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This paper provides a thorough examination of the xF3 structure functions in deep-inelastic
scattering through a comprehensive QCD analysis. Our approach harnesses sophisticated mathe-
matical techniques, namely the Mellin transform combined with Gegenbauer polynomials. We have
employed the Jacobi polynomials approach for analysis, conducting investigations at three levels
of precision: Next-to-Leading Order (NLO), Next-to-Next-to-Leading Order (N2LO), and Next-
Next-Next-to-Leading Order (N3LO). We have performed a comparison of our sets of valence-quark
parton distribution functions with those of recent research groups, specifically CT18 and MSHT20
at NLO and N2LO, and MSTH23 at N3LO, which are concurrent with our current analysis. The
combination of Mellin transforms with Gegenbauer polynomials proves to be a powerful tool for
investigating the xF3 structure functions in deep-inelastic scattering and the results obtained from
our analysis demonstrate a favorable alignment with experimental data.

I. INTRODUCTION

Quantum Chromodynamics (QCD) is the fundamen-
tal theory of strong interactions, describing the behav-
ior of quarks and gluons, the building blocks of protons,
neutrons, and other hadrons. Deep-Inelastic Scattering
(DIS) experiments have been a cornerstone in the study
of QCD, providing crucial insights into the internal struc-
ture of nucleons and the distribution of quarks and glu-
ons within them. Among the various observables in DIS,
the xF3 structure functions hold particular significance
as they encode essential information about the parton
distribution functions (PDFs) within the nucleon.

The xF3 structure functions, related to the charged
current DIS, play a pivotal role in testing the predictions
of QCD and probing the dynamics of quarks and glu-
ons at different energy scales. The study of xF3 [1–21]
has witnessed significant progress over the years, with
advances in both experimental techniques and theoreti-
cal frameworks. To extract precise information from ex-
perimental data and interpret it in the context of QCD,
sophisticated theoretical tools and mathematical tech-
niques are required.

In this context, the Mellin transform [24], which al-
lows for the determination of moments of the proton
structure functions, has emerged as an effective tool for
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the quantum chromodynamics (QCD) analysis of the xF3

structure functions. The Mellin transform facilitates the
improvement of approximations, leading to more accu-
rate predictions for scaling violations and the evolution
of parton distribution functions (PDFs) with changing
momentum scales. We have used Jacobi polynomials
to perform the transformation of the evolved functions
from the Mellin space to the Bjorken x space, which is
an important step in our analysis, as it allows us to com-
pare our results with experimental data. Additionally, we
leverage Gegenbauer polynomials for PDFs parameteri-
zation, which offer orthogonality and flexibility in func-
tion approximation. We show that using the Gegenbauer
polynomial expansion method and the next-to-next-to-
next-to-leading order (NNNLO) approximation, which
are novel and accurate techniques in this context.

Using Gegenbauer polynomials in models can increase
the precision and quality of the approximations and the
theoretical models. The best values for the parameters
of these polynomials can be chosen by fitting them to
experimental data.

This paper presents a comprehensive QCD analysis of
the proton structure function xF3 using neutrino-nucleus
scattering data from CCFR [25], NuTeV [26] and CHO-
RUS [27] experiments. We explain the theoretical frame-
work of QCD and the Jacobi polynomial approach, and
the key concepts for the subsequent analysis.

We conclude that the QCD analysis of the xF3 struc-
ture function using Mellin transforms with Jacobi poly-
nomials and Gegenbauer polynomials for PDFs parame-
terization.This methods is a fast, precise, and direct way
to calculate the final structure function with high accu-
racy. It allows us to extract the valence-quark distribu-

http://arxiv.org/abs/2404.17526v3
https://orcid.org/0000-0001-7171-1326
https://orcid.org/0000-0002-0391-2035
https://orcid.org/0009-0007-3313-5437
https://orcid.org/0000-0002-9279-499X
mailto:F.Arbabifar@cfu.ac.ir
mailto:nmorshed@aeoi.org.ir
mailto:leila.ghasemzadeh71@gmail.com
mailto:Atashbar@ipm.ir


2

tion functions from the neutrino-nucleus scattering data
without complicated calculations in the kinematic region
of interest.

This article is organized as follows. In Sec. II, we in-
troduce the PDFs parametrization and the theoretical
framework for the Mellin transform. In Sec. III, we de-
scribe the Jacobi polynomials and the QCD fit procedure.
In Sec. IV, we present the fit results. In Sec. V, we discuss
the GLS sum rule. The final section, Sec. VI, summarizes
and concludes the article.

II. THEORETICAL FRAMEWORK TO
MELLIN TRANSFORM

In charged-current neutrino deep inelastic scattering
(DIS) processes, a neutrino ν (ν̄) interacts with a quark
inside the nucleon through the exchange of a virtual W±

boson. The nonsinglet structure function xF3(x,Q
2),

which arises from the parity-violating weak interaction,
characterizes the momentum density of partons, includ-
ing both valence quarks and antiquarks, within the nu-
cleon.

In the quark-parton model (QPM), the structure
functions xF νp

3 and xF ν̄p
3 for neutrino-proton and

antineutrino-proton interactions are given by changing
the signs of the antiquark distributions in the expres-
sions for F νp

2 and F ν̄p
2 . By considering F2 = 2xF1,

one can have the above F νp
2 and F ν̄p

2 structure func-
tions in terms of PDFs, F νp

2 = 2x(d + s + ū + c̄), and
F ν̄p
2 = 2x(u + c+ d̄ + s̄). By changing the signs of ū, d̄,

s̄, and c̄, The correct expressions for xF νp
3 and xF ν̄p

3 are:

xF νp
3 = 2x(d+ s− ū− c̄) ,

xF ν̄p
3 = 2x(u+ c− d̄− s̄) . (1)

By considering u ≡ uv + ū and d ≡ dv + d̄ and combin-
ing the above equations, the structure function xF3 is as
follows:

xF
(ν+ν̄)p
3 = xF νp

3 +xF ν̄p
3 = 2x(uv+dv)+2x(s−s̄)+2x(c−c̄) .

(2)
So, one can have the average of the neutrino and antineu-
trino nucleon structure function as follows:

xFN
3 (x,Q2) =

1

2

(

xF νN
3 + xF ν̄N

3

)

(x,Q2)

=
1

2

(

[xF
(ν+ν̄)p
3 + xF

(ν+ν̄)n
3 ]/2

)

(x,Q2) .

(3)

However, due to the isospin symmetry, xF
(ν+ν̄)p
3 =

xF
(ν+ν̄)n
3 , the average of the neutrino and antineutrino

nucleon structure is

xFN
3 (x,Q2) =

1

2
xF

(ν+ν̄)p
3 (x,Q2)

= [x(uv + dv) + x(s− s̄) + x(c − c̄)](x,Q2) .

(4)

It is important to recognize that the differences be-
tween the strange quark and its antiquark s− s̄, as well
as the charm quark and its antiquark c− c̄, are typically
negligible. Consequently, the average structure of the
nucleon as probed by neutrinos and antineutrinos pre-
dominantly reflects the distribution of valence quarks

xFN
3 (x,Q2) = (xuv + xdv)(x,Q

2) . (5)

where the combinations dv ≡ d − d̄ and uv ≡ u −
ū correspond to the valence densities of down and up
quarks, respectively, in the proton. The quantities s(x)
and c(x) represent the distributions of strange and charm
quarks, while c̄(x) is the distribution of charm antiquarks.

When experimental data is reported by collaborations
such as CCFR [25], NuTeV data [26] and CHORUS
data [27].

This expression characterizes the momentum density of
partons, including valence quarks and antiquarks, within
the nucleon and provides essential insights into the quark-
gluon dynamics in the proton.

For the current analysis, we employ the following stan-
dard parameterizations for the valence distributions, xuv

and xdv, using Gegenbauer polynomials:

xuv = Nux
αuv (1 − x)βuv

(

1 +

3
∑

i=1

aiuC
7

2 (i, 1− 2x)

)

,

(6)

xdv =
Nd

Nu
(1− x)βdvxuv .

xdv = Ndx
αuv (1− x)βuv

+βdv

(

1 +

3
∑

i=1

aiuC
7

2 (i, 1− 2x)

)

,

(7)

where Q2
0 = 1GeV 2 is the input scale and the C

7

2 (i, 1−
2x) are Gegenbauer polynomials. The normalizations Nu

and Nd are being fixed by
´ 1

0
uvdx = 2 and

´ 1

0
dvdx = 1,

respectively.
We use the neutrino-nucleus data so we take into ac-

count the nuclear effects and use the nuclear weight func-
tion in the structure function xF3 calculations. We select
the new form for xuv and xdv that follows the following
expression

xuA
v = Wuv

Zxuv +Nxdv
A

xdAv = Wdv

Nxuv + Zxdv
A

(8)

The shape of the weight function is as follows:

Wuv
= 1 +

(

1−
1

A1/3

)

Au + c1x+ c2x
2 + c3x

3

(1 − x)0.4

Wdv
= 1 +

(

1−
1

A1/3

)

Ad + c1x+ c2x
2 + c3x

3

(1− x)0.4
(9)
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Figure 1: The nuclear weight function calculated in
refs. [22, 23] in NLO and NNLO approximation for 56Fe.

This distribution of nuclear weight was calculated in the
refs. [22, 23] in the NLO and NNLO approximation and
are shown in Figs. 1 and 2. In our analysis, we used the
NNLO weight function for the NNNLO approximation,
because no group has obtained a weight function in this
approximation, i.e., NNNLO, for the nuclear structure
functions. The deep inelastic scattering data of the neu-
trino nucleus are for iron and lead, and we selected A=56,
Z=26 and N=A-Z to represent the number of neutrons
for iron and A=208, Z=82 for lead.

The Mellin transform of these functions are defined as

uA
v (N,Q2

0) =

ˆ 1

0

xuA
v (x,Q

2
0)x

n−2dx

dAv (N,Q2
0) =

ˆ 1

0

xdAv (x,Q
2
0)x

n−2dx. (10)

The evolution equation of the nonsinglet structure func-
tion xF3(x,Q

2) in Mellin space, extended to the NLO-
loop order, can be found in the reference [24].

F3(N,Q2) =
(

1 + a C
(1)
3 (N)

)

×F3(N,Q2
0)

(

a

a0

)−P̂0(N)/β0

{

1−
1

β0
(a− a0)

[

P̂+
1 (N)−

β1

β0
P̂0(N)

]

}

(11)

The evolution equation of xF3(x,Q
2), extended to the

N2LO-loop order, can be found in the reference [28, 29].
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Figure 2: The nuclear weight function calculated in the
refs. [22, 23] in NLO and NNLO approximation for 208Pb.

Within this framework, the nonsinglet structure func-
tions can be expressed as follows:

F3(N,Q2) =
(

1 + a C
(1)
3 (N) + a2 C

(2)
3 (N)

)

×F3(N,Q2
0)

(

a

a0

)−P̂0(N)/β0

{

1−
1

β0
(a− a0)

[

P̂+
1 (N)−

β1

β0
P̂0(N)

]

−
1

2β0

(

a2 − a20
)

[

P̂+
2 (N)−

β1

β0
P̂+
1 (N)

+

(

β2
1

β2
0

−
β2

β0

)

P̂0(N)

]

+
1

2β2
0

(a− a0)
2

(

P̂+
1 (N)−

β1

β0
P̂0(N)

)2
}

.

(12)

The NLO and N2LO Wilson coefficient functions C
(1)
3

and C
(2)
3 in Mellin N space can be determined easily

using the references [30, 31]. The splitting functions in
Mellin N space can be found in Refs. [32–36].

The expansion coefficients βk of the β-function of QCD
are known up to k = 3, corresponding to the N3LO (next-
to-next-to-next-to-leading order) [37–39]. These βk coef-
ficients are important for determining the evolution of
the strong coupling constant αs with the scale Q2 and
are significant in the perturbative calculations of various
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QCD processes:

β0 = 11− 2/3 nf ,

β1 = 102− 38/3 nf ,

β2 = 2857/2− 5033/18 nf + 325/54 n2
f ,

β3 = 29243.0− 6946.30 nf + 405.089 n2
f + 1093/729 n3

f ,

(13)

here nf stands for the number of effectively massless
quark flavors and βk denote the coefficients of the usual
four-dimensional MS beta function of QCD.

Within this framework, the nonsinglet structure func-
tions can be expressed as follows in N3LO:

F3(N,Q2) =
(

1 + as C
(1)
3,NS(N) + a2s C

(2)
3,NS(N) + a3s C

(3)
3,NS(N)

)

F3(N,Q2
0)

×

(

as
a0

)−P̂0(N)/β0

{

1−
1

β0
(as − a0)

[

P̂+
1 (N)−

β1

β0
P̂0(N)

]

−
1

2β0

(

a2s − a20
)

[

P̂+
2 (N)−

β1

β0
P̂+
1 (N) +

(

β2
1

β2
0

−
β2

β0

)

P̂0(N)

]

+
1

2β2
0

(as − a0)
2

(

P̂+
1 (N)−

β1

β0
P̂0(N)

)2

−
1

3β0

(

a3s − a30
)

[

P̂+
3 (N)−

β1

β0
P̂+
2 (N) +

(

β2
1

β2
0

−
β2

β0

)

P̂+
1 (N)

+

(

β3
1

β3
0

− 2
β1β2

β2
0

+
β3

β0

)

P̂0(N)

]

+
1

2β2
0

(as − a0)
(

a20 − a2s
)

(

P̂+
1 (N)−

β1

β0
P̂0(N)

)

×

[

P̂2(N)−
β1

β0
P̂1(N)−

(

β2
1

β2
0

−
β2

β0

)

P̂0(N)

]

−
1

6β3
0

(as − a0)
3

(

P̂+
1 (N)−

β1

β0
P̂0(N)

)3
}

. (14)

and

F3(N,Q2
0) = uA

v (N,Q2
0) + dAv (N,Q2

0) (15)

Here as(= αs/4π) and a0 represent the strong cou-
pling constant at the scales of Q2 and Q2

0 respectively.

C
(m)
3,NS(N) refers to the nonsinglet Wilson coefficients in

O(ams ), which can be found in the cited reference [40].

The term "P̂m" also denotes the Mellin transforms of
the (m+ 1)-loop splitting functions.

The strong coupling constant as is of utmost signif-
icance in the present paper regarding the evolution of
parton densities. At NmLO, the scale dependence of as

is determined by

d as
d lnQ2

= βNmLO(as) = −
m
∑

k=0

ak+2
s βk . (16)

In complete N3LO-loop approximation and using the Λ-
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parametrization, the running coupling is given by [41, 42]:

as(Q
2) =

1

β0LΛ
−

1

(β0LΛ)2
b1 lnLΛ +

1

(β0LΛ)3

[

b21
(

ln2 LΛ − lnLΛ − 1
)

+ b2
]

+
1

(β0LΛ)4
[

b31

(

− ln3 LΛ +
5

2
ln2 LΛ + 2 lnLΛ −

1

2

)

− 3b1b2 lnLΛ +
b3
2

]

, (17)

where LΛ ≡ ln(Q2/Λ2), bk ≡ βk/β0, and Λ is the QCD
scale parameter. The first line of Eq. (17) includes the
the NLO-loop coefficients, the second line is the N2LO-
loop and the third line denotes the N3LO-loop correction.
Equation (17) solves the evolution equation (16) only up
to higher orders in 1/LΛ. The functional form of αs(Q

2),
in N3LO-loop approximation and for 6 different values of
Λ. To be able to compare with other measurements of Λ
we adopt the matching of flavor thresholds at Q2 = m2

c

and Q2 = m2
b with mc = 1.5 GeV and mb = 4.5 GeV as

described in [43, 44].

III. JACOBI POLYNOMIALS AND THE
PROCEDURE OF QCD FITS

One of the simplest and fastest methods for recon-
structing the structure function from QCD predictions
for its Mellin moments is through the expansion of Ja-
cobi polynomials. The Jacobi polynomials are especially
suitable for this purpose since they allow one to factor
out an essential part of the x-dependence of structure
function into the weight function [45].

According to this method, one can relate the xF3 struc-
ture function with its Mellin moments

xFNmax

3 (x,Q2) = xβ(1− x)α
Nmax
∑

n=0

Θα,β
n (x)

n
∑

j=0

c
(n)
j (α, β)F3(j + 2, Q2),

(18)

where Nmax is the number of polynomials. Jacobi poly-
nomials of order n [45], Θα,β

n (x), satisfy the orthogonality
condition with the weight function wαβ = xβ(1− x)α

ˆ 1

0

dx wαβΘα,β
k (x)Θα,β

l (x) = δk,l . (19)

In the above, c
(n)
j (α, β) are the coefficients expressed

through Γ-functions and satisfying the orthogonality re-
lation in Eq. (19) and F3(j + 2, Q2) are the moments
determined in the previous section. Nmax, α and β have
to be chosen so as to achieve the fastest convergence of
the series on the right-hand side of Eq. (18) and to recon-
struct F2 with the required accuracy. In our analysis we

use Nmax = 9, α = 3.0 and β = 0.5. The same method
has been applied to calculate the nonsinglet structure
function xF3 from their moments [9, 12, 15, 16] and
for polarized structure function xg1 [46–49]. Obviously
the Q2-dependence of the polarized structure function
is defined by the Q2-dependence of the moments. The
evolution equations allow for the calculation of the Q2-
dependence of parton distributions provided at a certain
reference point, Q2

0. These distributions are typically pa-
rameterized based on plausible theoretical assumptions
regarding their behavior near the endpoints, x = 0 and
x = 1. For the data utilized in the global analysis, most
experiments combine various systematic errors into one
effective error for each data point, along with the statisti-
cal error. Additionally, the fully correlated normalization
error of the experiment is usually specified separately.
Therefore, it is natural to adopt the following definition
for the effective χ2 [50].

χ2
global =

∑

n

wnχ
2
n , (n labels the different experiments)

χ2
n =

(

1−Nn

∆Nn

)2

+
∑

i

(

NnxF
data
3,i − xF theor

3,i

Nn∆xF data
3,i

)2

.

(20)

For the nth experiment, xF data
3,i , ∆xF data

3,i , and xF theor
3,i

denote the data value, measurement uncertainty (statis-
tical and systematic combined) and theoretical value for
the ith data point. ∆Nn is the experimental normaliza-
tion uncertainty and Nn is an overall normalization factor
for the data of experiment n. The factor wn is a possible
weighting factor (with default value 1). However, we al-
lowed for a relative normalization shift Nn between the
different data sets within the normalization uncertainties
∆Nn quoted by the experiments.

Now the sums in χ2
global run over all data sets and in

each data set over all data points. The minimization of
the above χ2 value to determine the best parametrization
of the unpolarized parton distributions is done using the
program MINUIT [51].

IV. FIT RESULTS

The data for the charged-current structure functions
xF3(x,Q

2) used in our analysis are listed in Table. I.
The x and Q2 ranges, the number of data points and
the related references are also listed in this table. The
CCFR [25] and NuTeV [26] collaborations at Fermilab
conduct neutrino deep inelastic scattering experiments
using an iron target, which are subsequently adjusted
to account for an isoscalar target. They cover much of
the same kinematic range of momentum fraction x, but
CCFR covers slightly higher Q2. At high values of x,
the predictions are mainly determined by the valence up
quark distribution, which is very well constrained by the
charged-current DIS structure function data. We also
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Experiment x Q2 Number of data points Reference

CCFR 0.0075 ≤ x ≤ 0.75 1.3 ≤ Q2 ≤ 125.9 116 [25]
NuTeV 0.015 ≤ x ≤ 0.75 3.162 ≤ Q2 ≤ 50.118 64 [26]

CHORUS 0.02 ≤ x ≤ 0.65 2.052 ≤ Q2 ≤ 81.55 50 [27]

Table I: Published data points for charged-current structure functions xF3(x,Q
2) used in the present global fit. The x and

Q2 ranges, the number of data points and the related references are also listed.

include recent data from the CHORUS [27] collaboration,
which are taken from a lead target and cover a similar
range in x compared with CCFR. The NuTeV data seem
to be more precise. In practice, we find the high-x NuTeV
and CHORUS data very difficult to fit, leading to higher
values of χ2.

The accuracy of this result stems from the obtained
χ2/d.o.f value by fitting the initial valence PDFs at Q2

0=
1 GeV 2, as detailed in Table II. The world average value
for αs(M

2
z ) = 0.1179±8.5×10−6 , as reported in Ref. [58]

is in good agreement with the reported ones in Table II.
In Figs. 3, 4 and 5, valence PDFs for different approaches
at Q2 = 1GeV2 and Q2 = 10GeV2 have been depicted
in NLO, NNLO, and NNNLO approximations. As can
be seen, the agreement with the results of MSHT20 [53]
improves notably at NNLO. The results of the analy-
sis by MSTH23 [54] in N3LO are very close to those of
AMGA24 at Q2 = 1GeV2 .
Additionally, the results for the xF3 proton structure
function in NLO, NNLO and NNNLO approximations
are presented in Fig. 6. The comparison to experimental
data from the CCFR collaboration [25], which provides
direct measurements of the xF3 structure function, is also
shown. The agreement between the theoretical predic-
tions and the experimental data highlights the reliability
of the current theoretical framework.
Furthermore, in Figs. 7 and 8, the xF3 structure functions
at NLO, NNLO, and NNNLO are compared with experi-
mental data from the NuTeV [26] and CHORUS [27] col-
laborations at various values of Q2. These comparisons
further validate the theoretical predictions and provide
additional constraints on the PDFs. In Ref. [3], the χ2

for NNLO was reported as 1.482, while in the current
model, we obtain 1.4691, indicating that the choice of
Gegenbauer polynomial is appropriate. We have done
calculations up to NNNLO order accurately. As can be
observed, our analysis derives the exact solution by in-
corporating the splitting function as per Ref. [36] and the
Wilson coefficient following Ref. [40] within the NNNLO
approximation, unlike Ref. [16] which employed the Padé
approximation method for the xF3 structure function at
NNNLO. We have established that the Gegenbauer poly-
nomial is as effective as the Chebyshev polynomial, cor-
roborated by findings from the MSHT20 and MSTH23
groups in Refs. [53] and [54], respectively. Our analysis
successfully computes the non-singlet component of the
structure function using a minimal dataset and a stream-
lined approach, achieving congruence with other estab-
lished models.
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Figure 3: xuv and xdv in NLO and N2LO approximation in
Mellin model compare with MSHT20 [53] and CT18 [52]
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V. THE GROSS-LLEWELLYN SMITH (GLS)
SUM RULE

Another intriguing issue revolves around the extrac-
tion of the value of the Gross-Llewellyn Smith (GLS)
sum rule. The GLS sum rule is a crucial property in the
context of deep inelastic neutrino-nucleon scattering. In
the framework of the quark-parton model, the GLS sum
rule, which is associated with the xF3 structure function,
is expressed as [55].

The GLS sum rule relates the integral of the xF3(x,Q
2)
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Table II: Best fit parameters and uncertainties of the Mellin fits at NLO , N2LO and N3LO at the initial scale
Q2

0 = 1.0 GeV2.

Mellin
NLO N2LO N3LO

a1
u −0.20077 ± 0.0013422 0.026755 ± 0.00332961 −0.16898 ± 0.022263

a2
u 0.030599 ± 0.000367904 −0.0195933 ± 0.00170209 0.0235584 ± 0.00059855

a3
u −0.0033036 ± 0.00010995 0.003302035 ± 0.000536726 −0.0020921 ± 0.00017266

αuv
0.63134 ± 0.008237101 0.782549 ± 0.00586995 0.78679 ± 0.016633

βuv
4.05839 ± 0.055065 2.962457 ± 0.0272975 4.24605 ± 0.057478

βdv −0.0075767 ± 0.16530 0.00262071 ± 0.082775 0.00105091 ± 0.17327
αs(Q

2
0) 0.49941 ± 0.017535 0.45056 ± 0.007143 0.41758 ± 0.01003

αs(M
2
z ) 0.12101 ± 0.000551 0.11958 ± 0.007143 0.118011 ± 0.000505

χ2/d.o.f 368.8118/223 = 1.6538 327.6235/223 = 1.4691 310.0293/223 = 1.39026
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Figure 5: xuv and xdv at Q2 = 10GeV 2 in NLO, N2LO and
N3LO approximation in Mellin model compare with

MSHT20 [53] and MSHT23 [54]

structure function over the entire x:

GLS(Q2) =
1

2

ˆ 1

0

xF ν̄p+νp
3 (x,Q2)

x
dx . (21)

Its experimental verification provides valuable con-
straints on the parameters of the electroweak theory and
is crucial for understanding the interplay between weak
and strong interactions in the nucleon. By accurately ex-
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Figure 6: xF3 in NLO , N2LO and N3LO approximation in
Mellin model compare with CCFR data [25]

tracting the value of the GLS sum rule from experimental
data and comparing it with theoretical predictions, we
can gain insights into the quark and parton distributions
inside the nucleon and shed light on the physics beyond
the Standard Model.

In the work of Ref. [56], authors reported the following
result for the measurement of the GLS sum rule at the
scale |Q2| = 3 GeV2,

GLS (|Q2| = 3 GeV2) = 2.5±0.018 (stat.)±0.078 (syst.).
(22)

The value of the GLS sum rule at the scale |Q2| = 8
GeV2 is reported as 2.62± 0.15 in Ref. [57]. In our work,
we obtained GLS, (|Q2| = 8,GeV2) = 2.46591± 0.06289
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Mellin model compare with NuTeV data [26].
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for the NLO analysis GLS, (|Q2| = 8,GeV2) = 2.46271±

0.04021 and for N2LO analysis ,GLS, (|Q2| = 8,GeV2) =
2.32743± 0.03761 and for N3LO analysis in Mellin space
which are in good agreement with the results obtained
by mentioned research groups.

VI. SUMMARY AND CONCLUSIONS

In this paper, we present an analysis of the valence
quark distribution functions in the proton using Gegen-
bauer polynomials for their parameterization. These
polynomials have many advantages in QCD analysis;
they provide a flexible framework for expanding func-
tions, allowing the approximation of various shapes and
behaviors in the PDFs, and facilitating the fitting of ex-
perimental data and extraction of relevant physical quan-
tities. Moreover, Gegenbauer polynomials enable the
systematic incorporation of higher-order NNNLO cor-
rections, thereby enhancing the precision of theoretical
predictions in QCD analyses. In our analysis, we em-
ploy precise splitting functions and Wilson coefficients,
eschewing the use of Padé approximation, at the Next-to-
Next-to-Next-to-Leading Order. In fact we demonstrated
that using the Gegenbauer polynomial for parameteriza-
tion is a fast, precise, and direct way to calculate the
final structure function with high accuracy. The com-
parison with the MSTH23 and MSTH20 results, which
used the Chebyshev polynomials, shows the advantage of
the Gegenbauer polynomials and provides a more precise
determination of xF3 in the kinematic region of interest
without complicated calculations.

Through careful analysis, the figures presented in our
study show a convincing correspondence with both es-
tablished models and empirical data, attesting to the ro-
bustness and reliability of our methodology. This concor-
dance underscores the validity of our findings and sup-
ports the wider applicability of our approach within the
field of particle physics.

Appendix A: FORTRAN PACKAGE OF OUR NLO
, NNLO and NNNLO PDFS

A FORTRAN package containing our unpolarized PDFs
a at NLO , NNLO and NNNLO approximation as well
as the unpolarized structure functions xF3(x,Q

2) can be
obtained via Email from the authors upon request. This
package includes an example program to illustrate the
use of the routines.
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