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Abstract

In this paper, the asymptotic behaviors of the transition probability
for two-level avoided crossings are studied under the limit where two pa-
rameters (adiabatic parameter and energy gap parameter) tend to zero.
This is a continuation of our previous works where avoided crossings are
generated by tangential intersections and obey a non-adiabatic regime.
The main results elucidate not only the asymptotic expansion of transi-
tion probability but also a quantum interference caused by several avoided
crossings and a coexistence of two-parameter regimes arising from differ-
ent vanishing orders.

1 Introduction

In quantum mechanics, especially in the quantum chemistry, the adiabatic ap-
proximation and the Born-Oppenheimer approximation are widely used. The
adiabatic theorem, the motivation of these approximations, asserts that in the
slowly varying Hamiltonian the quantum effect like the transition between the
energy-levels hardly occurs. From this point of view, it is important to ac-
curately describe how much slowing down the variation shrinks the transition
probability.

In this paper, we study a mathematical model such that the transition prob-
ability is not always small even in case of the adiabatic approximation. Since
the transition probability intuitively depends on the size of the smallest gap be-
tween energy-levels, the approaching (resp. receding) speed to (resp. from) the
smallest gap, and the quantum interference, we consider asymptotic behavior
in a two-parameter singular limit h, ε→ +0 of solutions to the time-dependent
Schrödinger equation

ih
d

dt
ψ(t) = H(t; ε)ψ(t), t ∈ R. (1.1)
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Here, the Hamiltonian H(t; ε) is given as a 2× 2 matrix-valued function

H(t; ε) :=

(
V (t) ε
ε −V (t)

)
, (1.2)

where V (t) is a real-valued smooth function and h, ε are small positive param-
eters. Its two eigenvalues are

E±(t; ε) = ±
√
V (t)2 + ε2.

In this model, the ratio t/h is interpreted as the time variable, E±(t; ε) are the
two energy-levels of H(t; ε), and the adiabatic limit h → 0 corresponds to the
slow variation of the Hamiltonian H(t; ε) compared with the time.

According to the adiabatic theorem, one expects that for a solution ψ(t) to
(1.1), the projection Π−(t; ε)ψ(t) onto the eigenspace associated with E−(t; ε)
is “small” for every t ∈ R if ψ(t0) belongs to the eigenspace associated with
E+(t0; ε) at some t0 ∈ R. More simply, we can say that the adiabatic theorem
asserts the smallness of the transition probability. Here, we call

P (ε, h) := lim
t→+∞

∥∥Π−(t; ε)J
+
ℓ (t)

∥∥2
C2 (1.3)

the transition probability, where J+
ℓ is the normalized solution to (1.1) such that

limt→−∞
∥∥Π−(t; ε)J

+
ℓ (t)

∥∥
C2 = 0 with

∥∥J+
ℓ (t)

∥∥
C2 = 1 (this solution will be intro-

duced in Appendix A.1). These limits exist under suitable conditions on V near

infinity (Condition A in this paper). Note that ∥ψ(t)∥2C2 =
∑

± ∥Π±(t; ε)ψ(t)∥2C2

is constant in t for any solution ψ.
As long as ε > 0, the two energy-levels E±(t; ε) are smooth functions of t,

and never intersect with each other:

inf
t∈R

|E+(t; ε)− E−(t; ε)| = inf
t∈R

2
√
V (t)2 + ε2 ≥ 2ε > 0. (1.4)

This quantity called the energy-gap is bounded from below by 2ε even if V
vanishes at some point. This phenomenon occurring near each zero of V is
called an avoided crossing. The simplest case V (t) = vt with a positive constant
v is investigated individually by L.D. Landau and C. Zener in 30’s [16, 23]. The
transition probability

P (ε, h) = exp

(
−πε

2

vh

)
(1.5)

for this case is known as the Landau-Zener formula. This is exact and true
for any positive ε, h. For fixed ε > 0, this formula implies that the transi-
tion probability is exponentially small with respect to h > 0. There are many
results generalizing the Landau-Zener formula. Under some analyticity con-
dition, such an exponential decay estimate is obtained even in case of more
general Hamiltonian, for example operator-valued unbounded Hamiltonians as
in [4, 5, 12, 13, 17], while a smoothness condition without an analyticity yields
nothing but a polynomial decay with respect to h as in [15]. Note that in the
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general setting, the condition of the energy-gap is replaced with the gap con-
dition, which mandates that the spectrum is decomposed into a disjoint union
of two subsets and that the distance between them is positive. The history of
these generalizations can be consulted in the survey [9] and in the books [8, 19].

The transition probability may become larger when the energy-gap is also
small. In our model, this situation occurs if V (t) vanishes at some t and if ε
(see (1.4)) is sufficiently small compared with h. One observes from Landau-
Zener formula (1.5) that the transition probability is small and the adiabatic
approximation is reasonable if ε ≫ h1/2. However, one also observe that it is
almost one if ε ≪ h1/2. The former situation is called the adiabatic regime,
and the latter the non-adiabatic regime, which was discussed in [22] and also in
[3, 18].

The leading term of the transition probability is given by the same formula
by replacing v with |V ′(0)| when V (t) vanishes only at t = 0 and V ′(0) ̸= 0,
namely, the situation that V (t) and −V (t) intersect transversely at t = 0 (see
[12] and also its microlocal version [3]). From the viewpoint of the energy-levels,
the approaching/receding |E+(t; ε)− E−(t; ε)| − 2ε = 2(

√
V (t)2 + ε2 − ε) near

a transversal crossing of ±V is of order |t|.
In the tangential case V ′(0) = 0, the transition probability is studied by one

of the authors under the condition ε≫ hm/(m+1) corresponding to the adiabatic
regime, where m stands for the vanishing order of V at t = 0 as in [20, 21]
(equivalently, |E+(t; ε)−E−(t; ε)| − 2ε is of order |t|m). In this case, transition
probability is exponentially small as hε−(m+1)/m tends to 0. The analyticity of
V and the adiabatic regime condition are necessary for applying the exact WKB
method. In fact, the “complex crossing points” of the energy-levels, which are
the zeros of E+(t; ε) − E−(t; ε) on the complex plane and are called turning
points in the WKB method, are essential for this case. The adiabatic regime
condition implies that these complex crossing points are not too close to each
other.

On the other hand, the situation corresponding to the non-adiabatic regime
ε ≪ hm/(m+1) is studied by the other author [10]. He applied other classical
method (also used in [2]) to a little bit more general setting. The transition
probability is almost one as in the Landau-Zener formula only when m is odd,
and that it is still small of order εh−m/(m+1) when m is even.

One of other generalizations is the existence of several avoided crossings.
Following the classical probability theory, one may think that the transition
probability is obtained by multiplying and summing the non-negative “local
transition probability” around each avoided crossing. However, as well as other
quantum situations, only a complex-valued probability amplitude is associated
with each avoided crossing. Then the “total” probability amplitude is given by
multiplying and summing them, and the transition probability is its absolute
square. This phenomenon is treated in [14, 21, 22].

This paper is a continuation of the authors’ previous works in the viewpoint
of dealing with several avoided crossings generated by tangential intersections
with different vanishing orders in the non-adiabatic regime. Our first result,
Theorem 1, concerns several tangential avoided crossings in the non-adiabatic
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regime, that is, ε ≪ hm/(m+1) with m the maximum among the avoided cross-
ings. It shows that the transition probability is almost one when the number
of odd avoided crossings is odd and that it is small of order εh−m/(m+1) when
the number is even. The effect of the quantum interference appears in the co-
efficient of the term of order εh−m/(m+1). In Formula (2.8), the second term
describes the quantum interference while the first term is given by the sum of
absolute square of the local transition probability amplitudes. In particular,
this coefficient vanishes in some cases. We also show some concrete models (see
Remark 2.4 and Examples 2.5 and 2.7).

One notices that the border of the parameter regimes for each avoided cross-
ing depends on the vanishing order m. Consequently, there are parameter
regimes which is adiabatic for some avoided crossings and non-adiabatic for
the others when there are several tangential intersections of V (t) and −V (t).
Our second result , Theorem 2, concerns this situation, and shows that the lead-
ing term of the transition probability depends on the parity of the number of
odd avoided crossings in the non-adiabatic regime. Since the local probability
amplitude around an avoided crossing in the non-adiabatic and adiabatic regime
has already been computed in Theorem 1 and in [21], Theorem 2 is obtained by
combining them. The novelties of this paper are to examine precisely the tran-
sition probability in the intermediate regime, where the non-adiabatic regime
and the adiabatic one coexist, and to elucidate a possibility of “switching of
the transition probability” by varying two parameters ε, h continuously without
changing V (t) as in Example 2.11. Note that the situation neither adiabatic
nor non-adiabatic regime, namely, ε ∼ hm/(m+1) for some m ≥ 2, has not been
treated yet, although the case for m = 1 was treated by [7].

Our proof is based on the classical method. We first introduce the Jost solu-
tions J±

ℓ = J±
ℓ (t; ε, h) and J±

r = J±
r (t; ε, h) admitting the asymptotic behavior

(2.1) at infinity, and in particular, J+
ℓ satisfies (1.3) (see Appendix A.1 for the

construction). Then the total transition probability amplitude and the tran-
sition probability are s21(ε, h) and the square of its modulus, where s21(ε, h)
stands for the (2, 1)-entry of the scattering matrix S(ε, h) defined by

(J+
ℓ (t; ε, h), J−

ℓ (t; ε, h)) = (J+
r (t; ε, h), J−

r (t; ε, h))S(ε, h).

Note that one has

Π−(t; ε)J
+
ℓ (t; ε, h)− s21(ε, h)J

−
r (t; ε, h) → 0 as t→ +∞.

To study the entries of S(ε, h), we continue the solutions J±
ℓ from −∞ to +∞.

More precisely, we construct solutions which approximately belong to the eigen-
spece associated with E±(t; ε) away from any avoided crossings, and compute
the transfer matrices between the bases consisting of such solutions. The trans-
fer matrix is almost diagonal when there is no avoided crossing between two
points. Thus, the transfer matrix Tk across each avoided crossing near tk is
crucial to obtain the transition probability. The four entries of Tk are the prob-
ability amplitudes of the local transition at the vanishing point tk.

The asymptotic behavior of Tk around each avoided crossing near tk is given
in Theorem 3. As we mentioned above, the exact WKB solutions used in the
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previous work [21] concerning avoided crossings generated by tangential inter-
section are no longer valid in the non-adiabatic regime. The solutions are con-
structed in Section 3 by the method of successive approximations (MSA for
short) due to [2, 10]. For example, the (1, 2) and (2, 1)-entries of T (ε, h) cor-
respond to the local transition probability amplitude from E+ to E− and from
E− to E+ when the vanishing order m is odd and V (t)(t − tk) ≥ 0 near tk.
The leading term of them is given by applying the degenerate stationary phase
method (Lemma 3.2) to the oscillatory integral (4.7), where the derivative of

the phase function ∓2
∫ t

0
V (r)dr off-course has a zero of the same order as V .

This paper is organized as follows. In Section 2, we make precise the defini-
tions and settings, and state our main results Theorems 1 and 2. We construct
the solutions by the method of successive approximations (MSA) in Section 3,
and prove the connection formulas Theorem 3 and Proposition 4.2 by using
these solutions in Section 4. Finally, we will complete the proofs in Section 5.
To obtain the product of 2n + 1 matrices of SU(2), we employ an algebraic
formula shown in Appendix A.2.

2 Results

2.1 Assumptions and main result

As mentioned in the introduction, we focus on the non-adiabatic regime and
work under the C∞-category without any assumption on the analyticity. We
notice that the assumption on V (t) and the setting of the problem are sightly
different from the previous work [22] but the definitions of the transition prob-
ability in the series of our works are the same. We first assume the following:

Condition A. The function V (t) ∈ C∞(R;R) has a limit Vr ∈ R \ {0} (resp.
Vℓ ∈ R \ {0}) as t→ +∞ (resp. −∞), and satisfies

V − Vr ∈ L1([0,+∞)), V − Vℓ ∈ L1((−∞, 0]), V ′ ∈ L1(R).

For simplicity, we assume Vr > 0. Based on the argument in Appendix
A.1 under Condition A, one sees the unique existence of Jost solutions J±

• (t)
(• ∈ {ℓ, r}) which satisfy the asymptotic conditions:

J+
r (t) ∼ exp

[
− it
h

√
V 2
r + ε2

](
cos θr
sin θr

)
as t→ +∞,

J−
r (t) ∼ exp

[
+
it

h

√
V 2
r + ε2

](
− sin θr
cos θr

)
as t→ +∞,

J+
ℓ (t) ∼ exp

[
− it
h

√
V 2
ℓ + ε2

](
cos θℓ
sin θℓ

)
as t→ −∞,

J−
ℓ (t) ∼ exp

[
+
it

h

√
V 2
ℓ + ε2

](
− sin θℓ
cos θℓ

)
as t→ −∞,

(2.1)

where tan 2θ• = ε/V• with 0 < θ• < π/2 (equivalently determined by θ• =
arctan(ε−1(

√
V 2
• + ε2 − V•))). The pairs (J+

r , J
−
r ) and (J+

ℓ , J
−
ℓ ) form bases
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of the solution space. Each of them corresponds to one of the eigenvalues
±
√
V 2
r + ε2 and ±

√
V 2
ℓ + ε2 of H(t, ε) at the infinity. Note that a function

ψ = t(ψ1, ψ2) is a solution to (1.1) if and only if t(−ψ2, ψ1) is so. This implies
that (J+

r (t), J−
r (t)) and (J+

ℓ (t), J−
ℓ (t)) are orthonormal bases on C2 at each

t ∈ R. Then we can introduce the scattering matrix S(ε, h) as the change of
basis between the pairs of Jost solutions:

(
J+
ℓ , J

−
ℓ

)
=
(
J+
r , J

−
r

)
S(ε, h), S(ε, h) =

(
s11(ε, h) s12(ε, h)
s21(ε, h) s22(ε, h)

)
. (2.2)

This matrix is unitary. In particular, one has |s11| = |s22|, |s12| = |s21|, and
|s11|2 + |s21|2 = 1.

Definition 2.1. The transition probability P (ε, h) is defined by

P (ε, h) := |s21(ε, h)|2.

Remark 2.2. The above definition of the transition probability is equivalent to
(1.3). In fact, one has ∥J±

• (t)∥C2 = 1 for any t, and

lim
t→−∞

∥∥Π±J
±
ℓ (t)

∥∥
C2 = 1, lim

t→−∞

∥∥Π∓J
±
ℓ (t)

∥∥
C2 = 0,

lim
t→+∞

∥∥Π±J
±
r (t)

∥∥
C2 = 1, lim

t→+∞

∥∥Π∓J
±
r (t)

∥∥
C2 = 0.

Condition B. The function V (t) has a finite number of zeros t1 > · · · > tn on
R, where each zero tk for k = 1, . . . n is of finite order denoted by mk.

This assumption implies that for k = 1, . . . , n,

V (l)(tk) = 0 (1 ≤ l < mk), vk := V (mk)(tk) ̸= 0. (2.3)

Let m∗ denote the maximal order of the zeros:

m∗ = max
j∈{1,2,...,n}

mj (2.4)

and let Λ∗ denote the index set of k ∈ {1, 2, . . . , n} which attains m∗ (i.e.,
mk = m∗ ⇐⇒ k ∈ Λ∗). Put

σk :=

k∑
j=1

mj (2.5)

for k = 1, 2, . . . , n. Then Vr = limt→+∞ V (t) > 0 implies that σk determines
the sign of V (t) on each interval (tk+1, tk), and in particular σn determines the
sign of Vℓ, namely (−1)σkV (t) > 0 for tk+1 < t < tk and (−1)σnVℓ > 0.

As we mentioned in the introduction, the ratio of ε and (a specific power of)
h is crucial. We set

µ∗ := µm∗ , (2.6)
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Figure 1: An example of V (t) and energies E±(ε, h)

where
µm = µm(ε, h) := εh−

m
m+1 (2.7)

for each m ∈ N. We focus on the regime µ∗ ≪ 1. In the case where there
exists at least one avoided crossing generated by a tangential intersection, that
is m∗ ≥ 2, we obtain the following result.

Theorem 1. Assume Conditions A, B and m∗ ≥ 2. Then there exist µ0 > 0
and h0 > 0 such that, for any ε and h with µ∗(ε, h) ∈ (0, µ0] and h ∈ (0, h0],
the transition probability P (ε, h) has the asymptotic expansions:

P (ε, h) =


1− C∗(h)µ

2
∗ + O

(
µ2
∗

(
µ∗ + h

1
m∗(m∗+1)

))
if σn is odd,

C∗(h)µ
2
∗ + O

(
µ2
∗

(
µ∗ + h

1
m∗(m∗+1)

))
if σn is even,

where the coefficient C∗(h) consists of the product of two factors γ∗ and δ∗(h),
that is C∗(h) = γ∗δ∗(h), which are given by

γ∗ = 4

(
(m∗ + 1)!

2

) 2
m∗+1

Γ

(
m∗ + 2

m∗ + 1

)2(
1− 1 + (−1)m∗

2
sin2

(
π

2(m∗ + 1)

))
,

δ∗(h) =
∑
j∈Λ∗

|vj |−
2

m∗+1 + 2
∑

j,k∈Λ∗
j<k

|vjvk|−
1

m∗+1 cos

(
2

h

∫ tj

tk

V (t)dt+ θj,km∗

)
, (2.8)

with

θj,km∗
=

(sgn vj)
π

m∗ + 1
if m∗ is odd and sgn vj = − sgn vk,

0 otherwise.

Here, Γ stands for the standard Gamma function Γ (z) =
∫ +∞
0

tz−1e−tdt.

Remark 2.3. When every avoided crossing is generated by a transversal in-
tersection, that is, m∗ = 1, Theorem 1 is proven in [22] under an additional
assumption that V is analytic near the real line. Our method also deduces the
same asymptotic formula under Conditions A, B and the additional condition
that µ̃1 := (log(1/h))1/2εh−1/2, replaced with µ1, is sufficiently small (see also
[10, Remark 1.2]).
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Figure 2: Cases (b) (left) and (c) (right) in Example 2.5

Remark 2.4. The factor γ∗ depends only on the highest order m∗ of the zeros
and never vanishes while the factor δ∗(h) depends also on the behavior of V not
only the local property at zeros and may vanish. This vanishing phenomenon
corresponds to the destructive quantum interference. Suppose, for example, that
|vj | among j ∈ Λ∗ are the same. Put N∗ := #Λ∗ and n∗ := minΛ∗. Then the
condition for δ∗(h) to vanish is given by

N∗ + 2

 ∑
j∈Λ∗\{n∗}

cosVj +
∑

j,k∈Λ∗\{n∗}
j<k

cos(Vj − Vk)

 = 0, (2.9)

where

Vj :=
2

h

∫ tj

tn∗

V (t)dt+
1− (−1)m∗

2
(sgn vj)

π

2(m∗ + 1)
. (2.10)

The algebraic curve (2.9) in (N∗ − 1)-variables {Vj}j∈Λ∗\{n∗} appears as so-
called Fermi surface in the context of the discrete Laplacian on the (N∗ − 1)-
dimensional diamond lattice, which is a generalization of the hexagonal lattice
(see [1]).

The rest of this subsection is devoted to the concrete expression of the tran-
sition probability in Theorem 1 for typical models by means of the following ge-
ometric quantity on the (time-energy) phase space. For each k = 1, 2, . . . , n−1,
we denote the area enclosed by V (t) and −V (t) between tk+1 and tk by

Ak := 2

∫ tk

tk+1

|V (t)| dt. (2.11)

Example 2.5 (Two avoided crossings). Let the number n of avoided crossings
be two. Then the transition probability P (ε, h) is 1 (resp. 0) modulo O(µ2

∗) if the
sum σ2 = m1+m2 of the order of zeros is odd (resp. even). In particular, when
the two zeros have the same order, one sees that P (ε, h) = O(µ2

∗) independent
of the parity of the order. We give the coefficient C∗(h) attached to µ2

∗ in each
situation:

(a). m1 > m2;

C∗(h) = γm1
|v1|−

2
m1+1 . (2.12)
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(b). m1 = m2 ∈ 2Z− 1 and |v1| = |v2|;

C∗(h) = 4γm1 |v1|
− 2

m1+1 cos2
(
A1

2h
− π

2(m1 + 1)

)
. (2.13)

(c). m1 = m2 ∈ 2Z and |v1| = |v2|;

C∗(h) = 4γm1 |v1|
− 2

m1+1 cos2
A1

2h
. (2.14)

Remark 2.6. In Cases (b) and (c) of Example 2.5, we see that C∗(h) may
vanish and the order of the transition probability varies due to the destructive
quantum interference under the Bohr-Sommerfeld type quantization rule

A1

h
+ π ∈ 2πZ Case (b),

A1

h
+

m1π

m1 + 1
∈ 2πZ Case (c).

(2.15)

This condition is a generalization of that shown in [22] (for m1 = 1).

Example 2.7 (Three avoided crossings). Let n = 3. The transition probability
is determined modulo O(µ2

∗) by the sum (m1+m2+m3) whereas the coefficient
C∗(h) attached to µ2

∗ is determined by zeros tj only for j ∈ Λ∗ and by integrals of
V between them. In particular, when #Λ∗ ≤ 2 and Λ∗ ̸= {1, 3}, the coefficient
C∗(h) is given by the same formula as a model with two avoided crossings.

(a). Λ∗ = {1, 3} and |v1| = |v2|;

C∗(h) = 4γm1
|v1|−

2
m1+1 cos2

(
A1 + (−1)m2A2

h

)
. (2.16)

(b). m1 = m2 = m3 ∈ 2Z− 1 and |v1| = |v2| = |v3|;

C∗(h) = γm1 |v1|
− 2

m1+1

[
3 + 2

(
cos
(A1

h
− π

m1 + 1

)
(2.17)

+ cos
(A2

h
− π

m1 + 1

)
+ cos

(A1 −A2

h

))]
.

(c). m1 = m2 = m3 ∈ 2Z and |v1| = |v2| = |v3|;

C∗(h) = γm1 |v1|
− 2

m1+1

[
3 + 2

(
cos

A1

h
+ cos

A2

h
+ cos

(
A1 +A2

h

))]
.

Remark 2.8. While the destructive quantum interference condition in the case
n = 2 is that the area on the phase space is quantized (i.e. discretized) as in
(2.15), that condition in n = 3 is that two areas lie along the Fermi curve.
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Figure 3: Cases b (above) and c (below) in Example 2.7

Figure 4: Adiabatic and non-adiabatic regimes (A)m and (N)m for m = 3, 11
(logarithmic scale, 10−150 ≤ ε, h ≤ 1, (A)m = {(ε, h); µm ≥ 100}, (N)m =
{(ε, h); 0 < µm ≤ 0.01}).
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2.2 Coexistence of the two parameter regimes

Recall that the quantum dynamics around each avoided crossing near t = tk
depends principally on the magnitude of the parameter µmk

. More precisely,
µmk

≪ 1 and µmk
≫ 1 correspond to the non-adiabatic and adiabatic regimes

(note that the regime µmk
∼ 1 is studied only for the transversal case mk = 1

[3]). This parameter is different for two zeros of V (t) with different order, thus
the transition problem with several avoided crossings generated by tangential
intersections admits various regimes.

Note that µm obeys the algebraic order relation:

m < m′ ⇐⇒ µm < µm′ . (2.18)

The regime µm∗ ≪ 1 considered in Theorem 1 corresponds to non-adiabatic
regime µmk

≪ 1 for every k ∈ {1, . . . , n}. Conversely, the regime µm⊛ ≫ 1
(with m⊛ standing for the minimum order mink∈{1,...,n}mk) considered in [20]
corresponds to adiabatic regime µmk

≫ 1 for every k.
Here, we consider the case that the two different regimes coexist, that is, the

set of indices is decomposed into a disjoint union of two parts

{1, 2, . . . , n} = Λ♯ ⊔ Λ♭

such that
µmk

≫ 1 (∀k ∈ Λ♯), µmk
≪ 1 (∀k ∈ Λ♭).

Again by (2.18), this corresponds to

µ♯ := µm♯
≫ 1, µ♭ := µm♭

≪ 1,

where we put m♭ := maxk∈Λ♭
mk and m♯ := mink∈Λ♯

mk. We also put

Λ♭ := {k; mk = m♭}, Λ♯ := {k; mk = m♯}.

Figure 4 illustrates the regimes for m = 3, 11. When each zero of V is either
of order 3 or 11, we here study the regime (N)3 ∩ (A)11 while Theorem 1 and
[20] concern the regime (N)11 and (A)3, respectively. In Figure 5, the problem
here corresponds to (N)1 ∩ (A)2 or (N)2 ∩ (A)3. Note also that these figures
are displayed with a logarithmic scale. Hence the borders between regimes
are straight lines. Indeed, the border µm = c for some c > 0 is rewritten as
log ε = log c+ m

m+1 log h.
In the study of adiabatic regime, one of the authors employed the exact-

WKB method [20] which requires the function V to be analytic. Hence we also
suppose the additional condition.

Condition C. V (t) is real-analytic on an interval containing [tn, t1].

Under this condition, when ε is small enough, there exist 2mk zeros of V (t)2+
ε2 near each t = tk like the power roots. We call these zeros turning points and

11



Figure 5: Adiabatic and non-adiabatic regimes (A)m and (N)m for m = 1, 2, 3.

denote the nearest two turning points to the real axis on the upper half-plane
by ζk,1(ε), ζk,mk

(ε), which behave like

ζk,j(ε) ∼ tk +

(
mk!

vk
ε

)1/mk

exp

[
2j − 1

2mk
πi

]
as ε→ 0. As in [22], the action integral Ak,j(ε) for j = 1,mk is given by

Ak,j := 2

∫ ζk,j(ε)

tk

√
V (t)2 + ε2 dt,

where the path is the segment from tk to ζk,j(ε) and the branch of the square
root of the integrand is ε at t = tk. Note that ImAk,j > 0 on this branch and
there exist ak,j > 0 such that

ImAk,j = ak,jε
(mk+1)/mk +O

(
ε(mk+2)/mk

)
as ε→ 0.

Roughly speaking, the absolute value of the “probability amplitude of the
transition around an avoided crossing near tk” is small in the limit µmk

→ +∞.
Contrary to the non-adiabatic case Λ♭, this fact is independent of the parity of
mk. The probability amplitude has the same order as

exp
[
−akµ(mk+1)/mk

mk

]
≪ 1, ak := min{Imak,1, Imak,mk

}.

From the sake of distinguishing this difference, we introduce

Λodd
♯ = {k ∈ Λ♯ ; mk : odd} = {k(1), k(2), . . . , k(N)},

where N = #Λodd
♯ stands for the number of the elements of Λodd

♯ , and the
elements are labeled in ascending order k(1) < k(2) < · · · < k(N).

We also introduce the effective energy Ṽ (t) = Ṽ (t;m♭,m♯) in this regime by

Ṽ (t) =

{
−V (t) on (tk(2l−1), tk(2l)),

V (t) otherwise,
(2.19)
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where tk(2l) is taken as −∞ when tk(2l−1) = tk(N) (see also (2.21)).
Putting a := mink∈Λ♯

ak and introducing two functions

ϵ1 = ϵ1(m♭,m♯, a) = µ♭ + exp
[
−aµ(m♯+1)/m♯

♯

]
,

ϵ2 = ϵ2(m♭,m♯, a) = µ♭

(
µ♭ + h

1
m♭(m♭+1)

)
+ µ

−(m♯+1)/m♯

♯ exp
[
−aµ(m♯+1)/m♯

♯

]
,

we state the asymptotic expansion of the transition probability in this interme-
diate regime:

Theorem 2. Assume Conditions A, B and C. Then there exist 0 < µ0 < 1
and h0 > 0 such that, for any ε and h satisfying µ♭ < µ0 < µ−1

0 < µ♯, and
h ∈ (0, h0], the transition probability P (ε, h) has the asymptotic expansions:

P (ε, h) =

 1− L(ε, h) + E(ε, h) if (σn +N) is odd,

L(ε, h) + E(ε, h) if (σn +N) is even,

where the leading term L(ε, h) = O(ϵ21) and the error therm E(ε, h) = O(ϵ1ϵ2).

Remark 2.9. The parity which characterizes the transition probability depends
not only on σn determined by V but also on N determined by the regime. This
implies that the switch of P (ε, h) occurs with changing the regime without doing
the energy V (see Figure 6).

As we mentioned in Section 2.2, Theorem 2 covers the range of the pair of
the parameters (ε, h) included in the parameter regime determined by m♭ and
m♯. Regarding ε as a function of h like a one-parameter problem, we find the
typical cases, which realize the intermediate regime µ♯ → ∞ and µ♭ → 0.

Polynomial case: If ε ∼ hα with

m♭

m♭ + 1
< α <

m♯

m♯ + 1
,

the contribution coming from Λ♯ is exponentially small.

Logarithmic case: If ε = (h log(1/hρ))m♯/(m♯+1) with some positive constant
ρ, the contribution coming from Λ♯ must be taken into account, since

exp[−aµ(m♯+1)/m♯

♯ ] = haρ.

In the former case, the leading term is similar to that in Theorem 1 and is
given by

L(ε, h) = µ2
♭

∑
j∈Λ♭

γ♭|vj+1|
− 2

m♭+1 + 2
∑

j,k∈Λ♭
j<k

ReC♭♭
j,k(ε, h) cos

[
1

h

∫ tj

tk

Ṽ (t)dt

] ,

(2.20)
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where the factor C♭♭
j,k(ε, h) is of O(1) and consulted in (5.16). In other cases

including the latter case, the leading term is more complicated than (2.20). In
fact, the leading term L(ε, h) is of the form:

µ2
♭

∑
j∈Λ♭

γ♭|vj+1|
− 2

m♭+1 + 2
∑

j,k∈Λ♭
j<k

ReC♭♭
j,k(ε, h) cos

[
1

h

∫ tj

tk

Ṽ (t)dt

]
+
∑
k∈Λ♯

exp
[
−2akµ

(m♯+1)/m♯

♯

]
+ 2

∑
j∈Λ♭,k∈Λ♯

j<k

ReC♭♯
j,k(ε, h)µ♭ exp

[
−akµ

(m♯+1)/m♯

♯

]
cos

[
1

h

∫ tj

tk

Ṽ (t)dt

]

+ 2
∑

j,k∈Λ♯

j<k

ReC♯♯
j,k(ε, h) exp

[
−(aj + ak)µ

(m♯+1)/m♯

♯

]
cos

[
1

h

∫ tj

tk

Ṽ (t)dt

]
,

where C♭♯
j,k(ε, h) and C♯♯

j,k(ε, h) are of O(1) and referred in (5.17) and (5.18)
respectively.

Remark 2.10. The mixed terms coming from ϵ21 correspond to quantum inter-
ference terms referred in Remark 2.4. The phase shift caused by the integral of
the energy V changes into the phase shift done by that of the effective energy Ṽ
as in Figure 6.

In our method, we represent the Jost solution J+
ℓ by several bases. As

we mentioned in the introduction, each basis is consists of solutions corre-
sponding to an eigenvector associated with E±(t, ε) in each region between
two avoided crossings. Consequently, the absolute value of the coefficients gives
∥Π±(t; ε)J

+
ℓ ∥C2 . Moreover, one observes from our proof that

1 ∼ ∥Πσ(t)(t; ε)J
+
ℓ (t)∥C2 > ∥Π−σ(t)(t; ε)J

+
ℓ (t)∥C2 ∼ 0, (2.21)

for any t ∈ R, where σ(t) := (−1)σn+N sgn Ṽ (t). In this sense, (the square
of) the modulus of the probability amplitude that the energy follows the curve
τ = Eσ(t)(t; ε) is almost 1. In Figure 6, we draw this curve in green.

Example 2.11. Figure 6 shows an example case with mk = 2k−1 (k = 1, 2, 3).

3 Construction of exact solutions

In this section, we construct exact solutions which form a local basis near each
vanishing point t = tk by means of a method of successive approximations due
to [6]. While the equation treated there is a second order 2× 2 system of time-
independent Schrödinger equations, our equation in this paper is a first order
2× 2 system.
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Figure 6: Change of the effective energy of Example 2.11 for each regime

3.1 Estimates of fundamental solutions

For simplicity, we assume tk = 0, and let m denote mk. Let I be a small interval
containing the vanishing point 0 in its interior. We fix

u±(t) = exp

(
∓ i

h

∫ t

0

V (s)ds

)
as a particular solution to

(hDt ± V (t))u = 0 on I (3.1)

respectively, where Dt stands for −id/dt. For any point a ∈ I, we define an
integral operator K±

a by

K±
a f(t) :=

i

h
u±(t)

∫ t

a

f(s)

u±(s)
ds for f ∈ C(I), (3.2)

where C(I) is the Banach space of continuous functions on I equipped with the
norm ∥f∥C(I) := supx∈I |f(x)|. Since

(hDt ± V (t))K±
a f = f for f ∈ C(I), (3.3)

for any a ∈ I, the integral operator K±
a : C(I) → C(I) is well-defined as a

fundamental solution of hDt ± V (t) respectively for the signs ±.
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Using these fundamental solutions K±
a± with base points a± ∈ I respec-

tively, our equation (1.1) turns into the integral system with arbitrary constants
c+, c− ∈ C: {

ψ1(t) = −εK+
a+ψ2(t) + c+u+(t),

ψ2(t) = −εK−
a−ψ1(t) + c−u−(t).

(3.4)

Depending on the choice of the base points a+ and a−, the initial value for ψ1

and ψ2 at these points are determined:

ψ1(a
+) = c+u+(a+), ψ2(a

−) = c−u−(a−).

In the next subsection, we show a construction of the unique solution to the
system by an iteration. For this purpose, we give the following estimates for the
fundamental solutions. Note that they are independent of ε, and this estimate
gives the critical rate µm = εh−m/(m+1).

Let ∥ · ∥q for q ∈ R be a norm on the space of continuously differentiable
functions C1(I) defined by

∥f∥q := sup
I

|f |+ hq sup
I

|f ′| f ∈ C1(I). (3.5)

Proposition 3.1. For any a± ∈ I, there exists C > 0 such that∥∥(u±)−1K±
a±(u

∓f)
∥∥

1
m+1

≤ Ch−
m

m+1 ∥f∥ 1
m+1

(3.6)

for h > 0 small enough.

For the sake of the proof of Proposition 3.1, we introduce the the following
lemma which plays an important role in this paper.

Lemma 3.2. On a compact interval I ⊂ R, consider the integral

II(h) :=
∫
I

f(t) exp

(
2i

h

∫ t

t0

V (s)ds

)
dt, (3.7)

with a continuously differentiable function f ∈ C1(I) possibly depending on h.
Then there exists a constant C > 0 independent of f (but depending on V ) such
that

|II(h)| ≤ Ch sup
I
(|f |+ |f ′|), (3.8)

for h > 0 small enough when V does not vanish on I. If t0 is the unique zero
in I of V , one has

|II(h)| ≤ C

(
h

1
m+1 sup

I
|f |+ h

2
m+1 sup

I
|f ′|
)

= Ch
1

m+1 ∥f∥ 1
m+1

, (3.9)

where m denotes the order of vanishing at t0. Moreover if f is independent of
h, we have

II(h) = f(t0)ωmh
1

m+1 +O(h
2

m+1 ). (3.10)
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Here, the constant ωm is given by

ωm = 2

(
(m+ 1)!

2|V (m)(t0)|

) 1
m+1

Γ

(
m+ 2

m+ 1

)
ηm, (3.11)

with

ηm :=


cos

(
π

2(m+ 1)

)
m : even,

exp

(
sgn(V (m)(t0))iπ

2(m+ 1)

)
m : odd.

(3.12)

Proof of Lemma 3.2. Suppose that V does not vanish on I, that is, a non-
stationary case. Then we have for t ∈ I

h

2iV (t)

d

dt
exp

(
2i

h

∫ t

t0

V (s)ds

)
= exp

(
2i

h

∫ t

t0

V (s)ds

)
. (3.13)

This with an integration by parts and the compactness of I implies the estimate
from above of |II(h)| by Ch supI(|f |+ |f ′|).

Suppose next that t0 is the unique zero of V in I. Take a smooth cut-
off function χ such that χ(t) = 1 for |t − t0| < Ch1/(m+1) and χ(t) = 0 for
|t− t0| > 2Ch1/(m+1). On the support of 1− χ, one has the estimate∣∣∣∣ ddt

(
f(t)

2iV (t)

)∣∣∣∣ ≤ C

tm+1

(
sup
I

|f |+ t sup
I

|f ′|
)
.

This with a similar argument as above implies that contribution coming from
the support of 1−χ to the integral is estimated by Ch1/(m+1)∥f∥ 1

m+1
. The other

part is estimated by h1/(m+1) supI |f | since the support of χ is O(h1/(m+1)), and
the estimate (3.9) follows.

We then suppose also that f is independent of h. Let g = g(t) be the smooth
function defined near t0 such that

2

∫ t

t0

V (s)ds = (t− t0)
m+1g(t), g(t) =

2V (m)(t0)

(m+ 1)!
+O(t− t0).

Take a smooth cut-off function χ whose value is 1 near t0 and supported only on
a small neighborhood where the change of the variable τ = (t− t0)|g(t)|1/(m+1)

is valid. Then one has∫
I

χ(t)f(t) exp

(
2i

h

∫ t

t0

V (s)

)
ds = |g(t0)|−

1
m+1

∫
R
χ(t(τ))f̃(τ)eσiτ

m+1/hdτ

with σ = sgn g(t0) and a smooth function f̃ = f̃(τ) satisfying f̃(0) = f(t0).
The resulting asymptotic formula is obtained from this integral by applying
the method of degenerate stationary phase (see e.g. [11]). The non-stationary
estimate (3.8) is applicable on the support of 1− χ.
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Based on this lemma, let us prove Proposition 3.1.

Proof of Proposition 3.1. For f ∈ C1(I), we have by definition

(u±)−1K±
a±(u

∓f)(t) =
i

h

∫ t

a±
exp

(
∓2i

h

∫ s

0

V (r)dr

)
f(s)ds.

According to (3.9) of Lemma 3.2, this integral is estimated by Ch
1

m+1 ∥f∥ 1
m+1

.

For the derivative, we have

d

dt

[
(u±)−1K±

a±(u
∓f)(t)

]
=
i

h
exp

(
∓2i

h

∫ t

0

V (r)dr

)
f(t).

This is clearly bounded by h−1 supI |f |.

Remark 3.3. The argument in the proof of Lemma 3.2 shows that the estimate
(3.6) becomes better as O(h) if the integral interval does not contain t = 0.

3.2 Method of successive approximations (MSA)

From Proposition 3.1, it follows that for each t(c+, c−) ∈ C2, there uniquely
exists a solution to the integral system (3.4). By a linearity of the system, the
solution is given by the linear combination c1w1(t) + c2w2(t) of the solutions
w1(t) and w2(t) corresponding to the choices e1 = t(1, 0) and e2 = t(0, 1) for
t(c+, c−). Moreover, the solution can be constructed by MSA:

w1(t) = w1(t; a
−, a+) :=


∑
k≥0

(ε2K+
a+K

−
a−)

ku+

−εK−
a−

∑
k≥0

(ε2K+
a+K

−
a−)

ku+

 (3.14)

resp. w2(t) = w2(t; a
+, a−) :=


−εK+

a+

∑
k≥0

(ε2K−
a−K

+
a+)

ku−∑
k≥0

(ε2K−
a−K

+
a+)

ku−


 (3.15)

in I for a fixed small εh−
m

m+1 . These iteration formulas imply that the solutions
admit the asymptotic expansions when µm := εh−

m
m+1 → 0 as follows:

w1(t; a
−, a+) =

(
u+(t) + ε2K+

a+K
−
a−u

+(t)

−εK−
a−u

+(t)

)
+

(
O(µ4

m)

O(µ3
m)

)
,

w2(t; a
+, a−) =

(
−εK+

a+u
−(t)

u−(t) + ε2K−
a−K

+
a+u

−(t)

)
+

(
O(µ3

m)

O(µ4
m)

)
.

(3.16)
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Notice that Proposition 3.1 allows us to choose arbitrarily the base points a±

of the fundamental solutions in this construction. As we mentioned in Remark
3.3, we obtain better asymptotic formulas

w1(t; a
−, a+) =

(
u+(t) +O(ε2/h)

O(ε)

)
on I ∩ {±t > 0} (3.17)

if ±a− > 0, that is, the integral interval [a−, t] of K−
a− does not contain the

zero, and likewise

w2(t; a
+, a−) =

(
O(ε)

u−(t) +O(ε2/h)

)
on I ∩ {±t > 0} (3.18)

if ±a+ > 0, that is, the integral interval [a+, t] of K+
a+ does not.

Take (ε, h)-independent constants r and ℓ such that ℓ < 0 < r and [ℓ, r] ⊂ I.
We define the four MSA solutions w1.r, w2,r, w1,ℓ, and w2,ℓ in I as

w1,r(t) := w1(t; r, r), w2,r(t) := w2(t; r, r),

w1,ℓ(t) := w1(t; ℓ, ℓ), w2,ℓ(t) := w2(t; ℓ, ℓ).
(3.19)

According to Proposition 3.1 and the asymptotic formula (3.16), one sees that
the asymptotic behaviors of these MSA solutions as µm → 0 are clear on [ℓ, r],
and also that wj,r(t) (resp. wj,ℓ(t)) (j = 1, 2) behave like the initial data uj(t)
near t = r (resp. t = ℓ) for a fixed small µm. Moreover the pairs (w1,r(t), w2,r(t))
and (w1,ℓ(t), w2,ℓ(t)) form bases of the space of solutions.

4 Connection formulas

In this section, we also treat a zero of V (t) as tk = 0 for simplicity. The purpose
of this section is to establish the two connection formulas. One of them connects
across the vanishing point and the other does between the consecutive vanishing
points.

4.1 Across the vanishing point

The crucial point of this proof is the connection formula between the two bases
(w1,r(t), w2,r(t)) and (w1,ℓ(t), w2,ℓ(t)) introduced by (3.19) in the previous sec-
tion. The claim of this subsection is the asymptotic behavior of the transfer
matrix T (ε, h) as follows:

Theorem 3. For the solutions defined by (3.19), we have(
w1,ℓ(t) w2,ℓ(t)

)
=
(
w1,r(t) w2,r(t)

)
T (ε, h), (4.1)

where the 2× 2-matrix T = T (ε, h) admits the following asymptotic formula:

T (ε, h) = I2 − iµmTsub +O(µ2
m + µmh

1
m+1 ) (4.2)
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as (ε, h) → (0, 0) with µm = εh−
m

m+1 → 0 and

Tsub =

(
0 ωm

ωm 0

)
, (4.3)

where ωm is given by (3.11) with t0 = 0.

Remark 4.1. By construction and the symmetry K±
a f = −K∓

a f , we have(
0 1
−1 0

)
w2,• = w1,• (• = r, ℓ). (4.4)

This makes T symmetrical in the following sense:

T =

(
τ1 −τ2
τ2 τ1

)
∈ SU(2), (4.5)

where SU(2) is the special unitary group of degree 2 (see §A.2). Namely, T is
unitary (|τ1|2 + |τ2|2 = 1). This is a consequence that the time evolution by H
is unitary and that for • = ℓ, r, the basis

(w1,•(•), w2,•(•)) =
((

u+(•)
0

)
,

(
0

u−(•)

))
of C2 is orthonormal.

Proof of Theorem 3. Since the pair (w1,r, w2,r) forms a basis of the space of
solutions, the matrix (w1,r(t)w2,r(t)) is invertible for any t ∈ I. Then (4.1) is
rewritten as

T (ε, h) = (w1,r(t)w2,r(t))
−1(w1,ℓ(t)w2,ℓ(t)),

where the right-hand side is also independent of t. Substituting r for t, we have

T (ε, h) =

(
u−(r) 0

0 u+(r)

)
(w1,ℓ(r)w2,ℓ(r))

= Id−
(

0 u−(r)εK+
ℓ u

−(r)
u+(r)εK−

ℓ u
+(r) 0

)
+O(µ2

m).

(4.6)

Here, we have used u+u− = 1 and (3.16).
In order to prove Theorem 3, it is enough to compute the asymptotic be-

havior of the quantity u−(r)εK+
ℓ u

−(r) as (ε, h) → (0, 0) with µm → 0. The
computation of

u−(r)εK+
ℓ u

−(r) =
iε

h

∫ r

ℓ

exp

(
2i

h

∫ t

0

V (s)ds

)
dt (4.7)

is carried out based on Lemma 3.2. In fact, since the integral interval [ℓ, r] of
(4.7) contains the zero of V (t), we have

u−(r)εK+
ℓ u

−(r) = − iε
h

(
ωmh

1
m+1 +O(h

2
m+1 )

)
= −iµmωm +O(µmh

1
m+1 ). (4.8)
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Combining (4.6) and (4.8), we obtain Theorem 3.

Hence this theorem implies that the transfer matrix Tk in (5.1) is given by

Tk(ε, h) =

(
1 −iωmk

µmk

−iωmk
µmk

1

)
+O(µ2

mk
+ µmk

h
1

mk+1 ) (4.9)

as (ε, h) → (0, 0) with µmk
= εh

− mk
mk+1 → 0.

4.2 Between the vanishing points

In addition to Theorem 3, which gives the connection formula around the van-
ishing point of V (t), a similar argument yields the following proposition, which
gives the connection formula between two consecutive zeros of V (t).

Let tk+1 < tk be two consecutive zeros of V (t) (i.e. V ̸= 0 on ]tk+1, tk[) with
multiplicities mk,mk+1, and let ℓj , rj (j = k, k + 1) be base points such that
ℓk+1 < tk+1 < rk+1 < ℓk < tk < rk. The configuration of these points implies
that each interval Ij := [ℓj , rj ] includes tj and does not intersect with each
other. We set m∗ = max{mk,mk+1}. We can consider two bases (w1,ℓk , w2,ℓk)
and (w1,rk+1

, w2,rk+1
), which are similarly given by the formulas (3.19) with

t0 = tk and t0 = tk+1 respectively.

Proposition 4.2. The change of basis Tk,k+1(ε, h) given by

(w1,rk+1
, w2,rk+1

) = (w1,ℓk , w2,ℓk)Tk.k+1(ε, h) (4.10)

admits the following asymptotic behavior as (ε, h) → (0, 0) with µm∗ → 0:

Tk,k+1(ε, h) =

exp
(
− i

h

∫ tk
tk+1

V (t)dt
)

0

0 exp
(

i
h

∫ tk
tk+1

V (t)dt
)+O

(
ε2

h

)
.

(4.11)

Remark 4.3. The error term in (4.11) is rewritten as O(ε2/h) = O(µ2
1). From

the order relation (2.18) of µm with respect to m, this error is smaller than that
in (4.2) when m > 1.

Proof of Proposition 4.2. We can derive from (4.10) the expression of Tk,k+1 by

a similar way to the proof of Theorem 3. We set u±k = exp
(
∓i
∫ t

tk
V (s)ds/h

)
,

and compute the matrix Tk,k+1 by using the value at t = ℓk:

Tk,k+1(ε, h)

= (w1,ℓk w2,ℓk)
−1(w1,rk+1

w2,rk+1
)
∣∣
t=ℓk

=

(
u−k (ℓk) 0

0 u+k (ℓk)

)((
u+k+1(ℓk) 0

0 u−k+1(ℓk)

)
+O

(
ε2

h

))
.
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Here, we have used the asymptotic formulas (3.17) and (3.18). Note that the
integral interval [rk+1, ℓk] of the fundamental solutions for the construction does
not contain any zero of V (t). We deduce (4.11) from this with the identity

u±k (ℓk)u
∓
k+1(ℓk) = exp

(
± i

h

∫ tk

tk+1

V (t)dt

)
. (4.12)

5 End of the proofs

By using the transfer matrices Tk (k = 1, 2, . . . , n), Tk,k+1 (k = 1, 2, . . . , n− 1)
introduced in the previous section and Tr, Tℓ in Appendix A.1, the scattering
matrix S = S(ε, h) is represented as

S = T−1
r T1T1,2T2T2,3T3 · · ·Tn−1,nTnTℓ. (5.1)

Here, the matrix Tr (resp. Tℓ) has a similar form to Tk,k+1 which connects Jost
solutions J±

r (resp. J±
ℓ ) and local solutions near t1 (resp. tn). The previous

section shows the asymptotic behaviors of Tk and Tk,k+1 (see (4.9), (4.11)), and
the appendix does those of Tr and Tℓ (see (A.17), (A.18), (A.20)). The formula
of Tℓ depending on the sign of Vℓ can be rewritten as

Tℓ =

{
Tn,n+1 (σn is even)

Tn,n+1J (σn is odd),
(5.2)

by means of σn =
∑n

k=1mk and

Tn,n+1 :=

(
exp

(
− i

hRℓ

)
0

0 exp
(
+ i

hRℓ

)) , J :=

(
0 −1
1 0

)
, (5.3)

where J is a complex structure on C2, that is, J2 = −Id. Note that all of these
transfer matrices are elements of SU(2), which is mentioned in §A.2. By using
the notation (A.23), the scattering matrix S is expressed as S = T−1

r Tn (resp.
S = T−1

r TnJ) if σn is even (resp. odd). This implies that, when σn is even (resp.
odd), the off-daiagnoal entry s21 equals e−iRr/hτn21 (resp. e−iRr/hτn22). From
Lemma A.4 alone, it is complicated to examine the asymptotics of τn22 up to the
coefficient of O(µ2). However, thanks to the unitarity of the scattering matrix
S, that is, |s11|2 + |s21|2 = 1, the computation of the asymptotic behavior of
|s21|2 can be reduced to that of |τn21|2 even if σn is odd.

5.1 Proof of Theorem 1

Let us demonstrate the proof of Theorem 1. Taking the complex numbers αk,
βk(µ) and νk in Lemma A.4 as

αk = 1, βk(µ) = −iωmk
µmk

, νk = exp

(
− i

h

∫ tk

tk+1

V (t)dt

)
,
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and noting µmk
≪ µ∗ for any k, we have from the algebraic formula (A.28) the

asymptotic behavior of |τn21|2 as follows:

|τn21|2 = µ2
∗

∑
j∈Λ∗

|ωmj |2 + 2µ2
∗ Re

∑
j,k∈Λ∗
j<k

ωmjωmk
e−

2i
h

∫ tj
tk

V (t)dt

+O(µ3
∗) +O(µ∗µ∗−1),

(5.4)

where µ∗−1 stands for µm∗−1. Concerning the error terms in (5.4), the former
one, i.e. O(µ3

∗), is a higher order error term coming from Λ∗ and the latter is a
cross term between the largest vanishing order and the second largest one. This
error coming from a cross term is at most O(µ∗µ∗−1). If m∗ is odd, ωmj is not
real for j ∈ Λ∗, and the following phase shift term may arise from the product
ωmj

ωmk
depending on the sign of vj and vk:

arg(ωmj
ωmk

) =
((sgn vk)− (sgn vj))π

2(m∗ + 1)
=

− (sgn vj)π

2(m∗ + 1)
if sgn vj = − sgn vk,

0 otherwise.
(5.5)

Therefore, when m∗ is odd, the quantity |τ21|2 behaves like

µ2
∗(ω

o
∗)

2

∑
j∈Λ∗

|vj |−
2

m∗+1 + 2Re
∑

j,k∈Λ∗
j<k

|vjvk|−
1

m∗+1 cos

(
2

h

∫ tj

tk

V (t)dt+ θj,k
)

+O(µ3
∗) +O(µ∗µ∗−1), (5.6)

where

ωo
∗ = 2

(
(m∗ + 1)!

2

) 1
m∗+1

Γ

(
m∗ + 2

m∗ + 1

)
,

θj,k =

(sgn vj)
π

2(m∗ + 1)
if sgn vj = − sgn vk,

0 otherwise.

On the other hand, ωmj
is real when m∗ is even. In this case, the quantity

|τ21|2 can be computed similarly as the formula (5.6) by replacing ωo
∗ with

ωo
∗ cos(π/2(m∗ +1)) and θj,k with 0. Therefore we have completed the proof of

Theorem 1.
□

5.2 Proof of Theorem 2

The intermediate regime where µ♭ → 0 and µ♯ → ∞ requires making use of
the transfer matrix based on the exact WKB method in [21] under Condition
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C at the vanishing points governed by an adiabatic regime. Namely, in the
intermediate regime, the transfer matrix Tk is replaced as

Tk(ε, h) =

{
T

(N)
k (ε, h) k ∈ Λ♭,

T
(A)
k (ε, h) k ∈ Λ♯,

(5.7)

where T
(N)
k is equal to (4.9) and T

(A)
k will be given below. The key of the proof

of Theorem 2 is to reduce the computation of the product including the different
kinds of the transfer matrices in (5.7) to the same computation as in the proof
of Theorem 1.

According to the exact WKB method in [21], we obtained the existences of
the exact WKB solutions ψ±

• (• = ℓ, r) near a vanishing point and their asymp-
totic behaviors away from the vanishing point under an adiabatic regime. More-
over we got the change of basis between (ψ+

ℓ , ψ
−
ℓ ) and (ψ+

r , ψ
−
r ). By matching

the asymptotic behaviors of the exact WKB solutions ψ±
• and the MSA solu-

tions wj,• (j ∈ {1, 2}, • ∈ {ℓ, r}) on their semiclassical wave front sets referred
in [10], we have the connection formula between them. Consequently, in the

case where both mk and σk−1 are even, the transfer matrix T
(A)
k is of the form:

T
(A)
k := Tw

k =

(
αk −β̄k
βk ᾱk

)
∈ SU(2),

where αk, βk have the asymptotic expansions as µmk
→ ∞:

αk = exp

[
− i

2h
(Ak,1 −Ak,mk

)

]
+ (−1)mk exp

[
− i

2h
(Ak,1 − 2Ak,1 +Ak,mk

)

]
+O

(
µ
−mk+1

mk
mk

)
, (5.8)

βk = (−1)σk

{
exp

[
− i

2h
(Ak,1 −Ak,mk

)

]
− (−1)mk exp

[
− i

2h
(Ak,1 − 2Ak,1 +Ak,mk

)

]}
+O

(
µ
−mk+1

mk
mk exp

[
−aµ(mk+1)/mk

mk

])
, (5.9)

with the notations given in §2.2. Actually αk is of O(1) and βk is exponentially

small of O(exp[−aµ(mk+1)/mk
mk ]) as µmk

→ ∞. Notice that the above case where
bothmk and σk−1 are even implies that the eigenvalue of H(t, ε) (i.e. the energy
of the system:

√
V (t)2 + ε2) and the energy without an interaction (i.e. V (t))

have the same sign before and behind the vanishing point t = tk. Conversely,
in the case where the sign of

√
V (t)2 + ε2 does not coincide with that of V (t)

near the vanishing point, the correspondence of the exact WKB solutions to

the MSA solutions varies. In fact, T
(A)
k for k ∈ Λ♯ depends on mk and σk−1 as
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follows:

T
(A)
k =



Tw
k if (mk, σk−1) = (even, even),

Cσk−1Tw
k if (mk, σk−1) = (even, odd),

iQ

(
−i 0
0 i

)
Tw
k if (mk, σk−1) = (odd, even),

iQ

(
i 0
0 −i

)
Cσk−1Tw

k if (mk, σk−1) = (odd, odd),

(5.10)

where the matrix Q =

(
0 1
1 0

)
equipped with useful properties:

Q

(
a b
c d

)
=

(
d c
b a

)
Q, Q2 = Id, (5.11)

and C is an operator of taking a complex conjugate, that is C
(
a b
c d

)
=

(
ā b̄
c̄ d̄

)
.

Notice that each matrix in (5.10) from which are removed the factor iQ if it
exists belongs to SU(2). Introducing the notation of the transfer matrix T ′

k

belonging to SU(2) as follows:

T ′
k =



T
(N)
k k ∈ Λ♭

Tw
k k ∈ Λ♯ (mk, σk−1) = (even, even),

Cσk−1Tw
k k ∈ Λ♯ (mk, σk−1) = (even, odd),(

−i 0
0 i

)
Tw
k k ∈ Λ♯ (mk, σk−1) = (odd, even),

(
i 0
0 −i

)
Cσk−1Tw

k k ∈ Λ♯ (mk, σk−1) = (odd, odd),

(5.12)

and recalling the commutative property (5.11), we can express the scattering
matrix in the intermediate regime by

S = T−1
r

n∏
k=1

TkTk,k+1 = T−1
r

(
n∏

k=1

T̃ ′
kT̃k,k+1

)
(iQ)

N
, (5.13)

where the notation of Ãj for the 2× 2 matrix Aj depending on j stands for

Ãj =

{
QAjQ (k(2l − 1) ≤ j < k(2l)),

Aj otherwise,
(5.14)

with the same notations as in §2.2. Remark that if Aj ∈ SU(2) then QAjQ ∈
SU(2). Hence the expression (5.13) implies that the algebraic lemma (A.27) can
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be applied directly to the computation of the off-diagonal entry of the product,
and that the transition probability depends also on the parity of the number

N = #Λodd
♯ .

As a sequel to this computation of the product in (5.13), we can derive the

dependence on µ♭, µ♯ more precisely. Denoting the (1, 1)-entry of T̃ ′
k by α̃′

k, we

see that α̃′
k is of O(1) and, in particular α̃′

k = 1 for k ∈ Λ♯. Setting, similarly,

the (2, 1)-entry of T̃ ′
k by β̃′

k, we can rewrite β̃′
k as

β̃′
k =

{
pkµ♭ (k ∈ Λ♭),

qk(mk, σk−1) exp[−akµ
(m♯+1)/m♯

♯ ] (k ∈ Λ♯),
(5.15)

where pk and qk(mk, σk−1) are uniquely determined by (5.9), (5.12) and (5.14).
Notice that pk and qk(mk, σk−1) are of O(1) in each regime. On the other

hand, T̃k,k+1 can be regarded as the matrix Tk,k+1 by replacing Ṽ (t) (see (2.19))
with V (t). From this fact, it is deduced that the asymptotic of the transition
probability in the intermediate regime is determined by the effective energy Ṽ .
Hence, we can obtain the asymptotic behavior of |τ21|2 as follows:

µ2
♭

∑
j∈Λ♭

γ♭|vj+1|
− 2

m♭+1 + 2
∑

j,k∈Λ♭
j<k

ReC♭♭
j,k(ε, h) cos

[
1

h

∫ tj

tk

Ṽ (t)dt

]
+
∑
k∈Λ♯

exp
[
−2akµ

(m♯+1)/m♯

♯

]
+ 2

∑
j∈Λ♭,k∈Λ♯

j<k

ReC♭♯
j,k(ε, h)µ♭ exp

[
−akµ

(m♯+1)/m♯

♯

]
cos

[
1

h

∫ tj

tk

Ṽ (t)dt

]

+ 2
∑

j,k∈Λ♯

j<k

ReC♯♯
j,k(ε, h) exp

[
−(aj + ak)µ

(m♯+1)/m♯

♯

]
cos

[
1

h

∫ tj

tk

Ṽ (t)dt

]

+O(ϵ1ϵ2),

where ϵ1, ϵ2 are given in §2.2 and

C♭♭
j,k(ε, h) = pj pk, (5.16)

C♭♯
j,k(ε, h) =

 k−1∏
κ=j+1

α̃′
κ

2

 α̃′
k pj qk(mk, σk−1), (5.17)

C♯♯
j,k(ε, h) = α̃′

k

 k−1∏
κ=j+1

α̃′
κ

2

 α̃′
k qj(mj , σj−1) qk(mk, σk−1). (5.18)

The proof of Theorem2 have been completed.
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A Appendix

A.1 Jost solutions

In this subsection A.1, we give the existence of the Jost solutions for the defini-
tion of the scattering matrix. We remark that the smallness of h is not required
for the argument here.

We first consider the Jost solutions J±
r near +∞. A discussion for J±

l is
done similarly but the difference is that we are assuming that Vr is positive
(Condition A). Let Hr denote the limiting Hamiltonian at +∞:

Hr :=

(
Vr ε
ε −Vr

)
. (A.1)

The functions defined by

φ+
r (t) = e−iλrt/h

(
cos θr
sin θr

)
, φ−

r (t) = e+iλrt/h

(
− sin θr
cos θr

)
, (A.2)

where λr =
√
V 2
r + ε2 and tan 2θr = ε/Vr (0 < θr < π/4), are particular

solutions to hDtψ +Hrψ = 0 and form a basis of C2 for each t ∈ R.

Proposition A.1. There uniquely exists a pair of solutions (ϕ+r , ϕ
−
r ) to the

system (1.1) such that

lim
t→+∞

(
ϕ±r (t)− φ±

r (t)
)
= 0. (A.3)

Proof. Let U(t) be a 2× 2-matrix valued C1-function. We have

d

dt
(Φr(t)U(t)) = Φ′

r(t)U(t) + Φr(t)U
′(t) =

1

ih
HrΦr(t)U(t) + Φr(t)U

′(t)

with Φr := (φ+
r , φ

−
r ). Thus, if U(t) satisfies

U ′ =
1

ih
Φ−1

r (H −Hr)ΦrU, (A.4)

each column of the matrix-valued function ΦrU is a solution to the equation
(1.1). Put Ar(t) := Φ−1

r (H −Hr)Φr. From the identity

H −Hr = (V (t)− Vr)

(
1 0
0 −1

)
(A.5)

and Condition A, the matrix-valued function Ar(t):

Ar(t) = (V (t)− Vr)

(
cos 2θr −e+2iλrt/h sin 2θr

−e−2iλrt/h sin 2θr − cos 2θr

)
, (A.6)

is integrable on the half-line [0,∞[. Then the function

Ur(t) := exp

(
− i

h

∫ t

+∞
Ar(s)ds

)
, (A.7)
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is well-defined and solves the equation (A.4) with the boundary condition

lim
t→+∞

Ur(t) = Id.

Here we recall that Id stands for the 2 × 2 unit matrix. We finally obtain the
solutions ϕ±r (t) with the asymptotic behavior (A.3):

(ϕ+r (t), ϕ
−
r (t)) := Φr(t)Ur(t). (A.8)

From Proposition A.1 and the trace-free property of H(t; ε), the pair of
(ϕ+r , ϕ

−
r ) forms a basis. Similarly, this fact implies that ϕ+r (resp. ϕ−r ) coincides

with the Jost solution J+
r (resp. J−

r ).

Next, we give the asymptotic behaviors of ϕ±r as ε→ 0 near some fixed point
tr. Take tr > t1 (recall that t1 = max{t ∈ R ; V = 0} is the first zero of V )
satisfying ∫ tr

+∞
(V (t)− Vr) dt ̸= 0. (A.9)

We introduce some kind of the action integral taking into account of contribu-
tions from the infinity as

Rr = Vrtr +

∫ tr

+∞
(V (s)− Vr) ds,

and put

u±r = exp

(
∓ i

h

∫ t

tr

V (s)ds

)
.

Proposition A.2. We have

ϕ+r (t) = e−iRr/h

(
u+r +O(ε2/h)

O(ε)

)
, ϕ−r (t) = e+iRr/h

(
O(ε)

u−r +O(ε2/h)

)
as (ε2/h, ε) → (0, 0) uniformly for t in a small neighborhood of tr.

Before proving Proposition A.2, we prepare the following.

Lemma A.3. Let A be a matrix of the form:

A =
i

h

(
−a b
b̄ a

)
with a ∈ R \ {0} and b ∈ C. For |b/a| ≪ 1, one has

eA =

(
e−ia/h +O((b/a)2) O(b/a)

O(b/a) e+ia/h +O((b/a)2)

)
.
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Proof. Since A2 = −h−2(a2 + |b|2)Id, an algebraic computation gives

eA =
(
cos

z

h

)
Id+

i

z

(
sin

z

h

)(−a b
b̄ a

)
(A.10)

where z =
√
a2 + |b|2. We have z = sgn(a)a(1+O(b2/a2)) under |b/a| ≪ 1 and

a ̸= 0. This gives the following asymptotic formula:

eA =

(
e−ia/h +O((b/a)2) 0

0 e+ia/h +O((b/a)2)

)
+
i

z

(
sin

z

h

)(
0 b
b̄ 0

)
.

The lemma follows from b/z = O(b/a).

Proof of Proposition A.2. From the expression (A.6), Ur defined by (A.7) is
written as

Ur(t; ε, h) = exp

(
i

h

(
−Ir(t) cos 2θr(ε) Jr(t;h) sin 2θr(ε)

Jr(t;h) sin 2θr(ε) Ir(t) cos 2θr(ε)

))
, (A.11)

where

Ir(t) =
∫ t

+∞
(V (s)− Vr)ds, Jr(t;h) =

∫ t

+∞
(V (s)− Vr)e

+2isλr/hds.

Apply Lemma A.3 with

a = a(t, ε) = Ir(t) cos 2θr(ε), b = b(t, ε, h) = Jr(t;h) sin 2θr(ε). (A.12)

By the choice of tr with the condition (A.9), a = Ir(t) cos 2θr(ε) never vanishes
for t near tr. By definition, we have θr(ε) = O(ε), and consequently |b/a| =
O(ε). Then Lemma A.3 shows

Ur(t; ε, h) =

(
e−iIr(t)/h +O(ε2/h) O(ε)

O(ε) e+iIr(t)/h +O(ε2/h)

)
(A.13)

Note that we have the following decomposition of Ir(t):

Ir(t) = Ir(tr) +
∫ t

tr

(V (s)− Vr)ds = Rr +

∫ t

tr

V (s)ds− Vrt. (A.14)

Since Φr(t) admits the asymptotic formula

Φr(t) =
(
φ+
r φ−

r

)
=

(
1 +O

(
ε2

h

))(
e−iVrt/h O(ε)
O(ε) e+iVrt/h

)
, (A.15)

as (ε2/h, ε) → (0, 0), Proposition A.2 follows from (A.13) and (A.14).
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The asymptotic formula

(
J+
r J−

r

)
=

(
u+r +O(ε2/h) O(ε)

O(ε) u−r +O(ε2/h)

)(
e−iRr/h 0

0 e+iRr/h

)
(A.16)

is directly deduced from Propositions A.1 and A.2. Therefore, we obtain

Tr =

(
e−iRr/h +O(ε2/h) O(ε2)

O(ε2) e+iRr/h +O(ε2/h)

)
. (A.17)

For the Jost solutions J±
ℓ (t), the same argument as above works when Vℓ > 0

and a similar one induces the existences and the asymptotic behaviors when
Vℓ < 0.

In the case where Vℓ > 0, by exchanging the sub-index r for ℓ, one sees

Tℓ =

(
e−iRℓ/h +O(ε2/h) O(ε2)

O(ε2) e+iRℓ/h +O(ε2/h)

)
. (A.18)

Here

Rℓ = Vℓtℓ +

∫ tℓ

−∞
(V (s)− Vℓ) ds

with tℓ < tn = min{t ∈ R ; V = 0} satisfying that the second integral term in
the right-hand side does not vanish.

In the case where Vℓ < 0, we choose instead of (A.2) particular solutions
φ±
ℓ (t) to hDtψ +Hℓψ = 0 as

φ+
ℓ (t) = e−iλℓt/h

(
sin ηℓ
cos ηℓ

)
, φ−

ℓ (t) = e+iλℓt/h

(
− cos ηℓ
sin ηℓ

)
, (A.19)

where λℓ =
√
V 2
ℓ + ε2 and tan 2ηℓ = ε/(−Vℓ) (0 < ηℓ < π/4). They coincide

with the leading terms of Jost solutions J±
ℓ (t) when Vℓ < 0 and satisfy the

asymptotic formulas:

φ+
ℓ ∼ e+iVℓt/h

(
O(ε)

1 +O(ε2/h)

)
, φ−

ℓ ∼ e−iVℓt/h

(
−1 +O(ε2/h)

O(ε)

)
as (ε2/h, ε) → (0, 0) for each t. One sees that, with (A.19), Proposition A.1 also
holds. One also have similar asymptotic formulas to those of Proposition A.2:

ϕ+ℓ (t) = e+iRℓ/h

(
O(ε)

u+ℓ +O(ε2/h)

)
, ϕ−ℓ (t) = e−iRℓ/h

(
−u−ℓ +O(ε2/h)

O(ε)

)
as (ε2/h, ε) → (0, 0) uniformly in a small neighborhood of t = tℓ, where u

±
ℓ =

exp(∓i
∫ t

tℓ
V (s)ds/h). We obtain

Tℓ =

(
O(ε) −e−iRℓ/h +O(ε2/h)

e+iRℓ/h +O(ε2/h) O(ε)

)
. (A.20)
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A.2 Algebraic lemma

In order to know the asymptotic behavior of the scattering matrix (5.1), it
suffices to compute the products of the matrices of the following forms:

Tk(µ) =

(
αk −βk(µ)

βk(µ) αk

)
, Tk,k+1 =

(
νk 0
0 νk

)
,

where αk, βk, and νk are complex numbers such that detTk = detTk,k+1 = 1,
namely |αk|2 + |βk|2 = |νk|2 = 1, and βk(µ) = O(µ) as µ → 0. Notice that, in
our context (see (4.2)), Tk and Tk,k+1 have this form with the numbers given
modulo O(µ2) by

αk ≡ 1, βk ≡ −iωkµmk
= O(µmk

), νk ≡ exp

(
− i

h

∫ tk

tk+1

V (t)dt

)
.

In this subsection we give an algebraic formula by means of these notations αk,
βk(µ) and νk for simplicity. We know that the product of them is of the form

TkTk,k+1 =

(
αkνk −βkνk
βkνk αkνk

)
. (A.21)

Let SU(2) be the special unitary group of degree 2 given by

SU(2) =

{
T ∈M2(C) ; T =

(
a −b̄
b ā

)
, a, b ∈ C, detT = 1

}
. (A.22)

One sees that all of the above matrices belong to SU(2). Denoting the products
of these matrices by

Tn = T1T1,2T2 · · ·TnTn,n+1 =

(
τn11 τn12
τn21 τn22

)
∈ SU(2), (A.23)

we get the following lemma:

Lemma A.4. As µ→ 0, the following asymptotic formulas hold.

τn11(µ) =

n∏
j=1

αjνj +O(µ2), (A.24)

τn21(µ) =

n∑
j=1

(
j−1∏
κ=1

ακ

)
βj(µ)

 n∏
k=j+1

αk

(j−1∏
κ=1

νκ

) n∏
k=j

νk

+O(µ2),

(A.25)

τn12(µ) = −τn21(µ), τn22(µ) = τn11(µ), (A.26)

with the convention that
∏0

κ=1 ακ =
∏0

κ=1 νκ = 1.
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The proof of this lemma is based on the mathematical induction for the prod-
uct of the matrices (A.21). A simple computation of |τn21|2, which corresponds
to the transition probability, gives

|τn21|2 =

n∑
j=1

|βj(µ)|2 + 2Re

 ∑
1≤j<k≤n

βj(µ)αj

 k−1∏
κ=j+1

α2
κ

αkβk(µ)

k−1∏
κ=j

ν2κ


+O(µ3), (A.27)

with the convention that
∏j

κ=j+1 α
2
κ =

∏j−1
κ=j νκ = 1. Note that we used |αk| =

1 + O(µ2) and |νk| = 1 in the above computation. In particular, when αk =
1 +O(µ2), we have

|τn21|2 =

n∑
j=1

|βj(µ)|2 + 2Re

 ∑
1≤j<k≤n

βj(µ)βk(µ)

k−1∏
κ=j

ν2κ

+O(µ3). (A.28)

Remark that the factor γn does not appear explicitly in the leading term in the
formulas (A.27) and (A.28).
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[4] Y. Colin de Verdière, The level crossing problem in semi-classical anal-
ysis. I. The symmetric case. Proceedings of the International Conference
in Honor of Frédéric Pham (Nice, 2002). Ann. Inst. Fourier (Grenoble)
53(2003), no. 4, 1023–1054.

32



[5] Y. Colin de Verdière, The level crossing problem in semi-classical analysis.
II. The Hermitian case. Ann. Inst. Fourier (Grenoble) 54(2004), no. 5,
1423–1441.
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