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FILTERED BOOLEAN POWERS OF FINITE SIMPLE

NON-ABELIAN MAL’CEV ALGEBRAS

PETER MAYR AND NIK RUŠKUC

Abstract. Let A be a finite simple non-abelian Mal’cev alge-
bra (e.g. a group, loop, ring). We investigate the Boolean power
D of A by the countable atomless Boolean algebra B filtered at
some idempotents e1, . . . , en of A. When e1, . . . , en are all idem-
potents of A we establish two concrete representations of D: as
the Fräıssé limit of the class of finite direct powers of A, and as
congruence classes of the countable free algebra in the variety gen-
erated by A. Further, for arbitrary e1, . . . , en, we show that D is
ω-categorical and that its automorphism group has the small index
property, strong uncountable cofinality and the Bergman property.
As necessary background we establish some general properties of
congruences and automorphisms of filtered Boolean powers of A
by any Boolean algebra B, including a semidirect decomposition
for their automorphism groups.

1. Introduction, preliminaries and statements of the main

results

The purpose of this paper is to investigate filtered Boolean pow-
ers D of a finite simple non-abelian Mal’cev algebra A by a Boolean
algebra B. On a general level, we establish some properties of con-
gruences and automorphisms of D. When B is the countable atomless
Boolean algebra, we investigate the role D plays in the variety gener-
ated by A, and prove that if has a number of combinatorial properties:
it is ω-categorical and its automorphism group has the small index
property, strong uncountable cofinality and the Bergman property.

In this section we present the background and motivation for our
work, introduce the concepts and notation that will be used throughout
and give statements of the main results.

A variety is a class of algebraic structures (algebras for short) of
the same type that is defined by equations. By Birkhoff’s Theorem the
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2 PETER MAYR AND NIK RUŠKUC

variety generated by a class of algebras C is the class of all homomorphic
images of subalgebras of products of elements in C. We refer to [7] for
background on general algebra.

Varieties generated by a finite simple group have been studied by
Neumann [24], Apps [2] and others. Many of the techniques carry
over from groups to Mal’cev algebras in general. Here an algebra A

is Mal’cev if it has a ternary term operation m satisfying m(x, x, y) =
y = m(y, x, x). Note that groups, quasigroups, loops, rings as well as
their expansions with additional operations are all Mal’cev.

The generalization of commutator theory from groups to algebras
as described in [12] allows us to talk about (non)-abelian algebras. A
Mal’cev algebra is abelian if its basic operations can be represented as
affine functions over a module; otherwise we call it non-abelian. This
is consistent with the classical notions for groups and loops. A ring is
abelian if and only if its multiplication is constant 0.

Unless otherwise indicated, A will stand for a finite simple non-
abelian Mal’cev algebra throughout. Throughout, we will use bold
letters to denote algebras and other structures, and matching standard
letters will be used for the underlying universes. Thus, here, A would
be the universe of A. Let V denote the variety generated by A, let Vfin
be the class of its finite members, and letW be the variety generated by
all proper subalgebras of A. Then W is the unique maximal subvariety
of V . Every element in Vfin is isomorphic to some Ak×B for an integer
k ≥ 0 and B ∈ Wfin (cf. [24] for groups, [11] for primal algebras).
This indicates the distinguished role the class K := {Ak : k ≥ 1} of
finite powers of A plays in the structure of the finite members of V . It
turns that this class has some nice model-theoretic properties, leading
to existence of a Fräıssé limit.

In order to be able to state this, we briefly review the standard Fräıssé
theory following [16]. Let K be any collection of finitely generated
structures of the same type. Consider the following three properties
that such a collection may have:

Hereditary property (HP): Every finitely generated substructure of a
member of K is isomorphic to a member of K.

Joint embedding property (JEP): For any A,B ∈ K there exists C ∈ K
into which both A and B embed.

Amalgamation property (AP): For any A,B,C ∈ K with embeddings
ϕ : A → B and ψ : A → C there exists D ∈ K and embeddings
µ : B → D and ν : C → D such that µϕ = νψ.

Note that Vfin has HP but in general not JEP or AP. On the other
hand the subclass K = {Ak : k ≥ 1} we are looking at has JEP and
AP but in general not HP. (The assumption k 6= 0 is necessary for AP
only if the algebra A has more than one trivial subalgebra.)



FILTERED BOOLEAN POWERS OF SIMPLE ALGEBRAS 3

By a generalization of Fräıssé’s Theorem [16, Theorem 7.1.2] there
exists a unique (up to isomorphism) countable algebra D such that (i)
every finitely generated subalgebra of D embeds into some element of
K, (ii) D is a direct limit of algebras in K, and (iii) every isomorphism
between subalgebras of D that are isomorphic to some element in K
extends to an automorphism of D (i.e., D is K-homogeneous). We call
such a D the Fräıssé limit of K.

This Fräıssé limit can be explicitly described as a filtered Boolean
power of A, as defined by Arens and Kaplansky [3] (see also [10]). We
briefly review this construction.

Let B be a Boolean algebra. The Stone space of B is the set X of
ultrafilters on B with the topology whose basic open sets are {x ∈ X :
b ∈ x} for b ∈ B. The original Boolean algebra B is isomorphic to the
Boolean algebra of clopen sets of X . An arbitrary topological space X
is homeomorphic to the Stone space of a Boolean algebra if and only
if it is compact and totally separated. For basics on Boolean algebras
we refer the reader to [23, Chapter 1], and for Stone duality to [23,
Chapter 3].

Recall that there is a unique (up to isomorphism) countable atomless
Boolean algebra B. It is in fact the Fräıssé limit of all finite Boolean
algebras, and will play a particularly important role in this paper.
Its Stone space is the Cantor space X , i.e. the unique space up to
homeomorphism which is compact, Hausdorff, has no isolated points
and has a countable basis of clopen sets. A concrete representation
of X is as AN under the product topology, where A is any finite set
endowed with the discrete topology.

Let B be a Boolean algebra with Stone space X , and let A be an
algebra. The Boolean power AB is the subalgebra of AX with universe

AB := {f : X → A : f is continuous},

where A is endowed with the discrete topology.
Borrowing the concept from semigroups, we call an element e of an

algebra A an idempotent if {e} forms a trivial subalgebra of A. For
pairwise distinct x1, . . . , xn ∈ X and idempotents e1, . . . , en of A, the
subalgebra (AB)x1,...,xne1,...,en of AB with universe

{f ∈ AB : f(x1) = e1, . . . , f(xn) = en}

is a filtered Boolean power of A.
We can now state our first main result.

{thm:Flim}
Theorem 1.1. Let A be a finite simple non-abelian Mal’cev algebra,
let e1, . . . , en be the idempotents of A, let B be the countable atomless
Boolean algebra, let X be the Stone space of B, and let x1, . . . , xn ∈ X
be distinct.{it:Flim}

(1) The Fräıssé limit of {Ak : k ≥ 1} exists and is isomorphic to
(AB)x1,...,xne1,...,en

.
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{it:free}
(2) Let F be the free algebra of countable rank in the variety V

generated by A, and let θ be the smallest congruence such that
F/θ is in the varietyW generated by all proper subalgebras of A.
Then every θ-class which is a subalgebra of F is isomorphic to
(AB)x1,...,xne1,...,en .

In the theorem above it is in fact sufficient to take e1, . . . , en to be a
set of orbit representatives under AutA for the idempotents in A (see
Corollary 2.8).

Part (1) of Theorem 1.1 is proved in Section 3 and part (2) in Sec-
tion 4.

Note that when A is a group, the filtered Boolean power arising in
Theorem 1.1(2) is of the form (AB)xe , where e is the identity of A.
This is in turn easily seen to be isomorphic to AR where R is the
countable atomless Boolean ring without identity. (For Boolean powers
over Boolean rings see [2, 15].) Theorem 1.1(2) in this case gives that
the kernel of the homomorphism from F to the free group of countable
rank in W is isomorphic to (AB)xe . This observation was made in [4, p.
367-8] and [5, p. 201]. As a consequence of Theorem 1.1(2), for groups
and loops and rings we obtain the stronger result that every countable
algebra C in V is a split extension of a Boolean power of A by an
algebra in W (Corollary 4.1).

We also provide an illustration of Theorem 1.1 for a specific algebra
with more than one idempotent.

{exa:twoids}
Example 1.2. Let A := (Z2, x − y + z, ·) be the idempotent reduct
of the field of size 2. The only proper subalgebras of A are the trivial
ones {0} and {1}, and AutA is trivial as well. It turns out that the
variety V generated by A is the class of (isomorphic copies of) filtered
Boolean powers of A.

Every finite algebra in V is isomorphic to Ak for some integer k ≥ 0.
Let B be the countable atomless Boolean algebra. Then the Fräıssé
limit of {Ak : k ≥ 1} is isomorphic to the free algebra of countable
rank in V and to

(AB)x0,x10,1
∼= (AB)x00 × (AB)x11 .

We now investigate automorphism groups of filtered Boolean powers.
For a group G acting on a set X and Y ⊆ X , we use GY to denote the
pointwise stabilizer {g ∈ G : g(x) = x for all x ∈ Y } of Y . Similarly
for a set Z of subsets of X , we let GZ denote the setwise stabilizer
{g ∈ G : g(Y ) = Y for all Y ∈ Z} of all sets in Z.

It is well-known that for any countably infinite first order struc-
ture M , the group of automorphisms G := AutM affords a natural
topology of pointwise convergence with basic open sets the cosets of
pointwise stabilizers GY of finite subsets Y of M . This makes G a
topological (in fact, Polish) group.
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The group G has the small index property (SIP) if any subgroup of
index less than 2ℵ0 is open, that is, contains the pointwise stabilizer of
some finite subset of M .

Note that if AutM has the SIP, then its topological structure is
completely determined by its abstract algebraic structure. Specifically,
if N is another countable structure and AutM ∼= AutN as groups,
then in fact AutM and AutN are isomorphic as topological groups [21,
Proposition 5.2.2]. In particular AutM has a unique Polish topology.

The cofinality of a group G is the smallest cardinality κ such that G
is the union of a chain of length κ of proper subgroups.

The strong cofinality of G is the smallest cardinality κ such that G
is the union of a chain (Ui)i<κ of proper subsets of G such that for all
i < j we have Ui ⊆ Uj, Ui = U−1

i and UiUi ⊆ Uk for some k ∈ κ.
The group G has the Bergman property if for each subset E of G

such that 1 ∈ E = E−1 and E generates G there exists k ∈ N such
that Ek = G.

Finally G has ample generics if for any k ∈ N the diagonal conjugacy
action of G on Gk has a comeager orbit, that is, an orbit containing
the intersection of countably many dense open subsets of Gk.

These properties are related as follows. A group G has uncountable
strong cofinality if and only if G has uncountable cofinality and the
Bergman property (cf. [9, Theorem 2.2]). The existence of ample gener-
ics implies SIP as shown by Hodges, Hodkinson, Lascar and Shelah [17].
Further, if M is ω-categorical and AutM has ample generics, then
AutM has uncountable strong cofinality by Kechris and Rosendal [18].

The automorphism group G of the countable atomless Boolean al-
gebra was among the first for which these properties were established.
Truss [26] showed that it has SIP. Droste and Göbel [8] proved un-
countable strong cofinality. Later Kwiatkowska [19] subsumed these
results by showing that G actually has ample generics.

As our second main result we show that SIP and uncountable strong
cofinality carry over from the countable atomless Boolean algebra B to
filtered Boolean powers of a finite simple non-abelian Mal’cev algebra
by B:

{thm:SIP}
Theorem 1.3. Let A be a finite simple non-abelian Mal’cev algebra,
let e1, . . . , en be the idempotents of A, let B be the countable atomless
Boolean algebra, let X be its Stone space, and let x1, . . . , xn ∈ X be
distinct. Then{it:omegacat}

(1) (AB)x1,...,xne1,...,en is ω-categorical;{it:SIP}
(2) Aut(AB)x1,...,xne1,...,en

has the SIP;{it:Bergman}
(3) Aut(AB)x1,...,xne1,...,en

has uncountable strong cofinality, in particular,
strong cofinality and the Bergman property.

Theorem 1.3(1) will follow from results of Macintyre and Rosen-
stein [20] in Section 2.5. We will prove items (2),(3) of Theorem 1.3 in
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Sections 5, 6 following the strategies for the countable atomless Boolean
algebra by Truss [26] and Droste and Göbel [8], respectively. It remains
open whether Aut(AB)x1,...,xne1,...,en

has ample generics. In particular, it is
unclear whether Kwiatkowska’s approach for the countable atomless
Boolean algebra from [19] can be extended to filtered Boolean powers.

Throughout the paper N stands for the set of natural numbers {1, 2, . . . }.
For n ∈ N we write [n] := {1, . . . , n}.

2. Filtered Boolean powers
{sec:Booleanpowers}

We collect the structural information on filtered Boolean powers and
their automorphism groups that we need for proving our main results.
Throughout this section we use the following notation unless specified
otherwise:

• A is a finite simple non-abelian Mal’cev algebra;
• n ∈ N ∪ {0};
• e1, . . . , en are idempotents of A; they do not need to be distinct
or to include all the idempotents;

• B is a Boolean algebra with Stone space X ; the latter will be
considered to consist of ultrafilters on B;

• x1, . . . , xn are pairwise distinct points in X , and X◦ := X \
{x1, . . . , xn} is equipped with the subspace topology from X .

2.1. Filtered Boolean powers represented on arbitrary sets.

Filtered Boolean powers can be defined using an arbitrary representa-
tion of a Boolean algebra as field of sets, not only via its Stone space.

{lem:fBp}
Lemma 2.1. Let B be a subalgebra of the Boolean algebra of subsets
of a set Y and let X be the Stone space of B.

{it:y’}
(1) For y ∈ Y , y′ := {b ∈ B : y ∈ b} is an ultrafilter on B.{it:fBp}
(2) Let A be a finite algebra with idempotents e1, . . . , en, and let

y1, . . . , yn ∈ Y be distinct. Then the set

Dy1,...,yn
e1,...,en

:=

{f ∈ AY : f−1(a) ∈ B for a ∈ A, f(yi) = ei for i ∈ [n]}

is the universe of a subalgebra Dy1,...,yn
e1,...,en

of AY isomorphic to the

filtered Boolean power (AB)
y′1,...,y

′
n

e1,...,en .

Proof. (1) is clear.
(2) For b ∈ B, let b∗∗ := {x ∈ X : b ∈ x}. Let B∗∗ := {c ⊆ X :

c clopen}. By Stone’s Representation Theorem

ϕ : B → B∗∗, b 7→ b∗∗,

is an isomorphism. Now

D := {f ∈ AY : f−1(a) ∈ B for all a ∈ A}
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is the universe of a subalgebra D of AY . For f ∈ D define f ′ : X → A
by

(f ′)−1(a) = (f−1(a))∗∗ for all a ∈ A.

Equivalently, if Y = b1 ⊔ · · · ⊔ bk (disjoint union) and f(bj) = {aj} for
bj ∈ B, j ∈ [k], then X = b∗∗1 ⊔ · · · ⊔ b∗∗k and f ′(b∗∗j ) = {aj} for j ∈ [k].
Then

ϕ′ : D → AB, f 7→ f ′,

is an isomorphism. We claim that ϕ′ restricts to the required isomor-

phism between Dy1,...,yn
e1,...,en and (AB)

y′1,...,y
′
n

e1,...,en . To see that the domain and
codomain are correct, note that for f ∈ D and i ∈ [n],

f(yi) = ei ⇔ yi ∈ f−1(ei) ⇔ f−1(ei) ∈ y′i

⇔ y′i ∈ (f−1(ei))
∗∗ = (f ′)−1(ei) ⇔ f ′(y′i) = ei.

Hence

ϕ′(Dy1,...,yn
e1,...,en ) = (AB)y

′
1,...,y

′
n

e1,...,en ,

completing the proof. �

2.2. Congruences. Our description of congruences of filtered Boolean
powers extends those of Boolean powers of simple algebras by Burris [6,
Theorem 3.5, Corollary 3.6].

For D := (AB)x1,...,xne1,...,en and Y ⊆ X let

θY := {(f, g) ∈ D2 : f |Y = g|Y }

denote the kernel of the projection of D to Y .

Lemma 2.2. [6, cf. Theorem 3.5] Let D := (AB)x1,...,xne1,...,en
.{lem:con}{it:principal}

(1) The principal congruence θ of D generated by (f, g) ∈ D2 is the
kernel of the projection of D onto the clopen set

b := {x ∈ X : f(x) = g(x)}.
{it:con}

(2) Every congruence θ of D is the kernel of the projection of D
onto

Y :=
⋂

(f,g)∈θ

{x ∈ X : f(x) = g(x)}.

Proof. (1) Note that every finite subalgebra of D is contained in a
filtered Boolean power D∩AC for some finite subalgebra C of B. Here
we view C as a finite set of clopens on X and AC as the subalgebra of
AB with the universe

AC = {h : X → A : h−1(a) ∈ C for all a ∈ A}.

Now suppose that the subalgebra C is such that f, g ∈ AC. For all
x ∈ b the projection of θ ∩ (D ∩ AC)2 onto x is equality on A; else if
f(x) 6= g(x), the projection of θ ∩ (D ∩ AC)2 onto x yields the total
congruence on A, as A is simple. It is folklore that every congruence of
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a finite direct power of a simple non-abelian Mal’cev algebra is a prod-
uct congruence (cf. [13, Lemma 9.69, Corollary 9.66]). In particular
each congruence of the finite algebra D ∩AC is a product congruence
and uniquely determined by its projections onto the points x ∈ X . It
follows that

θ ∩ (D ∩AC)2 = {(u, v) ∈ (D ∩ AC)2 : u|b = v|b}.

Hence the restrictions of θ and θb onto any finite D∩AC containing f
and g coincide. This proves (1).

(2) The inclusion θ ⊆ θY is clear. For the converse let (f ′, g′) ∈ θY .
Then b′ := {x ∈ X : f ′(x) = g′(x)} contains Y . By the definition
of Y we have (f, g) ∈ θ with b := {x ∈ X : f(x) = g(x)} such that
Y ⊆ b ⊆ b′. So (f ′, g′) ∈ θb by construction and θb ≤ θ by (1). Thus
θY ⊆ θ and (2) is proved. �

For a subset Y of X , the quotient (AB)x1,...,xne1,...,en
/θY is isomorphic to

the restriction of (AB)x1,...,xne1,...,en to Y . The latter is again isomorphic to a
filtered Boolean power by Lemma 2.1. Thus every homomorphic image
of a filtered Boolean power is a filtered Boolean power again.

Lemma 2.2 actually yields a bijection between the congruences θ of
the filtered Boolean power (AB)x1,...,xne1,...,en and the filters

⋂
Y contained in

⋂n
i=1 xi on the Boolean algebra B.

{sec:autos}
2.3. Automorphisms. In this subsection we give a detailed analysis
of the automorphisms of D := (AB)x1,...,xne1,...,en , in terms of automorphisms
of A and of B. With some additional mild assumptions regarding
e1, . . . , en we obtain a semidirect decomposition of AutD, and describe
the kernel as the closure of a filtered Boolean power of AutA by B.
Our results generalize those for Boolean powers of groups by Boolean
rings by Apps [2, Theorem C].

Automorphisms of B act naturally on the ultrafilters of B, i.e. the
points in the Stone space X of B. For a topological space X , let
HomeoX denote the group of all homeomorphism ofX . For x1, . . . , xn ∈
X , let

(HomeoX){x1,...,xn} := {ψ ∈ HomeoX : ψ(xi) = xi for all i ≤ n}.

For ψ ∈ (HomeoX){x1,...,xn} define

ψD : D → D, f 7→ fψ−1.

Equivalently [ψD(f)]−1(a) = ψf−1(a) for all f ∈ D, a ∈ A. It is easy
to check that ψD is an automorphism of D, and that

(2.1) g : (HomeoX){x1,...,xn} → AutD, ψ 7→ ψD,

is a group homomorphism (injective if e1, . . . , en are pairwise distinct).
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In the following lemma we show that, conversely, automorphisms
of D induce homeomorphisms on X◦, using the fact that every auto-
morphism of D induces an automorphism on the congruence lattice
of D.

{lem:hphi}

Lemma 2.3. For x ∈ X, let πx : (A
B)x1,...,xne1,...,en → A, f 7→ f(x), be

the projection at x, and let θx := ker πx be its kernel. For any ϕ ∈
Aut(AB)x1,...,xne1,...,en

the following hold:
{it:phicirc1}

(1) ϕ◦ : X◦ → X◦ defined by

ϕ(θx) = θϕ◦(x)

is a homeomorphism.{it:phix}
(2) ϕx := πϕ◦(x)ϕπ

−1
x is an automorphism of A for all x ∈ X◦.{it:phicirc2}

(3) For any convergent net (yi)i∈I in X◦ with limit xk for k ∈ [n],
all cluster points of (ϕ◦(yi))i∈I are in {xℓ : ℓ ∈ [n], eℓ ∈
(AutA)(ek)}.

Proof. Let D := (AB)x1,...,xne1,...,en
.

(1) To see that ϕ◦ is well-defined, let x ∈ X◦. Since A is simple,
θx is a maximal congruence of D, which ϕ maps to another maximal
congruence

ϕ(θx) = {(ϕ(f), ϕ(g)) ∈ D2 : f(x) = g(x)}.

By Lemma 2.2 we have a unique point ϕ◦(x) in X◦ such that ϕ(θx) =
θϕ◦(x) as required.

Next note that ϕ◦ is bijective with inverse (ϕ−1)◦ since by definition

θx = ϕ−1(θϕ◦(x)).

For continuity, it suffices to show that ϕ◦ maps any clopen subset b of
X that is contained in X◦ to such a clopen subset again. Let f, g ∈ D
be such that

{x ∈ X : f(x) = g(x)} = X \ b.

By Lemma 2.2(1) the congruence of D generated by (f, g) is the kernel
of the projection to X \ b. It follows that the congruence generated by
(ϕ(f), ϕ(g)) is the kernel of the projection to the clopen

{x ∈ X : ϕ(f)(x) = ϕ(g)(x)} = X \ ϕ◦(b).

Hence ϕ◦(b) is clopen in X and disjoint from {x1, . . . , xn}.
(2) Let x ∈ X◦. To see that ϕx is well-defined, let f, g ∈ D with

f(x) = g(x), that is, (f, g) ∈ θx. Then (ϕ(f), ϕ(g)) is in ϕ(θx) = θϕ◦(x).
Hence

ϕx(f(x)) = πϕ◦(x)(ϕ(f)) = πϕ◦(x)(ϕ(g)) = ϕx(g(x))

and ϕx is well-defined.
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To check that ϕx is a homomorphism onA, let t be a k-ary operation
in the signature of A and let f1, . . . , fk ∈ D. Then

ϕx(t
A(f1(x), . . . , fk(x))) = πϕ◦(x)ϕπ

−1
x (tA(f1(x), . . . , fk(x))

= πϕ◦(x)ϕ(t
D(f1, . . . , fk))

= tA(πϕ◦(x)ϕ(f1), . . . , πϕ◦(x)ϕ(fk))

= tA(πϕ◦(x)ϕπ
−1
x (f1(x)), . . . , πϕ◦(x)ϕπ

−1
x (fk(x)))

= tA(ϕx(f1(x)), . . . , ϕx(fk(x))).

Finally for the bijectivity of ϕx, recall that (ϕ
−1)◦ = (ϕ◦)−1. Hence

(ϕ−1)ϕ◦(x) = πxϕ
−1π−1

ϕ◦(x)

is the inverse of ϕx. Thus (2) is proved.
(3) By (1) the mapping (ϕ−1)◦ is continuous on X◦. It follows that

all cluster points of (ϕ◦(yi))i∈I are in {x1, . . . , xn}.
Next from the definition of ϕx we see that

ϕyi(f(yi)) = ϕ(f)(ϕ◦(yi)) for all f ∈ D, i ∈ I.

Since lim yi = xk, we have

∀f ∈ D ∃j ∈ I ∀i ≥ j : yi ∈ f−1(ek).

Note that yi ∈ f−1(ek) implies ϕyi(f(yi)) ∈ (AutA)(ek) and hence

∀f ∈ D ∃j ∈ I ∀i ≥ j : ϕ(f)(ϕ◦(yi)) ∈ (AutA)(ek).

Since ϕ is an automorphism of D, this can be written as

∀g ∈ D ∃j ∈ I ∀i ≥ j : g(ϕ◦(yi)) ∈ (AutA)(ek).

It follows that if xℓ is a cluster point of (ϕ◦(yi))i∈I , then g(xℓ) = eℓ is
in (AutA)(ek). �

In general ϕ◦ from the previous lemma does not have a continuous
extension on X as shown in the following.

Example 2.4. Let A be a finite non-abelian simple Mal’cev algebra
with an idempotent e, let B be the countable atomless Boolean algebra,
let X be its Stone space, and let x0, x1 ∈ X be distinct. We will con-
struct an automorphism ϕ of the Boolean power D := (AB)x0,x1e,e such
that the homeomorphism ϕ◦ of X◦ cannot be extended to a homeo-
morphism of X .

To this end, we identify X with 2ω, the set of all infinite binary
sequences. Let x0 := 00 . . . and x1 := 11 . . . . Consider the following
clopen sets in X :

bi := {σ ∈ X : σ1 = i} for i ∈ {0, 1},

bij := {σ ∈ X : σl = i for l ∈ [j], σj+1 = 1− i} for i ∈ {0, 1}, j ≥ 1.
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Note that

(
⋃

j≥1

bij) ∪ {xi} = bi for i ∈ {0, 1}.

Define ψ : X◦ → X◦ by

ψ : (i, . . . , i
︸ ︷︷ ︸

j

, 1− i, σj+2, σj+3, . . . )

7→







(i, . . . , i
︸ ︷︷ ︸

j

, 1− i, σj+2, σj+3, . . . ) if j is odd,

(1− i, . . . , 1− i
︸ ︷︷ ︸

j

, i, σj+2, σj+3, . . . ) if j is even.

In particular,

ψ(bij) =

{

bij if j is odd,

b1−i,j if j is even.

It is clear that ψ is indeed a homeomorphism of X◦. But ψ cannot be
extended to a homeomorphism ofX . Indeed, if Ui is any neighbourhood
of xi for i ∈ {0, 1}, then ψ(U0) has a non-empty intersection with each
of U1 and U2.

Now define ϕ : D → D by

(ϕ(f))(x) :=

{

fψ−1(x) if x ∈ X◦,

e if x ∈ {x0, x1}.

To verify that ϕ is well-defined, we show that ϕ(f) is continuous on X .
It is certainly continuous on X◦ as a composition of two continuous
maps. We now claim that ϕ(f) is also continuous at xi for i ∈ {0, 1}.
Since f ∈ D, the set c := f−1(e) is clopen in X and contains x0, x1.
Therefore there exists k ∈ N such that d :=

⋃

j≥k(b0j ∪ b1j) ⊆ c. Since

ψ(d) = d, it follows that d ⊆ (ϕ(f))−1(e). Hence

(ϕ(f))−1(e) = {x0, x1} ∪ d ∪
1⋃

i=0

k−1⋃

j=1

(bij ∩ (ϕ(f))−1(e)).

Note that

{x0, x1} ∪ d = X \ (
1⋃

i=0

k−1⋃

j=1

bij)

is clopen. Also each

bij ∩ (ϕ(f))−1(e) =

{

bij ∩ f
−1(e) if j is odd,

ψ(b1−i,j ∩ f
−1(e)) if j is even

is clopen. Therefore (ϕ(f))−1(e) is clopen and so ϕ(f) ∈ D as required.
It is now straightforward to show that ϕ is bijective and also that it is a
homomorphism because of the componentwise definition of operations
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in D. Finally we have ϕ◦ = ψ, a homeomorphism of X◦ that cannot
be extended to a homeomorphism of X .

In contrast to the previous example we show in the following theorem
that ϕ◦ can be extended to X for automorphisms ϕ of (AB)x1,...,xne1,...,en

if
e1, . . . , en are in distinct orbits under AutA. Under this condition we
can even give a semidirect decomposition of the automorphism group of
(AB)x1,...,xne1,...,en

and identify the kernel as the closure in AutD of a filtered
Boolean power of AutA.

{thm:AutABxe}
Theorem 2.5. Let A be a finite simple Mal’cev algebra with idem-
potents e1, . . . , en in distinct AutA-orbits, let B be a Boolean algebra
with Stone space X, and let x1, . . . , xn ∈ X be distinct. For ϕ ∈

Aut(AB)x1,...,xne1,...,en and x ∈ X, define ϕ(x) :=

{

x if x ∈ {x1, . . . , xn},

ϕ◦(x) else.
{it:AAB1}

(1) The mapping

h : Aut(AB)x1,...,xne1,...,en
→ (HomeoX){x1,...,xn}, ϕ 7→ ϕ,

is a group epimorphism and

Aut(AB)x1,...,xne1,...,en
∼= ker h⋊ (HomeoX){x1,...,xn}.

{it:AAB2}
(2) Let K be the set of all continuous maps ψ : X◦ → AutA such

that ψ−1((AutA)ei) ∪ {xi} is open in X for each i ∈ [n]. Then
ker h ∼= K via

p : ϕ 7→ [ϕ∗ : X
◦ → AutA, x 7→ ϕx].

Proof. (1) By Lemma 2.3(1) ϕ is a homeomorphism on X◦. Let (yi)i∈I
be a convergent net in X◦ with limit xk for k ∈ [n]. Then xk is the
unique cluster point (i.e. the limit) of (ϕ◦(yi))i∈I by Lemma 2.3(3) and
the assumption that e1, . . . , en are in distinct AutA-orbits. Hence ϕ is
continuous on X . Further ϕ ∈ (HomeoX){x1,...,xn}.

That h is a group homomorphism is straightforward. That h is
surjective and that ker h has a complement follows from the claim

(2.2) hg is the identity on (HomeoX){x1,...,xn},

with g defined in (2.1). To see this let D := (AB)x1,...,xne1,...,en
and let ψ ∈

(HomeoX){x1,...,xn}. Then hg(ψ) = ψD. Clearly ψD(xi) = xi for all
i ∈ [n]. Else for x ∈ X◦ we note that

θ
ψD(x)

= ψD(θx)

= ψD({(f, g) ∈ D2 : f(x) = g(x)})

= {(fψ−1, gψ−1) ∈ D2 : f(x) = g(x)}

= {(f ′, g′) ∈ D2 : f ′ψ(x) = g′ψ(x)}

= θψ(x).

Thus ψD = ψ and (2.2) is proved.
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(2) First we show that p maps ker h into K. Let ϕ ∈ ker h, i.e.
ϕ ∈ AutD with ϕ◦ = idX◦ . We claim that ϕ∗ : X

◦ → AutA, x 7→ ϕx,
is continuous. Note that for each clopen b in X that is contained in
X◦ and each a ∈ A, we have some fa,b ∈ D such that fa,b(b) = a. Let
α ∈ AutA. For x ∈ b we have ϕx = α if and only if for all a ∈ A

α(a) = ϕx(a) = πxϕπ
−1
x (a) = πxϕ(fa,b).

Hence

b ∩ ϕ−1
∗ (α) =

⋂

a∈A

{x ∈ b : πxϕ(fa,b) = α(a)}.

Since ϕ(fa,b) : X → A is continuous and b clopen, every set {x ∈ b :
πxϕ(fa,b) = α(a)} on the right hand side is clopen. Thus their inter-
section b ∩ ϕ−1

∗ (α) is clopen in X as well. As a union of open sets

ϕ−1
∗ (α) =

⋃

{b ∩ ϕ−1
∗ (α) : b clopen in X, b ⊆ X◦}

is open for every α ∈ AutA. (Since X◦ =
⋃

α∈AutA ϕ
−1
∗ (α) is a fi-

nite union, each ϕ−1
∗ (α) for α ∈ AutA is actually clopen in X◦.) So

ϕ∗ : X
◦ → AutA is continuous.

Next we show that ϕ−1
∗ ((AutA)ei) ∪ {xi} is also open in X for all

i ∈ [n]. Note that for each clopen b in X such that b∩{x1, . . . , xn} = xi
we have some fb ∈ D such that fb(b) = ei. For x ∈ b \ {xi} we have
ϕx ∈ (AutA)ei if and only if πxϕ(fb) = ei. Hence

[ϕ−1
∗ ((AutA)ei) ∪ {xi}] ∩ b = {x ∈ b : πxϕ(fb) = ei}

is clopen in X . As a union of open sets

ϕ−1
∗ ((AutA)ei) ∪ {xi} =
⋃

{[ϕ−1
∗ ((AutA)ei) ∪ {xi}] ∩ b : b clopen in X, b ∩ {x1, . . . , xk} = {xi}}

is open inX for each i ∈ [n]. This completes the proof that p(ker h) ⊆ K.
That p is a group homomorphism follows from

ϕxψx = πxϕπ
−1
x πxψπ

−1
x = (ϕψ)x

for all ϕ, ψ ∈ ker h and x ∈ X◦.
To see that p is injective consider any ϕ ∈ ker p. This means that

ϕ◦ = idX and ϕx = idA for all x ∈ X◦. Now, for all f ∈ D, x ∈ X◦, we
have

f(x) = ϕx(f(x)) = πxϕπ
−1
x (f(x)) = πxϕ(f) = ϕ(f)(x).

Hence ϕ = idD.
Finally, we verify that p is surjective. Let ψ ∈ K. Define

ψ′ : D → D, f 7→

[

X → A, x 7→

{

[ψ(x)](f(x)) if x ∈ X◦,

f(x) else.

]
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Let f ∈ D. Then clearly [ψ′(f)](xi) = f(xi) = ei for all i ∈ [n]. To
show that ψ′(f) is continuous, let a ∈ A and consider

X◦ ∩ [ψ′(f)]−1(a) =
⋃

α∈AutA

{x ∈ X◦ : ψ(x) = α, f(x) = α−1(a)}.

Since ψ and f are continuous on X◦ and X , respectively, and X◦ is
open in X , we obtain that

(2.3) X◦ ∩ [ψ′(f)]−1(a) is open in X for all a ∈ A.

In particular, if a 6∈ {e1, . . . , en}, then [ψ′(f)]−1(a) = X◦ ∩ [ψ′(f)]−1(a)
is open in X .

On the other hand, for i ∈ [n], the set b := f−1(ei) is open in X and
contains xi. By assumption c := ψ−1((AutA)ei)∪ {xi} is open in X as
well. Hence b∩ c is open and contains xi. Since ψ

′(f)(b∩ c) = {ei}, we
obtain with (2.3) that

[ψ′(f)]−1(ei) = [X◦ ∩ [ψ′(f)]−1(ei)] ∪ [b ∩ c]

is open in X . Thus ψ′(f) is continuous and consequently in D.
From the pointwise definition of ψ′ it is straightforward that ψ′ is an

automorphism ofD, ψ′ ∈ ker h and p(ψ′) = ψ. Thus p is surjective. �

2.4. Isomorphisms. In this subsection we discuss isomorphisms be-
tween filtered Boolean powers, in the case where B is the countable
atomless Boolean algebra. The aim is to show that one can add or
remove filtering idempotents which belong to the orbits of the remain-
ing ones under AutA without changing the isomorphism type of the
power.

For b ⊆ X let (AB)x1,...,xne1,...,en
|b denote the restriction of the functions in

(AB)x1,...,xne1,...,en
to b. We characterize when such restrictions are isomor-

phic.
{lem:isorestriction}

Lemma 2.6. Let b1, b2 be disjoint clopen subsets of the Stone space X
such that bi ∩ {x1, . . . , xn} = {xi} for i = 1, 2. Then the following are
equivalent:{it:iso1}

(1) (AB)x1,...,xne1,...,en
|b1

∼= (AB)x1,...,xne1,...,en
|b2;{it:iso2}

(2) ϕ◦(b1 \ {x1}) = b2 \ {x2} for some ϕ ∈ Aut(AB)x1,...,xne1,...,en
;{it:iso3}

(3) There exist α ∈ AutA such that α(e1) = e2 and a homeomor-
phism ψ : b1 → b2 such that ψ(x1) = x2.

Proof. Let D := (AB)x1,...,xne1,...,en
.

(1)⇒(2): For ψ : D|b1 → D|b2 an isomorphism, note that

ϕ := ψ ∪ ψ−1 ∪ idD|X\(b1∪b2)

is an automorphism of D with the required properties.
(2)⇒(3): We claim that the mapping

ψ : b1 → b2, x 7→

{

ϕ◦(x) if x 6= x1,

x2 if x = x1,
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is a homeomorphism. It is clearly a bijection and is continuous on
b1 \ {x1} by Lemma 2.3(1). To show that ψ is continuous on x1, let
(yi)i∈I be a net in b1 \ {x1} with limit x1. Then (ϕ◦(yi))i∈I is a net in
b2 \ {x2}. By Lemma 2.3(3) all its cluster points are in {x1, . . . , xn}.
Note that X \ b2 is a neighborhood of {x1, x3, . . . , xn} that contains
no points of ϕ◦(yi). Hence x2 remains as the unique cluster point
of that net, hence its limit point. This completes the proof that ψ
is a homeomorphism. Furthermore, by Lemma 2.3(3), we also have
e2 = α(e1) for some α ∈ AutA.

(3)⇒(1): Note that ϕ : D|b1 → D|b2, f 7→ αfψ−1, is the required
isomorphism. �

As a stepping stone towards the main result of this section, the fol-
lowing lemma establishes one important special case when the number
of filter points in a filtered Boolean power can be reduced.

{lem:isoproduct}
Lemma 2.7. Let A be an algebra with idempotent e, let B be the
countable atomless Boolean algebra, let X be the Stone space of B, and
let x0 ∈ X.

Then (AB)x0e × (AB)x0e
∼= (AB)x0e .

Proof. Let X1, X2 be two disjoint copies of the Cantor space X and fix
xi ∈ Xi, i ∈ [2]. We will represent the two copies of (AB)x0e as

Di := {f : Xi → A : f is continuous and f(xi) = e} for i ∈ [2].

Consider now the space X1 ∪X2 with the union topology; it is homeo-
morphic to X . Let ∼ be the equivalence relation on X1 ∪X2 with the
equivalence classes {x1, x2} and {x} for x ∈ (X1 ∪X2) \ {x1, x2}. The
quotient space (X1∪X2)/∼ is again homeomorphic to X . This is easy
to show directly by verifying that it is Hausdorff, compact, has no iso-
lated points and has a countable basis of clopen sets. Alternatively, one
can note that ∼ is a Boolean equivalence in the sense of [23], and that
the resulting quotient (X1∪X2)/∼ has a countable basis of clopen sets
and no isolated points. Henceforth we will identifyX with (X1∪X2)/∼.
We will take its points to be (X1 \ {x1})∪ (X2 \ {x2})∪{x12} and note
that there are two types of open sets:

• U1 ∪ U2 where Ui is open in Xi and xi 6∈ Ui for i ∈ [2];
• (U1 \ {x1} ∪ (U2 \ {x2}) ∪ {x12} where Ui is open in Xi and
xi ∈ Ui for i ∈ [2].

Let
D := {f : X → X : f is continuous and f(x12) = e}

be yet another copy of (AB)x0e . We will prove the lemma by showing
that ψ : D1 ×D2 → D defined by

ψ(f1, f2)(x) :=







f1(x) if x ∈ X1 \ {x1},

f2(x) if x ∈ X2 \ {x2},

e if x = x12,



16 PETER MAYR AND NIK RUŠKUC

is an isomorphism.
We prove that ψ is well-defined, i.e. that ψ(f1, f2) ∈ D for all fi ∈ Di,

i ∈ [n]. Let a ∈ A. If a 6= e, then

(ψ(f1, f2))
−1(a) = f−1

1 (a) ∪ f−1
2 (a),

where each f−1
i (a) is a clopen inXi not containing xi. Hence (ψ(f1, f2))

−1(a)
is clopen in X . Similarly, for a = e we have

(ψ(f1, f2))
−1(a) = (f−1

1 (e) \ {x1}) ∪ (f−1
2 (e) \ {x2}) ∪ {x12},

again a clopen in X . Hence indeed ψ(f1, f2) ∈ D. It is clear from the
definition that ψ is bijective. It is a homomorphism by the componen-
twise definition of operations in D1, D2 and D. �

From Lemmas 2.6 and 2.7 it follows that any filtered Boolean power
of A by the countable atomless Boolean B is isomorphic to (AB)x1,...,xne1,...,en

with e1, . . . , en in distinct orbits under AutA.
{cor:isoreduced}

Corollary 2.8. Let A be a finite simple non-abelian Mal’cev algebra,
n ≤ m and let e1, . . . , en be orbit representatives of idempotent elements
e1, . . . , em in A under AutA. Let B be the countable atomless Boolean
algebra, let X be the Stone space of B, and let x1, . . . , xm ∈ X be
distinct.

Then (AB)x1,...,xme1,...,em
is isomorphic to (AB)x1,...,xne1,...,en

.

Proof. By partitioning X into disjoint clopens b1, . . . , bm with xi ∈ bi,
and recalling that all bi are homeomorphic to the Cantor space X , we
obtain

(AB)x1,...,xme1,...,em
∼=

m∏

i=1

(AB)x0ei .

Now we can use Lemmas 2.6 and 2.7 to eliminate the factors (AB)x0ei
for i > n, leaving us with

(AB)x1,...,xme1,...,em
∼=

n∏

i=1

(AB)x0ei
∼= (AB)x1,...,xne1,...,en

,

as required. �
{sec:omegacat}

2.5. ω-categoricity.

Proof of Theorem 1.3(1). We apply a description of ω-categorical fil-
tered Boolean powers due to Macintyre and Rosenstein [20]. They use
Stone spaces of maximal ideals instead of ultrafilters. So we change
to that dual perspective in the following. Note that x′i := B \ xi is a
maximal ideal of B for i ∈ [n]. The Heyting algebra H0 of ideals of B
generated by x′1, . . . , x

′
n, 0, B has universe {x′i1∧· · ·∧x

′
ik

: k, i1, . . . , ik ∈
[n]} ∪ {0} since (x′1 ∧ · · · ∧ x′n) → 0 = 0. In particular H0 is finite and
B/J has finitely many atoms for any ideal J inH0. Now the augmented
Boolean algebra (B, x′1, . . . , x

′
n) is a first order structure with operations

from the Boolean algebra and unary relations that are ideals x′1, . . . , x
′
n
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(see [20, p. 137]). Then (B, x′1, . . . , x
′
n) is ω-categorical by [20, Theo-

rem 7]. Hence (AB)x1,...,xne1,...,en
is ω-categorical by [20, Theorem 5]. �

3. The Fräıssé limit
{sec:Flim}

We apply standard model theoretic arguments to show that the (gen-
eralized) Fräıssé limit of {Ak : k ≥ 1} exists and is isomorphic to a
filtered Boolean power.

Proof of Theorem 1.1(1). Let A be a finite simple non-abelian Mal’cev
algebra. We prove that the Fräıssé limit of the family K := {Ak :
k ≥ 1} exists by using a modification of Fräıssé’s Theorem [16, Theorem
7.1.2] given in [16, Exercise 7.1.11]. For this we need to check that all
Ak are finitely generated, and that K has JEP and AP. The first two
statements are clear.

To see thatK has AP, consider u, v, w ∈ N and embeddings ϕ : Au →
Av, ψ : Au → Aw. Since A is simple, we can identify the endomor-
phisms of A that are not automorphisms with the set of idempotents
E := {e1, . . . , en} of A. From the Foster–Pixley Theorem [7, Corollary
IV 10.2] it follows that for every i ∈ [v] there exist αi ∈ AutA∪E and
ji ∈ [u] such that

ϕ(a1, . . . , au) = (α1(aj1), . . . , αv(ajv)) for all a1, . . . , au ∈ A.

Further {ji : αi ∈ AutA} = [u] since ϕ is an embedding. By permuting
the copies of A and renaming their elements we may assume that

ϕ(a1, . . . , au) = (a1, . . . , a1
︸ ︷︷ ︸

p1 times

, . . . , au, . . . , au
︸ ︷︷ ︸

pu times

, e1, . . . , e1
︸ ︷︷ ︸

q1 times

, . . . , en, . . . , en
︸ ︷︷ ︸

qn times

),

with multiplicities p1, . . . , pu ≥ 1, q1, . . . , qn ≥ 0. Analogously,

ψ(a1, . . . , au) = (a1, . . . , a1
︸ ︷︷ ︸

r1 times

, . . . , au, . . . , au
︸ ︷︷ ︸

ru times

, e1, . . . , e1
︸ ︷︷ ︸

s1 times

, . . . , en, . . . , en
︸ ︷︷ ︸

sn times

),

where r1, . . . , ru ≥ 1, s1, . . . , sn ≥ 0. Letting vi := max(pi, ri) for
i ∈ [u], wi := max(qi, si) for i ∈ [n] and m :=

∑u
i=1 vi +

∑n
i=1wi

it is now straightforward to define embeddings ϕ′ : Av → Am and
ψ′ : Aw → Am in the same form as ϕ and ψ above, taking the se-
quences of multiplicities to be the concatenations of:

(vi − pi + 1, 1, . . . , 1
︸ ︷︷ ︸

pi−1

) (i ∈ [u]) and (wi − qi + 1, 1, . . . , 1
︸ ︷︷ ︸

qi−1

) (i ∈ [n]) for ϕ′,

(vi − ri + 1, 1, . . . , 1
︸ ︷︷ ︸

ri−1

) (i ∈ [u]) and (wi − si + 1, 1, . . . , 1
︸ ︷︷ ︸

si−1

) (i ∈ [n]) for ψ′,

and to show that they satisfy ϕ′ϕ = ψ′ψ.
Since K has JEP and AP, by [16, Exercise 7.1.11] there exists a

unique (up to isomorphism) countable algebra C such that

(i) every finitely generated subalgebra of C embeds into some ele-
ment of K,
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(ii) C is a direct limit of algebras in K, and
(iii) every isomorphism between subalgebras of C that are isomor-

phic to some element in K extends to an automorphism of C
(i.e., C is K-homogenous).

Let B be the countable atomless Boolean algebra with Stone space,
and let x1, . . . , xn ∈ X be distinct. To see that the filtered Boolean
power D := (AB)x1,...,xne1,...,en

is isomorphic to the Fräıssé limit C it suffices
to show that D satisfies (i), (ii), (iii). Properties (i) and (ii) follow
from the fact that D is locally finite and that every finite subalgebra of
D is contained in a subalgebra isomorphic to some finite direct power
of A, as in the proof of Lemma 2.2. To prove (iii) we emulate [16,
Lemma 7.1.4], and show that D is weakly K-homogeneous, in the sense
that for any u ≤ v and any embeddings ϕ : Au → Av and ψ : Au → D

there exists an embedding ψ′ : Av → D such that ψ′ϕ = ψ. That the
weak K-homogeneity implies K-homogeneity is straightforward using
a standard back-and-forth argument as in [16, cf. Lemma 7.1.4].

To verify weak K-homogeneity, as above we may assume that

ϕ(a1, . . . , au) = (a1, . . . , a1
︸ ︷︷ ︸

p1 times

, . . . , au, . . . , au
︸ ︷︷ ︸

pu times

, e1, . . . , e1
︸ ︷︷ ︸

q1 times

, . . . , en, . . . , en
︸ ︷︷ ︸

qn times

)

with multiplicities p1, . . . , pu ≥ 1, q1, . . . , qn ≥ 0 for all a1, . . . , au ∈ A.
For ψ : Au → D there exist mi ∈ N (i ∈ [u]), automorphisms αij (i ∈
[u], j ∈ [mi]), and a partition of X into clopens cij (i ∈ [u], j ∈ [mi])
and bi (i ∈ [n]) such that

ψ(a1, . . . , au)(x) =

{

αij(ai) if x ∈ cij for i ∈ [u], j ∈ [mi],

ei if x ∈ bi for i ∈ [n].

Clearly we may assume that mi ≥ pi for all i ∈ [u]. Now define
an embedding ψ′ : Av → D as follows. Subdivide each bi into qi + 1
clopens bij (0 ≤ j ≤ qi) with xi ∈ bi0. Set

pij :=

{∑i−1
k=1 pk + j if i ∈ [u], j ∈ [pi],

∑i
k=1 pk if i ∈ [u], j ∈ [mi] \ [pi],

and

qij :=
∑u

k=1 pk +
∑i−1

k=1 qi + j if i ∈ [n], j ∈ [qi].

Then define

ψ′(a1, . . . , av)(x) =







αij(apij) if x ∈ cij for i ∈ [u], j ∈ [mi],

aqij if x ∈ bij for i ∈ [n], j ∈ [qi],

ei if x ∈ bi0 for i ∈ [n].

It is straightforward to verify that ψ′ is indeed an embedding and that
ψ′ϕ = ψ.
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This completes the proof of weak homogeneity of (AB)x1,...,xne1,...,en , and
hence of the theorem. �

4. The variety generated by a simple algebra
{sec:variety}

We investigate the countable free algebra in the variety V generated
by a finite simple non-abelian Mal’cev algebra A.

Proof of Theorem 1.1(2). First we build explicit representations of fi-
nite and countable free algebras in V . For i ∈ N let xi : A

N → A, a 7→
a(i). Then the universe of F := 〈xi : i ∈ N〉 ≤ AAN

forms the clone of
term operations on A (see [22, Section 4.1]). Hence F is free in V over
{xi : i ∈ N} (see [22, Section 4.11]). Note that AN with the product
topology is homeomorphic to the Cantor space. Since xi for i ∈ N are
continuous functions from AN to A, so are all the elements of F . Hence
F is contained in the Boolean power AB.

Consider the lexicographic ordering on AN, where A is linearly or-
dered in an arbitrary way. Let R be the transversal of AutA orbits on
AN consisting of lexicographically minimal elements. It is easy to see
that:

• For every k ∈ N the restriction R|[k] is a set of orbit represen-
tatives of Ak under AutA.

• The restriction F|R is isomorphic to F.

We will also need the following explicit description of the free algebra
Fk = 〈x1, . . . , xk〉 of rank k as a subalgebra of AB, as well as the de-
scriptions of the corresponding free algebras in the varietyW generated
by the proper subalgebras of A. Let

Sk := {a ∈ R : 〈a(1), . . . , a(k)〉 6= A}.

Then Fk|Sk
is free in W over the restrictions of x1, . . . , xk to Sk. For

p ∈ R|[k] let cp := {r ∈ R : r|[k] = p} be a basic clopen in R, and note
that every element of Fk is constant on every cp. So Fk|R\Sk

is a finite
subdirect power of A, hence isomorphic to a direct power of A by the
Foster–Pixley Theorem [7, Corollary IV.10,2]. Clearly Fk is a subdirect
product of its projections Fk|R\Sk

and Fk|Sk
. Since every quotient of

the former is isomorphic to a direct power of A again (cf. Lemma 2.2),
Fk|R\Sk

and Fk|Sk
have no non-trivial common homomorphic image.

So Fleischer’s Lemma [7, Lemma IV.10.1] yields that Fk is the direct
product of its projections to R \ Sk and Sk respectively. This in turn
implies

(4.1) Fk =

{

f ∈ AR :
f |Sk

∈ Fk|Sk
, f is constant on cp

for all p ∈ (R \ Sk)|[k]

}

.

For

S :=
⋂

k∈N

Sk = {a ∈ R : F |a 6= A}
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the restriction F|S is free in W over {xi|S : i ∈ N}. Note that
for every proper subalgebra A′ ≤ A there is a sequence a ∈ S such
that 〈a〉 = A′. It follows that F restricted to individual elements
of S gives the collection of all proper subalgebras of A, from which it
readily follows that the kernel of the restriction map to S is the smallest
congruence θ such that F/θ ∈ W .

So let e ∈ F such that e|S forms a trivial subalgebra of F|S. Then
e(S) = {e1, . . . , en} is a set of idempotents of A containing at least
one idempotent from each AutA-orbit. The sets sj := e−1(ej) ∩ S for
j ∈ [n] partition S. Also let

B := {b clopen in R : b ∩ sj ∈ {∅, sj} for all j ∈ [n]},

which is the universe of a Boolean algebra B.
We claim that B is the countable atomless Boolean algebra. To see

this consider an arbitrary basic clopen cp ∈ B where p ∈ R|[k]. Let
l > k and q ∈ R|[l] be such that p is a subsequence of q and 〈q〉 = A.
Then cq ∩ S = ∅, and hence cq ∈ B. Also cq ( cp, and so cp is not an
atom. Thus, B is atomless, and since it is clearly countable, the claim
follows.

We may view B as a subalgebra of the Boolean algebra of subsets of
Y := (R \ S) ∪ {s1, . . . , sn}. Hence

D := {f ∈ AR : f−1(a) ∈ B for a ∈ A, f(sj) = {ej} for j ∈ [n]}

forms a subalgebra of AR which is naturally isomorphic to (AB)
s′1,...,s

′
n

e1,...,en

by Lemma 2.1.
We claim that

(4.2) e/θ = D.

The inclusion ⊆ is immediate from the definitions and the fact that
every element in F |R is continuous.

For the converse, let f ∈ D. Let k ∈ N be large enough so that the
following hold:{it:fc}

• f is constant on the basic clopens cp for all p ∈ R|[k],{it:eFK}
• e ∈ Fk,
• f |Sk

= e|Sk
.

Then f ∈ Fk by (4.1). Hence (4.2) is proved.

Summing up, any subalgebra e/θ of F is isomorphic to (AB)
s′1,...,s

′
n

e1,...,en

by (4.2) and Lemma 2.1. Here B is a countable atomless Boolean
algebra, and the set of idempotents e1, . . . , en contains at least one
representative from each AutA-orbit. By Corollary 2.8 we may assume
that e1, . . . , en is the set of all idempotents of A. Thus Theorem 1.1(2)
is proved. �

For loops (in particular for groups) we can sharpen Theorem 1.1(2)
as follows. (We note that an equivalent result holds for rings with the
obvious notational changes by the same proof.)



FILTERED BOOLEAN POWERS OF SIMPLE ALGEBRAS 21

{cor:group}
Corollary 4.1. Let A be a finite simple non-abelian loop with iden-
tity e, let V be the variety generated by A, and let W be the variety
generated by all proper subloops of A.

{it:countable}
(1) The countable free loop F in V has a normal subloop N and a

subloop H such that:{it:kernel}
(a) N ∼= (AB)xe where B is the countable atomless Boolean

algebra and x is an ultrafilter on B,{it:complement}
(b) H is isomorphic to the countable free loop in W ,{it:semidirect}
(c) N ∩H = {e} and F = NH.{it:V}

(2) Every countable loop C in V is a split extension of a filtered
Boolean power (AB)xe for some Boolean algebra B by some loop
in W .

Proof. For (1) we reuse the explicit representation F = 〈xi : i ∈ N〉 ≤
AR from the proof of Theorem 1.1(2) above.

(1a) Again let S := {a ∈ R : F |a 6= A}. Then

N := {f ∈ F : f(S) = e}

is the kernel of the projection πS from F to F|S, with the latter iso-
morphic to the free loop in W over {πS(xi) : i ∈ N}. Further N is
isomorphic to (AB)xe by Theorem 1.1(2).

(1b) Let k ∈ N and Sk := {a ∈ R : 〈a(1), . . . , a(k)〉 6= A}. Consider
Fk := 〈x1, . . . , xk〉. As in the proof of Theorem 1.1(2) above, we have
Fk = Kk × Hk, where Kk := Fk|R\Sk

and Hk := Fk|Sk
. Further Kk

is isomorphic to a finite direct power of A, while Hk is isomorphic to
the free loop of rank k in W . The constant function ek : R \ Sk → {e}
forms the unique trivial subloop of Kk. So {ek} × Hk is a subloop of
Fk, which is isomorphic to Hk. In particular

yk : R → A, a 7→

{

ak if a ∈ Sk

e else,

is in Fk, hence in F .
Then

H := 〈yi : i ∈ N〉 ≤ F

and H ∈ W since H|a ∈ W for all a ∈ R. Moreover, since
⋂

i∈N Si = S,
it follows that H is isomorphic to F|S, which in turn is isomorphic to
the free loop in W over {yi : i ∈ N}.

(1c) Since yk ∈ H and xky
−1
k ∈ N , we have xk ∈ NH for all k ∈ N.

Thus F = NH .
For proving that N ∩H is trivial, let t(y1, . . . , yk) ∈ H for some term

t and k ∈ N such that t(y1, . . . , yk)|S is constant e. By the latter every
proper subalgebra of A satisfies the identity t ≈ e. Since H is in W ,
it follows that t(y1, . . . , yk) = e, the constant function with value e on
R. Thus N ∩H = {e}.
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For (2), let C ∈ V be isomorphic to F/K for the countable free loop
F in V with some normal K. Let N,H be as in (1). Then F/K is
a split extension of NK/K and HK/K. The former is isomorphic to
(AB/θ)xe for a congruence θ of B by Lemma 2.2. The latter is clearly
in W . �

5. Small index property
{sec:SIP}

5.1. SIP for the punctured Cantor space. The proof of Theo-
rem 1.3(2) requires the following generalization of Truss’ result that
the automorphism group of the countable atomless Boolean algebra
has SIP [26, Theorem 3.7].

{thm:Truss}
Theorem 5.1. Let n ∈ N∪{0}, let X be the Cantor space with distinct
points x1, . . . , xn ∈ X, and let G := (HomeoX){x1,...,xn}.

Then for every subgroup H ≤ G with |G : H| < 2ℵ0 there exists a
partition of X into clopen sets b1, . . . , bm such that G{b1,...,bm} ≤ H.

The proof makes up the rest of this subsection. It heavily relies on
the corresponding results from [26] concerning the Cantor space itself
(Theorem 3.7) and Q with a point removed (Theorem 2.7). We do not
reproduce the arguments that are essentially repetitions of those from
[26] but just point out the necessary adaptations. The arguments that
are new to our situation are proved in full.

For the rest of this section we use the notation and assumptions of
Theorem 5.1, assume n ≥ 1 and let X◦ := X \ {x1, . . . , xn}. Following
Truss [25, 26] we say that a subset b of X abuts an element x of X if
x 6∈ b and b ∪ {x} is closed in X .

{la:Xo3Tk3}{la:Xo4Tk3}
Lemma 5.2. Let (bi)i∈N be a sequence of pairwise disjoint clopen sub-
sets of X◦ that converges to x1 such that either (a) each bi is clopen
in X or (b) each bi abuts x1.

Then GX\bi ≤ H for some i ∈ N.

Proof. (a) This is identical to the argument in the first paragraph of
the proof of [26, Theorem 3.7]. Here we can use that GX\bi

∼= HomeoX
for all i ∈ N, which is simple by a result of Anderson [1].

(b) This follows [26, Lemma 2.5]. This time GX\bi
∼= (HomeoX)x1

for all i ∈ N, which is not simple. Instead, by [25, Theorem 3.13], the
latter has precisely one non-trivial proper normal subgroup

N := {g ∈ HomeoX : g fixes pointwise a neighborhood of x1}.

However, this normal subgroup has uncountable index in (HomeoX)x1 ,
which can be proved by following [26, p. 499, par. 3]. So as in [26,
Lemma 2.5] we can show that H ∩GX\bi = GX\bi for some i ∈ N. �

{la:Xo5Tk3}
Lemma 5.3. There exists a clopen set b of X such that b∩{x1, . . . , xn} =
{x1} and for every clopen set c ⊆ b of X not containing x1 we have
GX\c ≤ H.
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Proof. Suppose the statement is not true. Then we can inductively
define two sequences of clopen sets (bi)i∈N and (ci)i∈N of X as follows.
For i ∈ N let bi be a clopen satisfying the following properties:

• bi ∩ {x1, . . . , xn} = {x1},
• bi is contained in the ball of radius 1/i around x1,
• bi is disjoint from each of c1, . . . , ci−1.

By our assumption we have a clopen ci ⊆ bi not containing x1 such that
GX\ci � H . The sequence (ci)i∈N consists of pairwise disjoint clopen
sets not containing x1, which converges to x1, and such that GX\ci � H
for all i ∈ N. This contradicts Lemma 5.2 (a). �

{la:Xo6Tk3}
Lemma 5.4. There exists a clopen set b of X such that b∩{x1, . . . , xn} =
{x1} and GX\b ≤ H.

Proof. Let b be the clopen set of X guaranteed by Lemma 5.3: thus
b ∩ {x1, . . . , xn} = {x1} and for every clopen c ⊆ b \ {x1} =: b◦ of X
we have GX\c ≤ H . Let

Γ := {d : d ⊆ b is clopen in X◦ abutting x1 and G|X\d ≤ H}.

We will show that b◦ ∈ Γ via a sequence of claims.
{cl:Xo62Tk3}

Claim 5.5. If c and d are clopen sets of X◦ such that c, d and c ∩ d
abut x1, then GX\(c∪d) = 〈GX\c, GX\d〉.

Proof. This is identical to [26, Lemma 2.6]. �

{cl:Xo63Tk3}
Claim 5.6. If c, d ∈ Γ, then c ∪ d ∈ Γ.

Proof. This can be proved by following the paragraph preceding [26,
Lemma 2.9] using Lemma 5.2 (b) and Claim 5.5. �

{cl:Xo64Tk3}
Claim 5.7. If d ∈ Γ and c ⊆ b◦ clopen in X, then c ∪ d ∈ Γ.

Proof. This follows [26, Lemma 2.9]. �

The proof of Lemma 5.3 is now completed by following the Conclu-
sion of the proof of Theorem 2.7 in [26, p. 501, 502]. �

Proof of Theorem 5.1. We use induction on n. The base case for n = 0
is Truss’ result [26, Theorem 3.7]. So assume n ≥ 1 in the following. By
Lemma 5.4 there exists a clopen b1 in X such that b1 ∩ {x1, . . . , xn} =
{x1} and GX\b1 ≤ H . If b1 = X , then G = H and there is nothing
left to prove. So suppose b1 6= X . Since H ∩ Gb1 has index < 2ℵ0

in Gb1
∼= (HomeoX)x2,...,xn, we have a partition of X \ b1 into clopen

sets b2, . . . , bm such that (Gb1){b2,...,bm} ≤ H ∩ Gb1 by the induction
assumption. But then H contains the direct product

GX\b1 (Gb1){b2,...,bm} = G{b1,b2,...,bm}

as required. �
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5.2. Orbits of clopens in the punctured Cantor space. Let X
be the Cantor space, x1, . . . , xn ∈ X and X◦ := {x1, . . . , xn}. For a
clopen b in X◦ let

I := {i ∈ [n] : xi is a limit point of b},

I ′ := {i ∈ [n] : xi is a limit point of X◦ \ b}.

We call the pair (I, I ′) the type of b. Note that I ∪ I ′ = [n] but that
union is not necessarily disjoint. Note that the following hold:

• I = ∅ if and only if b is clopen in X ;
• I ′ = ∅ if and only if X \ b is clopen in X ;
• I, I ′ 6= ∅ if and only if there exist pairwise disjoint clopens bij
(i ∈ I, j ∈ N) and b′ij (i ∈ I ′, j ∈ N) such that

(5.1)

b =
⋃

i∈I, j∈N

bij , lim
j→∞

bij = xi (i ∈ I),

X◦ \ b =
⋃

i∈I′, j∈N

b′ij , lim
j→∞

b′ij = xi (i ∈ I ′).

We can characterize the orbits of clopens inX◦ under (HomeoX){x1,...,xn}
as follows.{lem:types}
Lemma 5.8. For I, I ′ ⊆ [n] with I ∪ I ′ = [n], the set of clopens in X◦

of type (I, I ′) is an orbit under (HomeoX){x1,...,xn}.

Proof. Homeomorphisms from (HomeoX){x1,...,xn} preserve types of clo-
pens because they fix x1, . . . , xn. Conversely, consider two clopens b, c
of the same type (I, I ′). If I = ∅ then taking the union of a homeomor-
phism b→ c and a homeomorphism X \ b→ X \ c that fixes x1, . . . , xn
yields a homeomorphism ψ ∈ (HomeoX){x1,...,xn} with ψ(b) = c. An
analogous construction deals with the case I ′ = ∅. Consider now the
case where I, I ′ 6= ∅. Decompose each of b and c according to (5.1); let
bij (i ∈ I, j ∈ N), b′ij (i ∈ I ′, j ∈ N) be the clopens associated with b,
and let cij (i ∈ I, j ∈ N), c′ij (i ∈ I ′, j ∈ N) be those for c. Take arbi-
trary homeomorphisms ψij : bij → cij (i ∈ I, j ∈ N) and ψ′

ij : b
′
ij → c′ij

(i ∈ I ′, j ∈ N). Their union ψ extended by ψ(xi) = xi (i ∈ [n]) is
a homeomorphism of X because of the limit conditions in (5.1), and
clearly ψ(b) = c, completing the proof. �

5.3. SIP for the filtered Boolean power. We need one more aux-
iliary result for the proof of Theorem 1.3(2).

{lem:invariant}
Lemma 5.9. Let A be a finite simple Mal’cev algebra with an idem-
potent e1, let B be the countable atomless Boolean algebra with Cantor
space X, let x1 ∈ X, and let h : Aut(AB)x1e1 → (HomeoX)x1 be as in
Theorem 2.5(1).

Let L be subgroup of K := ker h with |K : L| < 2ℵ0 that is normal in
Aut(AB)x1e1 . Then L contains

K ′ := {ϕ ∈ K : ϕx ∈ (AutA)e1 for all x ∈ X◦}.
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Proof. If (AutA)e1 is trivial, then so is K ′ and the result clearly holds.
So we assume that (AutA)e1 is non-trivial for the rest of the proof.

For ϕ ∈ K ′, let ϕ∗ : X
◦ → (AutA)e1, x 7→ ϕx, be as in Theo-

rem 2.5(2). Then ϕ−1
∗ (α) is clopen in X◦ for any α ∈ (AutA)e1 by that

lemma.
We will prove the result by showing that

W := {ϕ ∈ K ′ : x1 is a limit point of ϕ−1
∗ (α) for all α ∈ (AutA)e1}

is contained in L and generates K ′. Note that ϕ−1
∗ (α) 6= ∅ for any

ϕ ∈ W and α ∈ (AutA)e1, in particular, ϕ−1
∗ (α) is clopen of type

([1], [1]).
First we claim that

(5.2) L ∩W 6= ∅.

To see this, partition X◦ into a sequence of clopens in X converging
to x1. Then subdivide each of the clopens into |(AutA)e1| non-empty
clopens to obtain a partition of X◦ into |(AutA)e1| disjoint sequences
of clopens biα for i ∈ N, α ∈ (AutA)e1 that converge to x1. For any
subset T ⊆ N define ϕT ∈ K ′ such that

ϕTx :=

{

α if x ∈ biα and i ∈ T,

idA otherwise.

Let T be an uncountable family of subsets of N such that T1△T2 (the
symmetric difference) is infinite for any two distinct T1, T2 ∈ T . Since
|K : L| < 2ℵ0, there exist T1, T2 ∈ T , T1 6= T2 with ϕT1(ϕT2)−1 ∈ L.
Since T1△T2 is infinite, we see that ϕ

T1(ϕT2)−1 ∈ W and (5.2) is proved.
Recall the definition of g from (2.1). We show that

(5.3) C := g((HomeoX)x1) acts transitively on W by conjugation.

Let σ, τ ∈ W . For each α ∈ (AutA)e1 the clopens σ−1
∗ (α) and τ−1

∗ (α)
have type ([1], [1]). By Lemma 5.8 there exists ψ ∈ (HomeoX)x1 such
that ψ(σ−1

∗ (α)) = τ−1
∗ (α) for all α ∈ (AutA)e1. For D := Aut(AB)x1e1 ,

recall that g(ψ) = ψD ∈ C and (τψ
D

)x = τψ(x). It follows that τ
ψD

= σ
and (5.3) is proved.

Since L is normal in AutD by assumption, claims (5.2) and (5.3)
imply W ⊆ L. It remains to show that

(5.4) 〈W 〉 = K ′.

For α ∈ (AutA)e1 and c clopen in X◦, define χc,α ∈ K by

χc,αx :=

{

α if x ∈ c,

idA else.

To show that χc,α is generated by W we distinguish two cases, depend-
ing on the type of c.
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Case 1: c is clopen in X. As in the proof of Claim (5.2) we partition
X◦ \c into |(AutA)e1 | sequences of clopens converging to x1. Use these
to define σ, τ ∈ W with c ⊆ σ−1

∗ (α), c ⊆ τ−1
∗ (id) and σx = τx for all

x ∈ X◦ \ c. Then χc,α = στ−1 ∈ 〈W 〉.

Case 2: X \ c is clopen in X. This is analogous to Case 1.

Case 3: c is a disjoint union of clopens in X converging to x1. This
time we partition c itself into |(AutA)e1| disjoint sequences of clopens
biβ on X for i ∈ N, β ∈ (AutA)e1 that converge to x1. Define σ, τ ∈ W
by

σx :=

{

αβ if x ∈ biβ ,

idA else,
τx :=

{

β if x ∈ biβ ,

idA else.

Then χc,α = στ−1 ∈ 〈W 〉.
Since every element in K ′ is a product of elements χc,α for c clopen

in X◦ and α ∈ (AutA)e1, it follows that K ′ is generated by W . This
proves (5.4) and the lemma. �

Finally we are ready to prove the main result of this section.

Proof of Theorem 1.3(2). Let D := (AB)x1,...,xne1,...,en
and let H be a sub-

group of AutD of index < 2ℵ0 . Let G := (HomeoX){x1,...,xn}. By
Corollary 2.8 we may assume that e1, . . . , en are in distinct AutA-
orbits. So, by Theorem 2.5(1) and (2.1), AutD is a semidirect product
of K := ker h and C := g(G).

Then |C : H ∩ C| < 2ℵ0 . By Theorem 5.1 we have a partition of X
into clopens b1, . . . , bm such that

C ′ := {ψD : ψ ∈ G, ψ(bi) = bi for i ∈ [m]} ≤ H ∩ C.

Furthermore, by refining the bi and reordering, we may assume that
m ≥ n and xi ∈ bi for all i ∈ [n]. For i ∈ [n], let

Ki := {ϕ ∈ K : ϕx = idA for x ∈ X◦ \ bi}.

Since H∩K is invariant under conjugation by C ′, it follows that H∩Ki

is invariant under the natural action of (Homeo bi)xi. Further |Ki :
H ∩Ki| < 2ℵ0 . Hence Lemma 5.9 yields that H ∩Ki contains

K ′
i := {ϕ ∈ K : ϕx ∈ (AutA)ei for x ∈ bi\{xi}, ϕx = idA for x ∈ X◦\bi}.

It follows that
K ′ := K ′

1 . . .K
′
n ≤ H ∩K.

We complete the proof by showing that K ′C ′ ≤ H contains the sta-
bilizer of finitely many elements in D. Specifically, for a in T :=
∏n

i=1{ei} ×Am−n, we define

fa : X → A, x 7→ ai if x ∈ bi, i ∈ [m],

and claim that

(5.5) (AutD){fa : a∈T} ≤ K ′C ′ ≤ H.
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Consider an element in the above stabilizer decomposed as ϕψD for
ϕ ∈ K, ψ ∈ G. We first show that ψ stabilizes each set b1, . . . , bm, so
ψD ∈ C ′. Let a ∈ T . Then, using Theorem 2.5(1),

fa = ϕψD(fa) = ϕ(faψ
−1).

Combining this with Lemma 2.3(2) gives

fa(ψ(x)) = ϕψ(x)(fa(x))

for x ∈ X◦. If x ∈ bi and ψ(x) ∈ bj for i, j ∈ [m], this yields

(5.6) aj = ϕψ(x)(ai).

So, for all a ∈ T , aj is uniquely determined by ai and conversely. Sup-
pose that i 6= j. Since |A| > 1, it follows that i, j ∈ [n]. But then (5.6)
yields that ei, ej are in the same orbit under AutA, contradicting our
assumption. Thus i = j and ψD ∈ C ′.

Now (5.6) simplifies to

ai = ϕx(ai) for all x ∈ bi ∩X
◦, i ∈ [m].

If i ∈ [n], we obtain ϕx(ei) = ei for x ∈ bi. If i ∈ [m] \ [n], we obtain
ϕx(ai) = ai for all ai ∈ A, i.e., ϕx = idA for all x ∈ bi. Thus ϕ ∈ K ′

and (5.5) is proved, completing the proof that AutD has SIP. �

6. Cofinality and Bergman property
{sec:Bergman}

Throughout this section X is the Cantor space, x1, . . . , xn ∈ X are
distinct, and X◦ := X \ {x1, . . . , xn}.

To establish uncountable cofinality and the Bergman property for
filtered Boolean powers we first need some auxiliary results on G :=
(HomeoX){x1,...,xn}.

For σ ∈ G let

suppσ := {x ∈ X : σ(x) 6= x}.
{lem:boundconj}

Lemma 6.1. Let σ, τ ∈ (HomeoX){x1,...,xn} be such that x1, . . . , xn
are limit points of suppσ. Then τ can be written as a product of 8n
conjugates of σ±1 by elements in (HomeoX){x1,...,xn}.

Proof. This is a small modification of the final paragraph of the proof of
[25, Theorem 3.17]. Use [25, Lemma 3.16] to write τ = τn . . . τ1, where
τi fixes pointwise a clopen bi containing {x1, . . . , xi−1, xi+1, . . . , xn}. We
show that every τi can be written as a product of 8 conjugates of σ±1.
For ease of notation, we take i = 1. By [25, Lemma 3.15], there
exist a clopen set b of X which does not contain x2, . . . , xn, and µ ∈
(HomeoX){x1,...,xn} such that supp(σµσ−1µ−1) has x1 as limit point and
is contained within b. Let c := b∪ (X \ b1). This again is a clopen that
does not contain x2, . . . , xn, and contains supp(σµσ−1µ−1); furthermore
suppτ1 ⊆ c. Both τ1 and σµσ−1µ−1 restrict to homeomorphisms of c
since they fix the complement of c in X . Since σµσ−1µ−1 does not
fix any clopen around x1 pointwise, it follows by [25, Corollary 3.14]
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that τ1 can be written as a product of 4 conjugates of σµσ−1µ−1, i.e.
a product of 8 conjugates of σ±1. �

{le:Xucsc}
Lemma 6.2. Let X be the Cantor space and x1, . . . , xn ∈ X distinct.

Then (HomeoX){x1,...,xn} has uncountable strong cofinality.

Proof. For n = 0 this is part of [8, Theorem 3.3].
Assume n ≥ 1. Let us call clopens of X◦ of type ([n], [n]) good.

Recall that c ⊆ X◦ is a good clopen if and only if both c and X◦ \c can
be partitioned into n sequences of clopens ofX converging to x1, . . . , xn
respectively. We will prove the lemma by applying [8, Theorem 2.8]
with:

• G := (HomeoX){x1,...,xn};
• Ω := X◦ := X \ {x1, . . . , xn};
• K the set of all good clopens;
• F := {b1, . . . , bn+2}, a set of good clopens that partition X◦.

We will follow the path offered by part (I) of [8, Theorem 2.8] and
verify that

• the ‘piecewise-patching’ properties (1), (2), (5), (6), (7), (8) of
[8, p. 337] hold;

• G = E3, where E :=
⋃

b∈F G{b} and G{b} denotes the setwise
stabiliser of b in G.

(1) ∅, X◦ 6∈ K and K is closed under complements: This follows from
the definition.

(2) Every good set c splits into a disjoint of union of two good sets:
Take the partition of c into n sequences of disjoint clopens converging
to x1, . . . , xn, respectively, and split each of these clopens into two non-
empty clopens. This yields 2n sequences of disjoint clopens with two
of them converging to xi for i ∈ [n]. The unions of n of these sequences
converging to x1, . . . , xn, respectively, yields a good clopen again. So c
can be split into two good clopens.

(5) G is transitive on K: This follows from Lemma 5.8.
(6) Let c, d1, d2, e1, e2 be good such that c = d1∪̇d2 = e1∪̇e2 and

fi ∈ G with fi(di) = ei for i ∈ [2]. Then f1|d1 ∪ f2|d2 ∪ idX\c is in G:
These partial homeomorphisms can be glued together since d1, d2 have
x1, . . . , xn as limit points.

(7) There are disjoint good ci for i ∈ N such that for all fi ∈ G{ci},
we have

⋃

i∈N fi|ci ∪ idX\
⋃

i∈N
ci in G: Partition X◦ into n sequences of

clopens of X converging to x1, . . . , xn, respectively. Next split each of
these sequences into countably many subsequences. Taking unions of
these sequences yields our countably many good clopens ci.

(8) There exists m ∈ N such that for every good clopen c, and
any f, g ∈ G with suppf, suppg ⊆ c and suppg containing some good
clopen, we have

f = (g′1)
h1 . . . (g′m)

hm
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for some hi ∈ G with supphi ⊆ c and g′i ∈ {g, g−1} for all i ∈ [m]:
This follows from Lemma 6.1 with m = 8n since the union of any good
clopen c with {x1, . . . , xn} is homeomorphic to X .

To check that G = E3 we proceed via a series of claims, motivated
by [14, Lemma 2.1].

{cl:GbGcGb}
Claim 6.3. Let b, c, d be pairwise disjoint good clopens such that X◦ =
b∪ c ∪ d and let σ ∈ G such that d \ σ−1(b) is good. Then σ ∈ GbGcGb

(pointwise stabilizers).

Proof. We aim to define three homeomorphisms σ1, σ3 ∈ Gb, σ2 ∈ Gc

such that σ = σ3σ2σ1,
Since (c ∪ d)∩ σ−1(b) is clopen in X◦ and d is good, we have τ1 ∈ G

such that

(6.1) f := τ1((c ∪ d) ∩ σ
−1(b)) is contained in d and d \ f is good.

By assumption, the clopen d \ σ−1(b) is good; in particular, x1, . . . , xn
are among its limit points. Hence the set (c ∪ d) \ σ−1(b) also has
all xi as limit points. The complement of this set contains the good
clopen b, and hence also has x1, . . . , xn among its limit points. We
conclude that (c ∪ d) \ σ−1(b) is good. An analogous argument shows
that (c ∪ d) \ f ∈ K. By Lemma 5.8 there exists a homeomorphism

τ2 : (c ∪ d) \ σ
−1(b) → (c ∪ d) \ f.

We can now define the first of our three target homeomorphisms on X :

(6.2) σ1(x) :=







x if x ∈ b ∪ {x1, . . . , xn},

τ1(x) if x ∈ (c ∪ d) ∩ σ−1(b),

τ2(x) if x ∈ (c ∪ d) ∩ σ−1(c ∪ d).

To see that σ ∈ G, observe that it is defined piecewise by homeo-
morphisms on three clopens that partition X◦, and that the images of
those three clopens, namely b, f and (c∪d)\f , also partition X◦. That
σ ∈ Gb is immediate from (6.2).

Next the clopen

(b ∩ σ−1(c ∪ d)) ∪ (d \ f)

is good: indeed it has x1, . . . , xn as limit points because d\f is good by
(6.1), while its complement also has x1, . . . , xn as limit points because
it contains c ∈ K. Pick a homeomorphism

τ3 : (b ∩ σ
−1(c ∪ d)) ∪ (d \ f) → d.

Define our second target homeomorphism by

(6.3) σ2(x) :=







x if x ∈ c ∪ {x1, . . . , xn},

στ−1
1 (x) if x ∈ f,

σ(x) if x ∈ b ∩ σ−1(b),

τ3(x) if x ∈ (b ∩ σ−1(c ∪ d)) ∪ (d \ f).
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Then σ2 ∈ Gc since it is defined piecewise by homeomorphisms on
clopens partitioning X◦ with images c, σ(c∪ d)∩ b, σ(b)∩ b, d also par-
titioning X◦.

Finally, define

(6.4) σ3(x) :=







x if x ∈ b ∪ {x1, . . . , xn},

στ−1
2 (x) if x ∈ c,

στ−1
3 (x) if x ∈ τ3(b ∩ σ

−1(c ∪ d)),

στ−1
2 τ−1

3 (x) if x ∈ τ3(d \ f).

That σ3 ∈ Gb follows as usual since the images of its constituting partial
homeomorphisms b, στ−1

2 (c), σ(b) ∩ (c ∪ d), στ−1
2 (d \ f) partition X◦.

Now we verify that σ = σ3σ2σ1 using the definitions (6.2), (6.3),
(6.4) of σ1, σ2, σ3 respectively. For x ∈ X◦

σ3σ2σ1(x)

=σ3σ2





x if x ∈ b
τ1(x) if x ∈ (c ∪ d) ∩ σ−1(b)
τ2(x) if x ∈ (c ∪ d) ∩ σ−1(c ∪ d)





=σ3









σ(x) if x ∈ b ∩ σ−1(b)
τ3(x) if x ∈ b ∩ σ−1(c ∪ d)
σ(x) if x ∈ (c ∪ d) ∩ σ−1(b)
τ2(x) if x ∈ (c ∪ d) ∩ σ−1(c ∪ d) ∩ τ−1

2 (c)
τ3τ2(x) if x ∈ (c ∪ d) ∩ σ−1(c ∪ d) ∩ τ−1

2 (d \ f)









=







σ(x) if x ∈ b ∩ σ−1(b)

στ−1
3 τ3(x) if x ∈ b ∩ σ−1(c ∪ d)

σ(x) if x ∈ (c ∪ d) ∩ σ−1(b)

στ−1
2 τ2(x) if x ∈ (c ∪ d) ∩ σ−1(c ∪ d) ∩ τ−1

2 (c)

στ−1
2 τ−1

3 τ3τ2(x) if x ∈ (c ∪ d) ∩ σ−1(c ∪ d) ∩ τ−1
2 (d \ f)

=σ(x).

Thus Claim 6.3 is proved. �
{cl:abutone}

Claim 6.4. Let b, c, d be clopens in X◦ and k ∈ [n] such that b∩ c = ∅
and xk is a limit point of d. If xk is not a limit point of d \ b, then it
is a limit point of d \ c.

Proof. The assumption that xk is not a limit point of d \ b means that
there exists a clopen neighbourhood f of xk in X such that f \ {xk} is
contained in the complement of d \ b. Since f ∩ d is clopen in X◦ and
is contained in d, this implies f ∩ d ⊆ b. Since b∩ c = ∅, it follows that
(f ∩ d) ∩ c = ∅. Hence f ∩ d ⊆ d \ c and xk is a limit point of d \ c as
required. �

Recall that F = {b1, . . . , bn+2} is a set of disjoint good clopens that
partition X◦.



FILTERED BOOLEAN POWERS OF SIMPLE ALGEBRAS 31

{cl:pigeon}
Claim 6.5. For every σ ∈ G there exist i, j ∈ [n + 2] such that σ ∈
GbiGbjGbi.

Proof. Let k ∈ [n]. By Claim 6.4 xk is a limit point of bn+2 \σ
−1(bi) for

all but possibly one i ∈ [n + 1]. So, by the pigeonhole principle, there
exists i ∈ [n + 1] such that bn+2 \ σ

−1(bi) has all of x1, . . . , xn as limit
points. Let b := bi, c :=

⋃

j∈[n+1]\{i} bj and d := bn+2. Then d \ σ−1(b)

is good and σ ∈ GbGcGb by Claim 6.3. For any j ∈ [n + 1] \ {i} we
have Gc ⊆ Gbj and hence σ ∈ GbiGbjGbi as required. �

To complete the proof of Lemma 6.2, recall that E =
⋃

b∈F G{b}.
Using Claim 6.5, for any σ ∈ G there exist bi, bj ∈ F such that σ ∈
GbiGbjGbi ⊆ G{bi}G{bj}G{bi} ⊆ E3.

Since G = E3 and all assumptions of case (I) of [8, Theorem 2.8] are
satisfied, G has uncountable strong cofinality. �

Using the semidirect decomposition of Aut(AB)x1,...,xne1,...,en from Theo-
rem 2.5 and the previous lemma, it is not hard to show our last main
result.

Proof of Theorem 1.3(3). By Corollary 2.8 we may assume that e1, . . . , en
are in distinct AutA-orbits. So, by Theorem 2.5(1) and (2.1), G :=
Aut(AB)x1,...,xne1,...,en is a semidirect product of the groups K := ker h and
C := g((HomeoX){x1,...,xn}).

Seeking a contradiction suppose that G has countable strong cofinal-
ity. That is, there exists a sequence

H1 ⊆ H2 ⊆ . . .

of proper subsets of G such that H−1
i = Hi, HiHi ⊆ Hi+1 for all i ∈ N

and ⋃

i∈N

Hi = G.

Since C has uncountable strong cofinality by Lemma 6.2, we may as-
sume that C ⊆ H1.

For α ∈ AutA and c clopen in X◦ of type (I, I ′), assume that there
exists χc,α ∈ K such that

χc,αx :=

{

α if x ∈ c,

idA else.

Then α(ei) = ei for all i ∈ I by Theorem 2.5(2) and I ∪ I ′ = [n].
We call such a triple (α, I, I ′) legal and call functions of the form χc,α

characteristic. Note that conversely for every legal triple (α, I, I ′) there
exists a clopen c in X◦ of type (I, I ′) and a characteristic χc,α in K.

Since there are only finitely many legal triples, we may assume that
H1 contains at least one characteristic function χ

c,α for any legal triple.
By Lemma 5.8 any two characteristic functions corresponding to the
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same legal triple are conjugate under C. Hence H3 contains all char-
acteristic functions from K. Since every element of K is a prod-
uct of |AutA| many characteristic functions from K, it follows that
K ⊆ H|AutA|+3. Then G = H|AutA|+4 contradicting our assumption.
Thus G has uncountable strong cofinality. �
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