebra coming from a certain Hopf category.

This article is organized as follows. In Section 1, we recall the necessary notions and
properties of partial representations and the coradical. Our first main result, that any partial
representation of a connected Hopf algebra is global, is shown in Section 2, and we give a
sufficient condition for Hopf algebras to possess at least one partial representations which
is not global. In Section 3, we first recall the definition of a smash product algebra, and
give the sufficient conditions for it to be a Hopf algebra. We also show some new technical
properties there. Then we study partial representations of smash product Hopf algebras, with
the description of Hpar for cocommutative H as a main application. Some further examples
to illustrate the results are given.

Notation. Throughout the article, H is a Hopf algebra over a field k. For the comultiplica-
tion, we adopt the Sweedler notation

∆(h) = h(1) ⊗ h(2).

For vector spaces V and W, the tensor flip V ⊗W → W ⊗ V is denoted by τV,W .

1. Preliminaries

In this section we will recall the basic notions about partial representations of Hopf algebras
and the coradical filtration.

1.1. Partial representations of Hopf algebras.

Definition 1.1 ([1]). A partial representation ofH on an algebra B is a linear map π : H → B
such that for all h, k ∈ H

(PR1) π(1H) = 1B;
(PR2) π(h)π(k(1))π(S(k(2))) = π(hk(1))π(S(k(2)));
(PR3) π(h(1))π(S(h(2)))π(k) = π(h(1))π(S(h(2))k).

By [2, Lemma 3.3], axioms (PR2) and (PR3) can be replaced with

(PR4) π(h)π(S(k(1)))π(k(2)) = π(hS(k(1)))π(k(2));
(PR5) π(S(h(1)))π(h(2))π(k) = π(S(h(1)))π(h(2)k).

If B = Endk(M) for some k-vector space M, then we call M a left partial H-module. From
the axioms it follows immediately that an algebra morphism (i. e. a usual representation)
H → B is a partial representation. We will often refer to those as global representations of
H on B.
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It turns out that the partial representations ofH factor uniquely through the partial “Hopf”
algebra Hpar. This algebra is constructed as the quotient of the tensor algebra T (H) by the
relations

1H = 1T (H); (1)

h⊗ k(1) ⊗ S(k(2)) = hk(1) ⊗ S(k(2)); (2)

h(1) ⊗ S(h(2))⊗ k = h(1) ⊗ S(h(2))k; (3)

for all h, k ∈ H . The class of h ∈ H in Hpar is commonly denoted as [h]. It is easy to see
that the linear map

[−] : H → Hpar : h 7→ [h] (4)

is a partial representation. In the other direction there is an algebra map

Hpar → H : [h1] · · · [hn] 7→ h1 · · ·hn. (5)

The algebra Hpar satisfies the following universal property.

Theorem 1.2 ([1, Theorem 4.2]). For every partial representation π : H → B there is a
unique algebra morphism π̂ : Hpar → B such that π = π̂ ◦ [−]. Conversely, given an algebra
morphism ϕ : Hpar → B, the map ϕ ◦ [−] : H → B is a partial representation.

This tells us that there is a bijective correspondence between partial representations of H
and representations of Hpar, and that the category of left partial H-modules is isomorphic to
the category of left Hpar-modules.

The structure of Hpar can best be described with respect to a particular subalgebra Apar,
which is generated by the elements of the form

εh = [h(1)][S(h(2))] for h ∈ H. (6)

As was shown in [1, Section 4.4], this algebra can also be constructed as a quotient of the
tensor algebra T (H). Its defining relations are

1Apar
= ε1H ; (7)

εh = εh(1)
εh(2)

; (8)

εh(1)
εh(2)k = εh(1)kεh(2)

; (9)

for all h, k ∈ H .

Definition 1.3 ([1]). A left partial action of a Hopf algebra H on an algebra A is a linear
map H ⊗A→ A, given by h⊗ a 7→ h · a, such that

(PA1) 1H · a = a,
(PA2) h · (ab) = (h(1) · a)(h(2) · b),
(PA3) h · (k · a) = (h(1) · 1A)(h(2)k · a),

for all a, b ∈ A and h, k ∈ H . The algebra A is called a partial left H-module algebra. A left
partial action is symmetric if in addition, it satisfies

(PA4) h · (k · a) = (h(1)k · a)(h(2) · 1A),

for all h, k ∈ H and a ∈ A.
Let A be a partial H-module algebra. Consider the associative multiplication

(a⊗ h)(b⊗ k) = a(h(1) · b)⊗ h(2)k

on A⊗H . Then, the space A#H = (A⊗H)(1A⊗ 1H) is a unital algebra, which is generated
by elements of the form

a#h = a(h(1) · 1A)⊗ h(2)
for a ∈ A and h ∈ H . This algebra is called the partial smash product of A by H [8].
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The following theorem summarizes the main results obtained in [1] about the structure of
Hpar with respect to its subalgebra Apar.

Theorem 1.4 ([1, Theorems 4.8 and 4.10]). (i) There is a partial action of H on Apar

defined by

h · a := [h(1)]a[S(h(2)]

for h ∈ H, a ∈ A.
(ii) The partial “Hopf” algebra Hpar is isomorphic to the partial smash product algebra

Apar#H. The partial representation (4) becomes

H → Apar#H : h 7→ 1Apar
#h. (10)

(iii) If H has invertible antipode, then Hpar has the structure of a Hopf algebroid over the
subalgebra Apar.

Let us look at some examples to illustrate how partial representations of different Hopf
algebras can behave very differently.

Example 1.5. Let G = C2 = {1, g} be the cyclic group of order two and H = kC2 its
group algebra. From relation (2) for h = k = g it follows that [g]3 = [g]. Hence kC2,par is
3-dimensional and has as a basis {[1], [g], [g]2}. Apart from the global representations, there
is up to isomorphism just one simple partial representation, which is described by

kC2 → k :

{

1 7→ 1,

g 7→ 0.

Example 1.6. Consider H = kC∗
2 , the Hopf algebra dual to the one from the previous

example. If char(k) 6= 2, then kC∗
2
∼= kC2 as Hopf algebras, so their partial representation

theory is the same. If char(k) = 2 however, then kC∗
2 and kC2 are not isomorphic. Let

{p1, pg} be the basis of kC2 dual to {1, g}. Then

∆(p1) = p1 ⊗ p1 + pg ⊗ pg,

∆(pg) = p1 ⊗ pg + pg ⊗ p1.

Combining relations (8) and (9) one can show that εpg = 0, so [p1][pg] = [pg][p1]. Using (2)
for h = k = p1, we find

[p1]
2 = [p1]

3 + [p1][pg]
2 = [p1]([p1]

2 + [pg]
2) = [p1]([p1] + [pg])

2 = [p1]

because p1 + pg = 1kC∗
2
. In a similar way, [pg]

2 = [pg] and [p1][pg] = [pg][p1] = 0. This shows
that kC∗

2,par = kC∗
2 and that every partial representation of kC∗

2 is global if char(k) = 2.

Example 1.7. Let g be a Lie algebra and U(g) its universal enveloping algebra. Every partial
representation of U(g) is global, as is shown in [1, Example 4.4].

Example 1.8. Let H be Sweedler’s 4-dimensional Hopf algebra over a field of characteristic
different of 2 (see for instance [17, Example 1.5.6]). In [1, Example 4.13], a description of Hpar

was given, and in particular it was shown that the base algebra Apar of the Hopf algebroid
Hpar is infinite-dimensional and isomorphic to k[x, y]/(2x2−x, 2xz−z). This shows that Hpar

does not have the structure of a weak Hopf algebra, since those have a separable Frobenius
(in particular finite-dimensional) base algebra. In [18], Hpar was described in another way:

Hpar
∼= k[x, y]/(xy)×H

as algebras.
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1.2. The coradical filtration. In the next section we will show that for a connected Hopf
algebra, any of its partial representations is in fact global. The proof crucially uses the
so-called coradical filtration.

Definition 1.9. The coradical H0 of H is the sum of all simple subcoalgebras of H . For
n ≥ 1, recursively define

Hn = ∆−1(H ⊗Hn−1 +H0 ⊗H).

The chain

H0 ⊆ H1 ⊆ · · · ⊆ Hn ⊆ · · ·

is called the coradical filtration of H .

Lemma 1.10 ([17]). (i) For each n ≥ 0, Hn is a subcoalgebra of H.
(ii) The coradical filtration is a coalgebra filtration, i. e.

∆(Hn) ⊆
n

∑

i=0

Hi ⊗Hn−i for all n, and H =
⋃

n≥0

Hn.

Definition 1.11. (i) A Hopf algebra is pointed if every simple subcoalgebra is one-
dimensional, i. e. if the coradical is isomorphic to a group algebra.

(ii) A Hopf algebra is connected if H0 = k1H .

It is clear that any connected Hopf algebra is pointed. Group algebras are always pointed
(since for those H = H0 = kG). The universal enveloping algebras of Lie algebras from
Example 1.7 are connected. The Sweedler Hopf algebra is pointed but not connected: its
coradical is 〈1, g〉 ∼= kC2 and H1 = H .

2. Measuring partiality by the coradical

In Example 1.7 it was observed that universal enveloping algebras of Lie algebra do not
possess any partiality, i. e. every partial representation of such a Hopf algebra is global. In
this section we show that this is true for any connected Hopf algebra, and we formulate
conditions to ensure the existence of partial representations.

2.1. Connected Hopf algebras have no partiality.

Lemma 2.1. Let π : H → B be a partial representation. Then π is a global representation
(i. e. an algebra morphism) if and only if for all h ∈ H

π(h(1))π(S(h(2))) = ǫ(h)1B. (11)

Proof. The direct implication is trivial. For the converse, remark that it follows from (PR3)
that for all h ∈ H

π(h(1))π(S(h(2)))π(h(3)) = π(h).

So if (11) holds, then

π(h)π(k) = π(h(1))π(S(h(2)))π(h(3))π(k)

(PR5)
= π(h(1))π(S(h(2)))π(h(3)k)

(11)
= π(hk)

for all h, k ∈ H . �
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Given a partial representation π : H → B and h ∈ H , we will write

επh := π(h(1))π(S(h(2))) ∈ B. (12)

The following theorem is an easy application of Theorem 1.2.

Theorem 2.2. Let H be a Hopf algebra. The following are equivalent:

(i) Every partial representation of H is global.
(ii) The map [−] : H → Hpar is an algebra map.
(iii) The map [−] : H → Hpar is an isomorphism of algebras.
(iv) Apar = k1Hpar

.

Proof. The equivalence of the first three items follows from Theorem 1.2 and the description
of Hpar as a quotient of T (H). For the equivalence with the last point, recall that Apar is

generated by the elements εh = ε
[−]
h (6). If εh ∈ k1Hpar

, then εh = ǫ(h)1Hpar
(which can be

seen by applying the algebra map (5)). Now the result follows from applying Lemma 2.1 to
the partial representation [−] : H → Hpar. �

Lemma 2.3. Let π : H → B be a partial representation and let V and W be two linear
subspaces of H such that for all h ∈ V ∪W ,

επh = ǫ(h)1B.

Then επh = ǫ(h)1B, for all h ∈ ∆−1(H ⊗ V +W ⊗H).

Proof. Take h ∈ ∆−1(H ⊗ V +W ⊗ H). Then there exist finite families xi, yj ∈ H , vi ∈ V
and wj ∈ W such that

∆(h) =
∑

i

xi ⊗ vi +
∑

j

wj ⊗ yj. (13)

Applying ǫ to either tensorand of the equality yields

h =
∑

i

ǫ(xi)vi +
∑

j

ǫ(wj)yj =
∑

i

ǫ(vi)xi +
∑

j

ǫ(yj)wj. (14)

This implies that

επh =
∑

i

ǫ(xi)ǫ(vi)1B +
∑

j

ǫ(wj)ε
π
yj
=

∑

i

ǫ(vi)ε
π
xi
+
∑

j

ǫ(yj)ǫ(wj)1B (15)

because επh is linear in h. On the other hand, it follows from (PR2) that

π(h(1))π(S(h(2))) = π(h(1))π(S(h(2)))π(h(3))π(S(h(4))),

so επh = επh(1)
επh(2)

. Combining this with (13) gives

επh =
∑

i

επxi
επvi +

∑

j

επwj
επyj =

∑

i

ǫ(vi)ε
π
xi
+
∑

j

ǫ(wj)ε
π
yj

(16)
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because vi, wj ∈ V ∪W . Finally,

επh = επh + επh − ε
π
h

(15,16)
=

(

∑

i

ǫ(xi)ǫ(vi)1B +
∑

j

ǫ(wj)ε
π
yj

)

+
(

∑

i

ǫ(vi)ε
π
xi
+
∑

j

ǫ(yj)ǫ(wj)1B

)

−
(

∑

i

ǫ(vi)ε
π
xi
+
∑

j

ǫ(wj)ε
π
yj

)

=
(

∑

i

ǫ(xi)ǫ(vi) +
∑

j

ǫ(yj)ǫ(wj)
)

1B

= ǫ(h)1B. �

This lemma becomes very useful when applying it to the coradical filtration of H .

Theorem 2.4. Let H be a Hopf algebra, H0 the coradical of H, and π : H → B a partial
representation of H on B. Then π : H → B is a global representation if and only if

επh = ǫ(h)1B for all h ∈ H0.

Proof. Apply Lemma 2.3 inductively, taking V = Hn−1 and W = H0. Since
⋃

n≥0Hn = H,
the result follows from Lemma 2.1. �

Recall that a Hopf algebra is called connected when its coradical is 1-dimensional. We get
the following corollary from Theorem 2.4.

Corollary 2.5. Let H be a connected Hopf algebra. Then every partial representation is
global, i. e. Hpar = H.

Example 2.6. We already encountered a first class of connected Hopf algebras in Exam-
ple 1.7: universal enveloping algebras of Lie algebras. For those, the conclusion of Corol-
lary 2.5 was already known from [1]. In [23], a classification of the connected Hopf algebras
of Gelfand-Kirillov dimension at most four is given, if the field is algebraically closed and of
characteristic zero. In [14], an example of Gelfand-Kirillov dimension 5 is constructed. This
connected Hopf algebra is not isomorphic as an algebra to any universal enveloping algebra
of a Lie algebra. For the interested reader, we describe two more classes of examples of
connected Hopf algebras.

(i) Combinatorial Hopf algebras. These typically have a basis indexed by a certain com-
binatorial object, e. g. the Connes-Kreimer algebra HR which is generated by rooted
forests. Combinatorial Hopf algebras are graded by the size of the object (the number
of vertices of the rooted forest), and they are always connected, since there is only
one object of size zero (the empty tree).
The product is the linear extension of some combination rule, describing the ways
two objects can be put together, while the coproduct is given by some decomposition
rule, describing how an object can be broken up. For instance, in the Connes-Kreimer
algebra, the product is given by disjoint union of rooted forests, and the coproduct is
found by (admissibly) cutting the trees in all possible ways. We refer to [9] for more
details. The Connes-Kreimer algebra is not cocommutative because the piece of the
cut that contains the root is always placed in the second tensorand.
Another example of a combinatorial Hopf algebra is the shuffle algebra S(N), intro-
duced in [21]. It has as a basis the set of words in the alphabet {1, . . . , N}. The
product of two words is given by the sum of all their interleavings, and the coproduct
by deconcatenation.
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(ii) Dual group algebras in positive characteristic. Let k be a field of characteristic p and
G be a finite p-group. Then every irreducible representation over k of G is trivial (see
[22, §8.3]). It follows that every simple comodule of (kG)∗ is trivial, which shows that
it is a connected Hopf algebra. Hence (kG∗)par = kG∗ under these conditions.

Let us end this section by remarking that a connected Hopf algebra is necessarily infinite-
dimensional if the characteristic of k is 0.

Lemma 2.7. Let k be a field of characteristic 0 and H a finite-dimensional connected Hopf
algebra over k. Then H is trivial, i. e. dimH = 1.

Proof. Take x ∈ H1. Since ∆(x) ∈ H⊗H0+H0⊗H by definition of H1, there exist y, z ∈ H
such that

∆(x) = y ⊗ 1H + 1H ⊗ z.

Then x = ǫ(y)1H + z = y + ǫ(z)1H and

∆(z − ǫ(z)1H) = ∆(x)− ǫ(y)1H ⊗ 1H − ǫ(z)1H ⊗ 1H

= (y − ǫ(y)1H)⊗ 1H + 1H ⊗ (z − ǫ(z)1H)

= (z − ǫ(z)1H)⊗ 1H + 1H ⊗ (z − ǫ(z)1H),

so z−ǫ(z)1H is a primitive element. By [20, Corollary 9.1.2], if k has characteristic zero, then
the only primitive element in a finite-dimensional bialgebra over k is 0. Hence z−ǫ(z)1H = 0,
which implies that x = ǫ(y + z)1H ∈ H0. Hence H1 = H0, and it follows that Hn = H0 for
all n ≥ 0. Now we conclude by Lemma 1.10 that H =

⋃

n≥0Hn = H0 = k1H . �

2.2. A partial converse. One might wonder if the converse of Corollary 2.5 is true: if H
is not connected, does it have a partial representation which is not global? The following
proposition gives a positive answer if H is cosemisimple.

Proposition 2.8. Let H be a nontrivial cosemisimple Hopf algebra with invertible antipode.
Then there exists a partial representation of H which is not global.

Proof. By cosemisimplicity, H = k1H ⊕ C for some subcoalgebra C of H . In fact, C is the
(direct) sum of all simple subcoalgebras of H that do not contain 1H . Moreover C is closed
under the antipode, because if D is a simple subcoalgebra of H that does not contain 1H ,
then so is S(D) by the invertibility of S. Define a linear map π : H → k by π(1H) = 1 and
π(c) = 0 for all c ∈ C. It is easy to see that π is a partial representation, because in axiom
(PR2) both sides become zero if k ∈ C, and reduce to π(h) if k = 1H . So (PR2) holds for
any h, k ∈ H = k1H ⊕C and by reasoning on h instead of k, one sees that also (PR3) holds.
Take x ∈ C \ ker ǫ. Such an element exists, because if not c = c(1)ǫ(c(2)) = 0 for all C, while
we supposed that H is nontrivial. Now

π(x(1))π(S(x(2))) = 0 6= ǫ(x) = π(x(1)S(x(2))),

which shows that π is not a global representation. �

Corollary 2.9. Let H be a Hopf algebra with invertible antipode which possesses a nontrivial
cosemisimple Hopf quotient. Then there exists a partial representation of H which is not
global.

We say a Hopf algebra has the Chevalley property if the tensor product of any two simple
modules is semisimple. If H is finite-dimensional, this is equivalent to saying that the Ja-
cobson radical of H is a Hopf ideal, or that the coradical of H∗ is a Hopf subalgebra by [3,
Proposition 4.2].
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Proposition 2.10. Let k be an algebraically closed field of characteristic 0 and suppose that
H is a nontrivial finite-dimensional Hopf algebra over k with the Chevalley property. Then
H 6= Hpar.

Proof. Since H has the Chevalley property, its Jacobson radical J(H) is a Hopf ideal. Hence
H/J(H) is a semisimple Hopf algebra, which is cosemisimple by [19]. If H/J(H) would be
trivial, thenH∗ would be a connected Hopf algebra, because the coradical ofH∗ is (H/J(H))∗.
But over a field of characteristic 0, there are no nontrivial finite-dimensional connected Hopf
algebras by Lemma 2.7, so H/J(H) must be nontrivial. The result now follows from Corol-
lary 2.9. �

Remark 2.11. Although the coradical of H can predict to some extent the existence of true
partial representations, it does not say anything about the wildness of the partial representa-
tion theory or the nature of Hpar: if k is an infinite field of characteristic different from 2, then
the group algebra kC2 is equal to its coradical and has only one simple partial representation
which is not global (Example 1.5), while the Sweedler Hopf algebra also has coradical kC2

but has infinitely many non-isomorphic simple partial representations (Example 1.8). Indeed,
consider the algebra maps

Hpar
∼= k[x, y]/(xy)×H → k : (P (x) + λy, z) 7→ P (α)

for α ∈ k.

3. Smash products and partial representations

3.1. Smash products of (Hopf) algebras. Let U and H be k-algebras and R : H ⊗U →
U ⊗H a linear map. We will use the notation (summation understood)

R(h⊗ u) = uR ⊗ hR ∈ U ⊗H.

If multiple copies of R are needed, we will also use ur ⊗ hr, uρ ⊗ hρ, uR1 ⊗ hR2 , etc.
By definition U#RH is equal to U ⊗ H as k-vector space, and its elements will often be

denoted as u#Rh = u⊗ h. It bears the multiplication given by

(u#Rh)(u
′#Rh

′) = uu′R#Rh
Rh′. (17)

Definition 3.1. If U#RH is an associative k-algebra with unit 1U#R1H , then we call U#RH
a smash product.

We recall the necessary and sufficient conditions on R for U#RH to be a smash product,
following [7].

Definition 3.2 ([7, Definition 2.4, 2.6]). The linear map R : H ⊗ U → U ⊗H is said to be

(i) left normal if R(h⊗ 1U) = 1U ⊗ h for all h ∈ H ;
(ii) right normal if R(1H ⊗ u) = u⊗ 1H for all u ∈ U ;
(iii) left multiplicative if

uR ⊗ (hh′)R = (uR)r ⊗ hr(h′)R, (18)

for all u ∈ U and h, h′ ∈ H ;
(iv) right multiplicative if

(uu′)R ⊗ hR = uR(u′)r ⊗ (hR)r, (19)

for all u, u′ ∈ U and h ∈ H .

We say R is normal (resp. multiplicative) if it is both left and right normal (resp. multiplica-
tive).
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Theorem 3.3 ([7, Theorem 2.5]). Let U,H be algebras and R : H ⊗ U → U ⊗ H a linear
map. Then U#RH is a smash product if and only if R is normal and multiplicative.

From the normality of R we get the following.

Lemma 3.4. Let U#RH be a smash product. Then the inclusions

ιU : U → U#RH and ιH : H → U#RH

are algebra maps. Moreover u#Rh = (u#R1H)(1U#Rh) for all u ∈ U, h ∈ H.

Suppose now that U and H are bialgebras. Then the tensor product U⊗H trivially carries
a coalgebra structure:

∆(u⊗ h) = (u(1) ⊗ h(1))⊗ (u(2) ⊗ h(2)); ǫ(u⊗ h) = ǫU (u)ǫH(h).

If a smash product U#RH becomes a bialgebra for this coproduct and counit, then it is called
an R-smash product.

Theorem 3.5 ([7, Corollary 4.6]). Let U and H be algebras and R : H⊗U → U⊗H a linear
map. Then U#RH is an R-smash product if and only if R is normal, multiplicative and a
coalgebra map.

If moreover U and H are Hopf algebras with antipodes SU and SH respectively, then U#RH
is a Hopf algebra with antipode

SU#RH(u#Rh) = (R ◦ (SH ⊗ SU) ◦ τU,H)(u#Rh) = SU(u)
R#RSH(h)

R. (20)

Using Sweedler notation, the fact that R is a coalgebra map reads

ǫU(u
R)ǫH(h

R) = ǫU(u)ǫH(h), (21)

(uR)(1) ⊗ (hR)(1) ⊗ (uR)(2) ⊗ (hR)(2) = (u(1))
R ⊗ (h(1))

R ⊗ (u(2))
r ⊗ (h(2))

r, (22)

for all u ∈ U, h ∈ H . In [7, Corollary 4.6], SU and SH are also required to satisfy the relation

SU(u
R)r ⊗ SH(h

R)r = SU(u)⊗ SH(h) (23)

but this is in fact automatic: it can be shown easily using Lemma 3.4 that

SU#RH(u(1)#Rh(1))(u(2)#Rh(2)) = ǫU (u)ǫH(h)1U#R1H = (u(1)#Rh(1))SU#RH(u(2)#Rh(2))

without resorting to (23) (see e. g. [6, Proposition 4.7]). This shows that SU#RH is an antipode
(hence anti-multiplicative), and (23) can be deduced by expressing SU#HH(u

R#Rh
R), using

normality of R.
As explained in [7, Remark 4.4], Majid already constructed special cases of smash products

in the sense of Definition 3.1 in [16], and the R-smash products we consider correspond exactly
to Majid’s double crossproducts U ⊲⊳ H , which arise from a matched pair of Hopf algebras [16,
Definition 7.2.1]. The following proposition explains how to obtain a matched pair from an R-
smash product and vice versa. A more general version (which also twists the comultiplication)
appeared in [6, Theorem 5.4].

Proposition 3.6. Let R be as in Theorem 3.5. Then

H ⊗ U → U : h⊗ u 7→ h ⊲ u = ǫH(h
R)uR

defines a left H-module structure on U , and

H ⊗ U → H : h⊗ u 7→ h ⊳ u = ǫU(u
R)hR

defines a right U-module structure on H. With these actions, (U,H) forms a matched pair
of Hopf algebras. Moreover, for any h⊗ u ∈ H ⊗ U,

uR ⊗ hR = h(1) ⊲ u(1) ⊗ h(2) ⊳ u(2) = h(2) ⊲ u(2) ⊗ h(1) ⊳ u(1). (24)
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Proof. The fact that ⊲ and ⊳ are actions follows from the normality and multiplicativity of R.
The equalities in (24) are obtained by applying ǫU and ǫH on the first and the fourth (resp.
the third and the second) tensorand of (22). �

Example 3.7. If the right U -action ⊳ is trivial, i. e. h ⊳ u = ǫU(u)h for all u ∈ U, h ∈ H then
we recover the most well-known form of smash product:

R(h⊗ u) = h(1) ⊲ u⊗ h(2),

where U is now an H-module algebra by ⊲, compatible with the counit and comultiplication.
If SH is invertible, then so is R : its inverse is

R′(u⊗ h) = h(2) ⊗ S
−1(h(1)) ⊲ u.

We end this section with some technical lemmas for later use, which appeared already in
the PhD thesis of the first author [15]. We also determine the inverse of R in the general
case, assuming that SU and SH are invertible.

Lemma 3.8. For any u ∈ U, h ∈ H,

SU(h ⊲ u) = (h ⊳ u(1)) ⊲ SU(u(2)), (25)

SH(h ⊳ u) = SH(h(1)) ⊳ (h(2) ⊲ u). (26)

Proof. It is easy to see that SU◦ ⊲ is the inverse of ⊲ in the convolution algebra Homk(H⊗U, U).
One can calculate, using the right multiplicativity and the comultiplicativity of R, that for
any u ∈ U, h ∈ H,

(h(1) ⊲ u(1))((h(2) ⊳ u(2)) ⊲ SU(u(3))) = ǫU(u)ǫH(h)1U ,

so ⊲ ◦ (⊳ ⊗ SU) ◦ (IH ⊗ ∆U) is a right convolution inverse of ⊲. Being invertible, the right
inverse of ⊲ is unique, and (25) follows. Identity (26) is shown in a similar way. �

Lemma 3.9. For any u ∈ U, h ∈ H,

(ur)R ⊗ SH(h(1))
R ⊗ (h(2))

r = u(1) ⊗ SH((h ⊳ u(2))(1))⊗ (h ⊳ u(2))(2), (27)

u(1)
R ⊗ SU(u(2))

r ⊗ (hR)r = (h(1) ⊲ u)(1) ⊗ SU((h(1) ⊲ u)(2))⊗ h(2). (28)

Proof. One should rewrite the left-hand side using the actions ⊳ and ⊲, and apply (26) (resp.
(25)) to obtain formula (27) (resp. (28)). �

Lemma 3.10. Suppose that SU and SH are invertible. If R is normal, multiplicative and a
coalgebra map, then it is invertible, with inverse

R′ : U ⊗H → H ⊗ U : u⊗ h 7→ SH(S
−1
H (h(1)) ⊳ S

−1
U (u(1)))⊗ SU(S

−1
H (h(2)) ⊲ S

−1
U (u(2))). (29)

Proof. It follows from (26) that

SH(h(1) ⊳ (SH(h(2)) ⊲ u)) = SH(h(1)) ⊳ (h(2) ⊲ (SH(h(3)) ⊲ u) = SH(h) ⊳ u,

and by applying S−1
H to both sides and replacing h by S−1

H (h), we get

S−1
H (h ⊳ u) = S−1

H (h(2)) ⊳ (h(1) ⊲ u). (30)

Similarly,

S−1
U (h ⊲ u) = (h ⊳ u(2)) ⊲ S

−1
U (u(1)).
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Now we calculate

R′R(h⊗ u) = SH(S
−1
H (h(3) ⊳ u(3)) ⊳ S

−1
U (h(1) ⊲ u(1)))⊗ SU(S

−1
H (h(4) ⊳ u(4)) ⊲ S

−1
U (h(2) ⊲ u(2)))

(24)
= SH(S

−1
H (h(2) ⊳ u(2)) ⊳ S

−1
U (h(1) ⊲ u(1)))⊗ SU(S

−1
H (h(4) ⊳ u(4)) ⊲ S

−1
U (h(3) ⊲ u(3)))

(30)
= SH((S

−1
H (h(3)) ⊳ (h(2) ⊲ u(2))) ⊳ S

−1
U (h(1) ⊲ u(1)))

⊗ SU(S
−1
H (h(5) ⊳ u(5)) ⊲ ((h(4) ⊳ u(4)) ⊲ S

−1
U (u(3))))

= h(2)ǫH(h(1))ǫU(u(1))⊗ ǫU (u(3))ǫH(h(3))u(2)

= h⊗ u,

and in the same way RR′(u⊗ h) = u⊗ h. �

Clearly R′ is normal because R is. From the left multiplicativity of R, we get

R(hr
′

h′R
′

⊗ ur
′R′

) = ur
′R′R ⊗ (hr

′

h′R
′

)R

= ur
′R′Rr ⊗ hr

′rh′R
′R

= u⊗ hh′,

hence hr
′

h′R
′

⊗ ar
′R′

= (hh′)R
′

⊗ aR
′

which means that R′ is right multiplicative. Similarly
it follows that R′ is left multiplicative from the right multiplicativity of R. Finally, R′ is
a coalgebra map because R is. Since R′ satisfies the same properties as R with H and U
swapped, we can write down the statements corresponding to Proposition 3.6 and Lemma 3.9
for R′:

• H is a left U -module, and U is a right H-module via the actions

u ◮ h = ǫU(u
R′

)hR
′

= SH(S
−1
H (h) ⊳ S−1

U (u)),

u ◭ h = ǫH(h
R′

)uR
′

= SU(S
−1
H (h) ⊲ S−1

U (u)).

• These actions recover R′ since

hR
′

⊗ uR
′

= u(1) ◮ h(1) ⊗ u(2) ◭ h(2).

• We have

hr
′R′

⊗ SU(u(1))
R′

⊗ ur
′

(2) = h(1) ⊗ SU((u ◭ h(2))(1))⊗ (u ◭ h(2))(2), (31)

h(1)
R′

⊗ SH(h(2))
r′ ⊗ uR

′r′ = (u(1) ◮ h)(1) ⊗ SH((u(1) ◮ h)(2))⊗ u(3). (32)

3.2. Main results. Let U and H be Hopf algebras and R : H⊗U → U ⊗H be an invertible
linear map so that U#RH is an R-smash product (cf. Theorem 3.5). Consider the following
categories:

• the category PR
U,H with objects pairs of partial representations (α : U → B, η : H →

B) (where B is any k-algebra) such that

η(h)α(u) = α(uR)η(hR) (33)

for all u ∈ U, h ∈ H, and morphisms algebra maps f : B → B′ such that f ◦ α = α′

and f ◦ η = η′;
• the category PRep

split
U#RH with objects partial representations π : U#RH → B such

that

π(u#Rh) = π(u#R1H)π(1U#Rh), (34)

π(uR#hR) = π(1U#Rh)π(u#R1H), (35)
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for all u ∈ U, h ∈ H , and morphisms algebra maps f : B → B′ such that f ◦ π = π′.

We will show that these categories are isomorphic, and that they are furthermore isomorphic
to the category of representations of a smash product of the partial “Hopf” algebras Upar and
Hpar, which we will now describe.

Define a linear map R̂ : T (H)⊗ T (U)→ Upar ⊗Hpar by

R̂((h1⊗· · ·⊗hn)⊗(u1⊗· · ·⊗um)) = [u1
R11···R1n ] · · · [um

Rm1···Rmn ]⊗[h1
R1n···Rmn ] · · · [hn

R11···Rm1 ].

Lemma 3.11. For any h, k, h1, . . . hn ∈ H and u, v, u1, . . . , um ∈ U ,

R̂((S(h(1))⊗ h(2) ⊗ k)⊗ (u1 ⊗ · · · ⊗ um)) = R̂((S(h(1))⊗ h(2)k)⊗ (u1 ⊗ · · · ⊗ um)),

R̂((k ⊗ S(h(1))⊗ h(2))⊗ (u1 ⊗ · · · ⊗ um)) = R̂((kS(h(1))⊗ h(2))⊗ (u1 ⊗ · · · ⊗ um)),

R̂((h1 ⊗ · · · ⊗ hn)⊗ (u(1) ⊗ S(u(2))⊗ v)) = R̂((h1 ⊗ · · · ⊗ hn)⊗ (u(1) ⊗ S(u(2))v)),

R̂((h1 ⊗ · · · ⊗ hn)⊗ (v ⊗ u(1) ⊗ S(u(2)))) = R̂((h1 ⊗ · · · ⊗ hn)⊗ (vu(1) ⊗ S(u(2)))).

Proof. Let us check the first equality, the others are shown in a similar way. We have

R̂((S(h(1))⊗ h(2) ⊗ k)⊗ (u1 ⊗ · · · ⊗ um))

= [uR11R12R13
1 ] · · · [uRm1Rm2Rm3

m ]⊗ [S(h(1))
R13···Rm3 ][h(2)

R12···Rm2 ][kR11···Rm1 ]

(27)
= [uR11

1 (1)] · · · [u
Rm1
m (1)]

⊗ [S((h ⊳ uR11
1 (2) · · ·u

Rm1
m (2))(1))][(h ⊳ u

R11
1 (2) · · ·u

Rm1
m (2))(2))][k

R11···Rm1 ]

(PR5)
= [uR11

1 (1)] · · · [u
Rm1
m (1)]

⊗ [S((h ⊳ uR11
1 (2) · · ·u

Rm1
m (2))(1))][(h ⊳ u

R11
1 (2) · · ·u

Rm1
m (2))(2))k

R11···Rm1 ]

= [u1
R11R12R13 ] · · · [um

Rm1Rm2Rm3 ]⊗ [S(h(1))
R13···Rm3 ][h(2)

R12···Rm2kR11···Rm1 ]

(18)
= [u1

R12R13 ] · · · [um
Rm2Rm3 ]⊗ [S(h(1))

R13···Rm3 ][(h(2)k)
R12···Rm2 ]

= R̂((S(h(1))⊗ h(2)k)⊗ (u1 ⊗ · · · ⊗ um)). �

Lemma 3.12. The map R̂ induces a normal and multiplicative map

R : Hpar ⊗ Upar → Upar ⊗Hpar,

[h1] · · · [hn]⊗ [u1] · · · [um] 7→ [u1
R11···R1n ] · · · [um

Rm1···Rmn ]⊗ [h1
R1n···Rmn ] · · · [hn

R11···Rm1 ].

Proof. Let us first check that R̂ is multiplicative in the sense of Definition 3.2.

R̂((h1 ⊗ · · · ⊗ hn ⊗ h
′
1 ⊗ · · · ⊗ h

′
n′)⊗ (u1 ⊗ · · · ⊗ um))

= [u
R11···R1,n+n′

1 ] · · · [u
Rm1···Rm,n+n′

m ]

⊗ [h
R1,n+n′ ···Rm,n+n′

1 ] · · · [h
R1,n′+1···Rm,n′+1
n ][h′1

R1n′ ···Rmn′ ] · · · [h′n′

R11···Rm1 ]

= (u1 ⊗ · · · ⊗ um)
R′R ⊗ (h1 ⊗ · · · ⊗ hn)

R(h′1 ⊗ · · · ⊗ h
′
n′)R

′

,

and a similar computation shows that it is right multiplicative. Together with Lemma 3.11,
this shows that the kernel of R̂ contains IH ⊗ T (U) + T (H)⊗ IU , where IH and IU are the
ideals defined by the relations (1), (2) and (3), i. e. Hpar = T (H)/IH and Upar = T (U)/IU .

Hence R̂ induces a linear map R : Hpar⊗Upar → Upar⊗Hpar. The computation above shows
that it is multiplicative, and the normality is obvious too. �
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By Theorem 3.3, we obtain an algebra Upar#RHpar and we are ready to state our main
result.

Theorem 3.13. Let U,H be Hopf algebras with invertible antipode and R : H ⊗U → U ⊗H
be normal, multiplicative and a coalgebra map. Then there are isomorphisms of categories

PR
U,H ≃ PRep

split
U#RH ≃ RepUpar#RHpar

.

Proof. We start with the first isomorphism. Let π : U#RH → B be a partial representation
such that π(u#Rh) = π(u#R1H)π(1U#Rh) and π(uR#Rh

R) = π(1U#Rh)π(u#R1H) for all
u#Rh ∈ U#RH . Then

απ : U → B : u 7→ π(u#R1H)

ηπ : H → B : h 7→ π(1U#Rh)

are partial representations, because the canonical inclusions ιU : U → U#RH and ιH : H →
U#RH are morphisms of Hopf algebras. Moreover,

απ(u
R)ηπ(h

R) = π(uR#R1H)π(1U#Rh
R) = π(uR#Rh

R)

= π(1U#Rh)π(u#R1H) = ηπ(h)απ(u).

Conversely, let α : U → B and η : H → B be partial representations such that η(h)α(u) =
α(uR)η(hR). We will show that

πα,η : U#RH → B : u#Rh 7→ α(u)η(h)

is a partial representation. Recall that R is invertible with inverse R′ (29). So we have also
that

α(u)η(h) = η(hR
′

)α(uR
′

) (36)

for all u ∈ U, h ∈ H . Then,

πα,η(v#Rk)πα,η(S(u(1))
R#RS(h(1))

R)πα,η(u(2)#Rh(2))

= α(v)η(k)α(S(u(1))
R)η(S(h(1))

R)α(u(2))η(h(2))

(33)
= α(v)η(k)η(S(h(1)))α(S(u(1)))α(u(2))η(h(2))

(36)
= α(v)η(k)η(S(h(1)))η(h(2)

R′r′)α(S(u(1))
r′)α(a(2)

R′

)

(31)
= α(v)η(k)η(S(h(1)))η(h(2))α(S((u ◭ h(3))(1)))α((u ◭ h(3))(2))

(PR4)
= α(v)η(kS(h(1)))η(h(2))α(S((u ◭ h(3))(1)))α((u ◭ h(3))(2))

(36)
= η((kS(h(1)))

R′

)η(h(2)
r′)α(vR

′r′)α(S((u ◭ h(3))(1)))α((u ◭ h(3))(2))

(PR4)
= η((kS(h(1)))

R′

)η(h(2)
r′)α(vR

′r′S((u ◭ h(3))(1)))α((u ◭ h(3))(2))

(33)
= α([bR

′r′S((u ◭ h(3))(1))]
rR)η((kS(h(1)))

R′R)η(h(2)
r′r)α((u ◭ h(3))(2))

(19)
= α(vR

′r′r1R1S((u ◭ h(3))(1))
r2R2)η((kS(h(1)))

R′R1R2)η(h(2)
r′r1r2)α((u ◭ h(3))(2))

= α(vS((u ◭ h(3))(1))
rR)η((kS(h(1)))

R)η(h(2)
r)α((u ◭ h(3))(2))

(31)
= α(vS(u(1))

r′rR)η((kS(h(1)))
R)η(h(2)

R′r′r)α(u(2)
R′

)

= α(vS(u(1))
R)η((kS(h(1)))

R)η(h(2)
R′

)α(u(2)
R′

)

(36)
= α(vS(u(1))

R)η((kS(h(1)))
R)α(u(2))η(h(2))
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(18)
= α(vS(u(1))

Rr)η(krS(h(1))
R)α(u(2))η(h(2))

= πα,η(v(S(u(1))
Rr#Rk

rS(h(1))
R))πα,η(u(2)#Rh(2))

= πα,η((v#Rk)(S(u(1))
R#RS(h(1))

R))π(u(2)#Rh(2)),

proving (PR4). Using similar steps, one shows that πα,η also satisfies (PR5).
This gives indeed a bijective correspondance because π(u#Rh) = π(u#R1H)π(1U#Rh) by

assumption. Functoriality is clear.
Now the isomorphism between PR

U,H and RepUpar#RHpar
. Let σ : Upar#RHpar → B be an

algebra map. We have partial representations

U → Upar#RHpar : u 7→ [u]#R[1H ],

H → Upar#RHpar : h 7→ [1U ]#R[h]

(this follows from the fact that R is normal and that [−] : U → Upar, resp. [−] : H → Hpar

are partial representations). They are compatible through R, so it is easy to see that

α : U → B : u 7→ σ([u]#R[1H ]),

η : H → B : h 7→ σ([1U ]#R[h])

constitutes an object in PR
U,H .

Conversely, let α : U → B, η : H → B be partial representations such that η(h)α(u) =
α(uR)η(hR) for all u ∈ U, h ∈ H . Define

σα,η : Upar#RHpar → B : [u1] · · · [um]⊗ [h1] · · · [hn] 7→ α(u1) · · ·α(um)η(h1) · · ·η(hn).

It is an easy verification that this is an algebra morphism, and that the obtained correspon-
dence is bijective. �

Remark 3.14. In general, PRepsplitU#RH is a proper subcategory of PRepU#RH , and there might
be many partial representations of U#RH that do not satisfy (34) and (35). As an elementary
example, let C2 = {1, g} be the cyclic group of order two and G = C2 × C2. Let k be a field
of characteristic different from 2. Then kG ∼= kC2 ⊗ kC2, which is an R-smash product
with trivial R (i. e. both actions ⊳, ⊲ are trivial, which means that R is just the twist map).
However dim kparG = 20 (see [11]) while dim kC2,par = 3, so that dim kC2,par ⊗ kC2,par = 9.

Concretely, the 3-dimensional irreducible partial representation of G is not in PRep
split
kC2⊗kC2

as
well as two 1-dimensional partial representations obtained from global representations of the
diagonal subgroup {(1, 1), (g, g)} of G.

The category PR
U,H has an interesting subcategory: the category QR

U,H of pairs (α, η) where
α : U → B is an algebra map and η : H → B is a partial representation such that η(h)α(u) =
α(uR)η(hR). Under the isomorphisms of categories from Theorem 3.13, QR

U,H corresponds to

the category PRep
glob
U#RH of partial representations π : U#RH → B such that

π(uu′#R1H) = π(u#R1H)π(u
′#R1H). (37)

If π satisfies (37), then (using that S(u#R1H) = R(1H#RS(u)) = S(u)#R1H),

π(u#R1H)π(1U#Rh) = π(u(1)#R1H)π(S(u(2))#R1H)π(u(3)#R1H)π(1U#Rh)

= π(u(1)#R1H)π(S(u(2))#R1H)π(u(3)#Rh)

= π(u#Rh)
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and

π(1U#Rh)π(u#R1H) = π(1U#Rh)π(u(1)#R1H)π(S(u(2))#R1H)π(u(3)#R1H)

= π(a(1)
R#Rh

R)π(S(u(2))#R1H)π(u(3)#R1H)

= π(uR#Rh
R),

so PRepglobU#RH is indeed a subcategory of PRepsplitU#RH . These subcategories can also be described
as the category of representations of a smash product of U and Hpar, by the local braiding

T : Hpar ⊗ U → U ⊗Hpar : [h1] · · · [hn]⊗ u 7→ uR1···Rn ⊗ [h1
Rn ] · · · [hn

R1 ].

It can be seen from Lemma 3.11 and Lemma 3.12 that T is well-defined, normal and multi-
plicative.

Theorem 3.15. Let U,H be Hopf algebras and let R : H ⊗ U → U ⊗ H be normal, multi-
plicative and a coalgebra map. Then there are isomorphisms of categories

QR
U,H ≃ PRep

glob
U#RH ≃ RepU#T Hpar

.

Proof. Let us just remark that it is not necessary to suppose that R is invertible to prove the
first isomorphism. The rest of the proof is identical to the proof of Theorem 3.13.

Let α : U → B be an algebra map and let η : H → B be a partial representation such that
η(h)α(u) = α(uR)η(hR). Define πα,η : U#RH → X , given by πα,η(u#h) = α(u)η(h).

Let us show that πα,η satisfies (PR4), the proof for (PR5) is analogous.

πα,η(v#k)πα,η(S(u(1))
R#S(h(1))

R)πα,η(u(2)#h(2))

= α(v)η(k)α(S(u(1))
R)η(S(h(1))

R)α(u(2))η(h(2))

= α(v)η(k)η(S(h(1)))α(S(u(1)))α(u(2))η(h(2))

= α(v)η(k)η(S(h(1)))η(h(2))ǫ(u)

(PR4)
= α(v)η(kS(h(1)))η(h(2))ǫ(u)

= α(v)η(kS(h(1)))α(S(u(1)))α(u(2))η(h(2))

= α(v)α(S(u(1))
R)η((kS(h(1)))

R)α(u(2))η(h(2))

(18)
= α(v)α((S(u(1))

Rr)η(krS(h(1))
R)α(u(2))η(h(2))

= α(v(S(u(1))
Rr)η(krS(h(1))

R)α(u(2))η(h(2))

= πα,η(v(S(u(1))
Rr#krS(h(1))

R)πα,η(u(2)#h(2))

= πα,η((v#k)(S(u(1))
R#S(h(1))

R))πα,η(u(2)#h(2)).

Hence πα,η is a partial representation of U#RH . �

Suppose now that U = Upar, i. e. every partial representation of U is global. This happens
for instance if U is connected, see Corollary 2.5. In this case, every partial representation
of U#RH is in PRep

glob
U#RH . Indeed, since ιU : U → U#RH is a Hopf algebra morphism,

every partial representation π of U#RH induces a partial representation α : u 7→ π(u#R1H)
of U . But this means that α is an algebra morphism because U = Upar, so π(uu

′#R1H) =
π(u#R1H)π(u

′#R1H) for all u, u
′ ∈ U . We can conclude the following.

Theorem 3.16. Let U,H be Hopf algebras and let R : H ⊗ U → U ⊗ H be normal, mul-
tiplicative and a coalgebra map. Suppose that U = Upar. Then there are isomorphisms of
categories

QR
U,H ≃ PRepU#RH ≃ RepU#T Hpar

.
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In particular (U#RH)par ∼= U#THpar.

Explicitly, the isomorphism (U#RH)par ∼= U#THpar is found by applying the first iso-
morphism of categories to the algebra map U → U#THpar : u 7→ u#T [1H ] and the par-
tial representation H → U#THpar : h 7→ 1U#T [h]. This gives a partial representation
U#RH → U#THpar, and an algebra map

(U#RH)par → U#THpar : [u#Rh] 7→ u#T [h].

Its inverse is

U#THpar → (U#RH)par : u#T [h1] · · · [hn] 7→ [u#Rh1] · · · [1U#Rhn].

Indeed, thanks to the fact that [u#R1H ][u
′#R1H ] = [uu′#R1H ] because U = Upar,

[u1u
R21
2 · · ·uRn,n−1···Rn1

n #Rh
R21···Rn1
1 ][1U#Rh

R32···Rn2
2 ] · · · [1U#Rhn] = [u1#Rh1] · · · [un#Rhn].

Remark 3.17. Theorems 3.13, 3.15 and 3.16 can also be formulated in terms of partial
modules rather than partial representations, by considering only objects which are (pairs of)
partial representations on an algebra of the form B = Endk(V ) for some vector space V .

Suppose again that R is invertible. Having described (U#RH)par in Theorem 3.16, let us

take a look at the subalgebras Apar(U#RH) and Ãpar(U#RH). Recall that Apar(U#RH)
is generated by the elements εu#Rh (6), and that Apar(U#RH) is the base algebra of the

(left) bialgebroid structure on U#RH . The other natural subalgebra Ãpar(U#RH), which is
generated by the elements ε̃u#Rh = [S(u(1)#Rh(1))][u(2)#Rh(2)], is opposite to Apar(U#RH)
and is the base algebra of the right bialgebroid structure on (U#RH)par (see [1, §4.2]). We
calculate

εu#Rh = (u(1)#T [h(1)])(S(u(2))
R#T [S(h(2))

R])

= u(1)S(u(2))
Rr#T [h(1)

r][S(h(2))
R]

(23)
= u(1)

ρ′ρS(u(2)
R′

)r#T [h(1)
ρ′ρr][S(h(2)

R′

)]

(22)
= uR

′

(1)
ρ
S(uR

′

(2))
r#T [h

R′

(1)
ρr
][S(hR

′

(2))]

(19)
= (uR

′

(1)S(u
R′

(2)))
r#T [h

R′

(1)
r
][S(hR

′

(2))]

= ǫ(uR
′

)1U#RεhR′

= 1U#T εu◮h;

ε̃u#Rh = (S(u(1))
R#T [S(h(1))

R])(u(2)#T [S(h(2))])

= S(u(1))
Ru(2)

r#T [S(h(1))
Rr][h(2)]

(19)
= (S(u(1))u(2))

R#T [S(h(1))
R][h(2)]

= ǫ(u)1U#T ε̃h.

Proposition 3.18. The assignments

α : εu#Rh 7→ εu◮h; α′ : εh 7→ ε1#Rh

provide an isomorphism of algebras Apar(U#RH) ∼= Apar(H), and the assignments

β : ε̃u#Rh 7→ ǫ(u)ε̃h; β ′ : ε̃h 7→ ε̃1#Rh

provide an isomorphism of algebras Ãpar(U#RH) ∼= Ãpar(H).



PARTIAL REPRESENTATIONS OF CONNECTED AND SMASH PRODUCT HOPF ALGEBRAS 19

Proof. The nontrivial part is to see that α and β are well-defined. We treat α, the proof for
β is analogous. We need to show that relations (7), (8) and (9) are preserved. The first is
immediate, and the second follows directly from the fact that R is a coalgebra map. For the
third, let us show that

α(εu(1)#Rh(1)
ε(u(2)#Rh(2))(v#Rk)) = εu(1)◮h(1)

εu(2)vR◮h(2)
Rk

= εu(1)vR◮h(1)
Rkεu(2)◮h(2)

= α(ε(u(1)#Rh(1))(v#Rk)εu(2)#Rh(1)
).

Indeed,

εu(1)◮h(1)
εu(2)vR◮h(2)

Rk = ǫ(u(1)
ρ′)ǫ((u(2)v

R)R
′

)εh(1)
ρ′ε(h(2)

Rk)R′

(18)
= ǫ(u(1)

ρ′)ǫ((u(2)v
R)R

′
1R

′
2)εh(1)

ρ′ε
h(2)

RR′
1kR

′
2

(19)
= ǫ(u(1)

ρ′)ǫ(u(2)
r′1r

′
2vRR′

1R
′
2)εh(1)

ρ′ε
h(2)

RR′
1r

′
1kR

′
2
r′
2

= ǫ(u(1)
ρ′)ǫ(u(2)

r′1r
′
2)ǫ(vR

′

)εh(1)
ρ′ε

h(2)
r′1kR

′r′
2

(22)
= ǫ(uρ

′

(1))ǫ(u
ρ′
(2)

r′

)ǫ(vR
′

)εhρ′
(1)
εhρ′

(2)k
R′r′

(9)
= ǫ(uρ

′r′)ǫ(vR
′

)εhρ′
(1)k

R′r′εhρ′
(2)
,

and

εu(1)vR◮h(1)
Rkεu(2)◮h(2)

= ǫ((a(1)v
R)R

′

)ǫ(u(2)
ρ′)ε(h(1)

Rk)R′ε
h(2)

ρ′

(19)
= ǫ(u(1)

r′vRR′

)ǫ(u(2)
ρ′)ε(h(1)

Rk)R′r′εh(2)
ρ′

(18)
= ǫ(u(1)

r′1r
′
2vRR′

1R
′
2)ǫ(u(2)

ρ′)ε
h(1)

RR′
1r

′
1kR

′
2r

′
2
εh(2)

ρ′

(22)
= ǫ(uρ

′

(1)
r′

vR
′

)ǫ(uρ
′

(2))εhρ′
(1)kR

′r′εhρ′
(2)

= ǫ(uρ
′r′)ǫ(vR

′

)εhρ′
(1)kR

′r′εhρ′
(2)
. �

3.3. Partial representations of cocommutative Hopf algebras. Suppose that k has
characteristic 0 and let H be a cocommutative Hopf algebra. Let G be the group of grouplikes
of H , and g the vector space of its primitive elements. Then g is a Lie algebra, and the
subalgebra generated by g in H is isomorphic to U(g), the universal enveloping algebra of g.
The Cartier-Gabriel-Konstant-Milnor-Moore theorem states that

H ∼= U(g)#RkG,

where R : kG⊗ U(g)→ U(g) is given on generators by

R(g ⊗ x) = gxg−1 ⊗ g.

Since U(g) is a connected Hopf algebra, we can apply Theorem 3.16 and conclude that

Hpar
∼= U(g)#T kparG,

where

T : kparG⊗ U(g)→ U(g)⊗ kparG,

[g1] · · · [gn]⊗ x 7→ g1 · · · gnxg
−1
n · · · g

−1
1 ⊗ [g1] · · · [gn].
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Suppose now that H has only finitely many grouplikes, so that G is a finite group. Then by
[11, Corollary 2.7], kparG is isomorphic to the groupoid algebra kΓ(G), where

Γ(G) = {(A, g) ∈ P(G)×G | 1, g−1 ∈ A}

with multiplication (A, g)(B, h) = (B, gh) whenever A = hB and not defined else. Explicitly,
the isomorphism is given by

kΓ(G)←→ kparG

(A, g) 7−→ [g]
∏

h∈A

[h][h−1]
∏

h/∈A

(1− [h][h−1]), (38)

∑

A∋1,g−1

(A, g)←−[ [g].

Using this, we can describe Hpar as a weak Hopf algebra coming from a Hopf category H.
We refer to [5] and [4] for the definitions of a weak Hopf algebra and a Hopf category. We
define a Hopf category H with objects the subsets A of G containing 1 (as for the groupoid
Γ(G)). For two of these subsets A and B, put

KA,B = {g ∈ G | gA = B},

HomH(A,B) = U(g)⊗ kKA,B.

Then HomH(A,B) is a coalgebra, and the composition maps

HomH(B,C)⊗ HomH(A,B)→ HomH(A,C) : (x⊗ g) ◦ (x
′ ⊗ g′) = (xgx′g−1 ⊗ gg′) (39)

are coalgebra maps. The antipode on H is given by

SA,B : HomH(A,B)→ HomH(B,A) : x⊗ g 7→ S(x)⊗ g−1.

The weak Hopf algebra associated to H is

W =
⊕

1∈A,B⊆G

HomH(A,B) = U(g)⊗
⊕

1∈A,B⊆G

KA,B. (40)

Note however that the algebra structure on the right hand side is not the tensor product
algebra structure, but is obtained from the composition rule (39). This way W is the smash
product of U(g) and

⊕

1∈A,B⊆GKA,B. This last space can be identified with the groupoid

algebra kΓ(G), so we can combine (38) with (40) and obtain an isomorphism of weak Hopf
algebras Hpar

∼= W . We remark that this weak Hopf algebra is cocommutative, and when
considered as a Hopf algebroid, its base algebra is commutative.

3.4. Further examples.

3.4.1. Exact factorizations of groups. Let G be a group with unit e and G = ML an exact
factorization, i. e. M and L are subgroups of G such that every element of G can be written
in a unique way as a product of an element of M and an element of L. Note that also
G = G−1 = L−1M−1 = LM is an exact factorization.

The exact factorization induces a local braiding R : kL⊗kM → kM ⊗kL : l⊗m 7→ m′⊗ l′

where lm = m′l′. It is easy to check that R is normal, multiplicative and a coalgebra map,
so we get an R-smash product kM#RkL which is isomorphic to kG as a Hopf algebra, via
the multiplication map.

By Theorem 3.15, partial representations of kG that are global on the subgroup kM are
equivalent to representations of the algebra kM#T kparL. Suppose now that L is finite. In
that case kparL is isomorphic to the groupoid algebra kΓ(L) as in (38).
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In [10], partial representations of G which are global on a subgroup M were studied. It
was shown that they correspond to representations of the groupoid algebra kΓM(G), where
ΓM(G) is the groupoid

ΓM(G) = {(A, g) ∈ P(G/M)×G |M, g−1M ∈ A}.

In fact, kΓM(G) is isomorphic to kM#T kparL. The exact factorization G = LM induces a
bijection ϕ : L→ G/M : l 7→ lM . One can check that

θ : kM#T kparL→ kΓM(L) : m#T [l] 7→
∑

A∋e,l−1

(ϕ(A), ml)

defines an isomorphism of algebras.

3.4.2. Graded partial modules. Let G,F be finite groups and ⊲ : F × G→ G an action of F
on G by automorphisms. Then kF acts on kG∗ via

f · pg = pf⊲g,

where pg is the dual basis vector to g ∈ G. This induces a twist map (cf. Example 3.7)

R : kF ⊗ kG∗ → kG∗ ⊗ kF : f ⊗ pg 7→ pf⊲g ⊗ f.

This map is normal, multiplicative and a coalgebra map, so the smash product kG∗#RkF is a
Hopf algebra. Modules over this Hopf algebra are equivalent to G-graded F -representations,
i. e. G-graded vector spaces V =

⊕

g∈G Vg together with a group morphism ρ : F → GL(V )

such that ρ(f)(Vg) ⊆ Vf⊲g for all f ∈ F, g ∈ G. Indeed, a G-graded vector space is a kG-
comodule, which is equivalent to a kG∗-module. If v =

∑

g∈G vg, where vg ∈ Vg for each
g ∈ G, then the kG∗-module structure is given by pg · v = vg.

The notion of graded module can be extended to the partial world in the following way:

Definition 3.19. A G-graded partial F -representation is a vector space V =
⊕

g∈G Vg to-

gether with a partial representation η : F → Endk(V ) such that η(f)(Vg) ⊆ Vf⊲g for all
f ∈ F, g ∈ G.

As in the global case, the G-grading on V induces a kG∗-module structure, in other words,
a representation

α : kG∗ → Endk(V ) : pg 7→ (v 7→ vg).

Now η(f)α(pg)(v) = η(f)(vg) ∈ Vf⊲g. So for any h ∈ G, α(pf⊲g)η(f)(vh) = δghη(f)(vh),
because f ⊲ g 6= f ⊲ h if g 6= h. This implies that

η(f)α(pg)(v) = η(f)(vg) = α(pf⊲g)η(f)(vg) =
∑

h∈G

α(pf⊲g)η(f)(vh) = α(pf⊲g)η(f)(v).

Hence η(f)α(pg) = α(pg
R)η(fR) for all f ∈ F, g ∈ G, so Theorem 3.15 can be applied to

obtain the following corollary.

Corollary 3.20. Let F and G be finite groups and let ⊲ be a left action of F on G by
automorphisms. Then the category of G-graded partial F -modules is equivalent to the category
of left kG∗#T kparF -modules, where

T : kparF ⊗ kG
∗ → kG∗ ⊗ kparF : [f1] · · · [fn]⊗ pg 7→ p(f1···fn)⊲g ⊗ [f1] · · · [fn].

Suppose now that G is a p-group and that k has characteristic p. Then we saw in Exam-
ple 2.6 that kG∗ is a connected Hopf algebra, so by Corollary 2.5, (kG∗)par = kG∗. From
Theorem 3.16 it follows that in this case

(kG∗#RkF )par = kG∗#T kparF.

For more concrete examples, we refer to [15].
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3.4.3. Drinfel’d double. Let H be a finite-dimensional Hopf algebra. As is done in [16, Ex-
ample 7.2.5], the Drinfel’d double (or quantum double) D(H) can be described as the smash
product (H∗)op#RH, where

R : H ⊗H∗ → H∗ ⊗H : h⊗ ψ 7→ ψ(1)(S(h(1)))ψ(3)(h(3)) ψ(2) ⊗ h(2).

This map induces a normal and multiplicative twist map

R : Hpar ⊗ (H∗)oppar → (H∗)oppar → Hpar

by Lemma 3.12. By Theorem 3.13, a right module over (H∗)oppar#RHpar can be interpreted as
a right partial H-module, which is at the same time a right partial (H∗)op-module (i. e. a left
partial H∗-module) compatible through R. By [2, Theorem 4.14], left partial H∗-modules are
equivalent to right partial H-comodules. Recall also that right D(H)-modules are equivalent
to right-right Yetter-Drinfel’d modules over H . So a right (H∗)oppar#RHpar-module is a right
partial H-module M , which is at the same time a right partial H-comodule satisfying the
Yetter-Drinfel’d compatibility condition

(m · h)[0] ⊗ (m · h)[1] = m[0] · h(2) ⊗ S(h(1))m
[1]h(3).

for all h ∈ H,m ∈ M . This is exactly (35) interpreted in terms of the partial action and
coaction of H on M .
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