Spectral mapping theorem and the Taylor spectrum

Muneo Chō, B. Načevska Nastovska and Kôtarô Tanahashi

Abstract

In [6] Chō and Tanahashi showed new spectral mapping theorem of the Taylor spectrum for doubly commuting pairs of p-hyponormal operators and log-hyponormal operators. In this paper, we will show that same spectral mapping theorem holds for commuting n-tuples.

1 Introduction and preparation

Let \mathcal{H} be a complex Hilbert space and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . For $T \in B(\mathcal{H})$, let $\sigma(T), \sigma_p(T)$ and $\sigma_a(T)$ denote the spectrum, the point spectrum and the approximate point spectrum of T, respectively. Let $\lambda \in \mathbb{C}$ belong to the residual spectrum $\sigma_r(T)$ of T if there exists c > 0 such that $||(T - \lambda)x|| \ge c||x||$ for all $x \in \mathcal{H}$ and $(T - \lambda)\mathcal{H} \neq \mathcal{H}$. It is easy to see that if $\lambda \in \sigma_r(T)$, then $0 \in \sigma_p((T - \lambda)^*)$. It is well known that $\sigma(T) = \sigma_a(T) \cup \sigma_r(T)$. For an Hermitian operator $A \in B(\mathcal{H})$, we denote $A \ge 0$ if $(Ax, x) \ge 0$ for every $x \in \mathcal{H}$ and $A \ge B$ if $A - B \ge 0$. When (Ax, x) > 0 for every non-zero $x \in \mathcal{H}$, then we denote T > 0. For a given $p > 0, T \in B(\mathcal{H})$ is said to be p-hyponormal if $(T^*T)^p \ge (TT^*)^p$. When p = 1/2, T is said to be semi-hyponormal. It means that T is semi-hyponormal if and only if $|T| \ge |T^*|$. T is said to be log-hyponormal if T is invertible and $\log |T| \ge \log |T^*|$. It is well known that if T is invertible p-hyponormal for some p > 0, then T is log-hyponormal. If \mathcal{M} is a reducing subspace for a p-hyponormal or log-hyponormal operator T, then so is $T|_{\mathcal{M}}$, respectively.

For a commuting *n*-tuple $\mathbf{T} = (T_1, ..., T_n) \in B(\mathcal{H})^n$, we explain the Taylor spectrum $\sigma(\mathbf{T})$ of \mathbf{T} shortly. Let E^n be the exterior algebra on *n* generators, that is, E^n is the complex algebra with identity *e* generated by indeterminates $e_1, ..., e_n$. Let $E_k^n(\mathcal{H}) = \mathcal{H} \otimes E_k^n$. Define $D_k^n : E_k^n(\mathcal{H}) \longrightarrow E_{k-1}^n(\mathcal{H})$ by

⁰2010 Mathematics Subject Classification; Primary 47B20, Secondary 47A10.

Keywords; Helbert space, Taylor spectrum, spectral mapping theorem, p-hyponormal, log-hyponormal.

$$D_k^n(x \otimes e_{j_1} \wedge \dots \wedge e_{j_k}) := \sum_{i=1}^k (-1)^{i-1} T_{j_i} x \otimes e_{j_1} \wedge \dots \wedge \check{e}_{j_i} \wedge \dots \wedge e_{j_k},$$

where \check{e}_{j_i} means deletion. We denote D_k^n by D_k simply. We think Koszul complex $E(\mathbf{T})$ of \mathbf{T} as follows:

$$E(\mathbf{T}) : 0 \longrightarrow E_n^n(\mathcal{H}) \xrightarrow{D_n} E_{n-1}^n(\mathcal{H}) \xrightarrow{D_{n-1}} \cdots \xrightarrow{D_2} E_1^n(\mathcal{H}) \xrightarrow{D_1} E_0^n(\mathcal{H}) \longrightarrow 0.$$

Since $E_k^n(\mathcal{H}) \cong \underbrace{\stackrel{\binom{n}{k} = \frac{n!}{(n-k)!\,k!}}_{\mathcal{H} \oplus \cdots \oplus \mathcal{H}} (k = 1, ..., n)$, we set $E_k^n(\mathcal{H}) = \underbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}_{\mathcal{H}} (k = 1, ..., n).$

Definition 1.1. A commuting n-tuple $\mathbf{T} = (T_1, ..., T_n) \in B(\mathcal{H})^n$ is said to be singular if and only if the Koszul complex $E(\mathbf{T})$ of \mathbf{T} is not exact.

Definition 1.2. For a commuting n-tuple $\mathbf{T} = (T_1, ..., T_n) \in B(\mathcal{H})^n$, $z = (z_1, ..., z_n) \in \mathbb{C}^n$ belongs to the Taylor spectrum $\sigma_T(\mathbf{T})$ of \mathbf{T} if $\mathbf{T} - z = (T_1 - z_1, ..., T_n - z_n)$ is singular.

About the definition of the Taylor spectrum, see details J. L. Taylor [9] and [10]. In [7], Curto proved the following proposition.

Proposition 1.3. (Proposition 3.4, Curto [7]) For a commuting n-tuple $\mathbf{T} = (T_1, ..., T_n) \in B(\mathcal{H})^n$, $0 = (0, ..., 0) \notin \sigma_T(\mathbf{T})$ if and only if $D_k^* D_k + D_{k+1} D_{k+1}^*$ is invertible for all k.

For a commuting pair $\mathbf{T} = (T_1, ..., T_n) \in B(\mathcal{H})^n$, it is well known that, for polynomials $f_1, ..., f_m$ of *n*-variables, if $f(z_1, ..., z_n) = (f_1(z_1, ..., z_n), ..., f_m(z_1, ..., z_n))$, then it holds

$$\sigma_T(f(T_1, ..., T_n)) = f(\sigma_T(T_1, ..., T_n)),$$

where $\sigma_T(T_1, ..., T_n)$ is the Taylor spectrum of $\mathbf{T} = (T_1, ..., T_n)$. See Theorem 4.7 in [10].

In the paper [6], Chō and Tanahashi showed another spectral mapping theorem under the following assumption.

Let $T = U|T| \in B(\mathcal{H})$ be the polar decomposition of T with unitary U and f be a continuous function on the non-negative real line which contains $\sigma(|T|)$. Let \mathcal{K} be Berberian extension of \mathcal{H} and $\circ : B(\mathcal{H}) \ni T \to T^{\circ} \in B(\mathcal{K})$ be a faithful *-representation. We set the following conditions (1) and (2):

- (1) For a sequence $\{x_n\}$ of unit vectors, if $(T-z)x_n \to 0$, then $(T-z)^*x_n \to 0$.
- (2) If a closed subspace \mathcal{M} of \mathcal{K} reduces T° and $re^{i\theta} \in \sigma(T^{\circ}|_{\mathcal{M}})$,

then \mathcal{M} reduces $U^{\circ}, |T|^{\circ}$ and $e^{-i\theta}f(r) \in \sigma_p\left((U^{\circ}|_{\mathcal{M}}f(|T|^{\circ})|_{\mathcal{M}})^*\right)$.

Theorem 1.4. Let $\mathbf{T} = (T_1, T_2)$ be a doubly commuting pair of operators and $T_j = U_j|T_j|$ (j = 1, 2) be the polar decomposition. Let f(t) be a continuous function on a open interval in the non-negative real line which contains $\sigma(|T_1|) \cup \sigma(|T_2|)$. Let $S_j = U_j f(|T_j|)$ (j = 1, 2) and $\mathbf{S} = (S_1, S_2)$. Let T_1, T_2 and f satisfy (1) and (2). If $(r_1 e^{i\theta_1}, r_2 e^{i\theta_2}) \in \sigma_T(\mathbf{T})$, then $(e^{i\theta_1} f(r_1), e^{i\theta_2} f(r_2)) \in \sigma_T(\mathbf{S})$.

See the details of Berberian extension [1]. That proof depends on the following Vasilescu's result.

Let $\mathbf{T} = (T_1, T_2)$ be a commuting pair of operators on $\mathcal{H}, \mathbf{z} = (z_1, z_2) \in \mathbb{C}^2$ and let

$$\alpha(\mathbf{T} - \mathbf{z}) := \begin{pmatrix} T_1 - z_1 & T_2 - z_2 \\ -(T_2 - z_2)^* & (T_1 - z_1)^* \end{pmatrix} \text{ on } \mathcal{H} \oplus \mathcal{H}.$$

Then Vasilescu proved the following result.

Proposition 1.5. (Theorem 1.1, Vasilescu [11]) Let $\mathbf{T} = (T_1, T_2) \in B(\mathcal{H})^2$ be a commuting pair. Then

$$\mathbf{z} = (z_1, z_2) \in \sigma_T(\mathbf{T})$$
 if and only if $\alpha(\mathbf{T} - \mathbf{z})$ is not invertible.

Therefore, we have $\mathbf{z} = (z_1, z_2) \in \sigma_T(\mathbf{T})$ if and only if $0 \in \sigma(\alpha(\mathbf{T} - \mathbf{z}))$.

For an *n*-tuple $\mathbf{T} = (T_1, ..., T_n)$, the joint point spectrum $\sigma_{jp}(\mathbf{T})$ is the set of all numbers $\mathbf{z} = (z_1, ..., z_n) \in \mathbb{C}^n$ such that there exists a non-zero vector $x \in \mathcal{H}$ which satisfies $T_j x = z_j x \ (\forall j = 1, ..., n)$ and the joint approximate point spectrum $\sigma_{ja}(\mathbf{T})$ is the set of all numbers $\mathbf{z} = (z_1, ..., z_n) \in \mathbb{C}^n$ such that there exists a sequence $\{x_k\}$ of unit vectors of \mathcal{H} which satisfies

$$(T_j - z_j)x_k \rightarrow 0 \text{ as } k \rightarrow \infty \ (\forall j = 1, ..., n).$$

Following proposition is due to Berberian [1] for a single operator case. It is easy to see a proof for *n*-tuples. See Berberian [1] and $Ch\bar{o}$ [2].

Proposition 1.6. Let $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . Then there exist an extension space \mathcal{K} of \mathcal{H} and a faithful *-representation of $B(\mathcal{H})$ into $B(\mathcal{K})$: $T \to T^{\circ}$ such that

$$\sigma_{ja}(\mathbf{T}) = \sigma_{ja}(\mathbf{T}^{\circ}) = \sigma_{jp}(\mathbf{T}^{\circ}),$$

where $\mathbf{T} = (T_1, ..., T_n) \in B(\mathcal{H})^n$ and $\mathbf{T}^{\circ} = (T_1^{\circ}, ..., T_n^{\circ}).$

Following results are well known.

Proposition 1.7. Let T = U|T| be the polar decomposition of T and f be a continuous function on the non-negative real line which contains $\sigma(|T|)$. For a sequence $\{x_n\}$ of unit vectors, if $(T - re^{i\theta})x_n \to 0$ and $(T - re^{i\theta})^*x_n \to 0$, then $(U - e^{i\theta})x_n \to 0$, $(|T| - r)x_n \to 0$ and $(f(|T|) - f(r))x_n \to 0$.

See Lemma 1.2.4 in [13].

Proposition 1.8. Let T be semi-hyponormal. Then $\sigma(T) = \{\overline{z} : z \in \sigma_a(T^*)\}.$

See Theorem 1.2.6 in [13].

Remark. If T is p-hyponormal and $f(t) = t^{2p}$, then (2) holds by Theorem 4 of [3]. If T is log-hyponormal and $f(t) = \log t$, then (2) holds by Lemma 3 of [8]. About (3), since the mapping \circ of Berberian method is a faithful *-representation, so is T° if T is p-hyponormal or log-hyponormal, respectively. Let \mathcal{M} be a reducing subspace for T. It is clear that if T is p-hyponormal or log-hyponormal, then so is $T|_{\mathcal{M}}$, respectively.

(i) Let T be p-hyponormal and T = U|T| be the polar decomposition of T and $f(t) = t^{2p}$. Then $S = U|T|^{2p}$ is semi-hyponormal and $\sigma(U|T|^{2p}) = \{r^{2p}e^{i\theta} : re^{i\theta} \in \sigma(T)\}$ by Theorem 3 of [4]. Hence (3) holds by Proposition 1.8.

(ii) Let T = U|T| be log-hyponormal and $f(t) = \log t$. Then $S = U \log |T|$ is semi-hyponormal and $\sigma(U \log |T|) = \{e^{i\theta} \log r : re^{i\theta} \in \sigma(T)\}$ by Lemma 8 of [8]. Hence (3) holds by Proposition 1.8.

Therefore, if T is p-hyponormal or log-hyponormal and $f(t) = t^{2p}$ or $f(t) = \log t$, respectively, then T satisfies (2) and (3) for this f.

In this paper, we would like to prove the following theorem.

Theorem 1.9. Let $\mathbf{T} = (T_1, ..., T_n)$ be a doubly commuting n-tuple of operators and $T_j = U_j |T_j|$ (j = 1, ..., n) be the polar decompositions. Let f(t) be a continuous function on a open interval in the non-negative real line which contains $\sigma(|T_1|) \cup \cdots \cup \sigma(|T_n|)$. Let $S_j = U_j f(|T_j|)$ (j = 1, ..., n) and $\mathbf{S} = (S_1, ..., S_n)$. Let $T_1, ..., T_n$ and f satisfy (1) and (2). If $(r_1e^{i\theta_1}, ..., r_ne^{i\theta_n}) \in \sigma_T(\mathbf{T})$, then $(e^{i\theta_1}f(r_1), ..., e^{i\theta_n}f(r_n)) \in \sigma_T(\mathbf{S})$.

2 Proof of the theorem

First we need the following lemma.

Lemma 2.1. Let $\mathbf{T} = (T_1, ..., T_n)$ be a doubly commuting n-tuple of operators and T_j has property (1) for j = 1, ..., n. Let $\{D_k\}$ be the chain complex of n-tuple $\mathbf{T} = (T_1, ..., T_n)$. If there exists some $k \in \{1, 2, \cdots, n-1\}$ and unit vectors $x_m = \bigoplus_{j=1}^r x_m^j \in E_k^n(\mathcal{H})$ where $r = \binom{n}{k}$, such that $(D_k^*D_k + D_{k+1}D_{k+1}^*)x_m \to 0$ as $m \to \infty$, then there exists $s \in \{1, 2, \cdots, r\}$ such that $\{x_m^s\}$ is a bounded below sequence of non-zero vectors of \mathcal{H} satisfying $T_j^* x_m^s \to 0$ as $m \to \infty$ for $j = 1, \cdots, n$. Thus, by taking unit vector $y_m = \frac{x_m^s}{\|x_m^m\|} \in \mathcal{H}$, we have $T_j^* y_m \to 0$ as $m \to \infty$ for $j = 1, \cdots, n$.

Proof. We show it by the mathematical induction. (1) Let n = 2. Then the chain complex of doubly commuting pair $\mathbf{T} = (T_1, T_2)$ is

$$0 \longrightarrow \mathcal{H} \xrightarrow{D_2} \mathcal{H} \oplus \mathcal{H} \xrightarrow{D_1} \mathcal{H} \longrightarrow 0.$$

By the definition of the Koszul complex we have

$$D_2 = \begin{pmatrix} -T_2 \\ T_1 \end{pmatrix}$$
 and $D_1 = \begin{pmatrix} T_1 & T_2 \end{pmatrix}$.

Since T_1, T_2 are doubly commuting, we have

$$D_1^*D_1 + D_2D_2^* = \left(\begin{array}{cc} T_1^*T_1 + T_2T_2^* & 0\\ 0 & T_1T_1^* + T_2^*T_2 \end{array}\right).$$

Let $x_m = x_m^1 \oplus x_m^2 \in E_1^2(\mathcal{H}) \cong \mathcal{H} \oplus \mathcal{H}$ be unit vectors and

$$(D_1^* D_1 + D_2 D_2^*) x_m = \begin{pmatrix} T_1^* T_1 + T_2 T_2^* & 0\\ 0 & T_1 T_1^* + T_2^* T_2 \end{pmatrix} \begin{pmatrix} x_m^1\\ x_m^2 \end{pmatrix}$$

= $\begin{pmatrix} (T_1^* T_1 + T_2 T_2^*) x_m^1\\ (T_1 T_1^* + T_2^* T_2) x_m^2 \end{pmatrix} \rightarrow 0 \text{ as } m \rightarrow \infty.$

Since $||x_m^1||^2 + ||x_m^2||^2 = 1$ for all m, we may assume (i) $x_m^1 \not\to 0$ or (ii) $x_m^2 \not\to 0$.

We assume (i). By taking subsequence, we may asume that there exists 0 < c that that $0 < c < ||x_m^1|| \le 1$ for all m, i.e., bounded below. Then $(T_1^*T_1 + T_2T_2^*)x_m^1 \to 0$ implies $T_1x_m^1, T_2^*x_m^1 \to 0$ and $T_1^*x_m^1 \to 0$ by (1). Case (ii) is similar. Hence the statement holds for n = 2.

(2) We assume that the statement holds for (n-1)-tuples of doubly commuting operators. Assume $(D_k^*D_k + D_{k+1}D_{k+1}^*)x_m \to 0$ as $m \to \infty$ for unit vectors $x_m \in E_k^n(\mathcal{H})$.

Let $\{F_k\}$ be the chain complex of (n-1)-tuple $\mathbf{T}' = (T_1, ..., T_{n-1})$ and $x_m = y_m \oplus z_m \in E_k^{n-1}(\mathcal{H}) \oplus E_{k-1}^{n-1}(\mathcal{H}) = E_k^n(\mathcal{H})$. By Curto's characterization (see p.132, Curto [7]) it holds $D_k = \begin{pmatrix} F_k & (-1)^{k+1} \operatorname{diag}(T_n) \\ 0 & F_{k-1} \end{pmatrix}$. Hence

$$(D_k^* D_k + D_{k+1} D_{k+1}^*) x_m = \begin{pmatrix} \left(F_k^* F_k + F_{k+1} F_{k+1}^* + \operatorname{diag}(T_n T_n^*)\right) y_m \\ \left(F_{k-1}^* F_{k-1} + F_k F_k^* + \operatorname{diag}(T_n^* T_n)\right) z_m \end{pmatrix} \to 0.$$

Since $||y_m||^2 + ||z_m||^2 = 1$ for all m, we may assume (i) $y_m \neq 0$ or (ii) $z_m \neq 0$. We assume (i).

Then $(F_k^*F_k + F_{k+1}F_{k+1}^* + \operatorname{diag}(T_nT_n^*)) y_m \to 0$ implies $(F_k^*F_k + F_{k+1}F_{k+1}^*) y_m \to 0$ and $(\operatorname{diag}(T_nT_n^*)) y_m \to 0$. By taking subsequence, we may asume that there exists 0 < cthat that $0 < c < ||y_m|| \le 1$ for all m. Let $v_m = \frac{y_m}{||y_m||}$. Then v_m are unit vectors and

 $(F_k^*F_k + F_{k+1}F_{k+1}^*)v_m \to 0 \text{ and } (\operatorname{diag}(T_nT_n^*))v_m \to 0.$ Let $v_m = \bigoplus_{s=1}^{\binom{n-1}{k}} v_m^s \in E_k^{n-1}(\mathcal{H}).$ Then there exist $s \in \{1, 2, \cdots, \binom{n-1}{k}\}$ such that $v_m^s \in \mathcal{H}$ is a bounded below sequence of non-zero vectors and $T_j^*v_m^s \to 0$ for $j = 1, 2, \cdots, n-1$ and $T_n^*v_m^s \to 0$ as $m \to \infty$.

Case (ii) is similar. Hence the statement holds for n. It completes the proof.

Theorem 2.2. Let $\mathbf{T} = (T_1, ..., T_n)$ be a doubly commuting n-tuple of operators which satisfy that every T_j (j = 1, ..., n) has property (1). If $z = (z_1, ..., z_n) \in \sigma_T(\mathbf{T})$, then there exists unit vectors $y_m \in \mathcal{H}$ such that $(T_j - z_j)^* y_m \to 0$ as $m \to \infty$, that is, $\overline{z} = (\overline{z_1}, ..., \overline{z_n}) \in \sigma_{ja}(\mathbf{T}^*)$, where $\mathbf{T}^* = (T_1^*, ..., T_n^*)$.

Proof. Since $z = (z_1, ..., z_n) \in \sigma_T(\mathbf{T})$, by the spectral mapping theorem of the Taylor spectrum, it holds

$$0 = (0, \dots, 0) \in \sigma_T(\mathbf{T} - z),$$

where $\mathbf{T} - z = (T_1 - z_1, ..., T_n - z_n)$. Since $\mathbf{T} - z$ is a doubly commuting *n*-tuple of operators which satisfy that every $T_j - z_j$ (j = 1, ..., n) has property (1) and the Koszul complex $E(\mathbf{T} - z)$ of *n*-tuple $\mathbf{T} - z = (T_1 - z_1, ..., T_n - z_n)$ is not exact. Hence there exists k such that $(D_k^* D_k + D_{k+1} D_{k+1}^*)$ is not invertible. Since the operator $D_k^* D_k + D_{k+1} D_{k+1}^*$ is positive on the space $E_k^n(\mathcal{H})$, there exists a sequence $\{x_m\}$ of unit vectors of $E_k^n(\mathcal{H})$ such that $(D_k^* D_k + D_{k+1} D_{k+1}^*) x_m \to 0$ as $m \to \infty$. Hence, by Lemma 2.1 there exists a sequence $\{y_m\}$ of unit vectors of \mathcal{H} such that

$$(T_j - z_j)^* y_m \rightarrow 0$$
 as $m \rightarrow \infty$ for all $j = 1, ..., n$.

It's completes the proof.

Proof of Theorem 1.9.

(1) If n = 2, theorem holds by Theorem 2.3 of [6].

(2) We assume that the statement holds for (n-1)-tuple. Since $(r_1e^{i\theta_1}, ..., r_ne^{i\theta_n}) \in \sigma_T(\mathbf{T})$, by Theorem 2.2 there exists a sequence $\{x_m\}$ of unit vectors of \mathcal{H} such that $(T_j - r_j e^{i\theta_j})^* x_m \to 0$ as $m \to \infty$ for all j = 1, ..., n. Consider the Berberian extension \mathcal{K} of \mathcal{H} . Then there exists $0 \neq x^\circ \in \mathcal{K}$ such that

$$(T_j^{\circ} - r_j e^{i\theta_j})^* x^{\circ} = 0$$
 for all $j = 1, ..., n$.

Let $\mathcal{M} = \ker(T_n^{\circ} - r_n e^{i\theta_n})^*$. Then $\mathcal{M}(\neq \{0\})$ is a reducing subspace for $T_1^{\circ}, ..., T_{n-1}^{\circ}$ and $(r_1 e^{i\theta_1}, ..., r_{n-1} e^{i\theta_{n-1}}) \in \sigma_T(\mathbf{T}_{|\mathcal{M}}^{\circ'})$, where $\mathbf{T}_{|\mathcal{M}}^{\circ'} = (T_{1|\mathcal{M}}^{\circ}, ..., T_{n-1|\mathcal{M}}^{\circ})$. By the induction there exists a non-zero vector $y^{\circ} \in \mathcal{M}$ such that

$$(S_j^{\circ} - e^{i\theta_j} f(r_j))^* y^{\circ} = 0$$
 for all $j = 1, ..., n - 1$.

Let $\mathcal{N} = \bigcap_{j=1}^{n-1} \ker(S_j^\circ - e^{i\theta_j} f(r_j))^*$. Then \mathcal{N} is a reducing subspace for T_n° . Let $\mathcal{R} = \mathcal{M} \bigcap \mathcal{N} \neq \{0\}$. Hence $r_n e^{i\theta_n} \in \sigma(T_{n|\mathcal{R}}^\circ)$. By property (2) there exists a non-zero vector $z^\circ \in \mathcal{R}$ such that $(S_{n|\mathcal{R}}^\circ - e^{i\theta_n} f(r_n))^* z^\circ = 0$. Since this z° satisfies $(S_{j|\mathcal{R}}^\circ - e^{i\theta_j} f(r_j))^* z^\circ = 0$ for all j = 1, ..., n-1, we have $(e^{i\theta_1} f(r_1), ..., e^{i\theta_n} f(r_n)) \in \sigma_T(\mathbf{S})$. This completes the proof.

Corollary 2.3. Let $\mathbf{T} = (T_1, ..., T_n)$ be a doubly commuting n-tuple of p-hyponormal operators $(0 . Let <math>U_j$ be unitary for the polar decomposition of $T_j = U_j |T_j|$ (j = 1, ..., n) and $\mathbf{S} = (U_1 |T_1|^{2p}, ..., U_n |T_n|^{2p})$. Then

$$\sigma_T(\mathbf{S}) = \{ (r_1^{2p} e^{i\theta_1}, ..., r_n^{2p} e^{i\theta_n}) : (r_1 e^{i\theta_1}, ..., r_n e^{i\theta_n}) \in \sigma_T(\mathbf{T}) \}.$$

Proof. Let $f(t) = t^{2p}$ on the non-negative real line. Since **T** is a doubly commuting *n*-tuple of *p*-hyponormal operators and $f(t) = t^{2p}$, $T_1, ..., T_n$ and f satisfy (2) and (3). Hence, by Theorem 1.9 we have

$$\sigma_T(\mathbf{S}) \supset \{ (r_1^{2p} e^{i\theta_1}, ..., r_n^{2p} e^{i\theta_n}) : (r_1 e^{i\theta_1}, ..., r_n e^{i\theta_n}) \in \sigma_T(\mathbf{T}) \}.$$

Conversely, put $g(t) = t^{\frac{1}{2p}}$ on the non-negative real line. Since **S** is a doubly commuting pair of semi-hyponormal operators, S_1, S_2 and g satisfy (2) and (3). Then we have the converse inclusion by Theorem 1.9 and similar argument.

Corollary 2.4. Let $\mathbf{T} = (T_1, ..., T_n)$ be a doubly commuting n-tuple of log-hyponormal operators with $\log |T_j| > 0$. Let U_j be unitary for the polar decomposition of $T_j = U_j |T_j|$ (j = 1, ..., n) and $\mathbf{S} = (U_1 \log |T_1|, ..., U_n \log |T_n|)$. Then

$$\sigma_T(\mathbf{S}) = \{ e^{i\theta_1} \log r_1, ..., e^{i\theta_n} \log r_n) : (r_1 e^{i\theta_1}, ..., r_n e^{i\theta_n}) \in \sigma_T(\mathbf{T}) \}.$$

Proof. Let $f(t) = \log t$ on $(0, \infty)$. Since **T** is a doubly commuting *n*-tuple of loghyponormal operators and $f(t) = \log t, T_1, ..., T_n$ and f satisfy (2) and (3). So by Theorem 1.9 we have

$$\sigma_T(\mathbf{S}) \supset \{e^{i\theta_1} \log r_1, ..., e^{i\theta_n} \log r_n) : (r_1 e^{i\theta_1}, ..., r_n e^{i\theta_n}) \in \sigma_T(\mathbf{T}) \}.$$

Conversely, let $g(t) = e^t$ on the non-negative real line. Since **S** is a doubly commuting *n*-tuple of semi-hyponormal operators, $S_1, ..., S_n$ and g satisfy (2) and (3). Hence, we have the converse inclusion by similar argument.

Acknowledgment. This research is partially supported by RIMS.

References

- S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114.
- M. Chō, Relation between the Taylor spectrum and the Xia spectrum, Proc. Amer. Math. Soc., 128 (1999), 2357-2363.
- [3] M. Chō and T. Huruya, *p*-Hyponormal operators for 0 , Comment. Math.**33**(1993), 23-29.

- [4] M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc 123 (1995), 2435-2440.
- [5] M. Chō, H. Motoyoshi and B. Načevska Nastovska, On the joint spectra of commuting tuples of operators and a conjugation, Functional Analysis, Approximation and Computation, 9:2 (2017), 21-26.
- [6] M. Chō and K. Tanahashi, New spectral mapping theorem of the Taylor spectrum, Sci. Math. Japon, 84 No.2 (2021), 145-154.
- [7] R. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), 129-159.
- [8] K. Tanahashi, Putnam's inequality for log-hyponormal operators, Integr. Equat. Oper. Th. 48(2004), 103-114.
- [9] J.L.Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
- [10] J.L.Taylor, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38.
- [11] F.-H. Vasilescu, On pairs of commuting operators, Studia Math. 62 (1978), 203-207.
- [12] D. Xia, On the semi-hyponormal n-tuple of operators, Integr. Equat. Oper. Th. 6(1983), 879-898.
- [13] D. Xia, Spectral Theory of Hyponormal operators Birkhäuser 1983.

Muneo Chō

15-3-1113, Tsutsui-machi Yahatanishi-ku, Kita-kyushu 806-0032, Japan e-mail: muneocho0105@gmail.com

B. Načevska Nastovska

Faculty of Electrical Engineering and Information Technologies, "Ss Cyril and Methodius" University in Skopje, Macedonia e-mail: bibanmath@gmail.com

Kôtarô Tanahashi Department of Mathematics, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan e-mail: tanahasi@tohoku-mpu.ac.jp