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Abstract

Context. Bug bisection is a common technique used to identify a revision
that introduces a bug or indirectly fixes a bug, and often involves executing
multiple revisions of a project to determine whether the bug is present within
the revision. However, many legacy revisions often cannot be successfully
compiled due to changes in the programming language or tools used in the
compilation process, adding complexity and preventing automation in the
bisection process.

Objective. In this paper, we introduce an approach to repair test cases of
Java projects by performing dependency minimization. Our approach aims
to remove classes and methods that are not required for the execution of one
or more test cases. Unlike existing state-of-the-art techniques, our approach
performs minimization at source-level, which allows compile-time errors to
be fixed.

Method. A standalone Java tool implementing our technique was developed,
and we evaluated our technique using subjects from Defects4J retargeted
against Java 8 and 17.

Results. Our evaluation showed that a majority of subjects can be repaired
solely by performing minimization, including replicating the test results of
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the original version. Furthermore, our technique is also shown to achieve ac-
curate minimized results, while only adding a small overhead to the bisection
process.

Conclusion. Our proposed technique is shown to be effective for repairing
build failures with minimal overhead, making it suitable for use in automated
bug bisection. Our tool can also be adapted for use cases such as bug corpus
creation and refactoring.

Keywords: Maintenance Engineering, Java, Tools, Software Engineering

1. Introduction

Bug bisection is a common technique used by software developers to iden-
tify the commit which introduced a regression in a software project, and was
first outlined to minimize the effort required in the process of identifying
and fixing a regression [1]. Since manually performing bisection can be a
repetitive process, many version control systems that implement bisection
capabilities also implement automatic bug bisection, such as Git 1. Gener-
ally speaking, automated bug bisection works by using a developer-provided
command or script to automatically build and/or execute tests, and use the
result of the execution to determine whether the snapshot manifests the bug
or not, thus requiring no manual intervention during the bisection process.

Because automated bug bisection relies on a script to compile and execute
any relevant test cases, the effectiveness of this technique is decreased when
bisection reaches a snapshot that cannot be successfully compiled, since the
snapshot will either need to be skipped or, if the version control system does
not support skipping revisions, the bisection will need to be performed man-
ually. This issue is further amplified when a project’s history uses different
versions of a programming language over its history, leading to the older
snapshots of the project being uncompilable because of language features or
library APIs being removed over time.

Listing 1: An snippet of the compilation failure message due to standard library changes.

[ javac] src/test/java/com/ fasterxml/ jackson/ dataformat/

xml/ failing/ Issue37AdapterTest.java :7: error: package

javax.xml.bind. annotation does not exist

1https://git-scm.com/
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[ javac] import javax.xml.bind. annotation.*;

[ javac] ˆ

[ javac] src/test/java/com/ fasterxml/ jackson/ dataformat/

xml/ failing/ Issue37AdapterTest.java :8: error: package

javax.xml.bind. annotation.adapters does not exist

[ javac] import javax.xml.bind. annotation.adapters.*;

[ javac] ˆ

Listing 1 demonstrates a compilation error caused by building a legacy
project snapshot using Java Development Kit (JDK) version 11. The root
cause of this issue is the removal of Java API for XML Processing (JAXP) in
Java 11, leading to the compilation error related to missing packages and dec-
larations. This also shows that all project snapshots utilizing JAXP cannot
be compiled using JDK versions 11 or above, rendering automated bisection
ineffective.

In this paper, we present test dependency minimization, a technique used
for automatically repairing compilation-related build failures. Given a broken
snapshot and relevant test case(s) as its input, test dependency minimiza-
tion utilizes reachability analysis and whole-project context to automatically
minimize the classes, methods, and field declarations (hereinafter referred to
as program declarations) required to compile and execute the test cases, re-
moving the source of the compilation error in the process and thus repairing
the compilation failure of the snapshot. To increase the effectiveness of the
repair process, we propose several techniques that increase the number of
removable declarations while also minimizing the runtime of our technique,
allowing this tool to be run as part of a bisection script with minimal runtime
overhead.

In addition to aiding in automated bisection, test dependency minimiza-
tion can also be applied to the scenario of bug corpus collection, allowing
otherwise uncompilable candidate subjects to be included in a dataset and
therefore diversifying the dataset by the inclusion of more subjects.

We evaluated this technique on 130 and 951 subjects from Defects4J us-
ing Java 8 and 17 respectively, and the results show that the technique can
repair compilation in all instances, with a further 91% and 84% of subjects
correctly replicating the execution result of the relevant test cases respec-
tively. We also demonstrate that test dependency minimization takes up to
20 seconds to execute, showing that the increase in runtime is small compared
to performing manual bisection.

The contributions of this paper can be summarized as follows:
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• We demonstrate the reasons for build failure after upgrading the Java
compiler version, and identified 4 categories of compilation errors caused
by compiler upgrade: Changes to the Java Language, changes to the
Java standard library, unsupported encoding, and unsupported build
tools.

• We propose a technique that, through the removal of unused classes
and methods, eliminates the source of compilation errors and thus al-
lows the snapshot to be compiled and/or executed. We also propose a
reachability model that accurately determines whether a program dec-
laration is required in the compilation process. To our knowledge, this
is the first work that performs compilation error repair via the use of
minimization, at the same time preserving program behavior.

• We provide an implementation of the aforementioned technique which
implements static analysis-based dependency analysis and minimiza-
tion. The implementation of the technique is open-sourced and can be
found on GitHub 2.

The rest of the paper will be structured as follows: Section 2 will describe
the background and motivations of this work. Section 3 will describe a high-
level overview and implementation details of the proposed technique. Section
4 will describe the testing methodology and analyze the effectiveness of the
technique. Section 5 will discuss the possible use cases of the technique, as
well as outline possible threats to validity in the experimentation. Section 6
will discuss related works, before concluding the paper in Section 7.

2. Background

2.1. Motivating Example
We will utilize Listing 1 to describe the key observations that drive the

basis of our technique, and outline the technical challenges associated with
the technique.

2.1.1. Potential Workflow and Issues

To provide additional context to the error, the motivating example is
taken from a snapshot in the Jackson XML dataformat library 3, and is

2https://github.com/Derppening/test-dependency-minimization
3Git Commit ID 81f38e1
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aimed to fix a bug designated #180 4 in the GitHub repository. Along with
the fix, this commit also introduces changes to four test cases, each of them
adding assertions to verify that additional constraints related to the reported
bug are met.

Let us assume that a developer would like to perform a bisection of the
source of this issue. If the development environment is set to use Java 11 or
above, the compilation stage of the bisection script will fail due to “package
or class can not be found” errors as previously described. In this case, the
only solution is for the developer to install JDK 8 in their development envi-
ronment, and force the build system used by the snapshot to use this version
of Java throughout the bisection process.

However, this solution is no longer viable with projects upgraded to Java
9 or above, which introduced a new policy where only the most recent 3 Long-
Term Support versions of Java will be supported, as well as an accelerated
API deprecation-removal cycle. This policy means that for libraries such as
Mockito 5, with project snapshots ranging from Java 5 to 11, bisection of a
newly-discovered fault will require at least JDK versions 1.8 (which supports
compiling down to Java 5) and 11 (which supports compiling down to Java
6).

Under these limitations, a developer may then choose to workaround this
problem by implementing a script that determines the required Java version
for a snapshot. However, this introduces a new set of problems.

• Determination of Target JDK: While most build systems allow
developers to specify which JDK version the project must be compiled
with, this declaration is optional and will default to the system’s default
Java version for compilation. These projects will therefore require a tool
that can infer the required Java version for a project snapshot, and this
tool will need to be updated whenever a new Java version is released.

• Emulating Legacy JDKs: While older versions of JDK are still
available for download, these versions do not support installation on
modern operating systems. Moreover, working around this issue by
using newer JDKs at a lower source level can still cause compilation
errors as older versions of the Java Standard Library is not bundled

4https://github.com/FasterXML/jackson-dataformat-xml/issues/180
5https://github.com/mockito/mockito
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with newer JDKs, potentially causing resolution ambiguities with new
APIs.

2.1.2. Observations of Interest

To address the problem described in the previous subsection, we can
utilize two key observations from the snapshot and the nature of the build
failure to formulate a solution.

1. Usage of Test Suite in Bisection: When performing bisection on
a bug, it is often common practice to use a subset of the project test
suite to check for the existence of the bug in a specific snapshot [1].

2. Scope of Unit Tests: Many software projects utilize unit tests to
verify the correctness of different parts of the project. Unit tests are
often preferred because these tests only target a unit of a program,
meaning that the source of a test failure can be quickly localized based
on the target unit of the failing test [2].
With the motivating example, the JAXB library provides annotations
for databinding as well as classes acting as the ground truth for Jackson
XML’s test cases. However, none of the modified test cases utilize the
JAXB library, therefore test cases that depend on the JAXB library
can be safely removed to allow our test case to be executed.

Based on these observations, we can make the inference that since a subset
of the test suite will be used during the bisection process for determining the
presence of the bug, and since each unit test only exercises a small subset of
the project, it is possible to repair the compilation error by removing all parts
of the project snapshot that are not used by any test case in the bisection
process. This technique will be referred to as minimization throughout this
paper and forms the basis for our proposed technique.

2.2. Technical Challenges

We note the following challenges when designing and implementing a
technique based on the removal of unused program declarations for repairing
compilation failures.

• Accurately Determining Necessary Declarations

Due to the structured nature of source code, more program declara-
tions need to be retained to allow it to be compiled successfully. At the

6



same time, since the goal of test dependency minimization is to repair
broken snapshots in newer versions of Java, the technique must also be
designed to minimize the set of retained declarations to eliminate the
cause of the compilation error. This means that there will be an opti-
mal minimization result that minimizes the set of retained declarations
while still being compilable. Since the inclusion of any unneeded dec-
laration may cause the source of the compilation error to be retained,
while the exclusion of any needed declaration may introduce new com-
pilation or runtime errors, the proposed technique should reach as close
to this result as possible.

To address this challenge, we note that performing minimization under
a coarser granularity includes more redundant declarations, as we will
be unable to make any inferences on the reachability of its class mem-
bers, and thus we must treat all members within the class as reachable.
Therefore, we chose to perform minimization on member granularity,
as this is the most granular level where reachability for each declaration
can be accurately inferred without the use of any runtime information.

We also note that the full context of the project is available as the
input for our technique, meaning that we can exploit this to improve
the accuracy of minimization. Therefore, we devise a two-phase ap-
proach for the minimization process, by first marking all declarations
possibly needed in the compilation and/or execution of the test case,
followed by running reachability analysis using the global context to
accurately decide whether a declaration is required by the reachabil-
ity of its dependent declarations. This process is further discussed in
Section 3.2.

• Devirtualizing Virtual Method Calls

One of the major difficulties in accurately minimizing a Java program
is determining the set of methods that may be invoked. Since Java
uses dynamic method lookup for all non-static method calls by default,
a method call may invoke the static target of the method call or an
overriding method in one of its subclasses. This is especially challenging
when the static type of the method scope is a library type, as a naive
approach will cause many overriding methods to be included, increasing
the number of redundant declarations in the minimization result.

To address this challenge, we exploit the fact that the full context of the
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project is available, meaning that the exact types of the method scope
can be narrowed down. We also note that some types of expressions can
have a more constrained type than what is inferred by the Java type
system, which further reduces the set of candidate methods during
dynamic dispatch. This optimization is further discussed in Section
3.3.1.

• Preserving Diagnosibility

Since the proposed technique is based on static analysis, the technique
will suffer from the same drawbacks as other static analysis techniques,
such as being unable to accurately process classes and methods used
via the Java Reflection APIs, and therefore will require manual inter-
vention. Under those circumstances, our technique should be able to
output information to help developers identify the cause of the issue
and perform manual fixes.

To address this challenge, we provide a mode of operation for users
where unreachable program declarations will have their body replaced
with an AssertionError with the context of the unreachable method.
This option is further discussed in Section 3.2.2.

Key Idea. During a bisection process, the bisection may reach a snapshot
that causes a build failure when executing under an unsupported JDK ver-
sion. As discussed in 2.1.2, since only a small subset of test cases and their
dependent program declarations are necessary to determine the correctness
of the snapshot, declarations that are not used in the compilation or execu-
tion of the test cases can be removed. This will likely lead to the removal of
the source of the compilation error, allowing the snapshot to be successfully
built and the test case to be executed, thus reenabling the ability to use
automated bisection.

3. Design and Implementation

This paper proposes a novel technique that performs test dependency
minimization, which aims to minimize the classes and methods required to
execute a test case. Since the minimization aims to repair the compilation
of broken snapshots, minimization is performed on the source-code level as
opposed to the bytecode level. Figure 1 demonstrates the high-level view of
the minimization process.
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Figure 1: Flow graph for the process of test case minimization.
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3.1. Reachability

As the proposed technique operates on source code and utilizes static
analysis, this section discusses the rules of reachability as used by the tech-
nique.

For the proposed technique, we say that a program declaration
is reachable if the declaration must be required in the successful
compilation of the project, or the declaration may be required in
the correct execution of the project.

3.1.1. Entrypoint

Entrypoints refer to more locations where the software can begin execu-
tion. In a bisection context, entrypoints are generally test cases, as well as
methods used to set up or clean up the test environment. To handle methods
that are invoked internally by the test framework and are otherwise statically
unreachable, we formulate a list of methods and constructors which, if a test
class or any method within the test class is deemed to be an entrypoint, is
to be marked as an entrypoint as well. This is also done for superclasses of
the entrypoint test class, as these methods are invoked hierarchically.

All entrypoints must be reachable, as these methods are where the pro-
gram begins executing from.

Multiple entrypoints can be specified to perform minimization on multiple
test cases within a single minimization invocation, reducing the time needed
for minimizing and running multiple test cases or test suites.

3.1.2. Direct Reachability

A program declaration is directly reachable if it is a program entrypoint,
or if it is required in the compilation or execution of another directly reachable
declaration. In other words, a directly reachable declaration is uncondition-
ally required in the compilation and/or execution of the snapshot.

The most granular level for which reachability can be determined us-
ing static analysis is class members. This is because the possible execution
of statements depends on the actual value of all subexpressions within the
statement, which may be impossible to accurately determine if the value is
dependent on external input, and may cause state explosion for methods that
are invoked in many locations.
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3.1.3. Transitive Reachability

A program declaration is transitively reachable if it may be needed during
compilation or execution, but its reachability cannot be statically determined
due to the use of dynamic properties such as branching and dynamic method
lookup.

Listing 2: Example of transitive reachability by overriding methods.

1 public class I {

2 public int getInt () { return 0; }

3 }

4

5 public class A extends I {

6 public int getInt () { return 1; }

7 }

8

9 public class B extends I {

10 public int getInt () { return 2; }

11 }

12

13 public class Main {

14

15 public static void main( String [] args) {

16 I i = args.length > 1 ? new A() : new B();

17 int result = i.getInt ();

18 }

19 }

Referring to Listing 2, and assuming that main is the sole entrypoint,
when statically analyzing the expression i.getInt(), it is definitively known
that I.getInt() is directly reachable since it is the static target of the
method call. However, the actual method invoked by this method call is
unknown, as it could be the method in A or B.

The four cases where declarations are transitively reachable are

• Transitive Constructors for Class

All constructors in a class are marked as transitively reachable. This
is because if the superclass does not have a no-argument constructor,
at least one constructor in the class needs to be kept for compilation
to succeed.

• Transitive Constructors for Subclass
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All constructors in a class that may be used to delegate a super explicit
constructor invocation statement are marked as transitively reachable
so that constructors in the subclass can use the constructor for delega-
tion.

• Dynamic Lookup Targets

Methods that are potential targets of dynamic method lookup (here-
inafter referred to as dynamic lookup targets) are marked as transitive
reachable. This is because while the full set of dynamic lookup tar-
gets can be known given the whole program, this set can be reduced if
information such as whether a class may be instantiated can be used.
This optimization will be further discussed in Section 3.3.1.

• Library Call Targets

In some cases where a class overrides methods from a supertype in a
library, the overridden method can still be reachable even if no static
call resolves to it. This is because while the library can only statically
invoke methods that are visible to the library, the method can be still
invoked by dynamic method lookup.

3.1.4. Reachability Reasons

As mentioned in Sections 3.1.2 and 3.1.3, there are two main categories of
reachability. We can further categorize these types of reachability into spe-
cific reasons, as different types of reasons demand different ways to determine
whether a program declaration is reachable relative to other declarations.

The list of reasons why a declaration may be needed for compilation
and/or execution can be grouped into one of four categories:

• Referenced by Symbol: In general, if a symbol identifier is present
in the source code, the declaration of the symbol must be present for
the compilation to succeed.

• Dynamic Call Target: Java invokes non-static methods using dy-
namic method lookup by default, meaning that the static target of the
method or any overriding method may be executed depending on the
concrete type of the operand. As such, these overriding methods may
be needed in the execution of the test case.
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• Constructor Delegation: Java requires constructors to invoke any
superclass constructor to enforce the proper creation of a derived class
instance. Therefore, if the superclass does not declare any no-argument
constructor, its derived classes must declare at least one constructor
which invokes a superclass constructor for successful compilation.

• Parent Construct: This concerns declarations that can contain nested
declarations, such as parents of nested classes. The parent class of a
nested class is needed for compilation as it provides the scope for the
nested class.

3.1.5. Reachability Graph

When the reachability reasons for all relevant program declarations are
determined, we can determine whether each declaration should be retained,
dummied, or removed. To do so, we use the observation that the relation-
ship between declarations and reachability reasons can be formulated into
a directed graph, where declarations are nodes and reachability reasons are
directed edges. We can then use depth-first search to follow each edge until
we can determine whether any dependent node is reachable, which is finally
used to determine whether the declaration will be retained, dummied, or
removed in a manner as described in Section 3.2.2.

One thing to note is that the graph may be cyclic as declarations may be
dependent on one another, such as when two methods recursively invoke one
other. In those cases, the edge that forms the cycle will not be traversed,
effectively treating nodes within a cycle as reachable only if any of the nodes
are reachable due to an edge that is not involved in the cycle.

3.2. Minimization Phases

Transitively reachable declarations require the context of the entire pro-
gram to accurately determine whether it is reachable. To address this issue,
we propose a two-phase strategy that separates the determination of reach-
ability into two parts, the mark phase and the sweep phase.

3.2.1. Mark Phase

The mark phase is responsible for marking the reachability type for each
program declaration, based on the rules established in Section 3.1.4. The
mark phase begins searching for identifiers from all entrypoints of the pro-
gram, iteratively adding declarations until no new declarations are found.
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Moreover, this phase also conservatively includes all declarations that are
transitively reachable but may not be necessary for compilation or execution
to succeed.

When each declaration is processed, the reason(s) for why the declaration
is reachable is also stored alongside the declaration.

3.2.2. Sweep Phase

After all reachable program declarations are marked, the sweep phase is
responsible for determining whether each transitively reachable declaration
is necessary to maintain the compilability and execution correctness of the
program. The sweep phase considers the following information when deter-
mining the necessity of a program declaration.

• Declaration Reachability

As described in Section ??, a directly reachable declaration is always
needed for compilation, because these declarations are either likely to
be executed, or used in declarations or executable code. Moreover, if a
transitively reachable declaration is referenced by a directly reachable
declaration, it means that the presence of the transitively reachable
declaration is required for the directly reachable declaration to success-
fully compile and/or execute.

• Container Reachability

If the type or body declaration containing the declaration is not reach-
able, it means that no declaration requires this for compilation or exe-
cution, and is therefore removable.

• Class Instantiation

Non-static member declarations require an instance of the type to op-
erate upon. Therefore, if the declaring class is never instantiated, there
are no instances to invoke non-static members on, and thus all non-
static members are removable.

• Non-Static Method Usage

A non-static method in a class with subclasses cannot be removed, as all
subclasses that do not override the method will lose its implementation.
A method overriding an abstract method cannot be removed either, as
all concrete classes require an implementation for all its methods.
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• Field Initializer

If a field has an initializer expression, it should be retained regardless,
because the initializer expression may have side effects that modify the
program state.

For each program declaration, one of three decisions will be made de-
pending on its necessity in compilation and execution.

• No-Op: No-Op retains the declaration in its entirety, except for dec-
larations that may contain nested declarations. This usually applies to
declarations that are directly reachable.

• Dummy: Dummy only retains a subset of the declaration while still
allowing the declaration to be referenced by name. This usually applies
to declarations that are transitively reachable.

To address the issue of diagnosability as described in Section 2.2, our
technique supports injecting statements into the body of dummied
methods and constructors to aid the diagnosis of unsound static anal-
ysis. The goal of this is to report unexpected execution as early as
possible instead of relying on an upstream caller or assertion to catch
any unexpected values. In the implementation of our technique, we
opted to replace the dummy values with a statement that throws an
AssertionError. When such an error is caught, the method throwing
the assertion error can be added to the list of entrypoints to explicitly
include the method and its dependencies in the minimized output.

• Remove: Remove fully removes the declaration from the project. This
usually applies to declarations that are not reachable.

After the sweep phase is executed, each program declaration will be trans-
formed based on the decision made during the sweep phase.

3.2.3. Example

Using the example from Listing 2, when using two-phase minimization,
the observations stated in Section ?? are established in the mark phase.
When the sweep phase is executed, the following additional observations can
be made within the context of the whole program.

15



• No constructor to I is invoked anywhere in the program, meaning that
no object with the concrete type of I will exist in the lifetime of the
program.

• Both A and B override the implementation of I.getInt.

• As no instance of I is created, and all non-abstract subclasses of I

provide their own implementation of I.getInt, the implementation of
I.getInt is never used.

With the aforementioned observations established, the sweep phase can
conclude that the body of I.getInt is no longer needed, and thus the method
will be marked for dummying.

3.3. Optimizations

3.3.1. Minimizing the Set of Dynamic Lookup Targets

As mentioned in 3.1.3, including all possible targets in a dynamic lookup
context can introduce many redundant program declarations, especially when
the scope type is of a common library type such as Object. To address
this problem, we implement additional inference logic to reduce redundant
methods for a method call involving dynamic lookup.

Variable Usage. For expressions that reference a variable in its scope, since
the entire program is known to the technique, the static type of all values
assigned to the variable is known. Therefore, we can use this information
to narrow the types of objects which may be assigned to the variable. This
information is especially useful for variables declared with a type where the
number of subclasses and therefore the number of methods overriding the
top-level class is large.

Generics in Class Fields. While the set of all types assigned to a variable
is useful in narrowing the set of dynamic lookup targets, this is insufficient
when the variable is a field within a generic class. This is because these fields
may be assigned any type of value as long as it satisfies the bounds of the
class type parameter, but when a field variable is used the type parameter is
replaced with a type variable specific to the context, and thus only a subset
of assigned types to the field are valid values in the context.
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Listing 3: An example of minimizing types for a generic class field.

1 public class Pair <A, B> {

2

3 public A first;

4 public B second ;

5 }

6

7 public class Main {

8

9 public static void Main( String [] args) {

10 Pair <Set <?>, Object > pair1 = new Pair < >();

11 Pair <List <?>, Object > pair2 = new Pair < >();

12

13 pair1.first = new HashSet <Object >();

14 pair2.first = new ArrayList <Object >();

15

16 getString( pair1);

17 }

18 }

Listing 3 demonstrates a program containing a generic type and two
instances with different type parameters that are instantiated in the main

method. Since the type of pair1.first is both constrained by the type
of values assigned to the field as well as the type of the variable, only
HashSet<Object> would be a valid assigned type in this context.

3.3.2. Generics Type Information Propagation

When determining the set of possible dynamic lookup targets, determin-
ing the type of expressions in generic contexts is important for improving
accuracy. This is because while generic parameters can be easily solved as
they appear in the class or method header, generic type variables can be
present in a subexpression, and the type of the full expression may be de-
pendent on the type of the subexpression, such as in chained method calls
or nested method calls.

Listing 4: Simplified example of chained generics in JacksonDatabind-1f.

1 public static Class <? extends Enum <?>> findEnumType(EnumMap

<?,?> m)

2 {

3 // ...

4 return findEnumType(m.keySet (). iterator().next());

5 }

17



Subexpression Naive Type Solved Type

m EnumMap<?, ?> EnumMap<?, ?>

keySet() Set<?> Set<? extends Enum<?>>

iterator() Iterator<?> Iterator<? extends Enum<?>>

next() ? extends Object Enum<?>

Table 1: Comparison between solving generic typed expressions with and without Generic
Type Information Propagation.

Listing 4 shows a method with the expression m.keySet().iterator().next(),
where each subexpression returns a generic type. We want to solve the type
of this expression to find which of the four method overloads below will be
selected for invocation:

• findEnumType(EnumSet<?>)

• findEnumType(EnumMap<?>)

• findEnumType(Enum<?>)

• findEnumType(Class<?>)

A naive approach to solving the type of this expression would be to recur-
sively inspect the type of each subexpression and formulate the type of the
full expression. However, using such a naive approach causes some generic
constraints to be lost during the solving process. Therefore, we implement a
custom generics solver that takes into account all generic constraints declared
by the class, method, and variable to more accurately solve the type of the
expression.

As seen from Table 1, the approach using the custom solver allows more
generic information to be retained and can infer a more specific type than the
naive approach. As such, when finding a candidate method for findEnumType,
the custom solver achieves greater accuracy than the naive approach.

3.4. Multiple Passes

In the optimization technique which minimizes the set of dynamic lookup
targets described in Section 3.3.1, we find all initialization and assignment
expressions to a variable to determine the set of types that the variable may
store. When constructors and methods are being removed in the Sweep
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Phase, this may remove expressions which assign to the variable, meaning
that the variable may be assigned to fewer values and types. This, in turn,
causes fewer methods to be identified as viable dynamic method lookup can-
didates, which allows more methods to be dummied or removed.

Therefore, we extend the algorithm to perform multiple passes of the
mark-sweep process to utilize an updated context after some methods have
been removed, which opens up new opportunities to identify unreachable
methods. Since the minimization process never introduces new symbols, the
mark-sweep process can be repeated until no more symbols are removed, in
which case we consider the minimization to have reached convergence.

3.4.1. Example

Listing 5 shows an example modified from Listing 2. The execution be-
havior of the program remains unchanged; However, the behavior of the
technique is changed due to the following reasons:

Listing 5: Example for illustrating multiple passes.

1 public class A {}

2 public class B {}

3

4 public abstract class Abstract {

5 abstract void f();

6 }

7 public class AbstractImpl1 extends Abstract {

8 abstract void f() {

9 new A();

10 }

11 }

12 public class AbstractImpl2 extends Abstract {

13 abstract void f() {

14 new B();

15 }

16 }

17

18 public class Main {

19 public static void foo( Abstract obj) {

20 obj.f();

21 }

22

23 public static void main( String [] args) {

24 foo(new AbstractImpl1());

25 }

26 }
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• Since the set of possible types of the parameter is assumed to be ?

extends Abstract, the mark phase must consider both AbstractImpl1

and AbstractImpl2 as reachable, which follows that A and B are also
reachable.

• During the sweep phase, it is known that only AbstractImpl1 is instan-
tiated in the context of the whole program, meaning that the body of
AbstractImpl2.f can never be executed. Therefore, AbstractImpl2.f

will be marked as dummiable, but B is still marked for retention as
AbstractImpl2.f is not marked for removal.

The result is that while AbstractImpl2.f is dummied, B is not removed,
leaving room for further minimization. If a second pass is executed, B will
be successfully marked for removal, which removes an extra class from the
minimized program.

4. Evaluation

This section presents the evaluation of test dependency minimization.
Specifically, we would like to answer the following research questions:

• RQ1 (Causes of Build Failures): What are the reasons snapshots
cannot be compiled using newer versions of Java?

• RQ2 (Effectiveness on Build Repair): To what extent is our tech-
nique able to automatically repair compilation errors?

• RQ3 (Accuracy of Minimization): To what extent does our tech-
nique accurately minimize the number of classes and methods used in
the snapshot?

• RQ4 (Technique Overhead): How much overhead does our tech-
nique introduce?

RQ1 aims to provide an updated context for our tool by re-evaluating
the causes of build failures using newer versions of JDK. RQ2 and RQ3
aim to evaluate the effectiveness of our technique by evaluating its ability
to repair and the accuracy of retained program declarations compared to a
class-granular minimization approach. RQ4 aims to evaluate the overhead of
our tool by comparing the runtime with the full compilation of the snapshot.
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4.1. Evaluation Subjects

Subject Selection. We use Defects4J to evaluate all research questions.

Evaluation Environment. The machine specifications used to evaluate the
tool are as follows (unless otherwise specified):

• 128-thread AMD Ryzen Threadripper PRO 3995WX (48 threads allo-
cated to the JVM process)

• 512GB RAM (32GB allocated to the JVM process)

• Docker 24.0.1

• OpenJDK 1.8.0 352, 17.0.5

• CentOS Stream 8

4.2. RQ1: Causes of Build Failures

Experiment Setup. To understand the reasons why the compilation of snap-
shots would fail using current toolchains, we took all bugs in Defects4J and
recompiled them using Java 8 and 17 respectively. These Java versions are
selected because they are the oldest and newest currently-supported LTS ver-
sions of Java respectively, meaning that developers are more likely to target
these versions of Java [3]. Moreover, we choose Java 17 instead of the more
popular Java 11 because we want to investigate the worst-case scenario when
a bisection needs to be performed on a project that targets the latest version
of Java.

All Defects4J bugs are recompiled under each of the following four con-
figurations.

1. JDK 8, Source Level 1.7: This configuration is the default envi-
ronment provided by Defects4J, except that Java 8 standard library
classes will be used instead.

2. JDK 8, Source Level 1.8: This configuration simulates the compi-
lation of snapshots using JDK 8 and Java 8 language features.

3. JDK 17, Source Level 1.7: This configuration simulates the com-
pilation of snapshots using JDK 17 with maximum compatibility with
language features in Java 7. Note that this configuration is deprecated
in Java 17; The oldest supported source level is Java 8.

4. JDK 17, Source Level 17: This configuration simulates the compi-
lation of snapshots using JDK 17 and Java 17 language features.
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Results. The breakdown of compilation error reasons for each Java version
is shown in Tables 2-5. The reasons why a bug is uncompilable under newer
versions of Java are split into 4 categories, based on how the compilation
failure is manifested and the possible solutions to fixing the issue.

• Changes to the Java Language (Lang-Change)

This category of bugs fails to compile under newer versions of Java
because these revisions contain program constructs that are forbidden
in the newer Java versions and will cause compilation errors, such as
declaration of identifiers that later became keywords.

• Changes to the Java Standard Library (Lib-Change)

This category of bugs fails to compile under newer versions of Java
because these revisions use classes or methods in the Java Standard
Library which is changed in newer Java versions, such as the addition
or removal of methods and/or overloads.

• Unsupported Character Encoding (Encoding)

This category of bugs fails to compile under newer versions of Java
because these revisions contain character sequences that are invalid
under UTF-8.

• Unsupported Tools (Tool)

This category of bugs fails to compile under newer versions of Java
because these revisions use tools that do not support newer versions of
Java.

Firstly, we can observe that Java 8 contains the least number of compila-
tion errors, which matches the data collected by previous empirical studies.
We also observe that Java 17 contains the greatest number of compilation
errors, which can be explained by the number of changes between these two
Java versions.

Secondly, when bumping the source level from 1.7 to the level supported
by the compiler, we can observe that the number of build failures increases
for JDK 8, whereas there is no change for JDK 17. This can be explained
by Java 8 containing changes to how generic types are computed and how
methods are resolved, causing new compilation errors to be emitted. As for
Java 17, this lack of change can be attributed to that the language features
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Project Subjects Lang-Change Lib-Change Encoding Tool

Chart 52 - - - -
Cli 78 - - - -

Closure 348 - - - -
Codec 36 - - 14 (39%) -

Collections 8 - 4 (50%) - -
Compress 94 - - - -

Csv 32 - - - -
Gson 36 - - - -

JacksonCore 52 - - - -
JacksonDatabind 224 - - - -

JacksonXml 12 - - - -
Jsoup 186 - - - -

JxPath 44 - - - -
Lang 128 92 (72%) - 56 (44%) -
Math 212 - - 38 (18%) -

Mockito 76 - - - -
Time 52 - - - -
Total 1670 92 (6%) 4 (0%) 108 (6%) -

Table 2: Reasons for build failure by project when compiling using Java 8, source level
1.7.
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Project Subjects Lang-Change Lib-Change Encoding Tool

Chart 52 - - - -
Cli 78 - - - -

Closure 348 - - - 210 (60%)
Codec 36 - - 14 (39%) -

Collections 8 5 (63%) - - -
Compress 94 - - - -

Csv 32 - - - -
Gson 36 - - - -

JacksonCore 52 - - - -
JacksonDatabind 224 - - - -

JacksonXml 12 - - - -
Jsoup 186 - - - -

JxPath 44 - - - -
Lang 128 48 (38%) - 56 (44%) -
Math 212 - - 38 (18%) -

Mockito 76 46 (61%) - - -
Time 52 - - - -
Total 1670 99 (6%) - 108 (6%) 210 (13%)

Table 3: Reasons for build failure by project when compiling using Java 8, source level
1.8.
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Project Subjects Lang-Change Lib-Change Encoding Tool

Chart 52 - - - -
Cli 80 - - - -

Closure 348 94 (27%) - - -
Codec 36 - - 14 (39%) -

Collections 8 - 8 (100%) - -
Compress 94 - 78 (83%) - -

Csv 32 - - - -
Gson 36 - - - -

JacksonCore 52 - - - -
JacksonDatabind 224 - 198 (88%) - -

JacksonXml 12 - 8 (67%) - -
Jsoup 186 - - - -

JxPath 44 - - - -
Lang 128 92 (72%) - 56 (44%) -
Math 212 - 212 (100%) - -

Mockito 76 - - - 30 (39%)
Time 52 - - - -
Total 1670 186 (11%) 504 (30%) 70 (4%) 30 (2%)

Table 4: Reasons for build failure by project when compiling using Java 17, source level
1.7.
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Project Subjects Lang-Change Lib-Change Encoding Tool

Chart 52 - - - -
Cli 80 - - - -

Closure 348 94 (27%) - - -
Codec 36 - - 14 (39%) -

Collections 8 - 8 (100%) - -
Compress 94 - 78 (83%) - -

Csv 32 - - - -
Gson 36 - - - -

JacksonCore 52 - - - -
JacksonDatabind 224 - 198 (88%) - -

JacksonXml 12 - 8 (67%) - -
Jsoup 186 - - - -

JxPath 44 - - - -
Lang 128 92 (72%) - 56 (44%) -
Math 212 - 212 (100%) - -

Mockito 76 - - - 30 (39%)
Time 52 - - - -
Total 1670 186 (11%) 504 (30%) 70 (4%) 30 (2%)

Table 5: Reasons for build failure by project when compiling using Java 17, source level
17.
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and library APIs used by the subjects are so old that support for them has
been removed regardless of the chosen language level.

Finally, we can observe that library changes and language changes ac-
count for the greatest increase in compilation errors between Java 8 and 17.
This can be explained by the number of language changes and API changes
between Java 8 and 17. One interesting note is that some revisions mani-
fest different categories of compilation errors when compiling under different
JDKs.

4.3. RQ2: Effectiveness on Build Repair

We propose two alternative techniques to act as a ground truth and base-
line respectively.

Ground Truth. The ground truth is provided by coverage-based minimiza-
tion. Coverage-based minimization utilizes coverage data to determine the
reachability of each program declaration and remove all unreachable dec-
larations. Since coverage data is collected by executing the program, the
coverage data collected for all methods and classes is representative of the
program components necessary at runtime for a given entrypoint.

The coverage data is collected by compiling the snapshot using a sup-
ported JDK version. This coverage data is then used to determine whether
each declaration and statement in the snapshot is reachable. If not, the un-
reachable program component will either be dummied or removed, depending
on whether it is needed in the compilation of other reachable program com-
ponents.

The ground truth will be used to determine whether each subject can
be successfully compiled after minimization, since if a compilation error still
occurs after coverage-based minimization, a coarser-grained algorithm is un-
likely to be able to perform the repair either.

We use two existing coverage tools to collect coverage data for each sub-
ject: Cobertura 6 and Jacoco 7. The reason why two coverage tools are
selected is that previous trials have shown that Cobertura and Jacoco in-
ject instrumentation statements in different locations of the bytecode, which
causes inconsistencies when determining whether a statement is covered.

6https://github.com/cobertura/cobertura
7https://www.eclemma.org/jacoco/
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Baseline. The baseline for all subjects is provided by class-granular min-
imization. Like the proposed technique, class-granular minimization uses
static analysis to find all reachable program declarations from the program
entrypoint, but with the difference that only the reachability of classes are
determined, meaning that all members are included for a reachable class,
regardless of the reachability of each member.

We chose this technique as our baseline because this is the most com-
monly used technique for statically analyzing declaration dependencies at
both source-level and bytecode-level.

Experiment Setup. To evaluate the effectiveness of our technique, we use a
subset of test cases in the Defects4J dataset which satisfies the following
criteria:

• The bug cannot be directly compiled under a newer version of Java.

• The test case exposes the bug.

• The test case can be compiled and executed after running minimization
using coverage data.

All test cases which satisfy the above criteria are collected as subjects for
evaluation. Note that one Defects4J bug may provide more than one subject
to the evaluation, as there may be multiple triggering test cases for a single
Defects4J bug.

For each collected test case, we run our technique and the baseline under
two JDK environments.

• JDK 8, Source Level 1.7: This environment is equivalent to Con-
figuration 1 in RQ1 and is used to simulate build repair in an environ-
ment using the oldest supported compiler and an older source version
to maximize compatibility with older snapshots.

• JDK 17, Source Level 17: This environment is equivalent to Con-
figuration 4 in RQ1 and is used to simulate an environment where a
bisection process covers snapshots that use any version of Java between
Java 1.1 and 17.

After performing minimization, RQ2 will be evaluated using the following
two metrics.
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Project Total Count
Baseline Member-Granular

Compilable Test Match Compilable Test Match

Codec 20 20 (100%) 20 (100%) 20 (100%) 20 (100%)
Collections 4 4 (100%) 4 (100%) 4 (100%) 2 (50%)

Lang 67 64 (96%) 64 (96%) 67 (100%) 67 (100%)
Math 39 39 (100%) 39 (100%) 39 (100%) 29 (74%)

Total 130 127 (98%) 127 (98%) 130 (100%) 118 (91%)

Table 6: Results of minimization on subjects compiled using Java 8, source level 1.7.

Project Total Count
Baseline Member-Granular

Compilable Test Match Compilable Test Match

Closure 511 511 (100%) 511 (100%) 511 (100%) 468 (92%)
Codec 20 20 (100%) 20 (100%) 20 (100%) 20 (100%)

Collections 7 3 (43%) 3 (43%) 7 (100%) 4 (57%)
Compress 103 103 (100%) 103 (100%) 103 (100%) 94 (91%)

JacksonDatabind 219 199 (91%) 197 (90%) 219 (100%) 155 (71%)
JacksonXml 12 0 (0%) 0 (0%) 12 (100%) 8 (67%)

Lang 12 12 (100%) 12 (100%) 12 (100%) 12 (100%)
Mockito 67 67 (100%) 36 (54%) 67 (100%) 35 (52%)

Total 951 915 (96%) 882 (93%) 951 (100%) 796 (84%)

Table 7: Results of minimization on subjects compiled using Java 17, source level 17.

• Compilability: This checks whether the resultant minimized project
is compilable using a Java compiler version and source level.

• Test Match This checks whether the execution result of the test case
matches the expected result. The expected result is determined as
follows:

– If the checked-out project version is the buggy version, and the
test case is a triggering test, the test case is expected to fail.

– Otherwise, the test case is expected to pass.

Results. The result of RQ2 compiled using Java 8 with source level 1.7 and
Java 17 with source level 17 are shown in Tables 6 and 7 respectively. Our
technique can restore compilability to all subjects, and a majority of subjects
also match the expected test result, indicating that the technique is very
effective.
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When compared to the baseline, the data shows that the baseline is unable
to restore compilability to some subjects from Collections, JacksonDatabind,
and JacksonXml. We performed a manual review on these subjects and can
conclude that due to the coarse granularity of the baseline algorithm, some
unreachable methods containing compilation errors will be included because
its container class is reachable, therefore failing to fix the compilation error.

However, the data also shows that the baseline can replicate test results
more often than our technique. We also manually review these subjects and
can conclude that all of these subjects invoke Java Reflection APIs during
runtime, which introduces unsoundness into our technique. This is further
discussed in Section 5.

4.3.1. Usage in Bisection

Let us illustrate the use of our tool for automated bisection using a bug
from the Defects4J corpus. It is a bug designated LANG-747 in the Apache
Commons Lang project.

The statement causing the compilation error and issue with compiling
the revision in Java 8 is shown in Listing 6 and 7 respectively.

Listing 6: The statement causing the compilation error.

final Integer max = TypeUtilsTest.stub();

Listing 7: The compilation error message while compiling LANG-747 using Java 8.

src/test/java/org/ apache/ commons/lang3/reflect/ TypeUtilsTest.

java :[524 ,47] incompatible types: inferred type does not

conform to upper bound(s)

inferred: G

upper bound(s): java.lang.Comparable <G>,java.lang.

Integer

The error message indicates that the compilation failed due to incom-
patible generic types. This is because Java 8 improved the type inference
algorithm to support target-typing, however, it also means that the declared
variable type will not be used in determining the type of the expression.

We select this bug because it demonstrates an instance where the first
bad revision of the bug targets a different version of Java than the latest
version of Java when the bug is first discovered. While developers can use
any supported version of JDK to compile the project revision as JDK 8
supports compiling Java 6 sources, the Java compiler does not fully support
falling back to the legacy type inference behavior.
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We incorporate our tool into the bisection process by writing a script
that performs the following logic and running the bisection using git bisect

run:

1. Extract a patch containing only the regression test case for the bug and
apply it to the currently tested revision.

2. Try to compile the sources. If the compilation succeeds, run the patched
test case and exit the script.

3. Extract the classpath of the project and use that to run our minimiza-
tion tool. Delete all source files in the project and replace them with
our minimized sources.

4. Try to compile the minimized sources. If the compilation succeeds, run
the patched test case and exit the script. Otherwise, mark the revision
as skipped.

The machine specifications used for bisection are as follows:

• 24-thread AMD Ryzen 9 5900X (24 threads allocated to the JVM pro-
cess)

• 64GB RAM (16GB allocated to the JVM process)

• OpenJDK 1.8.0 382

• Arch Linux

We decided to limit the bisection to all commits utilizing JUnit 4, as
the test case is written using JUnit 4 APIs, and our goal is to demonstrate
the usefulness of our tool with regards to automatic bisection. The above
bisection process spans 268 revisions, and using automated bisection with the
aid of our tool, we located fe235bb as the first buggy revision. This commit
is the revision immediately after the refactoring to JUnit 4, likely meaning
that the bug exists before the refactoring. The bisection script is executed
10 times, and the entire bisection process takes 100 seconds, averaging 10
seconds per revision.

We repeated this process with other bugs in the Apache Commons Lang
project of the Defects4J bug corpus, and the successfully bisected bugs are
listed in Table 8. Note that Lang-2 is a deprecated bug, which was not
collected by the Defects4J corpus.
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Defects4J ID Bug ID No. Revisions Bisection Time (s) Tested Revisions

Lang-1 LANG-747 268 100 10
Lang-3 LANG-693 260 113 12
Lang-4 LANG-882 98 85 8
Lang-5 LANG-865 66 71 7
Lang-6 LANG-857 60 87 7
Lang-7 LANG-822 57 73 7
Lang-8 LANG-818 26 70 6

Table 8: List of successfully bisected bugs from Apache Commons Lang of Defects4J.

The experimental results demonstrate that our tool can facilitate auto-
mated bisection for uncompilable projects.

We have also attempted to use bugs from other projects as subjects to
this demonstration, but the bisection failed because either the test case patch
cannot be applied to older revisions, or not enough revisions can be success-
fully repaired by our technique to enable the use of automated bisection.
This will be further discussed in Section 5.

We would also like to note that while Defects4J stores the good and bad
revisions of each bug, the bad revision is either the revision before the good
revision or the revision of the last stable release containing the bug. As such,
we are unable to use Defects4J as a ground truth to compare whether our
bisection result is accurate.

4.4. RQ3: Accuracy of Minimization

Experiment Setup. To investigate the accuracy of minimization, we select all
subjects in RQ2 that are (1) taken from the fixed version of bugs, and (2) able
to successfully and correctly execute using both the ground truth and our
technique, as buggy versions of subjects can fail a test case in different ways.
As explained in Section 4.3, coverage-based technique accurately represents
the program components required for the reproduction of a test case, hence
we will continue to use it as the ground truth for this RQ. For each subject, we
output the list of all retained classes and methods from both the coverage-
based and static analysis-based techniques, and we evaluate the accuracy,
precision, recall, and F-1 score metrics of our technique against the ground
truth. In the context of this research question, false-positive declarations are
those that should be unreachable but are retained, whereas false-negative
declarations are those that should be reachable but are not retained.
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Project Total Count FPR FNR Accuracy Precision Recall F1

Codec 10 0.012 0.114 0.973 0.936 0.886 0.902
Lang 29 0.002 0.179 0.992 0.957 0.821 0.864
Math 13 0.004 0.116 0.991 0.844 0.884 0.856

Total 52 0.005 0.151 0.988 0.925 0.849 0.869

Table 9: Average class accuracy of minimization on correctly executed subjects compiled
using JDK 8 at source level 1.7.

Project Total Count FPR FNR Accuracy Precision Recall F1

Codec 10 0.004 0.002 0.996 0.896 0.998 0.943
Lang 29 0.002 0.043 0.998 0.860 0.957 0.887
Math 13 0.003 0.054 0.996 0.562 0.946 0.687

Total 52 0.003 0.038 0.997 0.792 0.962 0.847

Table 10: Average method accuracy of minimization on correctly executed subjects com-
piled using JDK 8 at source level 1.7.

Results. The statistics obtained by subjects using Java 8 and source level
1.7 are shown in Tables 9 and 10, whereas results obtained by subjects using
Java 17 and source level 17 are shown in Tables 11 and 12.

One key observation from the above tables is that depending on the
project, the accuracy and precision of our technique vary widely. From a
manual investigation, we note that these subjects often contain code that
relies on runtime values to determine branches to take and types to instan-
tiate. Since our technique is not context-sensitive, we default to assuming

Project Total Count FPR FNR Accuracy Precision Recall F1

Closure 90 0.364 0.145 0.715 0.580 0.855 0.639
Codec 10 0.012 0.114 0.973 0.936 0.886 0.902

Compress 43 0.054 0.249 0.928 0.796 0.751 0.727
JacksonDatabind 16 0.111 0.061 0.892 0.417 0.940 0.570

JacksonXml 2 0.029 0.000 0.974 0.719 1.000 0.835
Lang 5 0.001 0.061 0.996 0.988 0.939 0.960

Mockito 2 0.000 0.000 1.000 1.000 1.000 1.000

Total 168 0.221 0.156 0.816 0.660 0.844 0.687

Table 11: Average class accuracy of minimization on correctly executed subjects compiled
using JDK 17 at source level 17.
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Project Total Count FPR FNR Accuracy Precision Recall F1

Closure 90 0.218 0.041 0.796 0.291 0.959 0.426
Codec 10 0.004 0.002 0.996 0.896 0.998 0.943

Compress 43 0.056 0.101 0.945 0.543 0.899 0.616
JacksonDatabind 16 0.362 0.015 0.655 0.122 0.985 0.216

JacksonXml 2 0.218 0.000 0.818 0.451 1.000 0.621
Lang 5 0.001 0.029 0.999 0.953 0.971 0.962

Mockito 2 0.000 0.000 1.000 0.900 1.000 0.945

Total 168 0.168 0.050 0.841 0.404 0.950 0.510

Table 12: Average method accuracy of minimization on correctly executed subjects com-
piled using JDK 17 at source level 17.

that all runtime branches within a reachable method may be reachable, caus-
ing a higher false-positive rate in those subjects. This is especially true for
Closure and JacksonDatabind, where the library performs parsing and trans-
formation on input mainly consisting of structured text. This will be further
discussed in Section 5.

Moreover, we can also see that subjects from Compress and Closure have
a higher false-negative rate compared to subjects from other projects. We
also manually investigate the cause of false negatives, and we can conclude
that this is mainly due to two factors. Firstly, the decision of which program
declarations to remove can differ even if the final execution result is the
same, as some declarations are only retained for compilability and do not
affect execution. Secondly, there are cases where a no-argument constructor
with an empty body is determined to be unreachable and is removed, but at
runtime the constructor is invoked via Java Reflection. Since the behavior of
the original constructor is the same as the default constructor generated by
Java, the test case will continue executing with no changes to the behavior
of execution.

While the technique appears to perform better overall in a Java 8 envi-
ronment compared to a Java 17 environment, this is only due to the different
subjects used for Java 8 and Java 17, as evident by the same result obtained
for the same subjects in Codec.

4.5. RQ4: Technique Overhead

Experiment Setup. To evaluate the additional overhead required by our tech-
nique, we take all subjects of RQ2 and time how long it takes for the technique
to process each snapshot. We also take the time required to compile each

34



Project Total Count Compilation Baseline Member-Granular

Codec 20 1.5 0.374 (25%) 0.497 (33%)
Collections 4 3.7 2.050 (55%) 10.646 (288%)

Lang 67 3.4 1.701 (50%) 2.196 (77a%)
Math 39 1.1 2.436 (221%) 12.049 (1095%)

Total 130 2.6 1.728 (66%) 5.151 (198%)

Table 13: Time taken in seconds for minimization on subjects compiled using Java 8,
source level 1.7.

Project Total Count Compilation Baseline Member-Granular

Closure 511 5.2 15.395 (296%) 20.379 (392%)
Codec 20 1.7 0.344 (20%) 0.405 (24%)

Collections 7 2.1 2.078 (99%) 8.583 (409%)
Compress 103 1.3 1.126 (87%) 1.703 (131%)

JacksonDatabind 219 2.2 13.863 (630%) 16.697 (759%)
JacksonXml 12 2.4 0.983 (41%) 0.676 (28%)

Lang 12 0.9 1.831 (203%) 1.854 (206%)
Mockito 67 5.5 0.923 (17%) 1.283 (23%)

Total 951 3.9 11.710 (300%) 15.174 (389%)

Table 14: Time taken in seconds for minimization on subjects compiled using Java 17,
source level 17.

snapshot to provide context to the overhead of our technique.

Results. the results are shown in Tables 13 and 14.
We can observe that the execution time of each snapshot differs for differ-

ent projects. This is because the majority of time is spent doing two things:
determining the set of reachable methods by virtual dispatch (occurs in the
mark phase) and tracing the reachability graph to determine if the program
declaration should be removed (occurs in the sweep phase).

This also explains why the baseline is sometimes slower than our technique
despite its simplicity. The baseline technique needs to scan through the entire
class when finding reachable declarations, meaning that even if only a method
is reachable in the entire class, the cost of scanning for reachable declarations
is equal to if all methods are reachable. This is in contrast with our member-
granular technique, where only reachable declarations will have their body
scanned for other reachable declarations.
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5. Discussion

5.1. Applications and Implications

As demonstrated by RQ2 and RQ3, test dependency minimization is
highly effective in repairing broken snapshots due to changes in Java ver-
sions, restoring compilability in all cases, and reproducing the expected test
result in over 80% cases. Moreover, the results of RQ1 also suggest that the
issue of broken snapshots is likely to grow worse as newer versions of Java
are released and older versions are deprecated. Although our demonstration
is only able to show the effectiveness of our technique in some scenarios,
we nevertheless believe that test dependency minimization can be used with
other build repair tools (such as BuildMedic [4] and LibCatch [5]) and other
automated compilation error repair tools to maximize the effectiveness of
automatic snapshot compilation and bug bisection. We also believe that fu-
ture works may address the problem of automatically applying patches from
newer to older revisions for automated bisection.

Another use case where test dependency minimization can benefit is the
collection of bug corpora. Research in the field of software engineering often
collects software repositories from online sources such as GitHub to be used
for evaluating novel techniques. The authors for Defects4J noted that the us-
age of real bugs in software projects is often preferred over synthetic bugs [6].
Moreover, [6] and [7] both state that as part of the bug collection pipeline, the
authors will remove all snapshots that cannot be compiled from the subject
pool, as the dataset is aimed to support the evaluation of dynamic analysis
techniques. However, this also leads to lowered diversity for the collected
dataset since the uncompilable bugs are excluded from the dataset. We be-
lieve that by using a workflow similar to the one proposed for automated bug
bisection, more snapshots can be made available for researchers, allowing for
novel works to be more comprehensively evaluated.

Finally, we believe that test dependency minimization can be useful for
refactoring operations. As software systems grow larger over time, there has
been an increased focus on keeping software projects maintainable and com-
prehensible [8]. While many integrated development environments (IDEs)
already provide some level of support for refactoring, we believe that test de-
pendency minimization can be extended to supplement existing refactoring
tools to more accurately extract necessary declarations for a given function-
ality in a software project.
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One thing to note is that some control over the extent of minimization
may be necessary for test dependency minimization to be used in some novel
bytecode-based techniques. This is because tools in some domains, especially
in automated generation of repairs and test cases, rely on the full context
of the program to discover code patterns that can be used in the generation
process [9].

However, while the current technique is demonstrated to be highly pre-
cise, the precision of the technique can vary depending on the project and
each snapshot, which can be explained by the unsoundness when analyzing
snapshots using the Java Reflection APIs and the lack of context sensitivity.

Regarding the issue of Java Reflection APIs, programs can use these APIs
to arbitrarily load classes, invoke constructors and methods, and retrieve
or modify the value of class fields. Since the inputs to these APIs often
are strings, usually of identifier names, they cannot be easily inferred by
static analysis techniques, which is a known limitation of such techniques on
Java programs. While some recent works tried to address the unsoundness
problem [10], it is unclear whether these works are beneficial to our technique,
as our technique also requires a low false-positive rate to minimize the chance
of including a program declaration that introduces compilation errors. One
possible direction for solving this issue is to detect when a test case fails
due to unsound analysis, and automatically add the supposedly-unreachable
methods and/or constructors as an explicit entrypoint, so that subsequent
minimization passes will unconditionally keep these declarations.

As for the issue of context sensitivity, the implementation is explicitly
chosen to be context insensitive due to the possibility of state explosion
as described in Section 3.1.2. When determining the possible values of a
variable, the possible values in the initializer and all assignment expressions
must be considered, meaning that these values need to be traced across the
entire program. Moreover, arguments to method calls may be derived from
a return value from the same method, meaning that the possible values need
to be iteratively solved until a tight bound can be reached, causing the time
cost to exponentially increase with program complexity. Future works may
investigate techniques to infer the possible range of values of a variable or
method return value, such as by symbolic execution.

5.2. Threats to Validity

Internal Validity. The major threat to internal validity is that the coverage-
based technique is used as the baseline for comparison against our proposed
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technique. If the coverage-based technique is not implemented correctly,
this will affect the statistical results in the evaluation. We mitigate this
threat by designing test cases to verify that the coverage-based technique
is correctly minimized, as well as performing manual comparisons between
coverage-based and our proposed techniques if false negatives are detected.

External Validity. One major threat to external validity is the use of De-
fects4J as the dataset for evaluation, which may not generalize to other
projects. We mitigate this threat by using all available bugs in the Defects4J
to maximize the diversity of bugs used for evaluation.

Another major threat to external validity is that subjects in Defects4J
are patched to execute under a Java 7 compiler, meaning that the results
may be biased towards the Defects4J version of bugs rather than the original
snapshots. However, we believe that this does not affect the evaluation of
our technique, as the Java 7 compiler that was bundled with Defects4J sup-
ports the source level of all Defects4J subjects. Moreover, using pre-patched
versions of Defects4J subjects can be seen as a best-case scenario since these
bugs have already been verified to work under Java 7, meaning that any
compilation errors that arise from using a newer version of Java will occur
regardless.

Construct Validity. A major threat to construct validity is that only test re-
sults are used to verify the correctness of the program behavior. This may be
insufficient as a correct execution of a test case does not imply the execution
trace of the original and minimized snapshots are the same, as methods may
be invoked in a different order or the number of iterations executed for a loop
may differ. We partly mitigate this threat by running each project revision
on all triggering tests, as well as running tests on both the buggy and fixed
versions of the snapshot. To fully mitigate this threat, Cobertura can be
run over the original and minimized snapshots to obtain a Hit Count Vector,
and the hit count for each statement can be compared. Note that although
this cannot detect the order in which methods are invoked, this is regardless
more rigorous than only using the result of assertions.

6. Related Works

Reasons for Snapshot Breakage. An empirical study conducted by Tufano
et al.of 100 Java projects shows that out of around 220,000 snapshots, only
38.13% of all project snapshots can be compiled, with less than 36% of the

38



75% of oldest revisions being compilable [11]. This study also mentioned
that 14% of snapshots are uncompilable because of parsing or compilation
errors, and this result is replicated by Hassan et al., where 9 and 3 projects
out of 91 build failures from the latest project snapshots are due to incorrect
Java Development Kit (JDK) version and compilation errors respectively
[12]. However, it is important to note that both studies were conducted in
2017 when around 95% of software projects still use Java 7 and 8 in their
implementation [13]; Since then, Java 11 LTS is the most popular targeted
Java version [14].

Repairing Build Breakage. Research on repairing build breakage is often mo-
tivated by Continuous Integration (CI) failures. Zhang et al.[15] performed
an empirical study investigating the reasons and corresponding fixes for com-
pilation errors in CI, where its categorization of compilation errors is useful
for categorizing compilation errors in broken snapshots. While the reasons
for CI build failures may intersect with reasons for snapshot build failures,
CI environments are often similar to the expected compile-time and runtime
environment of the project, as the main goal of CI is to catch unexpected
errors or regressions under the execution environment of the project.

Vassallo et al.outlined a technique to aid the debugging of build failures
by summarizing the error message and providing hints to the developer for
possible solutions [16], but is not useful in an automatic bisection context
because these hints are only useful for a developer to manually investigate
and make changes. Macho et al.developed a technique to automatically fix
dependency-related build breakage in Maven [4], which may be used in con-
junction with our technique to fix a majority of snapshot build failures.

Bug Corpus Collection. One of the most used bug corpus for Java is De-
fects4J [6], due to its ease of use and reproducible nature of bugs. During
the bug collection process, the authors mentioned several conditions for a bug
to be included in its dataset, of relevance is that the bug is “reproducible
using the project’s build system and an up-to-date JVM”. This indicates that
during the collection of subjects in the Defects4J dataset, uncompilable revi-
sions are eliminated automatically, which may exclude bugs present in older
snapshots that use old versions of Java, and thus hinder the diversity of bugs
included in the dataset.

Automatic Program Repair. Automatic program repair has been investigated
by many previous works primarily to fix bugs in source code. As summarized
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in [17], the three main repair techniques utilize either heuristics, constraints,
or learning. However, automatic program repair aims to address the logi-
cal correctness of a program rather than the compilation correctness of the
program, therefore this work targets a different category of issues.

On the other hand, there have also been works investigating the automatic
repair of build scripts, such as [18], which outlines using historic versions of
build scripts to perform build repair. However, changes in the Java version
used in compiling the project is an extrinsic change and does not involve the
modification of the build script, so it is unclear whether historic versions of
build scripts will contain the correct fix to repair such a broken snapshot.

Partial Program Analysis. Partial program analysis refers to the analysis of
code snippets that may constitute a part of a bigger program, but cannot
be compiled standalone. GRAPA [19] is a recent work that addresses this
problem by inferring and creating the missing fragments of the code snip-
pets, such that tools designed for complete programs can also be used on
partial programs. While both GRAPA and our technique aim to address the
problems caused by uncompilable code, GRAPA focuses on the addition of
code to resolve missing names in snippets, whereas our technique focuses on
the removal of code to resolve generic compilation errors, as we observe that
removal of unresolved or ambiguous names are effective ways to addressing
compilation issues.

Compilation Error Repair. Automatic repair of compilation errors is a com-
monly investigated topic as it occurs frequently during the software devel-
opment process. Current state-of-the-art techniques utilize machine learning
techniques to mine for correlations between compilation error messages and
their respective fixes [20, 21]. While these techniques show promising results
for identifying potential fixes with little code change, it is unclear whether
the proposed fixes can still retain the execution trace of the program, mak-
ing the effectiveness of these fixes dubious in the context of automated bug
bisection. Our work addresses this limitation by making the preservation of
program behavior an explicit goal and proposing reachability rules to ensure
that the dependent components of all entrypoints are not modified during
the repair process.

Another line of research specifically addressing compilation errors caused
by API-breaking changes is LibCatch [5], which defines a set of migration
operators for addressing different types of compilation errors. While the
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approach is demonstrated to successfully address real migrations, some mi-
gration actions may cause behavioral changes to client code, such as the
generation of method stubs. As such, our technique can be used to com-
plement LibCatch either by acting as an initial minimizer for reducing the
sources of compilation errors before applying LibCatch, or to provide addi-
tional reachability information to decide whether the compilation error can
be addressed by code removal rather than migration.

Class Dependency Analysis. Class dependency analysis has also been investi-
gated by many previous works primarily to improve developers’ understand-
ing of a software system, where there have been works as early as 2002 which
investigate the use of class dependency information for visualization purposes
[22]. Regardless, a common feature of all dependency extraction techniques
is requiring that the bytecode must be present, as most works either directly
analyze bytecode for dependencies due to the straightforward but consistent
format [22] and the potential lack of source code for some software [23], or
utilizes the Java Debug Interface at runtime to obtain dependency informa-
tion [24] since it contains the most accurate representation of class state and
dependencies at any given point of the program execution. However, since
this work aims to repair uncompilable snapshots, there is no bytecode in-
formation that can be used for analysis, and therefore existing techniques
cannot be used for class dependency analysis.

Our work addresses this limitation by implementing class dependency
analysis at source-level rather than bytecode-level, allowing class dependency
information to be available to partial and uncompilable programs.

Software Minimization. Minimization of software projects has been investi-
gated extensively in previous works. One line of research in minimization
utilizes delta debugging (ddmin), including C-Reduce [25], Peres [26], and
Chisel [27]. These works perform reduction by successively removing chunks
of a test case until the test case is minimal while still exhibiting the desired
behavior. However, when applied to test dependency minimization on un-
compilable revisions, since the desirable behavior (i.e. whether a test case
would pass or fail under a revision) is not known, ddmin cannot be used.

Another technique used for minimization is to reuse existing compiler
optimizations to inline function calls and subsequently perform dead-code
elimination to remove unneeded components of the program, and is used in
the field of code debloating. Works in this line of research include Trimmer
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[28] and Occam [29]. The key difference between this line of work and our
work is that compiler optimization techniques are often implemented after the
compiler frontend completes parsing, semantic analysis, and IR lowering, the
input program must be compilable to take advantage of these optimizations.
Similarly, Razor [30] adopts an approach where debloating is performed on
bytecode to enable debloating at runtime; However, this has the same draw-
back as compilation techniques, where successful compilation of the input
program is required.

A more recent work related to minimization for software debloating is
DomGad [31], which identifies all likely paths taken by a subdomain of in-
puts, and then performs stochastic optimizations to minimize the program
while preserving its generality. Compared to our technique, DomGad is path-
sensitive and therefore may be able to achieve better minimization for imper-
ative programs, whereas our technique instead focuses on devirtualization as
the primary means of minimization. Furthermore, DomGad requires cover-
age data to obtain the path executed by each sample execution.

J-Reduce [32] performs minimization of compiled classes by utilizing ddmin
on the binary classes of a compiled program rather than individual statements
within a test case, procedurally reducing the set of classes until a minimal set
of dependent classes are found. However, J-Reduce also operates on bytecode
and thus requires successful compilation for its use.

Our technique addresses the above issues by only using source-level tech-
niques to perform minimization, such that it can be performed on uncompi-
lable programs. Moreover, we also inject assertions to warn of undesirable
behavior that may result from imprecisions inherent to our technique.

CodeEx [33] is a tool that extracts usages of APIs in projects as ex-
amples for developers using said APIs and its implementation comprises of
removers that resolves any compilation errors by removing redundant con-
structs surrounding the usage of the API. However, CodeEx’s technique in-
volves removing program components regardless of whether the component
influences program behavior for a given entrypoint. Our technique addresses
this by making the preservation of program behavior an explicit aim, similar
to as described above.

7. Conclusion and Future Work

Build breakages of software snapshots due to updates in Java versions are
becoming more frequent due to the shortened release cycle and amount of

42



changes in each major release of Java, which causes significant manual effort
to be needed when performing bug bisection for a bug that spans multiple
Java versions.

In this paper, we analyzed bug snapshots from Defects4J to investigate
the reasons breakages occur when recompiling a Java project under a newer
version of Java. Based on this insight, we propose a novel dependency min-
imization technique to remove sources of compilation errors by removing
classes and methods that are not used by any execution of triggering test
cases in a snapshot. To our knowledge, the technique is the first work that
performs behavior-preserving source-level minimization to address compila-
tion errors.

Using Defects4J as our evaluation dataset, we discover that build failures
after a Java compiler upgrade occur in 12%-47% of Defects4J bugs, and can
be separated into 4 categories: Changes to the Java Language, changes to the
Java standard library, unsupported encoding, and unsupported build tools.
Build failures are also more common when upgrading to the latest versions
of JDK compared to an older version of JDK.

We then show that test dependency minimization can repair all broken
snapshots for compilation and up to 84% of broken snapshots for test execu-
tion across different JDK and source level versions, and on average achieve
over 95% method recall for all broken snapshots. At the same time, test
dependency minimization on average takes between 0.5 to 20 additional sec-
onds per snapshot depending on the complexity of the project, showing that
the minimization process introduces minimal overhead when included in a
bisection process.

For future work, there are several aspects that our technique can still
improve upon. Firstly, the current algorithm does not perform any context-
sensitive analysis, meaning that methods that contain a large number of
branches may introduce significant false positives due to the assumption
that any branch in the method may be executed. Future works may investi-
gate utilizing techniques such as symbolic execution to eliminate unreachable
branches.

Secondly, the current algorithm does not handle classes and methods
which are instantiated or invoked using Java Reflection APIs, causing false
negatives and unexpected execution errors; This may be solved by leveraging
existing works on statically solving declarations used in Reflection APIs.

Finally, since the current technique primarily uses removal to perform
minimization, this technique may not be optimal when using the repaired
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snapshot for generation-based tasks such as automatic test case generation,
as these tasks often take advantage of unused classes and methods to gener-
ate objects used as operands for the target method. Therefore, future work
may investigate alternative implementations that balance automatically fix-
ing compilation errors and retaining the maximal slice of the snapshot.

With minor improvements to the technique, we believe that test depen-
dency minimization can also be applied to fixing uncompilable subjects dur-
ing bug corpus collection, as well as integrated into IDEs to provide more
accurate code extraction capabilities.
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