Spectral mapping theorem and the Taylor spectrum

Muneo Chō, B. Načevska Nastovska and Kôtarô Tanahashi

Abstract

In [6] Chō and Tanahashi showed new spectral mapping theorem of the Taylor spectrum for doubly commuting pairs of p-hyponormal operators and log-hyponormal operators. In this paper, we will show that same spectral mapping theorem holds for commuting n-tuples.

1 Introduction and preparation

Let \mathcal{H} be a complex Hilbert space and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. For $T \in B(\mathcal{H})$, let $\sigma(T), \sigma_{p}(T)$ and $\sigma_{a}(T)$ denote the spectrum, the point spectrum and the approximate point spectrum of T, respectively. Let $\lambda \in \mathbb{C}$ belong to the residual spectrum $\sigma_{r}(T)$ of T if there exists $c>0$ such that $\|(T-\lambda) x\| \geq c\|x\|$ for all $x \in \mathcal{H}$ and $(T-\lambda) \mathcal{H} \neq \mathcal{H}$. It is easy to see that if $\lambda \in \sigma_{r}(T)$, then $0 \in \sigma_{p}\left((T-\lambda)^{*}\right)$. It is well known that $\sigma(T)=\sigma_{a}(T) \cup \sigma_{r}(T)$. For an Hermitian operator $A \in B(\mathcal{H})$, we denote $A \geq 0$ if $(A x, x) \geq 0$ for every $x \in \mathcal{H}$ and $A \geq B$ if $A-B \geq 0$. When $(A x, x)>0$ for every non-zero $x \in \mathcal{H}$, then we denote $T>0$. For a given $p>0, T \in B(\mathcal{H})$ is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$. When $p=1 / 2, T$ is said to be semi-hyponormal. It means that T is semi-hyponormal if and only if $|T| \geq\left|T^{*}\right| . T$ is said to be log-hyponormal if T is invertible and $\log |T| \geq \log \left|T^{*}\right|$. It is well known that if T is invertible p-hyponormal for some $p>0$, then T is log-hyponormal. If \mathcal{M} is a reducing subspace for a p-hyponormal or log-hyponormal operator T, then so is $\left.T\right|_{\mathcal{M}}$, respectively.

For a commuting n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})^{n}$, we explain the Taylor spectrum $\sigma(\mathbf{T})$ of \mathbf{T} shortly. Let E^{n} be the exterior algebra on n generators, that is, E^{n} is the complex algebra with identity e generated by indeterminates e_{1}, \ldots, e_{n}. Let $E_{k}^{n}(\mathcal{H})=$ $\mathcal{H} \otimes E_{k}^{n}$. Define $D_{k}^{n}: E_{k}^{n}(\mathcal{H}) \longrightarrow E_{k-1}^{n}(\mathcal{H})$ by

[^0]$$
D_{k}^{n}\left(x \otimes e_{j_{1}} \wedge \cdots \wedge e_{j_{k}}\right):=\sum_{i=1}^{k}(-1)^{i-1} T_{j_{i}} x \otimes e_{j_{1}} \wedge \cdots \wedge \check{e}_{j_{i}} \wedge \cdots \wedge e_{j_{k}}
$$
where $\check{e}_{j_{i}}$ means deletion. We denote D_{k}^{n} by D_{k} simply. We think Koszul complex $E(\mathbf{T})$ of \mathbf{T} as follows:
$$
E(\mathbf{T}): 0 \longrightarrow E_{n}^{n}(\mathcal{H}) \xrightarrow{D_{n}} E_{n-1}^{n}(\mathcal{H}) \xrightarrow{D_{n-1}} \cdots \xrightarrow{D_{2}} E_{1}^{n}(\mathcal{H}) \xrightarrow{D_{1}} E_{0}^{n}(\mathcal{H}) \longrightarrow 0
$$

Since $E_{k}^{n}(\mathcal{H}) \cong \overbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}^{\binom{n}{k}=\frac{n!}{(n-k)!k!}}(k=1, \ldots, n)$, we set $E_{k}^{n}(\mathcal{H})=\overbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}^{\binom{n}{k}}(k=1, \ldots, n)$.

Definition 1.1. A commuting n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})^{n}$ is said to be singular if and only if the Koszul complex $E(\mathbf{T})$ of \mathbf{T} is not exact.

Definition 1.2. For a commuting n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})^{n}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ belongs to the Taylor spectrum $\sigma_{T}(\mathbf{T})$ of \mathbf{T} if $\mathbf{T}-z=\left(T_{1}-z_{1}, \ldots, T_{n}-z_{n}\right)$ is singular.

About the definition of the Taylor spectrum, see details J. L. Taylor [9] and [10]. In [7], Curto proved the following proposition.

Proposition 1.3. (Proposition 3.4, Curto [7) For a commuting n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right) \in$ $B(\mathcal{H})^{n}, 0=(0, \ldots, 0) \notin \sigma_{T}(\mathbf{T})$ if and only if $D_{k}^{*} D_{k}+D_{k+1} D_{k+1}^{*}$ is invertible for all k.

For a commuting pair $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})^{n}$, it is well known that, for polynomials f_{1}, \ldots, f_{m} of n-variables, if $f\left(z_{1}, \ldots, z_{n}\right)=\left(f_{1}\left(z_{1}, \ldots, z_{n}\right), \ldots, f_{m}\left(z_{1}, \ldots, z_{n}\right)\right)$, then it holds

$$
\sigma_{T}\left(f\left(T_{1}, \ldots, T_{n}\right)\right)=f\left(\sigma_{T}\left(T_{1}, \ldots, T_{n}\right)\right)
$$

where $\sigma_{T}\left(T_{1}, \ldots, T_{n}\right)$ is the Taylor spectrum of $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$. See Theorem 4.7 in [10].
In the paper [6], Chō and Tanahashi showed another spectral mapping theorem under the following assumption.

Let $T=U|T| \in B(\mathcal{H})$ be the polar decomposition of T with unitary U and f be a continuous function on the non-negative real line which contains $\sigma(|T|)$. Let \mathcal{K} be Berberian extension of \mathcal{H} and $\circ: B(\mathcal{H}) \ni T \rightarrow T^{\circ} \in B(\mathcal{K})$ be a faithful $*$-representation. We set the following conditions (1) and (2):
(1) For a sequence $\left\{x_{n}\right\}$ of unit vectors, if $(T-z) x_{n} \rightarrow 0$, then $(T-z)^{*} x_{n} \rightarrow 0$.

If a closed subspace \mathcal{M} of \mathcal{K} reduces T° and $r e^{i \theta} \in \sigma\left(T^{\circ}{ }_{\mathcal{M}}\right)$, then \mathcal{M} reduces $U^{\circ},|T|^{\circ}$ and $e^{-i \theta} f(r) \in \sigma_{p}\left(\left(\left.\left.U^{\circ}\right|_{\mathcal{M}} f\left(|T|^{\circ}\right)\right|_{\mathcal{M}}\right)^{*}\right)$.

Theorem 1.4. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a doubly commuting pair of operators and $T_{j}=$ $U_{j}\left|T_{j}\right|(j=1,2)$ be the polar decomposition. Let $f(t)$ be a continuous function on a open interval in the non-negative real line which contains $\sigma\left(\left|T_{1}\right|\right) \cup \sigma\left(\left|T_{2}\right|\right)$. Let $S_{j}=$ $U_{j} f\left(\left|T_{j}\right|\right)(j=1,2)$ and $\mathbf{S}=\left(S_{1}, S_{2}\right)$. Let T_{1}, T_{2} and f satisfy (1) and (2). If $\left(r_{1} e^{i \theta_{1}}, r_{2} e^{i \theta_{2}}\right) \in$ $\sigma_{T}(\mathbf{T})$, then $\left(e^{i \theta_{1}} f\left(r_{1}\right), e^{i \theta_{2}} f\left(r_{2}\right)\right) \in \sigma_{T}(\mathbf{S})$.

See the details of Berberian extension [1]. That proof depends on the following Vasilescu's result.

Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a commuting pair of operators on $\mathcal{H}, \mathbf{z}=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ and let

$$
\alpha(\mathbf{T}-\mathbf{z}):=\left(\begin{array}{cc}
T_{1}-z_{1} & T_{2}-z_{2} \\
-\left(T_{2}-z_{2}\right)^{*} & \left(T_{1}-z_{1}\right)^{*}
\end{array}\right) \quad \text { on } \mathcal{H} \oplus \mathcal{H} .
$$

Then Vasilescu proved the following result.
Proposition 1.5. (Theorem 1.1, Vasilescu [11) Let $\mathbf{T}=\left(T_{1}, T_{2}\right) \in B(\mathcal{H})^{2}$ be a commuting pair. Then

$$
\mathbf{z}=\left(z_{1}, z_{2}\right) \in \sigma_{T}(\mathbf{T}) \text { if and only if } \alpha(\mathbf{T}-\mathbf{z}) \text { is not invertible. }
$$

Therefore, we have $\mathbf{z}=\left(z_{1}, z_{2}\right) \in \sigma_{T}(\mathbf{T})$ if and only if $0 \in \sigma(\alpha(\mathbf{T}-\mathbf{z}))$.

For an n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$, the joint point spectrum $\sigma_{j p}(\mathbf{T})$ is the set of all numbers $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ such that there exists a non-zero vector $x \in \mathcal{H}$ which satisfies $T_{j} x=z_{j} x(\forall j=1, \ldots, n)$ and the joint approximate point spectrum $\sigma_{j a}(\mathbf{T})$ is the set of all numbers $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ such that there exists a sequence $\left\{x_{k}\right\}$ of unit vectors of \mathcal{H} which satisfies

$$
\left(T_{j}-z_{j}\right) x_{k} \rightarrow 0 \text { as } k \rightarrow \infty(\forall j=1, \ldots, n)
$$

Following proposition is due to Berberian [1] for a single operator case. It is easy to see a proof for n-tuples. See Berberian [1] and Chō [2].

Proposition 1.6. Let $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. Then there exist an extension space \mathcal{K} of \mathcal{H} and a faithful *-representation of $B(\mathcal{H})$ into $B(\mathcal{K})$: $T \rightarrow T^{\circ}$ such that

$$
\sigma_{j a}(\mathbf{T})=\sigma_{j a}\left(\mathbf{T}^{\circ}\right)=\sigma_{j p}\left(\mathbf{T}^{\circ}\right)
$$

where $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})^{n}$ and $\mathbf{T}^{\circ}=\left(T_{1}^{\circ}, \ldots, T_{n}^{\circ}\right)$.

Following results are well known.
Proposition 1.7. Let $T=U|T|$ be the polar decomposition of T and f be a continuous function on the non-negative real line which contains $\sigma(|T|)$. For a sequence $\left\{x_{n}\right\}$ of unit vectors, if $\left(T-r e^{i \theta}\right) x_{n} \rightarrow 0$ and $\left(T-r e^{i \theta}\right)^{*} x_{n} \rightarrow 0$, then $\left(U-e^{i \theta}\right) x_{n} \rightarrow 0,(|T|-r) x_{n} \rightarrow 0$ and $(f(|T|)-f(r)) x_{n} \rightarrow 0$.

See Lemma 1.2.4 in [13].
Proposition 1.8. Let T be semi-hyponormal. Then $\sigma(T)=\left\{\bar{z}: z \in \sigma_{a}\left(T^{*}\right)\right\}$.
See Theorem 1.2.6 in 13 .
Remark. If T is p-hyponormal and $f(t)=t^{2 p}$, then (2) holds by Theorem 4 of [3]. If T is \log-hyponormal and $f(t)=\log t$, then (2) holds by Lemma 3 of [8]. About (3), since the mapping o of Berberian method is a faithful *-representation, so is T° if T is p-hyponormal or log-hyponormal, respectively. Let \mathcal{M} be a reducing subspace for T. It is clear that if T is p-hyponormal or log-hyponormal, then so is $\left.T\right|_{\mathcal{M}}$, respectively.
(i) Let T be p-hyponormal and $T=U|T|$ be the polar decomposition of T and $f(t)=t^{2 p}$. Then $S=U|T|^{2 p}$ is semi-hyponormal and $\sigma\left(U|T|^{2 p}\right)=\left\{r^{2 p} e^{i \theta}: r e^{i \theta} \in \sigma(T)\right\}$ by Theorem 3 of [4]. Hence (3) holds by Proposition 1.8 .
(ii) Let $T=U|T|$ be \log-hyponormal and $f(t)=\log t$. Then $S=U \log |T|$ is semihyponormal and $\sigma(U \log |T|)=\left\{e^{i \theta} \log r: r e^{i \theta} \in \sigma(T)\right\}$ by Lemma 8 of [8]. Hence (3) holds by Proposition 1.8.
Therefore, if T is p-hyponormal or log-hyponormal and $f(t)=t^{2 p}$ or $f(t)=\log t$, respectively, then T satisfies (2) and (3) for this f.

In this paper, we would like to prove the following theorem.
Theorem 1.9. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of operators and $T_{j}=U_{j}\left|T_{j}\right|(j=1, \ldots, n)$ be the polar decompositions. Let $f(t)$ be a continuous function on a open interval in the non-negative real line which contains $\sigma\left(\left|T_{1}\right|\right) \cup \cdots \cup \sigma\left(\left|T_{n}\right|\right)$. Let $S_{j}=U_{j} f\left(\left|T_{j}\right|\right)(j=1, \ldots, n)$ and $\mathbf{S}=\left(S_{1}, \ldots, S_{n}\right)$. Let T_{1}, \ldots, T_{n} and f satisfy (1) and (2). If $\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right) \in \sigma_{T}(\mathbf{T})$, then $\left(e^{i \theta_{1}} f\left(r_{1}\right), \ldots, e^{i \theta_{n}} f\left(r_{n}\right)\right) \in \sigma_{T}(\mathbf{S})$.

2 Proof of the theorem

First we need the following lemma.
Lemma 2.1. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of operators and T_{j} has property (1) for $j=1, \ldots, n$. Let $\left\{D_{k}\right\}$ be the chain complex of n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$. If there exists some $k \in\{1,2, \cdots, n-1\}$ and unit vectors $x_{m}=\oplus_{j=1}^{r} x_{m}^{j} \in E_{k}^{n}(\mathcal{H})$ where $r=\binom{n}{k}$, such that $\left(D_{k}^{*} D_{k}+D_{k+1} D_{k+1}^{*}\right) x_{m} \rightarrow 0$ as $m \rightarrow \infty$, then there exists $s \in\{1,2, \cdots, r\}$ such that $\left\{x_{m}^{s}\right\}$ is a bounded below sequence of non-zero vectors of \mathcal{H} satisfying $T_{j}^{*} x_{m}^{s} \rightarrow 0$ as $m \rightarrow \infty$ for $j=1, \cdots, n$. Thus, by taking unit vector $y_{m}=$ $\frac{x_{m}^{s}}{\left\|x_{m}^{s}\right\|} \in \mathcal{H}$, we have $T_{j}^{*} y_{m} \rightarrow 0$ as $m \rightarrow \infty$ for $j=1, \cdots, n$.

Proof. We show it by the mathematical induction.
(1) Let $n=2$. Then the chain complex of doubly commuting pair $\mathbf{T}=\left(T_{1}, T_{2}\right)$ is

$$
0 \quad \longrightarrow \mathcal{H} \xrightarrow{D_{2}} \mathcal{H} \oplus \mathcal{H} \xrightarrow{D_{1}} \mathcal{H} \longrightarrow 0 .
$$

By the definition of the Koszul complex we have

$$
D_{2}=\binom{-T_{2}}{T_{1}} \quad \text { and } \quad D_{1}=\left(\begin{array}{ll}
T_{1} & T_{2}
\end{array}\right) .
$$

Since T_{1}, T_{2} are doubly commuting, we have

$$
D_{1}^{*} D_{1}+D_{2} D_{2}^{*}=\left(\begin{array}{cc}
T_{1}^{*} T_{1}+T_{2} T_{2}^{*} & 0 \\
0 & T_{1} T_{1}^{*}+T_{2}^{*} T_{2}
\end{array}\right)
$$

Let $x_{m}=x_{m}^{1} \oplus x_{m}^{2} \in E_{1}^{2}(\mathcal{H}) \cong \mathcal{H} \oplus \mathcal{H}$ be unit vectors and

$$
\begin{aligned}
& \left(D_{1}^{*} D_{1}+D_{2} D_{2}^{*}\right) x_{m}=\left(\begin{array}{cc}
T_{1}^{*} T_{1}+T_{2} T_{2}^{*} & 0 \\
0 & T_{1} T_{1}^{*}+T_{2}^{*} T_{2}
\end{array}\right)\binom{x_{m}^{1}}{x_{m}^{2}} \\
& =\binom{\left(T_{1}^{*} T_{1}+T_{2} T_{2}^{*}\right) x_{m}^{1}}{\left(T_{1} T_{1}^{*}+T_{2}^{*} T_{2}\right) x_{m}^{2}} \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

Since $\left\|x_{m}^{1}\right\|^{2}+\left\|x_{m}^{2}\right\|^{2}=1$ for all m, we may assume (i) $x_{m}^{1} \nrightarrow 0$ or (ii) $x_{m}^{2} \nrightarrow 0$.
We assume (i). By taking subsequence, we may asume that there exists $0<c$ that that $0<c<\left\|x_{m}^{1}\right\| \leq 1$ for all m, i.e., bounded below. Then $\left(T_{1}^{*} T_{1}+T_{2} T_{2}^{*}\right) x_{m}^{1} \rightarrow 0$ implies $T_{1} x_{m}^{1}, T_{2}^{*} x_{m}^{1} \rightarrow 0$ and $T_{1}^{*} x_{m}^{1} \rightarrow 0$ by (1). Case (ii) is similar. Hence the statement holds for $n=2$.
(2) We assume that the statement holds for ($n-1$)-tuples of doubly commuting operators. Asuume $\left(D_{k}^{*} D_{k}+D_{k+1} D_{k+1}^{*}\right) x_{m} \rightarrow 0$ as $m \rightarrow \infty$ for unit vectors $x_{m} \in E_{k}^{n}(\mathcal{H})$.

Let $\left\{F_{k}\right\}$ be the chain complex of $(n-1)$-tuple $\mathbf{T}^{\prime}=\left(T_{1}, \ldots, T_{n-1}\right)$ and $x_{m}=y_{m} \oplus z_{m} \in$ $E_{k}^{n-1}(\mathcal{H}) \oplus E_{k-1}^{n-1}(\mathcal{H})=E_{k}^{n}(\mathcal{H})$. By Curto's characterization (see p.132, Curto [7]) it holds $D_{k}=\left(\begin{array}{cc}F_{k} & (-1)^{k+1} \operatorname{diag}\left(T_{n}\right) \\ 0 & F_{k-1}\end{array}\right)$. Hence

$$
\left(D_{k}^{*} D_{k}+D_{k+1} D_{k+1}^{*}\right) x_{m}=\binom{\left(F_{k}^{*} F_{k}+F_{k+1} F_{k+1}^{*}+\operatorname{diag}\left(T_{n} T_{n}^{*}\right)\right) y_{m}}{\left(F_{k-1}^{*} F_{k-1}+F_{k} F_{k}^{*}+\operatorname{diag}\left(T_{n}^{*} T_{n}\right)\right) \rightarrow 0 . .2 z_{m}} \rightarrow 0
$$

Since $\left\|y_{m}\right\|^{2}+\left\|z_{m}\right\|^{2}=1$ for all m, we may assume (i) $y_{m} \nrightarrow 0$ or (ii) $z_{m} \nrightarrow 0$.
We assume (i).
Then $\left(F_{k}^{*} F_{k}+F_{k+1} F_{k+1}^{*}+\operatorname{diag}\left(T_{n} T_{n}^{*}\right)\right) y_{m} \rightarrow 0$ implies $\left(F_{k}^{*} F_{k}+F_{k+1} F_{k+1}^{*}\right) y_{m} \rightarrow 0$ and $\left(\operatorname{diag}\left(T_{n} T_{n}^{*}\right)\right) y_{m} \rightarrow 0$. By taking subsequence, we may asume that there exists $0<c$ that that $0<c<\left\|y_{m}\right\| \leq 1$ for all m. Let $v_{m}=\frac{y_{m}}{\left\|y_{m}\right\|}$. Then v_{m} are unit vectors and $\left(F_{k}^{*} F_{k}+F_{k+1} F_{k+1}^{*}\right) v_{m} \rightarrow 0$ and $\left(\operatorname{diag}\left(T_{n} T_{n}^{*}\right)\right) v_{m} \rightarrow 0$. Let $v_{m}=\oplus_{s=1}^{\binom{n-1}{k}} v_{m}^{s} \in E_{k}^{n-1}(\mathcal{H})$. Then there exist $s \in\left\{1,2, \cdots,\binom{n-1}{k}\right\}$ such that $v_{m}^{s} \in \mathcal{H}$ is a bounded below sequence of non-zero vectors and $T_{j}^{*} v_{m}^{s} \rightarrow 0$ for $j=1,2, \cdots, n-1$ and $T_{n}^{*} v_{m}^{s} \rightarrow 0$ as $m \rightarrow \infty$.

Case (ii) is similar. Hence the statement holds for n. It completes the proof.

Theorem 2.2. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of operators which satisfy that every $T_{j}(j=1, \ldots, n)$ has property (1). If $z=\left(z_{1}, \ldots, z_{n}\right) \in \sigma_{T}(\mathbf{T})$, then there exists unit vectors $y_{m} \in \mathcal{H}$ such that $\left(T_{j}-z_{j}\right)^{*} y_{m} \rightarrow 0$ as $m \rightarrow \infty$, that is, $\bar{z}=\left(\overline{z_{1}}, \ldots, \overline{z_{n}}\right) \in \sigma_{j a}\left(\mathbf{T}^{*}\right)$, where $\mathbf{T}^{*}=\left(T_{1}^{*}, \ldots, T_{n}^{*}\right)$.

Proof. Since $z=\left(z_{1}, \ldots, z_{n}\right) \in \sigma_{T}(\mathbf{T})$, by the spectral mapping theorem of the Taylor spectrum, it holds

$$
0=(0, \ldots, 0) \in \sigma_{T}(\mathbf{T}-z),
$$

where $\mathbf{T}-z=\left(T_{1}-z_{1}, \ldots, T_{n}-z_{n}\right)$. Since $\mathbf{T}-z$ is a doubly commuting n-tuple of operators which satisfy that every $T_{j}-z_{j}(j=1, \ldots, n)$ has property (1) and the Koszul complex $E(\mathbf{T}-z)$ of n-tuple $\mathbf{T}-z=\left(T_{1}-z_{1}, \ldots, T_{n}-z_{n}\right)$ is not exact. Hence there exists k such that $\left(D_{k}^{*} D_{k}+D_{k+1} D_{k+1}^{*}\right)$ is not invertible. Since the operator $D_{k}^{*} D_{k}+D_{k+1} D_{k+1}^{*}$ is positive on the space $E_{k}^{n}(\mathcal{H})$, there exists a sequence $\left\{x_{m}\right\}$ of unit vectors of $E_{k}^{n}(\mathcal{H})$ such that $\left(D_{k}^{*} D_{k}+D_{k+1} D_{k+1}^{*}\right) x_{m} \rightarrow 0$ as $m \rightarrow \infty$. Hence, by Lemma 2.1 there exists a sequence $\left\{y_{m}\right\}$ of unit vectors of \mathcal{H} such that

$$
\left(T_{j}-z_{j}\right)^{*} y_{m} \rightarrow 0 \text { as } m \rightarrow \infty \text { for all } j=1, \ldots, n
$$

It's completes the proof.
Proof of Theorem 1.9.
(1) If $n=2$, theorem holds by Theorem 2.3 of [6].
(2) We assume that the statment holds for $(n-1)$-tuple. Since $\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right) \in$ $\sigma_{T}(\mathbf{T})$, by Theorem 2.2 there exists a sequence $\left\{x_{m}\right\}$ of unit vectors of \mathcal{H} such that $\left(T_{j}-r_{j} e^{i \theta_{j}}\right)^{*} x_{m} \rightarrow 0$ as $m \rightarrow \infty$ for all $j=1, \ldots, n$. Consider the Berberian extension \mathcal{K} of \mathcal{H}. Then there exists $0 \neq x^{\circ} \in \mathcal{K}$ such that

$$
\left(T_{j}^{\circ}-r_{j} e^{i \theta_{j}}\right)^{*} x^{\circ}=0 \text { for all } j=1, \ldots, n
$$

Let $\mathcal{M}=\operatorname{ker}\left(T_{n}^{\circ}-r_{n} e^{i \theta_{n}}\right)^{*}$. Then $\mathcal{M}(\neq\{0\})$ is a reducing subspace for $T_{1}^{\circ}, \ldots, T_{n-1}^{\circ}$ and $\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n-1} e^{i \theta_{n-1}}\right) \in \sigma_{T}\left(\mathbf{T}_{\mid \mathcal{M}}^{o^{\prime}}\right)$, where $\mathbf{T}_{\mid \mathcal{M}}^{\circ^{\prime}}=\left(T_{1 \mid \mathcal{M}}^{\circ}, \ldots, T_{n-1 \mid \mathcal{M}}^{\circ}\right)$. By the induction there exists a non-zero vector $y^{\circ} \in \mathcal{M}$ such that

$$
\left(S_{j}^{\circ}-e^{i \theta_{j}} f\left(r_{j}\right)\right)^{*} y^{\circ}=0 \text { for all } j=1, \ldots, n-1
$$

Let $\mathcal{N}=\bigcap_{j=1}^{n-1} \operatorname{ker}\left(S_{j}^{\circ}-e^{i \theta_{j}} f\left(r_{j}\right)\right)^{*}$. Then \mathcal{N} is a reducing subspace for T_{n}°. Let $\mathcal{R}=$ $\mathcal{M} \bigcap \mathcal{N} \neq\{0\}$. Hence $r_{n} e^{i \theta_{n}} \in \sigma\left(T_{n \mid \mathcal{R}}^{\circ}\right)$. By property (2) there exists a non-zero vector $z^{\circ} \in \mathcal{R}$ such that $\left(S_{n \mid \mathcal{R}}^{\circ}-e^{i \theta_{n}} f\left(r_{n}\right)\right)^{*} z^{\circ}=0$. Since this z° satisfies $\left(S_{j \mid \mathcal{R}}^{\circ}-e^{i \theta_{j}} f\left(r_{j}\right)\right)^{*} z^{\circ}=0$ for all $j=1, \ldots, n-1$, we have $\left(e^{i \theta_{1}} f\left(r_{1}\right), \ldots, e^{i \theta_{n}} f\left(r_{n}\right)\right) \in \sigma_{T}(\mathbf{S})$. This completes the proof.

Corollary 2.3. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of p-hyponormal operators $(0<p<1)$. Let U_{j} be unitary for the polar decomposition of $T_{j}=U_{j}\left|T_{j}\right| \quad(j=$ $1, \ldots, n)$ and $\mathbf{S}=\left(U_{1}\left|T_{1}\right|^{2 p}, \ldots, U_{n}\left|T_{n}\right|^{2 p}\right)$. Then

$$
\sigma_{T}(\mathbf{S})=\left\{\left(r_{1}^{2 p} e^{i \theta_{1}}, \ldots, r_{n}^{2 p} e^{i \theta_{n}}\right):\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right) \in \sigma_{T}(\mathbf{T})\right\}
$$

Proof. Let $f(t)=t^{2 p}$ on the non-negative real line. Since \mathbf{T} is a doubly commuting n-tuple of p-hyponormal operators and $f(t)=t^{2 p}, T_{1}, \ldots, T_{n}$ and f satisfy (2) and (3). Hence, by Theorem 1.9 we have

$$
\sigma_{T}(\mathbf{S}) \supset\left\{\left(r_{1}^{2 p} e^{i \theta_{1}}, \ldots, r_{n}^{2 p} e^{i \theta_{n}}\right):\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right) \in \sigma_{T}(\mathbf{T})\right\}
$$

Conversely, put $g(t)=t^{\frac{1}{2 p}}$ on the non-negative real line. Since \mathbf{S} is a doubly commuting pair of semi-hyponormal operators, S_{1}, S_{2} and g satisfy (2) and (3). Then we have the converse inclusion by Theorem 1.9 and similar argument.

Corollary 2.4. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of log-hyponormal operators with $\log \left|T_{j}\right|>0$. Let U_{j} be unitary for the polar decomposition of $T_{j}=U_{j}\left|T_{j}\right| \quad(j=$ $1, \ldots, n)$ and $\mathbf{S}=\left(U_{1} \log \left|T_{1}\right|, \ldots, U_{n} \log \left|T_{n}\right|\right)$. Then

$$
\left.\sigma_{T}(\mathbf{S})=\left\{e^{i \theta_{1}} \log r_{1}, \ldots, e^{i \theta_{n}} \log r_{n}\right):\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right) \in \sigma_{T}(\mathbf{T})\right\}
$$

Proof. Let $f(t)=\log t$ on $(0, \infty)$. Since \mathbf{T} is a doubly commuting n-tuple of \log hyponormal operators and $f(t)=\log t, T_{1}, \ldots, T_{n}$ and f satisfy (2) and (3). So by Theorem 1.9 we have

$$
\left.\sigma_{T}(\mathbf{S}) \supset\left\{e^{i \theta_{1}} \log r_{1}, \ldots, e^{i \theta_{n}} \log r_{n}\right):\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right) \in \sigma_{T}(\mathbf{T})\right\}
$$

Conversely, let $g(t)=e^{t}$ on the non-negative real line. Since \mathbf{S} is a doubly commuting n-tuple of semi-hyponormal operators, S_{1}, \ldots, S_{n} and g satisfy (2) and (3). Hence, we have the converse inclusion by similar argument.

Acknowledgment. This research is partially supported by RIMS.

References

[1] S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111114.
[2] M. Chō, Relation between the Taylor spectrum and the Xia spectrum, Proc. Amer. Math. Soc., 128 (1999), 2357-2363.
[3] M. Chō and T. Huruya, p-Hyponormal operators for $0<p<\frac{1}{2}$, Comment. Math. 33 (1993), 23-29.
[4] M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc 123 (1995), 2435-2440.
[5] M. Chō, H. Motoyoshi and B. Načevska Nastovska, On the joint spectra of commuting tuples of operators and a conjugation, Functional Analysis, Approximation and Computation, 9:2 (2017), 21-26.
[6] M. Chō and K. Tanahashi, New spectral mapping theorem of the Taylor spectrum, Sci. Math. Japon, 84 No. 2 (2021), 145-154.
[7] R. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), 129-159.
[8] K. Tanahashi, Putnam's inequality for log-hyponormal operators, Integr. Equat. Oper. Th. 48(2004), 103-114.
[9] J.L.Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
[10] J.L.Taylor, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38.
[11] F.-H. Vasilescu, On pairs of commuting operators, Studia Math. 62 (1978), 203-207.
[12] D. Xia, On the semi-hyponormal n-tuple of operators, Integr. Equat. Oper. Th. 6(1983), 879-898.
[13] D. Xia, Spectral Theory of Hyponormal operators Birkhäuser 1983.

Muneo Chō
15-3-1113, Tsutsui-machi Yahatanishi-ku, Kita-kyushu 806-0032, Japan
e-mail: muneocho0105@gmail.com
B. Načevska Nastovska

Faculty of Electrical Engineering and Information Technologies, "Ss Cyril and Methodius" University in Skopje, Macedonia
e-mail: bibanmath@gmail.com
Kôtarô Tanahashi
Department of Mathematics, Tohoku Medical and Pharmaceutical University, Sendai 9818558, Japan
e-mail: tanahasi@tohoku-mpu.ac.jp

[^0]: ${ }^{0} 2010$ Mathematics Subject Classification; Primary 47B20, Secondary 47A10.
 Keywords; Helbert space, Taylor spectrum, spectral mapping theorem, p-hyponormal, log-hyponormal.

