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Abstract

Bohn, Faenza, Fiorini, Fisikopoulos, Macchia, and Pashkovich (2015) conjectured that
2-level polytopes cannot simultaneously have many vertices and many facets, namely, that
the maximum of the product of the number of vertices and facets is attained on the cube
and cross-polytope. This was proved in a recent work by Kupavskii and Weltge. In this
paper, we resolve a strong version of the conjecture by Bohn et al., and find the maximum
possible product of the number of vertices and the number of facets in a 2-level polytope
that is not affinely isomorphic to the cube or the cross-polytope. To do this, we get a
sharp stability result of Kupavskii and Weltge’s upper bound on |A| · |B| for A,B ⊆ Rd

with a property that ∀a ∈ A, b ∈ B the scalar product 〈a, b〉 ∈ {0, 1}.

1 Introduction

A polytope P is 2-level if for every facet-defining hyperplane H there is a parallel hyper-
plane H ′ such that H ∪ H ′ contains all vertices of P . Basic examples of 2-level polytopes
are simplices, hypercubes and cross-polytopes, but they also generalize a variety of interest-
ing polytopes such as Birkhoff, Hanner, and Hansen polytopes, order polytopes and chain
polytopes of posets, stable matching polytopes, and stable set polytopes of perfect graphs [1].
Combinatorial structure of two-level polytopes has also been studied in [3], and enumeration
of such polytopes in [2] led to a beautiful conjecture about their vertex and facet count, which
was proven in [5]:

Theorem 1. If P is a d-dimensional 2-level polytope, its number of vertices f0(P ) and facets
fd−1(P ) satisfy

f0(P ) · fd−1(P ) ≤ d2d+1.

This bound is tight, as is witnessed by polytopes that are affinely isomorphic to the cube
or the cross-polytope. Authors of [2] conjectured that those are the only instances where
equality is attained (see [1]). In this paper, we prove this in a strong sense:

Theorem 2. Fix d > 1. Let P be a d-dimensional 2-level polytope that is not affinely
isomorphic to the cube or the cross-polytope. Then

f0(P ) · fd−1(P ) ≤ (d− 1) 2d+1 + 8 (d− 1) .
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The following two examples demonstrate tightness of the bound in Theorem 2.

Example 1 (Suspension of a cube). Let {ei} be the standard basis of Rd,

P = Conv

({
d−1∑

i=1

εiei : εi ∈ {−1, 1} for i ∈ [d− 1]

}

∪ {ed,−ed}

)

.

Here f0(P ) = 2 + 2d−1 and fd−1(P ) = 4(d− 1).

Example 2 (Cross-polytope × segment). Let {ei} be the standard basis of Rd,

P = Conv
(
{εiei + εded : i ∈ [d− 1], εi, εd ∈ {−1, 1}}

)
.

This is (up to coordinate scaling) the dual of the polytope in the previous example and, in
particular, f0(P ) = 4(d − 1) and fd−1(P ) = 2 + 2d−1.

As in the paper [5], the main intermediate result that is of independent interest concerns
families of vectors with binary scalar products.

Theorem 3. Let A,B ⊆ R
d be families of vectors that both linearly span R

d. Suppose that
〈a, b〉 ∈ {0, 1} holds for all a ∈ A, b ∈ B. Furthermore, suppose that |A|, |B| ≥ d+ 2. Then

|A| · |B| ≤ d2d + 2d. (1)

This theorem is in fact a tight stability result for the following theorem, which was the main
result of [5].

Theorem 4. Let A,B ⊆ R
d both linearly span R

d such that 〈a, b〉 ∈ {0, 1} holds for all a ∈ A,
b ∈ B. Then we have |A| · |B| ≤ (d+ 1)2d.

We give two examples that demonstrate tightness of the bound in Theorem 3.

Example 3. Let {ei} be the standard basis of Rd,

A =

{
d∑

i=2

δiei : δi ∈ {0, 1} for all i ∈ [2, d]

}

∪ {e1} ,

B =
{
δ1e1 + ej : j ∈ [2, d] and δ1 ∈ {0, 1}

}
∪ {e1, 0} .

Here |A| = 2d−1 + 1 and |B| = 2d.

The example above has both subsets within the binary cube, thus it can be interpreted as
two families of sets A and B such that ∀A ∈ A, B ∈ B we have |A ∩ B| ∈ {0, 1}. This does
not hold for the example below.

Example 4. Let {ei} be the standard basis of Rd,

A =

{

ed +

d−1∑

i=1

εiei : εi ∈ {−1, 1} for all i ∈ [d− 1]

}

∪ {0} ,

B =

{
1

2
(ed + εiei) : i ∈ [d], εi ∈ {−1, 1}

}

.

As in Example 3, |A| = 2d−1 + 1 and |B| = 2d.
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Outline The proof of Theorem 3 builds on the proof of Theorem 4, thus, in the next
section we present the necessary claims and inequalities from [5]. In Section 3.1 we prove a
baby variant of Theorem 3, that gives uniqueness of the extremal example for Theorem 4.
The structure of this proof is then reused in Section 3.2, where we prove Theorem 3. In
Section 3.3 we prove our main result, Theorem 2. Proofs of claims from [5] are provided in
Appendix A to make this paper is self-contained.

Discussion of the proofs The proofs of our main results build on the proofs from [5],
but require several new ingredients, both combinatorial and, most importantly, geometric.
The general idea is to project our families onto a certain subspace and make use of induction
on the dimension of the ambient space. Unfortunately, there is quite a bit of case analysis
involved, one reason being that there are actually many different configurations that are close
to the bound in Theorem 3. This is witnessed by some of our computer enumeration results
below and by explicit constructions that are similar in spirit to Examples 3 and 4, for in-
stance, Example 5 discussed below. Filtering all of them out requires different considerations.
Another reason is that Theorem 3 has a condition on the sizes of A and B, and thus before
invoking induction hypothesis we must deal with the cases where one of the projected families
is small. Geometrically, the most interesting cases are: 3c in the proof of Theorem 3, where
A and B switch roles, and we have to study a projection onto a certain subspace formed by
vectors of B, followed by adding a twist on the choice of the vector bd, along which we project
in order to use induction; the last case in the proof of Theorem 2, in which we reveal the
exact geometric structure of A by reducing the problem to a simple question about families
of subsets of [d− 1] with small pairwise differences.

By utilising some observations made at the beginning of Section 2 we were able to enumer-
ate all families with binary scalar products (up to linear isomorphism of individual sets) in
dimensions d ≤ 5. The maximal (with respect to the product order on N×N) pairs (|A|, |B|)
for 4-dimensional families are (5, 16), (6, 12), (7, 10), (8, 9), (9, 8), (10, 7), (12, 6) and (16, 5),
which, together with examples above, demonstrates that the bound of d2d + 2d might be
achieved on sets of different structures (pairs (6, 12), (8, 9), (9, 8) and (12, 6) above). Figure 1
depicts all possible sizes of families in R

5, Figure 2 shows the same data plotted with |A| · |B|
against min(|A|, |B|) for clarity.

The proof of Theorem 2 makes use of Theorem 3 and a quick observation that P is affinely
isomorphic to the cube if it has too few facets to apply Theorem 3. However, the case where
P has few vertices cannot be easily reduced to the case with few facets, as the set of possible
pairs (f0(P ), fd−1(P )) for 2-level P is not symmetric. For example, a triangular prism in R

3

is 2-level, but there is no 3-dimensional 2-level P satisfying f0(P ) = 5 and f2(P ) = 6.
We finish with a conjecture that generalises Theorems 4 and 3.

Conjecture 1. Let A,B ⊆ R
d be families of vectors that both linearly span R

d. Suppose that
〈a, b〉 ∈ {0, 1} holds for all a ∈ A, b ∈ B. Furthermore, suppose that |A| and |B| are both
strictly larger than 2k−1(d−k+2) for some k ∈ [0, d]. Then |A| · |B| ≤ (2d−k+k)2k(d−k+1).

The motivating example for this conjecture is the following generalisation of Example 3:
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Figure 1: Possible sizes of families A, B that span R
5 and have binary scalar products.
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Figure 2: min(|A|, |B|) and |A||B| for families that span R
5 and have binary scalar products.

Example 5. Let {ei} be the standard basis of Rd, k ∈ [0, d],

A =

{
d∑

i=k+1

δiei

}

∪ {e1, . . . , ek} , B =

{
k∑

i=1

δiei + ej

}

∪

{
k∑

i=1

δiei

}

,

where δi range over {0, 1} and j over [k + 1, d].

Here, |A| = 2d−k + k and |B| = 2k(d− k + 1).

We enumerated distinct sets with binary scalar products in dimensions up to 5, where
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‘distinct’ refers to an absence of linear isomorphism, and the results support Conjecture 1.
The conjecture also holds for all sets that come from 2-level polytopes in dimensions up to 8.

2 Preliminaries

Notation. In what follows, we will often treat vectors in R
d as points in an affine space,

with dim always referring to the affine dimension while span referring to linear span. The set
of integers from 1 to n is denoted [n].

Let A,B be families of vectors that both linearly span R
d and have binary scalar products,

that is, 〈a, b〉 ∈ {0, 1} for all a ∈ A and b ∈ B. We will use the following two simple
observations a few times throughout our proofs. Let a1, . . . , ad be a basis of Rd contained in
A. Consider the dual basis a∗1, . . . , a

∗
d:

〈ai, a
∗
j 〉 =

{

1, i = j

0, i 6= j

and observe that elements of B have 0/1 coordinates when expressed in this dual basis, or, in
other words, B is a subset of what we would call a cube:

B ⊆

{
d∑

i=1

δia
∗
i , where δi range over {0, 1}

}

.

Another observation is that projecting one family on the linear span of a subset of another
preserves the binary scalar products property: if A′ ⊆ A and πA′ : Rd → span(A′) is the
orthogonal projection, then

∀a ∈ A
′, b ∈ B : 〈a, πA′(b)〉 = 〈a, b〉 ∈ {0, 1}.

2.1 The setup from [5]

We will now introduce some notation and restate some claims proved in [5]. Proofs of those
claims and inequalities are provided in the Appendix A for completeness.
Since we are interested in bounding the product |A||B| from above, we will assume that A and
B are inclusion-wise maximal with respect to the property of having binary scalar products
and, in paritcular, 0 ∈ A,B. Let bd ∈ B \ {0} be a vector with the maximum value of
max(dimA0,dimA1), where

Ai = {a ∈ A : 〈a, bd〉 = i} for i = 0, 1.

The choice of bd among the vectors that maximise max(dimA0,dimA1), in cases where it
is important, will be specified at a later stage. We denote the orthogonal projection onto
U = b⊥d by π : Rd → U . We say that X ⊂ R

d does not contain opposite points if {x,−x} ⊆ X
is only possible if x = 0. Below, we state the claims and inequalities from [5].

Claim 1. We may translate A and replace some points b ∈ B by the opposites −b such that
the following properties hold.

5



(i) We (still) have A = A0 ∪A1, where Ai = {a ∈ A : 〈a, bd〉 = i} for i = 0, 1 such that

|A0| ≥ |A1|. (2)

(ii) We have
〈a, b〉 ∈ {0, 1} for each a ∈ A0 and b ∈ B. (3)

(iii) The set π(B) does not contain opposite points.

Claim 2. Every point in π(B) has at most two preimages in B.

We denote the linear span of A0 by U0 and define the orthogonal projection τ : U → U0.
Let B∗ ⊆ B be the set of b ∈ B for which π(b) has exactly one preimage under projection
onto U .

Inequality 1. |A| |B| ≤ 2 |A0| |π(B)| + |A1| |B\B∗|.

Claim 3. |π(B)| ≤ 2d−1−dimU0 |τ(π(B))|.

Claim 4. B\B∗ can be partitioned as B0 ⊔B1, with B0,B1 satisfying

∀b ∈ Bi : |{〈a, b〉 : a ∈ Ai}| = 1 for i = 0, 1.

Due to Claim 4 and (2), the final term in Inequality 1 can be bounded as

|A1||B\B∗| = |A1||B0|+ |A1||B1| ≤ |A0||B0|+ |A1||B1|.

Using this and applying Theorem 4 to bound the first term in Inequality 1, we obtain

Inequality 2. |A| · |B| ≤ (dimU0 + 1) 2d + |A0| |B0|+ |A1| |B1| .

Inequality 3. For i = 0, 1 we have

|Ai| ≤ 2dim(Ai), |Bi| ≤ 2dim(span(Bi)), and dim(Ai) + dim
(
span(Bi)

)
≤ d.

Claim 5. For i = 0, 1, we have |Ai| |Bi| ≤ 2d.

Looking at the definition of Bi, we see that we can either assume 0, bd ∈ B0 or assume
0, bd ∈ B1. Here and in what follows we assume that 0, bd ∈ B1. Therefore, Claim 5 actually
implies

|A1| |B1| ≤ 2d, |A0| (|B0|+ 2) ≤ 2d. (4)

Inequality 2 an Claim 5 are used in [5] to prove Theorem 4 as follows.
If dimU0 ≤ d− 2,

|A||B| ≤ (dimU0 + 1)2d + |A0||B0|+ |A1||B1| ≤ (d− 1)2d + 2d + 2d = (d+ 1)2d. (5)

If dimU0 = d− 1, Inequality 3 and 0, bd ∈ B1 implies B0 = ∅, and we have

|A||B| ≤ (dimU0 + 1)2d + |A1||B1| ≤ d2d + 2d = (d+ 1)2d. (6)

6



2.2 Auxiliary results

In this section, we present several simple lemmas that are needed throughout the proofs.

Inequality 4. For an integer 2 ≤ f ≤ d, we have

(d+ f)(2d−1 + 2d−f ) ≤ d2d + 2d.

Proof. We will prove this by induction on d: when d = f , the inequality holds with equality.
Assuming that the statement is valid for d, let us verify it for d + 1. Denoting the left and
right sides of the inequality as l(d, f) and r(d), respectively, we have

r(d+ 1)− l(d+ 1, f) ≥ (r(d+ 1)− r(d))− (l(d+ 1, f)− l(d, f))

=
(

d2d + 2d+1 + 2
)

− (d+ f + 2)
(

2d−1 + 2d−f
)

= 2d−f (d− f + 2)

(

2f−1 − 1−
2f

d− f + 2

)

+ 2

≥ 2d−f (d− f + 2)
(

2f−1 − 1− f
)

The obtained expression is non-negative for f > 2. For f = 2 and d ≥ 4, we have 2f−1 − 1−
2f

d−f+2 ≥ 0, and for f = 2 and d = 2, 3, the initial inequality can be checked explicitly.

Lemma 1. Let S1, S2 ⊆ [d− 1] be such that |S2 \ S1| > 1. Then the family
{
S ⊆ [d− 1] : |S ∩ S2| − |S ∩ S1| ∈ {−1, 0, 1}

}

contains at most 7
8 · 2

d−1 sets.

Proof. We start by claiming that

∀n > 2, j ∈ Z :

(
n

j − 1

)

+

(
n

j

)

+

(
n

j + 1

)

≤
7

8
· 2n. (7)

This can be checked by induction on n: (7) holds for n = 3, and assuming it holds for n− 1,
we have
(

n
j−1

)
+
(
n
j

)
+
(

n
j+1

)
=
((

n−1
j−2

)
+
(
n−1
j−1

)
+
(
n−1
j

))

+
((

n−1
j−1

)
+
(
n−1
j

)
+
(
n−1
j+1

))

≤ 7
8 ·2

n−1+7
8 ·2

n−1 = 7
8 ·2

n.

Denote P = S2 \ S1 and Q = S1 \ S2, with q = |Q| and p = |P | ≥ 2. Let us also denote

Dj = {T ⊆ P ∪Q : |T ∩ P | − |T ∩Q| = j} for an integer j.

Clearly, |S ∩ S2| − |S ∩ S1| = |S ∩ P | − |S ∩ Q|, and it is sufficient to show that the family
D−1 ∪ D0 ∪ D1 contains at most 7

8 · 2p+q sets. This is obvious if p = 2 and q = 0, so we will
further assume p+ q > 2. To any set T ∈ Dj we may assign the set (T ∩ P ) ∪ (Q \ T ) of size
q+ j. Such assignment constitutes a bijection between Dj and (q+ j)-subsets of P ∪Q. Thus,
|Dj | =

(
p+q
q+j

)
, and with (7) we conclude

|D−1 ∪D0 ∪ D1| =

(
p+ q

q − 1

)

+

(
p+ q

q

)

+

(
p+ q

q + 1

)

≤
7

8
· 2p+q.
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Lemma 2. Let S be a family of subsets of [d− 1] such that |S| = d and

∀S1, S2 ∈ S : |S2 \ S1| ≤ 1.

Then either S = {S ⊆ [d− 1] : |S| ≥ d− 2} or S = {S ⊆ [d− 1] : |S| ≤ 1}.

Proof. The statement is trivial for d = 2, so in what follows we assume d > 2. Then |S| > 2
and clearly S contains sets of at most two different sizes (that differ by one). Let U, V ∈ S

both be of size k ∈ [d− 2]. Observe that there are now only four options for sets in S:

(a) U ∪ V of size k + 1.

(b) Sets of size k that are contained in U ∪ V .

(c) Sets of size k that contain U ∩ V as a subset.

(d) U ∩ V of size k − 1.

Since |(U ∪V )\(U ∩V )| = 2, the sets from (a) and (d) cannot occur simultaneously. Similarly,
if sets B,C satisfy (b), (c), respectively, and both differ from U and V , then |B \ C| = 2.
Thus, except for U and V , the sets from (b) and (c) cannot be present together. There are
k+1 and d− k sets satisfying (b) and (c), respectively, so |S| = d is only possible if k = d− 2
or k = 1 with S = {S ⊆ [d− 1] : |S| ≥ d− 2} or S = {S ⊆ [d− 1] : |S| ≤ 1}, respectively.

Lemma 3. Let a1, . . . , ad−1, v be a basis of Rd. Define

s = v +

d−1∑

i=1

ai and P = Conv
(

{0, a1, . . . , ad−1} ∪ {s, s − a1, . . . , s− ad−1}
)

.

Then P is affinely isomorphic to the cross-polytope.

Proof. Let {ei} be the standard basis of R
d and consider the linear transform that takes

{a1, . . . , ad−1, s} to {ed + e1, . . . , ed + ed−1, 2ed}. This transform and a translation by −ed
maps P to the standard cross-polytope

K = Conv
(

{e1, . . . , ed} ∪ {−e1, . . . ,−ed}
)

.

3 Proofs of the main results

3.1 Uniqueness for Theorem 4

We start by proving a result that characterizes configurations that attain equality in Theo-
rem 4. This can be considered a warm-up proof, which is then used as a carcass for the proof
of Theorem 3. We heavily rely on the notation and claims introduced in the previous section.

Theorem 5. Let A,B ⊆ R
d both linearly span R

d such that 〈a, b〉 ∈ {0, 1} holds for all a ∈ A,
b ∈ B. Then we only have |A| · |B| = (d + 1)2d if one of the families has size d + 1 and the
other is affinely isomorphic to {0, 1}d.
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Proof. Without loss of generality, we assume |A| ≥ |B|. We use induction on d, the statement
being obvious in dimension 1. Assuming that the statement holds for smaller dimensions, we
prove it in dimension d. Consider two options for dimU0.

1. dimU0 ≤ d− 2. From Inequality 2 and (4), we get:

|A| · |B| ≤ (d− 1) 2d + 2 · 2d − 2 |A0| ≤ (d+ 1) 2d − |A| < (d+ 1) 2d.

2. dimU0 = d− 1. Note that since 0 ∈ A0, the definition of B0 implies B0 ⊂ U⊥
0 , and thus

we have B0 = ∅ (recall that 0, bd ∈ B1). We consider two subcases:

a) B∗ 6= ∅. As we see from (6), equality in Theorem 4 can only be achieved when
Inequality 2 (and consequently Inequality 1) are tight, which is only the case when
|A0| |π(B)| = d2d−1 (and |A0| = |A1|). By the induction hypothesis, the former is
possible in one of two cases:

i) A0 is affinely isomorphic to {0, 1}d−1. Then, |A| = |A0|+ |A1| = 2d, which is
only possible if A is affinely isomorphic to {0, 1}d, and then B can only consist
of a basis and the zero vector.

ii) |A0| = d. Then, since |B| ≤ |A| = 2d, |A|·|B| ≤ 4d2, which is less than (d+1)2d

for d ≥ 4. For d = 3, the inequality |B| · |A| ≤ 32 cannot yield equality since
|A| = 6. Finally, if d = 2 then |A| = 4, thus A is affinely isomorphic to a
square and |A| · |B| = 3 · 22 only if |B| = 3 = d+ 1.

b) B∗ = ∅. Then, B1 = B and, consequently, dim(span(B1)) = d. In this case
Inequality 3 implies |A1| = 1. Similarly to case a), Inequality 1 is only tight in one
of the following cases:

i) |A0| = d. Then, |A| · |B| ≤ |A|2 ≤ (d+ 1)2 < (d+ 1) 2d.

ii) |A0| = 2d−1, |π(B)| = d. Then, |A| · |B| = 2d
(
2d−1 + 1

)
, which is less than

(d+ 1)2d for d > 2. For d = 2, we have |A| · |B| ≤ |A|2 = 9 < 3 · 22.

3.2 Proof of Theorem 3

For convenience, let us restate the theorem.

Theorem 3. Let A,B ⊆ R
d be families of vectors that both linearly span R

d. Suppose that
〈a, b〉 ∈ {0, 1} holds for all a ∈ A, b ∈ B. Furthermore, suppose that |A|, |B| ≥ d+ 2. Then

|A| · |B| ≤ d2d + 2d. (1)

As in the proof of Theorem 5, we use induction on d, and without loss of generality assume
that |A| ≥ |B|. Note that we can also assume that A and B are inclusion-wise maximal with
respect to the property of having binary scalar products. For d < 3, the bounds in Theorems 3
and 4 coincide. Assuming validity for smaller dimensions, let us prove the statement for
dimension d. We consider cases depending on the value of dimU0.

1. dimU0 < d− 2. Then, from Inequality 2 and Claim 5, we have:

|A| · |B| ≤ (dimU0 + 1) 2d + 2d + 2d ≤ d2d. (8)

9



2. dimU0 = d− 2. Applying the induction hypothesis to the families τ(π(B)) and A0, we
have three cases:

a) |τ(π(B))| = d− 1. By maximality B contained 0, so τ(π(B)) consists of zero and
the basis of U0. The maximality of A now implies that A0 is affinely isomorphic
to {0, 1}d−2. From (4), it follows that |B0| ≤ 2.

For a given b ∈ B0, there are two vectors that project onto π(b) under π. Since they
have identical scalar products with all the vectors in A0, and in our considerations
below we work with A0 only, we can assume |B0| is even: if one vector belong to
B0, then we can w.l.o.g. assume that the second one belongs to B0 as well. We
thus have two scenarios:

i) |B0| = 0. Then, from Inequality 1 and Claim 5, we obtain:

|A| · |B| ≤ 4 (d− 1) 2d−2 + 2d = d2d.

ii) |B0| = 2. Then U⊥
0 ∩ B consists of 0, bd and two vectors from B0. Let B′ be

a subset of π(B) containing all vectors v such that τ(v) has two preimages in
π(B). Assume that |τ(B′)| = k+1 (and thus |B′| = 2k+2). Among these k+1
vectors, let t2 be the number of those vectors with both preimages in π(B1),
and let t1 +1 be the number of those with exactly one preimage in π(B1) (+1
standning for the zero vector which belongs to B1). The remaining k− t1 − t2
have both preimages in π(B∗). Furthermore, let the vectors in τ(π(B)) with a
single preimage under τ consist of q projections from π(B1) and d− 2− k − q
projections from π(B∗). Recall that by definition of B∗, |B∗| = |π(B∗)|, which
consists of t1 + 2(k − t1 − t2) vectors in B′ (out of t1 + 1 vectors mentioned
above, all but 0 ∈ R

d have the second preimage in π(B∗)) and d − 2 − k − q
vectors in π(B) \B′. Therefore,

|B∗| = t1 + 2(k − t1 − t2) + (d− 2− k − q) = k − t1 − 2t2 + d− 2− q.

Next, from definition and Claim 2, |B1| = 2|π(B1)|. Besides 0, π(B1) consists
of 2t2 + t1 vectors from B′ and q vectors from π(B) \B′. This means that

|B1| = 2|π(B1)| = 2(t1 + 2t2 + q + 1) = 2 + 4t2 + 2t1 + 2q.

Adding this up, we have:

|B| = |B∗|+ |B0|+ |B1|

= (k − t1 − 2t2 + d− 2− q) + 2 + (2 + 4t2 + 2t1 + 2q)

= d+ k + q + t1 + 2t2 + 2.

First, consider the case when t2 > 0. Then π(B1) contains two elements that
differ by a vector orthogonal to U0, thus U

⊥
0 ⊂ span(B1). Recall that τ(π(B))

consists of zero and the basis of U0, together with the previous observation
this implies dim(span(B1)) = |τ(π(B1))|+ 1. The family τ(π(B1)) consists of
the zero vector, t1 + t2 elements from τ(B′) and q elements from τ(π(B) \B′).
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We get that dim(span(B1)) = t1+ t2+ q+2, and, by (3), |A1| ≤ 2d−t1−t2−q−2.
Consequently,

|A| = |A0|+ |A1| ≤ 2d−2 + 2d−2−t1−t2−q,

and we get the following chain of inequalities.

|A| · |B| ≤
(

2d−2 + 2d−2−t1−t2−q
)

(d+ k + q + t1 + 2t2 + 2)

≤
(

2d−2 + 2d−2−t1−t2−q
)

(2d+ t1 + 2t2) (9)

≤
(

2d−1 + 2d−1−t1−t2−q
)

(d+ t1 + t2)

≤
(

2d−1 + 2d−1−t1−t2
)

(d+ t1 + t2) (10)

≤
(

2d−1 + 2d−1−t1−t2
)

(d+ t1 + t2 + 1)

≤ d2d + 2d. (11)

Here, the second inequality follows from k+ q ≤ d−2, and the last one follows
from Inequality 4. If t2 = 0, we get a slightly weaker bound:

dim(span(B1)) ≥ t1 + t2 + q + 1 = t1 + q + 1.

With the same reasoning this means that (10) becomes
(
2d−1 + 2d−t1

)
(d+ t1),

which is still less than (11) when t1 ≥ 2 due to Inequality 4. Finally, when
t2 = 0 and t1 = 0, 1, expression (9) yields a bound by d2d and (2d−2+2d−3)(2d+
1) = d2d −

(
d− 3

2

)
2d−2 ≤ d2d, respectively.

b) |A0| = d− 1. Then:

|A| · |B| ≤ |A|2 ≤ 4|A0|
2 ≤ 4(d − 1)2 ≤ d2d + 2d,

valid for any d ≥ 1.

c) Both |A0| and |τ(π(B))| are at least d. By induction this implies

|A0| · |τ(π(B))| ≤ (d− 2)
(

2d−2 + 2
)

.

Using Inequality 1, Claim 3, and (4), we have

|A| · |B| ≤ 4 · (d− 2)
(

2d−2 + 2
)

+2 · 2d − 2 |A0| = 2d(2d−1 +1)+2 (3d− 8− |A0|) .

This proves (1) when |A0| ≥ 3d− 8. Otherwise,

|A| · |B| ≤ |A|2 ≤ 4 |A0|
2 ≤ 4 (3d− 9)2 ,

which is less than d2d + 2d for d ≥ 3.

3. dimU0 = d − 1. Again, applying the induction hypothesis to π(B) and A0, we have
three cases (recall that from the assumption 0, bd ∈ B1, we have B0 = ∅):
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a) |π(B)| = d, that is, π(B) consists of zero and the basis of U0, which by maximality
of A means that A0 is isomorphic to {0, 1}d−1.

i) dimB1 = 1. In this case, B1 = {0, bd} and so |B| = d + 1. This contradicts
the condition |B| ≥ d+ 2 in the statement of the theorem.

ii) dimB1 = k ≥ 2. Then |B1| = 2k and |A1| ≤ 2d−k by Inequality 3. Thus, we
have

|A| · |B| ≤ (2d−1 + 2d−k)(d+ k) ≤ d2d + 2d.

by Inequality 4.

b) |A0| = d. Then |A||B| ≤ |A|2 ≤ 4|A0|
2 ≤ 4d2, which is not larger than d2d +2d for

d > 3. For d = 3, |A|2 gives the desired bound when |A1| ≤ 2, and finally |A1| = 3
would by Inequality 3 imply

dimA1 = 2 ⇒ |B1| = 2 ⇒ |B| ≤ 5 ⇒ |A| · |B| ≤ 3 · 23 + 2 · 3.

c) Both |A0| and |π(B)| are at least d+ 1.

The remainder of the proof deals with the case 3c). By the induction hypothesis,

|A0| · |π(B)| ≤ (d− 1)
(

2d−1 + 2
)

.

In the displayed chain below, we use Claim 2 in the first equality; in the fourth equality we
use that B0 = ∅, and thus B \B∗ = B1; in the second inequality we use Claim 5.

|A| · |B| = (|A0|+ |A1|) · (2|π(B)| − |B∗|)

= 2|A0||π(B)| + 2|A1||π(B)| − 2|A1||B∗|+ |A1||B∗| − |A0||B∗|

= 2|A0||π(B)| + |A1||B \B∗|+ |A1||B∗| − |A0||B∗|

= 2|A0||π(B)| + |A1||B1| − (|A0| − |A1|) |B∗| (12)

≤ 2 (d− 1)
(

2d−1 + 2
)

+ |A1||B1| − (|A0| − |A1|) |B∗| (13)

≤ 2 (d− 1)
(

2d−1 + 2
)

+ 2d − (|A0| − |A1|) |B∗|

= d2d + 2d− (|A0| − |A1|) |B∗|+ (2d − 4). (14)

Thus, it suffices to show, for example, that (|A0| − |A1|) |B∗| ≥ 2d− 4.
First consider the case dimA1 = d− 1. Then B1 = {0, bd}, and we get

|A| · |B| =|A||π(B)| + |A| ·
1

2
|B1| ≤ 2|A0||π(B)| + |A|

≤2(d− 1)
(

2d−1 + 2
)

+ |A| = d2d − 2d + 4d− 4 + |A| .

Thus, (1) holds when |A| ≤ 2d − 2d+ 4. Note that |A| > 2d − 2d+ 4 is indeed impossible, as
that would imply |A0| > 2d−1 − d+ 2 and

|A0| · |π(B)| > (2d−1 − d+ 2) · (d+ 1) ≥ (d− 1)(2d−1 + 2),
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which contradicts the induction hypothesis.
In what follows, we assume that dimA1 < d−1. Let us show that, due to this, we can also

assume that |A0| > |A1|. To this end, suppose we had |A0| = |A1| and recall how Claim 1 gave
us an opportunity to switch A0 and A1 places by translating A and replacing some points in
B by their opposites. Since |A0| is not smaller then |A1|, this opportunity was not used, but
since |A0| = |A1|, nothing stops us from employing this transform nevertheless. Since this
has an effect of swapping A0 and A1, we reduce to a case where dimU0 < d − 1, for which
the desired bound has been shown in cases 1 and 2. In what follows, we assume |A0| > |A1|.

Consider the orthogonal projection πB1
: Rd → span(B1). By the definition of A1, we

have |πB1
(A1)| = 1. Let k = dim(span(B1)). Since B contains a basis of Rd, we have

|B∗| ≥ d− k, (|A0| − |A1|) |B∗| ≥ d− k. (15)

We will now deal with possible values of k.

i) k = 1, which means B1 = {0, bd}. Since dimA1 < d − 1, from Inequality 3 it follows
that |A1| ≤ 2d−2. Substituting this into (13), we obtain:

|A| · |B| ≤ d2d + 2d+ (2d− 4− 2d−1) ≤ d2d + 2d.

ii) k = 2. From Inequality 3, it follows that |B1| ≤ 4, and |A1| ≤ 2d−2. Due to (15),
|B∗| ≥ d− 2, so if |A0| − |A1| ≥ 2 then (14) yields the desired estimate. Similarly, (14)
completes the proof if |A0| − |A1| = 1 and |B∗| ≥ 2d− 4. Finally, if |A0| − |A1| = 1 and
|B∗| < 2d− 4, then:

|A| · |B| = (2 |A1|+ 1) · (|B∗|+ |B1|) <
(

2d−1 + 1
)

· (2d− 4 + 4) = d2d + 2d.

iii) k = d. Inequality 3 implies that A1 consists of only one point. Hence, (13) becomes

|A| · |B| ≤ 2 (d− 1)
(

2d−1 + 2
)

+ |B1| − (|A0| − |A1|) |B∗| ≤ 2 (d− 1)
(

2d−1 + 2
)

+ |B| ,

which completes the proof when |B| ≤ 2d − 2d + 4. The opposite is indeed impossible,
as it would contradict Theorem 4:

|A| · |B| ≥ |B|2 ≥
(

2d − 2d+ 4
)2

> (d+ 1) 2d.

Before proceeding with the last case in the proof, we need to analyze the structure of A. The
family A contains zero, and

span
(
πB1

(A)
)
= span

(
πB1

(span(A))
)
= span(B1),

which means πB1
(A) contains 0 and a basis of an k-dimensional space, so |πB1

(A)| ≥ k + 1.
Assume that |πB1

(A)| > k + 1. We have

|B1| · |πB1
(A)| ≤ (k + 1) 2k, |πB1

(A)| ≥ k + 2 ⇒ |B1| ≤ 2k
(

1−
1

k + 2

)

⇒

|A1| |B1| ≤ 2d
(

1−
1

k + 2

)

⇒ |A| · |B|
(13)

≤ d2d + 4d− 4−
2d

k + 2
− (d− k).
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This proves (1), because for d ≥ 3 and k < d

d+ k − 4−
2d

k + 2
≤ 2d− 5−

2d

d+ 1
= −

1

d+ 1

(

2d − (2d− 5)(d + 1)
)

≤ 0.

In what follows, we thus may assume that |πB1
(A)| = k+1 and that πB1

(A) consists of 0 and
of a basis of an k-dimensional space.

iv) 2 < k < d. Note that, due to (15), B∗ 6= ∅. Let’s denote the elements of πB1
(A) as

a0 = 0, a1, . . . , ak, and their preimages in A as Aj = π−1
B1

(aj) ∩ A. We’ll choose the
numbering such that A1 = A1. Let b11, b12, . . . , b1k be a basis of B1 that is dual to
a1, . . . , ak. For example, according to our choice of numbering, b11 = bd. Note that, due
to B being inclusion-wise maximal, all b1j must belong to B1 (otherwise, they, along with
b1j+ bd for j > 1, could be added to B). If dimA1 < d−k, we have |A1||B1| ≤ 2d−1 and
just like in part i), substitution into (13) produces the desired estimate. Consequently,
we can now assume that dimA1 = d− k.

Our further plan is to write A in a particular basis to see that, due to dimA1 = d− k,
any of the b1j could be initially chosen as bd, and that a suitable choice of bd would lead
to the desired bound.

We will extend the basis {b11, . . . , b1k} with elements from B∗ to form a basis for R
d

and represent A in the dual basis. Then vectors of A, arranged as column-vectors, form
a matrix of the following form:

A =


















1 1 · · · 1 1 0 0 · · · 0 0
1 1 · · · 1 1

k

1 1 · · · 1 1

d− k

A0 A1 A2 · · · Ak

0

· · ·

0
0 0
































︸ ︷︷ ︸

dim=d−k

The affine dimenion of the highlighted block coincides with the affine dimension dim(A1)
of A1 = A1, which is d − k. There is therefore an affine basis of a R

d that consists of
d− k + 1 vectors from A1, one vector from each other Al, l > 1, and 0 that belongs to
A0. We thus have

∀j > 1: dim(A ∩ b⊥1j) = dim(A \ Aj) = d− 1,

which means that, indeed, any of the b1j could be set as bd from the start. Choose
b1j with the smallest possible size of Aj, and repeat all the same reasoning with b1j
playing the role of bd. Note that in this case, |A \ Aj| > |Aj|, so there will be no need
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for translation of A that swaps A0 and A1 in Claim 1. After this reassignment of bd
and appropriate relabeling of families Al, we may assume that |Aj|, among positive j,
is minimised by j = 1.

∀j > 1: |A1| ≤ |Aj| =⇒

|A0| − |A1| =

(

|A0|+
∑

j>1

|Aj|

)

− |A1| >
∑

j>1

|Aj| − |A1| ≥ (k − 2)|A1| ≥ |A1|. (16)

If |A0| − |A1| ≥ 2d − 4, non-emptiness of B∗ and (14) imply the desired estimate.
Otherwise

|A0| − |A1| ≤ 2d− 5
(16)
===⇒ |A1| ≤ 2d− 6 =⇒ |A| = (|A0| − |A1|) + 2|A1| ≤ 6d− 17,

|A| · |B| ≤ |A|2 ≤ (6d− 17)2 < d2d + 2d,

concluding the proof.

3.3 Application to 2-level polytopes

For convenience, we restate our main result concerning two-level polytopes.

Theorem 2. Fix d > 1. Let P be a d-dimensional 2-level polytope that is not affinely
isomorphic to the cube or the cross-polytope. Then

f0(P ) · fd−1(P ) ≤ (d− 1) 2d+1 + 8 (d− 1) .

Proof of Theorem 2. For d = 2, 3 the desired bound coincides with the one in Theorem 1, so
we will further assume d > 3. Let us denote V = f0(P ) and F = fd−1(P ) for conciseness.
Shift P so that 0 is a vertex of P . Let A denote the vertex set of P and B′ denote the
minimal set of vectors such that every facet of P lies in a hyperplane {x : 〈x, b〉 = δ} for
some δ ∈ {0, 1} and b ∈ B′. Let B = B′ ∪ {0}. If every vector in B′ defines one facet of P , we
are done by Theorem 4:

V · F < |A| · |B| ≤ (d+ 1)2d < (d− 1)2d+1 + 8(d − 1).

Otherwise, let bd ∈ B′ define two facets of P . If the facet P ∩ b⊥d contains less half of the
vertices of P , shift P again so that zero becomes a vertex from the other (parallel) facet,
reintroduce families A, B as described above and select bd ∈ B′ that now defines the same
two facets. Now, P ∩ b⊥d contains at least half of the vertices of P . Introduce Ai, π and Bi as
in Section 2. Note that because we’ve ensured |A0| ≥ |A1|, no transformations are required
in Claim 1, and we have 〈a, b〉 ∈ {0, 1} for all a ∈ A, b ∈ B. Since dim(A1) = d− 1, we have
B0 = ∅,B1 = {0, bd} and |π(B)| = |B| − 1, which means

|A| · |B| = |A0| · |π(B)|+ |A1| · |π(B)|+ |A| . (17)

Since every vector in B′ defines at most two facets of P and also contains 0, F ≤ 2 |B| − 1,
and thus from (17) we conclude

V · F ≤ 2 (|A0| · |π(B)| + |A1| · |π(B)|) ≤ 4 · |A0| · |π(B)| (18)

Consider three cases:
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1. |A0| > d and |π(B)| > d. By Theorem 3, we have

|A0| · |π(B)| ≤ (d− 1)2d−1 + 2(d− 1)

and with (18) we are done.

2. |π(B)| = d. Together with B1 = {0, bd}, this means that B′ is a basis of Rd. Every
vector in B′ then has to define two facets of P , since otherwise P is unbounded. Thus
P is affinely isomorphic to the cube.

3. |A0| = d. Note that as |A1| ≤ |A0| and dim(A1) = d − 1, we also have |A1| = d. If
|π(B)| ≤ 7

8 · 2d−1, then (18) implies V · F ≤ 7
8d · 2d+1 < (d − 1)2d+1 + 8(d − 1), so we

may further assume

|π(B)| >
7

8
· 2d−1. (19)

We will now make several observations about the structure of A and B that will make it
clear that P is affinely isomorphic to the cross-polytope. Let a0 = 0, a1, . . . , ad−1 be the
elements of A0 and {u1, . . . , ud−1} be the basis of span(A0), dual to {a1, . . . , ad−1}. Note
that for every j ∈ [d−1] there is a facet of P that contains vertices {a0, . . . , ad−1}\{aj}
and differs from A0. The vector b{j} ∈ B, orthogonal to this facet, must satisfy π(b{j}) =
uj. Given S ⊆ [d− 1], let us denote by bS an element of B for which π(bS) =

∑

j∈S uj,

if there is one, with b∅ = 0 to avoid ambiguity. Consider the basis of Rd that is dual to
{b{1}, b{2}, . . . , b{d−1}, bd}. It is {a1, a2, . . . , ad−1, v} with v that satisfies

〈v, bd〉 = 1 and ∀j ∈ [d− 1] : 〈v, b{j}〉 = 0.

This means that
A1 = {v +

∑

j∈S

aj : S ∈ S} (20)

for some family S of subsets of [d − 1] with |S| = d. Our goal is to show that
S = {S ⊆ [d− 1] : |S| ≥ d− 2}, as then Lemma 3 would imply that P is affinely isomor-
phic to the cross-polytope, and we would be done. For T ⊆ [d−1] denote σT =

∑

j∈T aj
and note that, given bS ∈ B,

〈σT , bS〉 = 〈σT , π(bS)〉 =
〈

σT ,
∑

j∈S

π(b{j})
〉

=
〈∑

j∈T

aj,
∑

j∈S

b{j}

〉

= |T ∩ S|.

Arguing indirectly, assume that ∃S1, S2 ∈ S : |S2\S1| > 1. Inequality (19) and Lemma 1
imply that there exists bS ∈ B such that |S ∩ S2| − |S ∩ S1| > 1. But (20) means that

{−1, 0, 1} ∋ 〈v +
∑

j∈S2

aj , bS〉 − 〈v +
∑

j∈S1

aj , bS〉 = 〈σS2
− σS1

, bS〉 = |S2 ∩ S| − |S1 ∩ S|,

a contradiction. Therefore, ∀S1, S2 ∈ S : |S2 \ S1| ≤ 1, which by Lemma 2 implies that
either S = {S ⊆ [d−1] : |S| ≥ d−2} or S = {S ⊆ [d−1] : |S| ≤ 1}. In case of the former,
(20) and Lemma 3 imply that P is affinely isomorphic to the cross-polytope, and we
are done. Finally, assume, looking for a contradiction, that S = {S ⊆ [d− 1] : |S| ≤ 1}.
Then (20) implies that A1 is simply A0 shifted by v. P is therefore affinely isomorphic
to the cartesian product of a segment with a (d− 1)-dimentional simplex. Therefore, P
has d+ 2 facets and |π(B)| = d+ 1 ≤ 7

82
d−1 for d > 3, contradicting (19).
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A Appendix

This section is here in order to make the paper self-contained. Here, we essentially repeat the
proofs from [5] of the claims that we formulated in Section 2.1.

Claim 1. We may translate A and replace some points b ∈ B by the opposites −b such that
the following properties hold.

(i) We (still) have A = A0 ∪A1, where Ai = {a ∈ A : 〈a, bd〉 = i} for i = 0, 1 such that

|A0| ≥ |A1|. (2)

(ii) We have
〈a, b〉 ∈ {0, 1} for each a ∈ A0 and b ∈ B. (3)

(iii) The set π(B) does not contain opposite points.

Proof. If |{a ∈ A : 〈a, bd〉 = 0}| ≤ |{a ∈ A : 〈a, bd〉 = 1}|, then we can choose any a∗ ∈ A with
〈a∗, bd〉 = 1 (which exists since A spans Rd) and replace A by A−a∗, B by (B\{bd})∪{−bd},
and bd by −bd. This yields (i).

After this replacement, for each b ∈ B there is some εb ∈ {±1} such that 〈a, b〉 ∈ {0, εb}
holds for all a ∈ A. Each b with {〈a, b〉 : a ∈ A0} = {0,−1} is replaced by −b, which yields (ii).

Let A′
1 be a translate of A1 such that 0 ∈ A′

1. Note that, for each b ∈ B we now have
{〈a, b〉 : a ∈ A0} = {0, 1} or {〈a, b〉 : a ∈ A0} = {0}. In the second case, we replace b by −b if
{〈a, b〉 : a ∈ A′

1} = {0,−1}, otherwise we leave it as it is.
It remains to show that π(B) does not contain opposite points after this transformation.

To this end, let b, b′ ∈ B such that π(b) = βπ(b′) for some β 6= 0, where π(b), π(b′) 6= 0. We
have to show that β = 1. Note that for every a ∈ A0 ∪A′

1 ⊆ U we have

〈a, b〉 = 〈a, π(b)〉 = β〈a, π(b′)〉 = β〈a, b′〉.
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Suppose first that {〈a, b〉 : a ∈ A0} 6= {0}. By (3) there exists some a ∈ A0 with 1 = 〈a, b〉 =
β〈a, b′〉. Thus, we have 〈a, b′〉 6= 0 and hence 〈a, b′〉 = 1, again by (3). This yields β = 1.

Suppose now that {〈a, b〉 : a ∈ A0} = {0}. Note that this implies {〈a, b′〉 : a ∈ A0} = {0}.
As A0 ∪ A′

1 spans U , we must have {〈a, b〉 : a ∈ A′
1} 6= {0} and hence there is some a ∈ A′

1

with 〈a, b〉 = 1. Moreover, we have β〈a, b′〉 = 1, and in particular 〈a, b′〉 6= 0. This implies
〈a, b′〉 = 1 and hence β = 1.

As in the previous proof, let A′
1 be a translate of A1 such that 0 ∈ A′

1. Note that for each
b ∈ B there are εb, γb ∈ {±1} such that

〈a, b〉 ∈ {0, εb} for each a ∈ A and (21)

〈a, b〉 ∈ {0, γb} for each a ∈ A
′
1. (22)

The proofs of the subsequent claims rely on the following two lemmas.

Lemma 4. Suppose that X ⊆ {0, 1}d ∪ {0,−1}d does not contain opposite points. Then we
have |X| ≤ 2dimX .

Proof. We prove the statement by induction on d ≥ 1, and observe that it is true for d = 1.
Now let d ≥ 2. If dimX = d, then we are also done. It remains to consider to case where X
is contained in an affine hyperplane H ⊆ R

d. Let c = (c1, . . . , cd) ∈ R
d, δ ∈ {0, 1} such that

H = {x ∈ R
d : 〈c, x〉 = δ}.

For each i ∈ {1, . . . , d} let πi : H → R
d−1 denote the projection that forgets the i-th

coordinate, and let ei ∈ R
d denote the i-th standard unit vector. Note that πi∗(X) ⊆

{0, 1}d−1 ∪ {0,−1}d−1.
Suppose there is some i∗ ∈ {1, . . . , d} such that 〈c, ei∗〉 6= 0 and πi∗(X) does not contain

opposite points. By the induction hypothesis we obtain

|X| = |πi∗(X)| ≤ 2dim πi∗(X) = 2dimX ,

where the first equality and the last equality hold since πi∗ is injective (due to 〈c, ei∗〉 6= 0).
It remains to consider the case in which there is no such i∗. Consider any i ∈ {1, . . . , d}.

If 〈c, ei〉 6= 0, then there exist x = (x1, . . . , xd), x
′ = (x′1, . . . , x

′
d) ∈ X, x 6= x′ such that

πi(x) = −πi(x
′). We may assume that πi(x) ∈ {0, 1}d−1 and hence πi(x

′) ∈ {0,−1}d−1. As
X does not contain opposite points, we must have xi = 1 and x′i = 0, or xi = 0 and x′i = −1.
In the first case we obtain

2δ = 〈c, x〉+ 〈c, x′〉 = [〈πi(c), πi(x)〉+ cixi] + [〈πi(c), πi(x
′)〉+ cix

′
i]

= [〈πi(c), πi(x)〉+ ci] + [〈πi(c), πi(x
′)〉]

= ci.

Similarly, in the second case we obtain 2δ = −ci.
If δ = 0, this would imply that c = 0, a contradiction to the fact that H 6= R

d. Otherwise,
δ = 1 and hence every nonzero coordinate of c is ±2. Thus, for every x ∈ Z

d we see that
〈c, x〉 is an even number, in particular 〈c, x〉 6= δ. This means that X ⊆ Z

d ∩H = ∅, and we
are done.
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A direct consequence of Lemma 4 that we will employ is

Lemma 5. Let A,B ⊆ R
d such that A spans R

d, B does not contain opposite points, and
for every b ∈ B there is some εb ∈ {±1} such that {〈a, b〉 : a ∈ A} ⊆ {0, εb}. Then we have
|B| ≤ 2dimB.

Proof. Let a1, . . . , ad ∈ A be a basis of Rd and express elements of B in the dual basis, it then
becomes a subset of {0, 1}d∪{0,−1}d with no opposite points. By Lemma 4, |B| ≤ 2dimB.

We are ready to continue with the proofs of the remaining claims.

Claim 2. Every point in π(B) has at most two preimages in B.

Proof. Let y := π(b) for some b ∈ B and observe that π−1(y) = {x ∈ R
d : π(x) = y} is a

one-dimensional affine subspace. By (21) and Lemma 5 we obtain |B ∩ π−1(y)| ≤ 2.

Inequality 1. |A| |B| ≤ 2 |A0| |π(B)| + |A1| |B\B∗|.

Proof. Claim 2 implies |B| = 2|π(B)| − |B∗| or 2(|π(B)| − |B∗|) = |B \B∗|. With |A0| ≥ |A1|
this gives

|A||B| = (|A0|+ |A1|)(2|π(B∗)| − |B∗|) ≤ 2|A0||π(B∗)|+ 2|A1||π(B)| − 2|A1||π(B)|

= 2|A0||π(B∗)|+ |A1||B \B∗|

Claim 3. |π(B)| ≤ 2d−1−dimU0 |τ(π(B))|.

Proof. Fix any b ∈ B and let v := π(b). Consider the orthogonal complement W ⊆ U of U0

in U . As τ−1(τ(v)) = v +W , it suffices to show that

|(v +W ) ∩ π(B)| ≤ 2d−1−dimU0

holds. To this end, consider the linear subspace Π ⊆ U spanned by v andW and let σ : U → Π
denote the orthogonal projection on Π.

First, suppose that σ(A′
1) spans Π. For every a ∈ A′

1 ⊆ U and every b ∈ B with π(b) ∈
v +W ⊆ Π we have

〈σ(a), π(b)〉 = 〈a, π(b)〉 = 〈a, b〉 ∈ {0, γb}

by (22). Moreover, recall that π(B) does not contain opposite points by Claim 1 (iii). Thus,
the pair σ(A′

1) and (v +W ) ∩ π(B) satisfies the requirements of Lemma 5 (in Π), and hence
we obtain

|(v +W ) ∩ π(B)| ≤ 2dim(v+W ) = 2dimW = 2dimU−dimU0 = 2d−1−dimU0 .

It remains to consider the case in which σ(A′
1) does not span Π. Recall that we chose

bd as the nonzero vector in B with the maximal ϕ(bd) := max
(
dim(A0),dim(A1)

)
for the

corresponding A0 and A1. Unless |(v+W )∩π(B)| = 1, we will identify points b1, b2 ∈ B with
max{ϕ(b1), ϕ(b2)} > ϕ(bd), a contradiction to the choice of bd.

As A0 ∪ A′
1 spans U , we know that σ(A0 ∪ A′

1) spans Π. Since A0 is orthogonal to W ,
this means that σ(A0) spans a line, and σ(A′

1) spans a hyperplane H in Π. Note that we
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have v /∈ W (otherwise W = Π and so σ(A′
1) spans Π). Thus, every nonzero point in σ(A0)

has nonzero scalar product with v. Moreover, for every a ∈ A0 with σ(a) 6= 0 we have
〈σ(a), v〉 = 〈a, v〉 = 〈a, b〉 ∈ {0, 1} by (3). Thus, since the nonzero vectors in σ(A0) are
collinear, we obtain

σ(A0) ⊆ {0, σ(a0)}

for some a0 ∈ A0. Since 0 ∈ H, we have σ(A0) \H ⊆ {σ(a0)} and further, since σ(A0 ∪ A′
1)

spans Π, we have σ(A0) \H = {σ(a0)}. Let c ∈ Π be a normal vector of H. As σ(a0) /∈ H,
we may scale c so that 〈σ(a0), c〉 = 1. Let a∗ ∈ A1 such that A′

1 = A1 − a∗. We define

b1 := c− δ1bd 6= 0,

where δ1 := 〈a∗, c〉. For every a ∈ A0 we have

〈a, b1〉 = 〈a, c〉 = 〈σ(a), c〉 ∈ {〈0, c〉, 〈σ(a0), c〉} = {0, 1},

and for every a ∈ A1 we have

〈a, b1〉 = 〈a− a∗
︸ ︷︷ ︸

∈A′

1

, b1〉+ 〈a∗, b1〉 = 〈a− a∗, c〉+ 〈a∗, b1〉 = 〈σ(a− a∗)
︸ ︷︷ ︸

∈H

, c〉+ 〈a∗, b1〉

= 〈a∗, b1〉 = 〈a∗, c〉 − δ1〈a∗, bd〉 = 〈a∗, c〉 − δ1 = 0.

Thus, by the maximality of B, (a scaling of) the vector b1 is contained in B. Since we assumed
0 ∈ A0, we have ϕ(b1) ≥ dim(A1) + 1.

In order to construct b2, let us suppose that there is another point b′ ∈ B with v′ :=
π(b′) 6= v and v′ ∈ (v+W ). If there is no such point, then the statement of the claim is true.
Recall that σ(a0) is orthogonal to W , and let

ξ := 〈σ(a0), v〉 = 〈σ(a0), v − v′
︸ ︷︷ ︸

∈W

〉+ 〈σ(a0), v
′〉 = 〈σ(a0), v

′〉.

Choose v′′ ∈ {v, v′} such that ξc 6= v′′, and let b′′ ∈ {b, b′} such that π(b′′) = v′′. Define
δ2 := 〈a∗, v

′′ − ξc〉 and note that

b2 := v′′ − ξc− δ2bd

is nonzero since v′′ − ξc ∈ U \ {0}. For every a ∈ A0 we have

〈a, b2〉 = 〈a, v′′ − ξc
︸ ︷︷ ︸

∈Π

〉 = 〈σ(a), v′′ − ξc〉,

which is zero if σ(a) = 0. Otherwise, σ(a) = σ(a0) and we obtain

〈a, b2〉 = 〈σ(a0), v
′′〉 − ξ〈σ(a0), c〉 = 〈σ(a0), v

′′〉 − ξ = 0.

Thus, b2 is orthogonal to A0. Moreover, note that

〈a∗, b2〉 = 〈a∗, v
′′ − ξc〉 − δ2 〈a∗, bd〉

︸ ︷︷ ︸

=1

= 0.
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Thus, for every a ∈ A1 we have

〈a, b2〉 = 〈a− a∗, b2〉+ 〈a∗, b2〉 = 〈a− a∗, b2〉 = 〈a− a∗, v
′′〉 − ξ 〈a− a∗, c〉

︸ ︷︷ ︸

=0

−δ2 〈a− a∗, bd〉
︸ ︷︷ ︸

=0

= 〈a− a∗, v
′′〉 = 〈a− a∗, b

′′〉 ∈ {0, γb′′}

by (22). Thus, again by the maximality of B, (a scaling of) the vector b2 is contained in B,
and since b2 is orthogonal to A0 and a∗ ∈ A1, we have ϕ(b2) ≥ dim(A0) + 1. However, by the
choice of bd we must have

max{dim(A0),dim(A1)}+ 1 ≤ max{ϕ(b1), ϕ(b2)} ≤ ϕ(bd) = max{dim(A0),dim(A1)},

a contradiction.

Claim 4. B\B∗ can be partitioned as B0 ⊔B1, with B0,B1 satisfying

∀b ∈ Bi : |{〈a, b〉 : a ∈ Ai}| = 1 for i = 0, 1.

Proof. Let b ∈ B \ B∗ and, for the sake of contradiction, suppose that |{〈a, b〉 : a ∈ A0}| =
|{〈a, b〉 : a ∈ A1}| = 2. Let b′ ∈ B \ {b} such that π(b) = π(b′). In other words, we have
b′ = b+ γbd for some γ 6= 0. Then, by (3) we have

{〈a, b′〉 : a ∈ A0} = {〈a, b〉 : a ∈ A0} = {0, 1}

and hence we obtain εb = εb′ = 1 by (21). Again by (21) we see

{0, 1} ⊇ {〈a, b′〉 : a ∈ A1} = {〈a, b〉 : a ∈ A1}+ γ = {0, 1} + γ = {γ, 1 + γ},

which implies γ = 0, a contradiction.

Inequality 2. |A| · |B| ≤ (dimU0 + 1) 2d + |A0| |B0|+ |A1| |B1| .

Proof. τ(π(B)) andA0 are both spanningU0 and have binary scalar products, so by Theorem 4
(or by the induction hypothesis, in the context of the proof of Theorem 4 in [5])

|τ(π(B))||A0| ≤ (dimU0 + 1)2dimU0

Combining this with Claim 3 and Inequality 1 we get

|A||B| ≤ 2 · (dim(U0) + 1)2d−1 + |A1|(|B0|+ |B1|) ≤ (dimU0 + 1) 2d + |A0||B0|+ |A1||B1|,

where the second inequality is due to |A0| ≥ |A1|.

Inequality 3. For i = 0, 1 we have

|Ai| ≤ 2dim(Ai), |Bi| ≤ 2dim(span(Bi)), and dim(Ai) + dim
(
span(Bi)

)
≤ d.

Proof. The first (and second) inequality is a direct consequence of Lemma 5 after writing A

(or B) in the basis, dual to a basis found in B (or A). The last inequality follows from the
definition of Bi: for each b ∈ Bi there is ξb such that

Ai ⊂ Wi, where Wi = {x ∈ R
d : 〈x, b〉 = ξb for all b ∈ Bi},

and clearly dim(Wi) ≤ d− dim
(
span(Bi)

)
.

Claim 5. For i = 0, 1, we have |Ai| |Bi| ≤ 2d.

Proof. By Inequality 3, |Ai||Bi| ≤ 2dim(Ai) · 2dim(span(Bi)) ≤ 2d.
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